

 780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

SEMIoTICS

Deliverable D2.4.
SEMIoTICS High Level Architecture (Cycle 1)

Deliverable release date Initial 20.04.2019, revised 25.11.2019

Authors
1. Ermin Sakic (SAG), Darko Anicic (SAG)
2. Eftychia Lakka, Nikolaos Petroulakis (FORTH)
3. Jordi Serra, David Pubill, Angelos Antonopoulos, Christos Verikoukis
(CTTC)
4. Danilo Pau, Mirko Falchetto (ST)
5. Domenico Presenza (ENG)
6. Tobias Marktscheffel (UP)
7. Łukasz Ciechomski, Karolina Walędzik, Marcin Zawadzki, Łukasz
Kempiński, Urszula Rak (BS)
8. Prodromos-Vasileios Mekikis (IQU)

Responsible person Łukasz Ciechomski (BS), Mirko Falchetto (ST)

Reviewed by Mirko Falchetto (ST), Urszula Rak (BS), Łukasz Ciechomski (BS)

Approved by PTC Members (Vivek Kulkarni, Nikolaos Petroulakis, Ermin Sakic, Mirko
Falchetto, Domenico Presenza, Christos Verikoukis)

PCC Members (Vivek Kulkarni, Nikolaos Petroulakis, Christos Verikoukis,
Georgios Spanoudakis, Domenico Presenza, Danilo Pau, Joachim
Posegga, Darek Dober, Kostas Ramantas, Ulrich Hansen)

Status of the Document Final

Version 1.0 revised

Dissemination level Public

Ref. Ares(2019)7267611 - 25/11/2019

https://upload.wikimedia.org/wikipedia/commons/b/b7/Flag_of_Europe.svg

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D2.4 SEMIoTICS High Level Architecture (Cycle 1)

Dissemination level: [Public]

2

Table of Contents

 Introduction .. 7

1.1 PERT chart of SEMIoTICS ... 9

 SEMIoTICS Architectural Framework OVerview ..10

2.1 SEMIoTICS Envisaged Architecture ..10

2.2 SEMIoTICS Architectural Framework Overview ...11

2.3 Deployment of the SEMIoTICS Framework ...12

 SEMIoTICS Framework and Components ...17

3.1 Application orchestration layer ..17

3.2 SDN/NFV orchestration layer ..26

3.3 Field layer ...37

3.4 External platforms’ components ..42

 Use case specific architecture ...45

4.1 Use case 1 – Wind Energy ..45

4.2 Use case 2 – Assisted Living ..47

4.3 Use case 3 – Smart Sensing ...49

 Leveraging SEMIoTICS Framework for New Use Cases ...55

 Validation..55

6.1 Related Project Objectives and Key Performance Indicators (KPIs) ...56

6.2 Project requirements mapping to Tasks and Architectural Components ...57

 Conclusion ..61

 Bibliography ..62

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D2.4 SEMIoTICS High Level Architecture (Cycle 1)

Dissemination level: [Public]

3

Acronyms Table

Acronym Definition

2FA Two-Factor-Authentication

6LoWPAN IPv6 over Low-power Wireless Personal Area Network

AI Artificial Intelligence

AMQP Advanced Message Queuing Protocol

API Application Programmable Interface

ARP Address Resolution Protocol

ASCII American Standard Code for Information Interchange

ASIC Application-Specific Integrated Circuit

AuR Autonomous Robotics

AWS Amazon Web Services

BAN Body Area Network

BIM Building Information Management

BLE Bluetooth Low Energy

BSS Business Support System

CAN Controller Area Network

CAN-BUS Controller Area Network Protocol

CAPEX Capital Expenditures

CB Context Broker

CC Context Consumer

CI/CD Continuous Integration / Continuous Delivery

CLOE Cloud Of Engineering

CoAP Constrained Application Protocol

CoRE Constrained RESTful Environments

CP Context Producer

CPU Central Processing Unit

DoS Denial of Service

DPDK Data Plane Developer’s Kit

DTLS Datagram Transport Layer Security

E2E End to End

ETSI European Telecommunications Standards Institute

FHIR Fast Healthcare Interoperability Resources

FPGA Field-Programmable Gate Array

FW Firmware

GE Generic Enabler

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D2.4 SEMIoTICS High Level Architecture (Cycle 1)

Dissemination level: [Public]

4

GW Gateway

GRE Generic Routing Encapsulation

GUI Graphical User Interface

HTTP Hypertext Transfer Protocol

ICT Information and Communication Technology

IETF Internet Engineering Task Force

IFTTT If This, Then That

IHES Intelligent Heterogeneous Embedded Sensors

IIoT Industrial Internet of Things

IMU Inertial Measurement Unit

IoT Internet of Things

IP Internet Protocol

IPC Inter-Process communication

IPv4 Internet Protocol version 4

IPv6 Internet Protocol version 6

IT Information Technology

JSON JavaScript Object Notation

JSON-LD 1JavaScript Object Notation for Linking Data

KVM Kernel-based Virtual Machine

LD Linking Data

LHS Left Hand Side

LWM2M Lightweight Machine-to-M

LXD Linux Containers

M2M Machine to Machine

MAC Media Access Control

MANO Management and Orchestration

MCU Micro Controller Unit

MQTT 2Message Queuing Telemetry Transport

mW Milliwatts

NBI Northbound Interface

NETCONF Network Configuration Protocol

NFV Network Functions Virtualization

1 JavaScript Object Notification for Linking Data

2 Message Queuing Telemetry Transport

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D2.4 SEMIoTICS High Level Architecture (Cycle 1)

Dissemination level: [Public]

5

NFVI Network Functions Virtualization Infrastructure

NFVI-RA Network Functions Virtualization Infrastructure Resource Allocation

NFVO NFV orchestrator

NGSI Next Generation Service Interfaces

NGSIv2 Next Generation Service Interfaces version 2

NS Network Service

O&M Operations and Maintenance

OASIS Organization for the Advancement of Structured Information Standards

OEM Original Equipment Manufacturer

ODL Open Daylight

OFCONF OpenFlow Configuration

OGC Open Geospatial Consortium

OSS Operations Supports System

OVSDB Open vSwitch Database Management Protocol

OWL Web Ontology Language

PDP Policy Decision Point

PEP Policy Enforcement Point

PLC Power Line Controller

PM Pattern Module

PNF Physical Network Functions

POP Point of Presence

QoS Quality of Service

RA Robotic Assistant

REST Representational State Transfer

RHS Right Hand Size

RO Resource Orchestrator

RO NBI Resource Orchestrator Northbound Interface

RPC Remote Procedure Call

Rpi Raspberry PI

RR Robotic Rollator

SARA
Socially Assistive Robotic Solution for Mild Cognitive Impairment or mild Alzheimer’s
disease

SAREF Smart Appliance Reference

SASL Simple Authentication and Security Layer

SAWSDL Semantic Annotations for WSDL and xml schema

SBI Southbound Interface

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D2.4 SEMIoTICS High Level Architecture (Cycle 1)

Dissemination level: [Public]

6

SCADA Supervisory Control and Data Acquisition

SDN Software-Defined Networking

SE Smart Environment

SFC Service Function Chaining

SLAM Simultaneous Localization and Mapping

SM Semantic Mediator

SoS System of System

SPDI Security, Privacy, Dependability, and Interoperability

SSC SEMIoTICS SDN Controller

SSD Solid State Disk

SSWAP Simple Semantic Web Architecture and Protocol

TCP Transmission Control Protocol

TD Thing Description

TLS Transport Layer Security

UC Use Case

UDP User Datagram Protocol

UI User interface

URL Uniform Resource Locator

VIM Virtualized Infrastructure Manager

VLAN Virtual Local Area Network

VM Virtual Machine

VNF Virtual Network Function

VNF-FG Virtual Network Function-Forwarding Graphs

vSwitch Virtual Switch

VTN Virtual Tenant Networks

VXLAN Virtual Extensible Local Area Network

W3C World Wide Web Consortium

WP Work Package

WoT Web of Things

WS-BPEL Web Services Business Process Execution Language

WSDL Web Services Description Language

WSMO Web Service Modeling Ontology

XML Extensible Markup Language

XSD XML Schema Definition

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D2.4 SEMIoTICS High Level Architecture (Cycle 1)

Dissemination level: [Public]

7

 INTRODUCTION

This deliverable is the first output of Task 2.4 “SEMIoTICS architecture design”. It provides an initial
specification of the overall reference architecture and a base-line specification of the interfaces and
functionalities of the core components of the SEMIoTICS framework.

The presented first version of architecture of the pattern-driven SEMIoTICS framework aims to address such
challenges of current implementation and deployment stack of IoT applications such as dynamicity, scalability,
heterogeneity and end-to-end security/privacy. Design of the SEMIoTICS architecture aims to address the
aforementioned challenges. Specifically, the functional components of the proposed architecture are
presented to provide an overview of the appropriate realization mechanisms. Finally, there are two verticals
mapped in the areas of energy and health care and one horizontal in the area of intelligent sensing use cases
scenarios to the suggested architecture in order to demonstrate its applicability in different IoT enablin g
platforms, types of smart objects, devices and types of networks.

The architectural specification and logical composition of architecture has been built upon the general and
use case specific requirements identified during the project. Additionally, cons idering architecture given in the
project proposal, three layers (Field Level, SDN/NFV Orchestration Layer and Application Orchestration
Layer) have been included into the architecture diagram. Additionally, layer approach corresponds with the
research performed within the project hence abovementioned factors led to the vision of the architecture
presented in this document.

It is very important to mention the overall interplay of this task with already ongoing tasks within WP2, WP3
and WP4 and its direct connection with WP5 and WP6. A detailed relation between the described components
and specific work packages and tasks addressing the implementation has been provided in section 2. One
can find the names of the components, implementation task assignments and information regarding maturity
of the specific logical component. Figure 3 showcases indirectly the initial plan for scope of development for
each component specifically giving its current status of development. While the development of the
architectural components is planned for WP3 and WP4, final integrations and integrated demos are pl anned
for WP5 as per DoA.

Due to the complexity of the project itself and its goals, the necessity of integration significant number of
requirements defined in T2.1 and T2.2, identifying generic framework components able to support diverse
use cases, the architecture definition has been a process itself.

Series of face to face and online workshops, triggered many discussions on the framework architecture
composition. Since the work has started after WP3 and WP4 were already initiated, specific component an d
functionalities were identifiable. Once the component identification has been finalized, there has been a series
of thorough analysis run along with the requirements identified and work being delivered in entire WP3 and
WP4 to ensure including all necessary elements and not to omit any component needed to fulfil defined
requirements.

Creation of first version of SEMIoTICS architecture diagram has been followed by vivid discussions within
WP2, WP3 and WP4 workshops and further fine tuning has been constantly provided. Final draft version has
been discussed in Barcelona during project meeting and approved by entire consortium after some minor
changes introduced. Result of that process is demonstrated in this document as first version of the SEMIoTICS
architecture.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D2.4 SEMIoTICS High Level Architecture (Cycle 1)

Dissemination level: [Public]

8

The deliverable is structured as follows: Section 2 presents an overview of the envisaged, deployed and
developed SEMIoTICS architectural diagrams. Section 3 provides descriptions of generic components as
building blocks of the framework as per architectural layer.

Section 4 has been devoted to use case specific architecture and its components hence gives an overview
how SEMIoTICS framework support each of the use cases defined in the project.

Section 5 leverages SEMIoTICS for the insertion of new use cases in the framework. Section 6 contains the
validation of the framework and the components regarding the requirements and the project KPIs .

Finally, section 7 concludes the deliverable while section 8 is a bibliography.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D2.4 SEMIoTICS High Level Architecture (Cycle 1)

Dissemination level: [Public]

9

1.1 PERT chart of SEMIoTICS

36 months Leader: SAG

31.12.202001.01.2018

WP1: Project Management

23 months Leader: ST-I

30.11.201901.01.2018

WP2: Requirements and Architecture for
Smart Sensing and Smart Actuation

24 months Leader: SAG

30.04.202001.05.2018

WP3: Smart objects and networks

25 months Leader: FORTH

30.06.202001.06.2018

WP4: Pattern-driven smart behavior of
IIoT with End-to-End Security and Privacy

24 months Leader: ENG

31.12.202001.01.2019

WP5: System Integration and Evaluation

36 months Leader: SAG

31.12.202001.01.2018

T1.1: Project coordination 36 months Leader: FORTH

31.12.202001.01.2018

T1.2: Project technical and innovation
management

36 months Leader: SAG

31.12.202001.01.2018

T1.3: Coordination with EU programme
level activities

3 months Leader: STS

31.03.201801.01.2018

T2.1: Analysis of emerging business and
technical IoT value drivers

4 months Leader: SAG

30.04.201801.01.2018

T2.2: Specification of use case scenarios
& applications and their requirements

4 months Leader: ST-I

30.06.201801.03.2018

T2.3: Specification of infrastructure
requirements

18 months Leader: BS

31.12.201901.07.2018

T2.4: SEMIoTICS architecture design

22 months Leader: SAG

29.02.202001.05.2018

T3.1: Software defined Aggregation,
Orchestration and cloud networks

22 months Leader: CTTC

29.02.202001.05.2018

T3.2: IIoT Network Function Virtualization

22 months Leader: SAG

29.02.202001.05.2018

T3.3: Semantics-based bootstrapping &
interfacing

22 months Leader: STS

29.02.202001.05.2018

T3.4: Network-level semantic
Interoperability

22 months Leader: IQU

30.04.202001.07.2018

T3.5: Implementation of Field-level
middleware & networking toolbox

23 months Leader: STS

30.04.202001.06.2018

T4.1:Architectural SPDI patterns

22 months Leader: ENG

30.04.202001.07.2018

T4.2: Monitoring, prediction and
diagnosis

22 months Leader: ST-I

30.04.202001.07.2018

T4.3: Embedded Intelligence and local
analytics

22 months Leader: FORTH

30.04.202001.07.2018

T4.4: End-to-End Semantic
Interoperability

22 months Leader: BS

30.06.202001.09.2018

T4.6: Implementation of SEMIoTICS
backend API

22 months Leader: UP

30.04.202001.07.2018

T4.5: End-to-End Security and Privacy

5 months Leader: UP

31.10.201901.06.2019

T5.1: KPIs and Evaluation Methodology

15 months Leader: BS

31.08.202001.06.2019

T5.2: Software system integration

20 months Leader: IQU

31.08.202001.01.2019

T5.3: IIoT Infrastructure set-up and
testing

13 months Leader: SAG

31.12.202001.12.2019

T5.4: Demonstration and validation of
IWPC- Energy scenario

13 months Leader: ENG

31.12.202001.12.2019

T5.5: Demonstration and validation of
SARA-Health scenario

13 months Leader: ST-I

31.12.202001.12.2019

T5.6: Demonstration and validation of
IHES-Generic IoT scenario

36 months Leader: CTTC

31.12.202001.01.2018

T6.1: Impact Creation and Dissemination 31 months Leader: ENG

31.12.202001.06.2018

T6.2: Exploitation of results

24 months Leader: SAG

31.12.202001.01.2019

T6.3: Standardization
36 months Leader: CTTC

31.12.202001.01.2018

WP6: Impact, Dissemination and
Standardization

Please note that the PERT chart is kept on task level for better readability.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D2.4 SEMIoTICS High Level Architecture (Cycle 1)

Dissemination level: [Public]

10

 SEMIOTICS ARCHITECTURAL FRAMEWORK OVERVIEW

2.1 SEMIoTICS Envisaged Architecture

The main of focus of SEMIoTICS is to develop a dynamically configurable and evolvable framework to enable:
(a) the integration of heterogeneous smart objects that are available through heterogeneous IoT platforms
into IoT applications in a manner that is scalable, secure, privacy preserving and dependable; (b) the provision
of multi-layer intelligence capabilities enabling semi-autonomic smart object behaviour and evolution; and (c)
the runtime management and adaptation of these objects and the IoT applications that they form to preserve
security, privacy, and dependability.

FIGURE 1 ENVISAGED ARCHITECTURE AND DEPLOYMENT OF SEMIOTICS FRAMEWORK

The SEMIoTICS framework is based on the initial vision of the logical architecture of SEMIoTICS framework
and how it relates to smart objects, IoT applications, and existing IoT platforms, and how does it map onto a
generic deployment infrastructure consisting of private and public clouds, networks, and field devices as
depicted in . Within the figure, blue boxes show components of the framework that are to be developed by
SEMIoTICS; white boxes indicate components of IoT applications managed by the framework. The key role
of the SEMIoTICS framework in the IIoT/IoT implementation stack is to support the secure, dependable and
privacy-preserving connectivity and interoperability of IoT applications and smart objects used by them, and
the management, monitoring and adaptation of these applications, objects and their connectivity. The
SEMIoTICS vision is articulated around the development of a framework for smart object and IIoT/IoT
application management based on trusted patterns, monitoring and adaptation mechanisms, enhanced IoT
centric networks and multi-layered embedded intelligence.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D2.4 SEMIoTICS High Level Architecture (Cycle 1)

Dissemination level: [Public]

11

2.2 SEMIoTICS Architectural Framework Overview

SEMIoTICS Architectural Framework aims to leverage generic architecture components combined in layered
structure in order to deliver an Embedded Intelligence at all layers of the framework with the mechanisms
empowering SPDI patterns verification across all layers as envisioned in the SEMIoTICS envisaged
architecture. Created SEMIoTICS pattern-driven framework is capable of supporting diverse scenarios with
specific focus on Smart Energy, Healthcare and Smart Sensing use cases. More specifically the SEMIoTICS
architecture consists of three layers as follows:

• Application orchestration layer – consisted of all applications receiving the communication from the
field layer. The layer provides the framework with security, availability and scalability, privacy,
dependability, interoperability as well as intra and cross layer monitoring.

• SDN/NFV orchestration layer – offers flexible, programmable, dynamic and scalable ways to
reconfigure network resources in order to provide the QoS demanded by SEMIoTICS use cases. It
provides end-to-end service connectivity, meet different IoT application requirements in terms of
bandwidth, latency and energy efficiency.

• Field layer – responsible for hosting heterogenous types of IoT devices. It provides semantic
interoperability between IoT devices and seamless flexibility.

FIGURE 2 - SEMIOTICS ARCHITECTURE DIAGRAM

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D2.4 SEMIoTICS High Level Architecture (Cycle 1)

Dissemination level: [Public]

12

By designing the architecture this way, all of the requirements and assumptions of the project are fulfilled.
Figure 2, presents the component logical architecture consisting of three layers: Field Layer, SDN/NFV
Orchestration Layer and Application Orchestration Layer while more details of each layer is presented further.
In the following subsections, the background and the analysis and the component that constitute these layers
are described.

2.3 Deployment of the SEMIoTICS Framework

As detailed previously, the main scope of SEMIoTICS is to provide a framework to ensure project a dynamicity,
scalability, heterogeneity, end-to-end security and privacy based on the three main layers of architecture that
have been distinguished: the field, the network (SDN/NFV) and the application. The top layer, where the
application orchestration takes place, defines the system's backend components that is partly run on the
Cloud or on a server within the network of the lower layers.

To deploy the above layers and the required goal per layer, a number of different components on each layer
are required to develop the SEMIoTICS framework. Different types of components are proposed and deployed
in this architecture. Some components are developed from scratch or leveraging existing technologies.
Other components are adapted for SEMIoTICS needs or existing tools are used without any modification.
Apart from the new developed components in SEMIoTICS, regarding the reuse or extension of existing tools
SEMIoTICS, the candidate list includes the following:

• Components from other research projects that partners have participated or involved such as:

• VirtuWind5: The aim VirtuWind was to develop and demonstrate an SDN & NFV ecosystem,
based on open, modular and secure framework showcasing a prototype for intra-domain and inter-
domain scenarios in real wind parks as a representative use case of industrial networks, and
validate the economic viability of the demonstrated solution. SEMIoTICS reuses the basis of the
VirtuWind SDN controller by using (VTN Manager, Security Manager, Path Manager) or
adapting (Resource Manager, Bootstrapping Manager, Clustering Manager and SFC
Manager) existing components or inserting new ones such as Pattern Engine.

• Agile IoT6: It builds a modular hardware and software gateway for the Internet of Things with
support for protocol interoperability, device and data management, IoT apps execution, and
external Cloud communication. SEMIoTICS benefits by this project by enhancing the gained
knowledge to the field and application layer located in the cross-layer Security Managers.

• BIGIoT7: SEMIoTICS reuses the Recipe Cooker and the Thing Directory from the BIGIoT
project. The Recipe Cooker module is extended in SEMIoTICS to support the definition of QoS
requirements from an application point of view and to produce a conversion from applications
flows (recipes) that include QoS requirements into SPDI patterns. These patterns are then sent
to and interpreted by the Pattern Orchestrator. Beyond these conceptual changes to the Recipe
Cooker, its implementation is adapted and refactored to the popular Node-RED platform for IoT
mash-up building.

5 Virtual and programmable industrial network prototype deployed in operational Wind park, 5G-PPP Phase 1, 2015-
2018, http://www.virtuwind.eu

6 an Adaptive & Modular Gateway for the IoT, IoT EPI, 2016-2018, https://agile-iot.eu/

7 Bridging the Interoperability Gap of the Internet of Things, IoT EPI, 2016-2018, http://big-iot.eu

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D2.4 SEMIoTICS High Level Architecture (Cycle 1)

Dissemination level: [Public]

13

• FIWARE8: Core platform project, offering generic enablers (GEs) for a broad range of areas (i.e.
Cloud, Apps & Services, IoT, Interfaces to network and devices, Data & Context management and
Security), where SEMIoTICS is able to use such as FIWARE Broker and other GEs.

• Tools from the Open Source Community such as VIM (i.e. OpenStack), Kubernetes and Open Source
Mano for NFV Orchestrator that can be adapted in SEMIoTICS framework or a VNF Manager such as
Tacker supported by Openstack.

• Commercial solutions such as MindSphere IoT platform.

In Figure 3, a more detailed representation of the proposed architecture regarding the deployment details of
each existing adapted component or the new developed components is presented.

FIGURE 3 ARCHITECTURE DIAGRAM DEPLOYMENT

8 FIWARE: The Open Source Smart Platform, www.fiware.org

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D2.4 SEMIoTICS High Level Architecture (Cycle 1)

Dissemination level: [Public]

14

In the following Table 1 there have been presented all components comprising the SEMIoTICS architecture.
Moreover, what has been provided is detailed information on component owners as well as the task in the
context of which the component will be developed. Further subsections advances the description of the role,
core functionalities and deliver more details about each component per layer. This way once can understand
rationale of including each component into SEMIoTICS architecture.

TABLE 1 COMPONENT LIST

Component Layer
Owner
(coordinator)

Imple
mentat
ion
task

Maturity level

Semantic API &
Protocol Biding

Field layer SAG 3.3 Adapted for SEMIoTICS

Security
Manager

Field layer UP 4.5

Some Subcomponents developed from
scratch for SEMIoTICS;
some subcomponents adapted for
SEMIoTICS

GW Semantic
Mediator

Field layer SAG 3.3 Developed from scratch for SEMIoTICS

Monitoring Field layer ENG 4.2
Developed from scratch for SEMIoTICS,
leveraging existing technologies.

Pattern Engine Field layer FORTH 4.1 Developed from scratch for SEMIoTICS

Local embedded
intelligence

Field layer ST 4.3 Developed from scratch for SEMIoTICS

Local thing
directory

Field layer SAG 3.3 Adapted for SEMIoTICS

Use case 1 Field layer SAG 5.3, 5.4 Developed from scratch for SEMIoTICS

Use case 2 Field layer ENG 5.3, 5.5 Adapted for SEMIoTICS

Use case 3 Field layer ST 5.3, 5.6
Developed from scratch for SEMIoTICS,
leveraging existing technologies

Security
Manager

SDN
orchestration
layer

FORTH 3.1, 4.5 Existing tool

VIM Connector
SDN
orchestration
layer

CTTC
3.1,
3.2, 3.5

Existing tool

Clustering
Manager

SDN
orchestration
layer

SAG 3.1, 3.5 Adapted for SEMIoTICS

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D2.4 SEMIoTICS High Level Architecture (Cycle 1)

Dissemination level: [Public]

15

SFC Manager
SDN
orchestration
layer

FORTH 3.1, 3.5 Adapted for SEMIoTICS

Bootstrapping
Manager

SDN
orchestration
layer

SAG 3.1, 3.5 Adapted for SEMIoTICS

Resource
Manager

SDN
orchestration
layer

SAG 3.1, 3.5 Adapted for SEMIoTICS

Pattern Engine
SDN
orchestration
layer

FORTH
3.1,
3.4,
4.1, 4.5

Developed from scratch for SEMIoTICS,
leveraging existing technologies

NFV
Orchestrator

NFV
orchestration
layer

CTTC 3.2, 3.5 Adapted for SEMIoTICS

VNF Manager
NFV
orchestration
layer

CTTC 3.2, 3.5 Existing tool

Virtualized
Infrastructure
Manager

NFV
orchestration
layer

CTTC 3.2, 3.5 Adapted for SEMIoTICS

Backend
orchestrator

Application
orchestration
layer

BS 4.6
Developed from scratch for SEMIoTICS,
leveraging existing technologies

Recipe Cooker
Application
orchestration
layer

SAG 4.6 Adapted for SEMIoTICS

Thing directory
Application
orchestration
layer

SAG 4.6 Adapted for SEMIoTICS

Pattern
Orchestrator

Application
orchestration
layer

STS 4.1 Developed from scratch for SEMIoTICS

Pattern Engine
Application
orchestration
layer

STS 4.1 Developed from scratch for SEMIoTICS

Monitoring
Application
orchestration
layer

ENG 4.2
Developed from scratch for SEMIoTICS,
leveraging existing technologies

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D2.4 SEMIoTICS High Level Architecture (Cycle 1)

Dissemination level: [Public]

16

Security
Manager

Application
orchestration
layer

UP 4.5

Some Subcomponents developed from
scratch for SEMIoTICS;
some subcomponents adapted for
SEMIoTICS

Backend
Semantic
Validator

Application
orchestration
layer

FORTH 4.4
Developed from scratch for SEMIoTICS,
leveraging existing technologies

Use case 1 apps
Application
orchestration
layer

SAG 5.4 Adapted for SEMIoTICS

Use case 2 apps
Application
orchestration
layer

ENG 5.5 Adapted for SEMIoTICS

Use case 3 apps
Application
orchestration
layer

IQU/ST 5.6 Adapted for SEMIoTICS

GUI
Application
orchestration
layer

BS 4.6
Developed from scratch for SEMIoTICS,
leveraging existing technologies

FIWARE/
Context Broker

External IoT
Platforms

IQU 3.5, 5.2 Adapted for SEMIoTICS

FIWARE / GE X
External IoT
Platforms

IQU 3.5, 5.2 Adapted for SEMIoTICS

MindSphere
External IoT
Platforms

SAG 5.4 Existing tool

AREAS
External IoT
Platforms

ENG 5.2 Existing tool

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D2.4 SEMIoTICS High Level Architecture (Cycle 1)

Dissemination level: [Public]

17

 SEMIOTICS FRAMEWORK AND COMPONENTS

SEMIoTICS Architectural Framework aims to leverage generic architecture components combined in layered
structure in order to deliver an Embedded Intelligence at all layers of the framework with the mechanisms
empowering SPDI patterns verification across all layers. Created SEMIoTICS pattern-driven framework will
be capable of supporting diverse scenarios with specific focus on Smart Energy, Healthcare and Smart
Sensing use cases.

The main scope of SEMIoTICS is to provide a framework to ensure project Dynamicity, Scalability,
Heterogeneity, End-to-end Security and Privacy, three main layers of architecture have been distinguished:

• Application orchestration layer – consisted of all applications receiving the communication from the
field layer. The layer provides the framework with security, availability and scalability, privacy,
dependability, interoperability as well as intra and cross layer monitoring.

• SDN/NFV orchestration layer – offers flexible, programmable, dynamic and scalable ways to
reconfigure network resources in order to provide the QoS demanded by SEMIoTICS use cases. It
provides end-to-end service connectivity, meet different IoT application requirements in terms of
bandwidth, latency and energy efficiency.

• Field layer – responsible for hosting heterogenous types of IoT devices. It provides semantic
interoperability between IoT devices and seamless flexibility

In the next subsections, the description with more details of each layer and deployed component is presented
further.

3.1 Application orchestration layer

Application orchestration layer consist of all applications receiving the communication from field layer.
Backend orchestrator will be leveraged for the application orchestration purposes and to provide common
functionalities across all deployed applications.

Additionally, application orchestration layers hold the use case flows as well as SPDI patter definition.

 BACKEND ORCHESTRATOR

Overview: A component responsible for integrating all backend services and exposing API. The technology
is to be chosen (OpenShift/Kubernetes/OpenStack).

Core Functionalities:

• Application availability monitoring (health checks)

• Monitoring of application resource consumption

• Delivering common API for pattern enforcing components

• Delivering common API for monitoring components

• Delivering common API for CI/CD tools

• Providing auto scaling capabilities for applications (ensuring scalability in case of resources saturation

• Easing application/component deployment

• Giving one centralized place for backend component management.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D2.4 SEMIoTICS High Level Architecture (Cycle 1)

Dissemination level: [Public]

18

Details: The Backend Orchestrator (BO) is a component responsible for provisioning all other
applications/components residing in the backend. Currently the possible tools for orchestration are revised.
While comparing available solutions, their out of the box features and restrictions are considered. One of the
tasks in the first draft of WP4 implementation will be focused on choosing most suitable tools for backend
orchestration. Approaches which are taken into consideration are:

• Kubernetes9 on bare metal

• Openstack10 on bare metal

• Kubernetes on Openstack.

 RECIPE COOKER

Overview: Module responsible for cooking (creating) recipes reflecting user requirements on different layers
(cloud, edge, network) as well as transforming recipes into understandable rules for each of layer. It uses
Thing directory with all necessary models to create these rules.

Core Functionalities:

• Creating recipes,

• Transforming recipes into understandable rules

Details: Recipe Cooker (RC) is a module able to instantiate recipes. A recipe is a template for a workflow of
interactions between multiple ingredients, i.e., devices or services. When a recipe is instantiated, ingredients
are replaced with concrete things, described with their own respective Thing Description. A draft for a user
interface (UI) for the specification of recipes can be seen in Figure 4.. Besides the workflow of the recipe,
QoS constraints and SPDI patterns can be defined on the interactions.

The user of this tool would be typically an IoT application developer. This user wan ts to focus on the logic of
the application flow. Specifically, the user does not have to be an expert in configuring the network and
physical connections between the involved IoT devices. The benefit of the recipe approach is that these
configurations are automatically done by the tool and the underlying technologies, user only sets SPDI
properties (e.g. latency, rate).

9 https://kubernetes.io

10 https://www.openstack.org

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D2.4 SEMIoTICS High Level Architecture (Cycle 1)

Dissemination level: [Public]

19

FIGURE 4: DRAFT OF RECIPE COOKER UI

 THING DIRECTORY

Overview: The repository of knowledge containing necessary Thing models.

Core Functionalities:

• Searching for a thing based on its metadata, properties, actions or events

• Creating a new thing's TD or updating an existing one

• Deleting a thing's TD

• Generating a runtime environment based on a discovered thing

• All CRUD operations are supported either over HTTP or CoAP.

Details: The Thing Directory hosts Thing Descriptions of registered things. The Thing Description (TD) model
is a recommendation of the W3C Web of Things 11working group to describe things. The directory features an
API to create, read, update and delete (CRUD) a TD. The directory can be used to browse and discover
Things based on their TDs.

 PATTERN ORCHESTRATOR

11 https://www.w3.org/WoT/

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D2.4 SEMIoTICS High Level Architecture (Cycle 1)

Dissemination level: [Public]

20

Overview: This module is responsible for translating cooked recipes into patterns and passing them to pattern
engines on each layer.

Core Functionalities:

• Translating recipes from Recipe Cooker

• Sending recipes to the according Pattern Engine

Details: The Pattern Orchestrator module features an underlying semantic reasoner able to understand
“cooked” recipes, as received from the Recipe Cooker module (see above) and transform them into
architectural patterns. The Pattern Orchestrator is then responsible to pass said patterns to the corresponding
Pattern Engines (as defined in the Backend, Network and Field layers), selecting for each of them the subse t
of patterns that refer to components under their control (e.g. passing Network -specific patterns to the Pattern
Engine present in the SDN controller). Through the above functions, the module

achieves automated configuration, coordination, and management of the SEMIoTICS patterns across
different layers and service orchestrations.

 PATTERN ENGINE

Overview: Module responsible for enforcing patterns as provided by pattern orchestrator.

Core Functionalities:

• Enforcing patterns provided by Pattern Orchestrator

Details: The Pattern Engine features the pattern engine for the SEMIoTICS framework. Variants of pattern
engine can be found at the backend, at the network (SDN controller) and field (IoT gateway) layers. As such,
it will enable the capability to insert, modify, execute and retract patterns at design or at runtime in the
backend; these interactions will happen through the interfacing with the Pattern Orchestrator (see above),
though additional interfaces may be introduced to allow for more flexible deployment and adjustments if
needed.

Using said patterns and the Drools12 rule engine, along with monitoring capabilities present at the backend
layer, the Pattern Engine will be able reason on the Security, Privacy, Dependability and Interoperability
(SPDI) properties of aspects pertaining to the operation of the SEMIoTICS backend. Moreover, at runtime the
backend Pattern Engine may receive fact updates from the individual Pattern Engines present at the lower
layers (Network & Field), allowing it to have an up-to-date view of the SPDI state of said layers and the
corresponding components.

For example, a security pattern can be used to define integrity protection on a logical communication link,
helping at design time to select components that can provide said integrity protection, but also monitoring at
runtime that these components indeed do enforce this protection. Moreover, adaptations can be triggered if,

12 Drools Business Rules Management System (BRMS) https://www.drools.org

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D2.4 SEMIoTICS High Level Architecture (Cycle 1)

Dissemination level: [Public]

21

e.g. at runtime it is detected that one of the involved components fails to satisfy this requirement, replacing it
with an alternative one.

 MONITORING

Overview: Component responsible for monitoring, learning and predictive analytics.

Core Functionalities:

• Generating high-level events

Details: The monitoring component in the backend layer has two key requirements:

• To generate specific messages in response to the reception of a set of messages generated by the
components of an IoT application and matching some condition specified in the monitoring component
by a client application (Monitoring requirement).

• To guarantee that the messages needed to decide whether to generate a message can be produced
by an IoT application and received by the monitoring component (Observability property).

Error! Reference source not found. presents the main required inputs and outputs of the SEMIoTICS
monitoring component.

FIGURE 5 - MAIN INPUT AND OUTPUT OF THE MONITORING COMPONENT

In particular the Monitoring component receives as input:

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D2.4 SEMIoTICS High Level Architecture (Cycle 1)

Dissemination level: [Public]

22

• Low-level events: the messages generated by the computational nodes belonging to the three layers
identified by the SEMIoTICS architecture: field (e.g. sensors, gateways), network (e.g. routers) and
cloud (e.g. FIWARE cloud services, MindSphere services). These low-level events are generated by
the computational nodes by means of signaling mechanisms specific of the technology used to
implement a computational node.

• High-level events definitions: the conditions stating whether a new event should be generated in
response of the reception of a set of low-level events.

The monitoring component emits as outputs:

• High-level events: the messages generated by the monitoring component itself in response to the
reception of a set of low-level events matching one of the events definitions.

• Configuration commands: messages requesting a specific configuration of the mechanisms allowing
the computational nodes to generate the low-level events. The possibility to issue these commands
allows the monitoring component to properly select and configure the signaling mechanisms needed
for the monitoring purpose.

In order to provide the observability property the Monitoring component embeds learning and predictive
analytics components (not shown in Fig. 3) that enables the anticipatory behavior needed to guarantee that
the monitoring tasks can continue with the expected QoS despite the failure of some of the components (e.g.
event collectors) contributing to the overall monitoring task.

 SECURITY MANAGER

Overview: Module responsible for granting access and necessary security checks at the backend layer.

Core Functionalities:

• Providing services to Authentication, Key distribution, Management of users, roles, access rights

Details: Security Manager stores and takes decisions on security policies across all SEMIoTICS components.
The security manager at the backend layer is the Policy Decision Point (PDP). In contrast, the security
managers at SDN and edge level are Policy Enforcement Points (PEP). The security managers at SDN and
edge levels only have a local view on security policies and authentication, whereas the security manager at
the backend has a global view. Therefore, the following case can happen: The security manager at the edge
level (or SDN level respectively) does not have the information required to decide whether to grant or deny
an action; it then queries the security manager at the backend layer on what decision to take.

The security manager is responsible for all authentication decisions. It supports both local authentication as
well as relying on external identity providers using OAuth2. By means of OAuth2, particularly strong
authentication mechanisms such as two-factor-authentication (2FA) are also supported. As a result, the
security manager shares a long-term key with each component and device.

Another service provided by the security manager is key distribution. Whenever two components or devices
want to protect confidentiality of a direct communication link, they require keys for encryption. As the security
manager shares a long-term key with both components, it can use this key for securely exchanging a session
key with both components. Additionally, the security manager may have better means for securely generating
keys, for example by using hardware support; in contrast, in particular sensors and actuators with limited
computational power may lack the resources to securely generate keys at all.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D2.4 SEMIoTICS High Level Architecture (Cycle 1)

Dissemination level: [Public]

23

The security manager is also responsible for managing roles, users, and access rights across SEMIoTICS.
Users may assume on or more roles such as regular user, security analyst, etc . Access rights are defined by
security policies which are stored in the security manager. This includes generating keys for attribute-based
encryption.

 BACKEND SEMANTIC VALIDATOR

Overview: Module responsible for semantic validation mechanisms at the backend layer.

Core Functionalities:

• Detection of any potential semantic conflicts in Things Description,

• Resolving semantic conflicts,

• Transferring requests to Semantic API & Protocol Binding

Details: The aim of Backend Semantic Validator component (see SEMIoTICS deliverable D4.4) is to tackle
the semantic interoperability issues that arise in the SEMIoTICS framework, at the application orchestration
layer. The Backend Semantic Validator can receive a request from IoT application for interaction between two
Things (i.e. sensor, actuator), which are described with two different TDs (based on W3C Thing Descriptions
that are serialized to JSON-LD standard format), respectively. The functionality of this component consists of:

• Searching for the necessary Thing models in Thing Directory component (Section 3.1.3), in order to
detect any potential semantic conflicts between the interacting domains.

• Connecting with Recipe Cooker (Section 3.1.2) and Semantic Edge Platform (in the field) to resolve
these semantic conflicts using the Adaptor Nodes that configure an Interaction Pattern in accordance
to the application's requirements.

• Transferring the translated request to the Semantic API & Protocol Binding component (Section 3.3.1)
which is responsible to trigger the GW Semantic Mediator (Section 3.3.4) in the filed layer, in order to
send the request in appropriate format to the target Thing (actuator).

 GRAPHICAL USER INTERFACE

Overview: A component responsible for the presentation layer

Core Functionalities:

• Visualization of SPDI pattern monitoring, pattern details, recipes

• Interacting with Things,

• Performing CRUD operations on Thing Descriptions,

• Collecting data gathered from IoT devices,

• Providing user dashboard interface,

• Providing routing to other SEMIoTICS’s components

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D2.4 SEMIoTICS High Level Architecture (Cycle 1)

Dissemination level: [Public]

24

Details: Graphical User Interface is a component responsible for giving meaningful insights into the platform
and centralized visualization of the whole framework as well as is a layer of presentation for specific use
cases.

The following approaches are to be considered:

• GUI that communicates through the API with an external application.

• GUI that loads the view itself from the external application.

• GUI that is dedicated to the given backend application.

Further definition of GUI is a subject to specific task within the project.

 USE CASE 1 APPLICATIONS

Overview: Use case 1 backend application including all necessary underlying components. It applies UC1
business logic to the platform.

Core Functionalities:

• Translation of application-level network requirements to network constrains and monitoring and
enforcing them in a decentralized edge infrastructure of a wind turbine,

• The distributed application transfers video data to analytics engine (for oil detection) and stops the
wind turbine in a detected emergency case.

Details: The backend/cloud module, to demonstrate UC1, consists of a variety of modules supported by a
single web-UI:

• Application definition: flow-based programming tool used in the creation of abstract applications
allowing multiple instantiation and reuse. Applications definition is based on pre-defined models &
capabilities derived from sensors and actuators, i.e. video and audio feeds, motors, strain gauges,
temperature sensors etc. The module supports regular functions such as if/else and for-loops.

• Application deployment: UI supporting the execution of defined applications. The module facilitates
the configuration, validation and execution of an application. Examples of functionalities include
selection of ingredients required by the application to be executed, and instantiations parameters, e.g.
if the application shall be run in the cloud or at the IIoT gateway. Furthermore, this module validates if
all pre-requisites, e.g. QoS constraints, can be met by the architecture prior to deployment and
execution of the application.

• MindSphere Apps: There are use case specific Apps in MindSphere cloud platform namely Condition
monitoring and Predictive maintenance. These apps take the current and historical data of Cloud Thing
Directory in order to monitor the condition/predictive maintenance of the Thing/s.

• Edge Apps: IoT Gateway (SEMIoTICS Edge) apps can be run from the backend.

• Data meant for 3rd party OEM vendor: 3rd party OEM vendors can get access to their data through
MindSphere Apps installed at their location.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D2.4 SEMIoTICS High Level Architecture (Cycle 1)

Dissemination level: [Public]

25

 USE CASE 2 APPLICATIONS

Overview: Use case 2 backend application including all necessary underlying components (Daily Activity
Monitor, Patient Activities Scheduler and HR Interaction Manager).

Core Functionalities:

• Enforcement of Security, Privacy, Dependability and Safety properties stemming from GDPR

• Enforcement of access control policies

• Detection of anomalies within patterns of discrete events generated by the Smart Environment

• Standardized access to CoAP and ZigBee device

• Discovery of heterogenous (CoAP and ZigBee) devices

• Aggregate and analyze data from heterogeneous devices

• Distributed AI at the edge (e.g. Gait Analysis)

• Manage optimal configuration of networking resources w.r.t. uncertainty and unpredictability in the
distributed computational loads

Details: The SARA module represents the backend of the SARA solution. It consists of a set of services
providing all the functionalities required to fulfill the requirements presented in deliverable D2.1. Examples of
functionalities provided by the SARA module include: the Daily Activity Monitor, the Patient Activity, Scheduler,
the Tele-monitoring service, the Localization and Mapping service, the Human-Robot Dialog Manager.

Some of the above services (e.g. he Human-Robot Dialog Manager) requires the access to third party AI
services (e.g. IBM Watson, Google) to provide advanced functionalities.

Moreover, the SARA solution includes a web application providing the Graphical User Interfaces supporting
the various user roles envisaged for the solution:

• Call-center operator: access patient details for incident appraisal and handling, record incident
reports in the Patient Diary, update the Patient Diary with incident tracking/outcome info, access first
responder details for incident handling.

• Medical expert: query patient’s monitored daily activities, perform statistical analysis of Patient data,
manage Patient records, manage Patient-specific calendar of scheduled activities, and manage first
responder records.

• Technician: access patient specific service configuration, maintain the Technical Inventory (e.g.
replacement of a battery in a Robotic Rollator).

The SARA module, as part of the AREAS® software suite, interfaces other modules of AREAS® through the

AREAS® service bus. The AREAS® service bus allows the SARA solution to access the AREAS® Patient
Health Record service.

The SARA module relies on the CloE-IoT platform (see Section 3.4.4) for what concerns the management of
IoT requirements.

 USE CASE 3 APPLICATIONS

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D2.4 SEMIoTICS High Level Architecture (Cycle 1)

Dissemination level: [Public]

26

Overview: Use case 3 backend application including underlying components. UC3 Application is a specific
component developed in SEMIoTICS leveraging existing IoT technologies that wil l be responsible for the
visualization, management, data aggregation, system monitoring of the IHES Edge Analytics System.

Core Functionalities:

• Visualization of the global system status (I.e. the status up-to-single IHES node) of the IHES System

• Visualization of the conveniently events (I.e. anomalies, etc.) generated by each IHES unit or cluster
of units,

• Visualization of the correlation graph, the status of aggregated IHES Units by the aggregated
information provided by each IHES Supervisor Service deployed at the Field layer.

• Exposing interface with global database that stores all events and related event generated by a set of
IHES Sensing Units associated with a specific IHES Supervisor on a given gateway.

• Visualization and management of alerts generated by the IHES system.

Details: As a testbed application for validate the generic IHES demonstrator and shows its capabilities will
be developed as part of the WP5 activities within the project. A dedicated web app will be defined and
implemented as part of T5.6 activities with the goal of demonstrating the system at work. The app will report
in a simple GUI the environmental processes monitored by the system and will report any (relevant) anomaly
detected by the system at single / multiple nodes level. The application will provide at a glance a complete
overview of the relevant events clustered by the IHES system. Since the proposed enabling technology has
no major limitations on data series processing, the system can deal with any kind of time-series signal, with
no specific a-priori knowledge on its dynamic. IHES system will be able to deal with most environmental
sensors that will be incrementally demonstrated during the project lifespan: initially by supporting low
frequency signals like temperature / humidity / pressure to move in a 2nd phase to the deployment of more
complex inertial sensors management (i.e. 3-axis accelerometers and gyroscopes).

3.2 SDN/NFV orchestration layer

NFV offers flexible, programmable, dynamic, scalable and easy ways to reconfigure network resources in
order to provide the QoS demanded by SEMIoTICS IoT use cases. To this end, the SEMIoTICS NFV approach
is as follows: general purpose hardware devices are considered in different parts of the network. In the
SEMIoTICS architecture this corresponds to the IoT Gateway, network nodes such as switches , and compute
nodes at the backend cloud. Moreover, it is assumed that these machines allow the virtualization of their
resources in terms of e.g. virtual machines (VM) or containers, yielding a pool of virtual computing, storage
and communication resources available to deploy virtual Network Services (NS). The virtualization of the
hardware resources is managed by a so-called virtualization layer. As can be seen in Figure 6, the set of
physical hardware resources, the virtualization layer and the virtualized computing storage and networking
resources is so-called NFV Infrastructure (NFVI). Thereby, NFVI contains all the available resources available
in the network. NFVI paves the way to obtain a flexible, programmable, dynamic and scalable network, as the
virtual network resources exposed to the network services can be dynamically assigned or released in
different parts of the network to meet the required QoS requirements.

 VIRTUALIZED INFRASTRACTURE MANAGER

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D2.4 SEMIoTICS High Level Architecture (Cycle 1)

Dissemination level: [Public]

27

Overview: Virtual Infrastructure Manager (VIM) is a backend component which is aware of the physical
infrastructure (compute, storage and network). VIM also enables communication with SDN Controllers to
provide network resources.

Core Functionalities:

• Providing communication with SDN Controllers,

• Monitoring of the physical infrastructure,

• Managing of software resources

Details: NFVI defines two Administrative Domains (ETSI, ETSI.org: Network Functions Virtualisation (NFV);
Management and Orchestration (ETSI GS NFV-MAN 001), 2014) namely the Infrastructure and Tenant
domains. The former contemplates the physical infrastructure upon which virtualization is performed, and
therefore application agnostic; while the latter makes use of virtualized resources to spawn VNFs and create
Network Services (NS). Unlike resource allocation in other virtualized environments, in NFVI requests
simultaneously ask for compute, storage and network resources. Moreover, NS could be composed of VNFs
with hardware affinity/anti-affinity or require specific latency/bandwidth constrains in virtual links connecting
VNFs. Such demands occur dynamically, allocating or freeing resources that could then be used for other NS,
e.g. scaling up VNF’s compute.

A Virtualized Infrastructure Manager (VIM) lies in the Infrastructure Domain. It takes care of abstracting the
physical resources of the NFVI and making them available as virtual resources for VNFs. This is achieved
through the reference point Nf-Vi, which interconnects the VIM and NFVI (see Figure 6). It allows the VIM to
acknowledge the physical infrastructure (compute, storage) as well as enabling communication with network
controllers (SDN Controllers) to provide virtual network resources to NS. Even-though VIMs could well control
all resources of the NFVI (compute, storage and network), they could also be specialized in handling only a
certain type of NFVI resource (e.g. compute-only, storage-only, network-only) (ETSI, ETSI.org: Network
Functions Virtualisation (NFV); Management and Orchestration (ETSI GS NFV-MAN 001), 2014).

Beyond the already-mentioned functions carried on by the VIM are the following:

• Orchestrate requests made to the NFVI from higher layers (NFVO), e.g.
allocation/update/release/reclamation of resources.

• Keep an inventory of allocated virtual resources to physical resources.

• Ensure network/traffic control by maintaining virtual network assets, e.g. virtual links, networks,
subnets, ports.

• Provide network-level security functions via VNFs such as Honeypots, Intrusion Detection/Prevention
Systems, Firewalls

• Management of VNF Forwarding Graphs (VNFFG) by guaranteeing their compute, storage and
network requirements.

• Management and reporting of virtualized resources utilization, capacity, and density (e.g. virtualized
to physical resources ratio).

• Management of software resources (such as hypervisors and images), as well as discovery of
capabilities of such resources.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D2.4 SEMIoTICS High Level Architecture (Cycle 1)

Dissemination level: [Public]

28

As detailed in (ETSI, ETSI.org: Network Functions Virtualisation (NFV); Management and Orchestration (ETSI
GS NFV-MAN 001), 2014) other relevant VIM responsibilities within the NFVI network are:

• Provide “Network as a Service” northbound interface to the NFVO (realized via the Or-Vi reference
point, see Figure 6).

• Abstract the various southbound interfaces (SBI) and network overlays mechanisms exposed by the
NFVI network.

• Invoke SBI mechanisms of the underlying NFVI network.

• Establish connectivity by directly configuring forwarding instructions to network VNFs (e.g.
vSwitches), or other VNFs not in the domain of an external network controller.

 NFV ORCHESTRATOR

Overview: A component responsible for orchestration of Network Function Virtualization. Combined with the
other VIM Manager Component creates so-called Management and Orchestration (MANO) framework.

Core Functionalities:

• Providing VNF with the NFVI resources,

• Registration of the available VNF and Network Service

Details: NFV MANO framework is composed of a Virtualized Infrastructure Manager (VIM), VNF Manager
(VNFM), and NFV Orchestrator (NFVO) (see Figure 6). This section deals with the functional description of
the NFVO, particularly, the Network Service and Resource Orchestration functions, and the related
Information Models (IM) used to build descriptors that help spawn NS.

Management and Orchestration of VNF relates to providing each VNF with the NFVI resources they need 13.
But also, other aspects such as registering available VNFs or NS, scaling in/out each VNF according to
policies or load, lifecycle management, snapshots, modifying the network interconnection among VNFs,
modifying the VNFs in a VNFFG, creation and termination of NS. These are potentially complex tasks,
primarily because VNF’s NFVI resource requirements and constraints need to be satisfied simultaneously on
top of a very dynamic environment (VNFs are instantiated or terminated, changing the pool of available
resources). To leverage this, the NFV MANO (VIM+VNFM+NFVO) should expose services that support
accessing these resources, preferably using standard APIs (ETSI, ETSI.org: Network Functions Virtualisation
(NFV); Management and Orchestration (ETSI GS NFV-MAN 001), 2014). The NFVO performs two main
functions, called Network Service and Resource Orchestration functions (NSO and RO, respectively).
Capabilities of each function are exposed via standard interfaces consumed by other elements of the NFV
MANO.

13 NFVI resources are those that can be consumed by virtualization containers, such as compute (CPU, virtual
machines, bare metal hosts, memory), storage (volumes of storage), and network (networks, subnets, ports, addresses,
forwarding rules, links).

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D2.4 SEMIoTICS High Level Architecture (Cycle 1)

Dissemination level: [Public]

29

The following non-exhaustive list gathers some of the functionality performed by the NFVO employing the
NSO function:

• Checks that VNF or NS descriptors include all mandatory information for onboarding.

• Through VIM’s exposed services, NSO checks that the software images specified in the descriptors
are available at the targeted VIM.

• NS lifecycle management, that is: instantiation, update, scaling, event collection and correlation, and
termination.

• Collects performance metrics from NS.

• Management of the instantiation of VNFs (alongside VNFM).

• Validation and authorization of NFVI requests from VNFM.

• Management of the relationship between NS instances and VNF instances.

• NS automation management based on triggers specified in the NS descriptors.

On the other hand, the RSO function interfaces with the NFVI to make sure resources are available for the
instantiation of VNF/NS. The following non-exhaustive list gathers some of the services provided by the RSO
function:

• Validation and authorization of NFVI requests from VNFM.

• NFVI resource management (distribution, reservation and allocation) by maintaining a NFVI
repository.

• Leverages resource utilization information gathered from VIMs to manage the relationship between
VNF instances and NFVI resources.

• Policy management and enforcement, e.g.: NFVI resource access control, affinity/anti -affinity rules,
resource usage, among others.

• Collects usage information of NFVI resources by VNF instances.

Apart from APIs exposed by VIMs (which are triggered through the Or-Vi reference point, see Figure 6),
descriptors are a main element in the instantiation of NS. In them, administrators specify details about VNFs,
as well as Virtual Links (VL), VNFFG, and the NS as a whole (even PNFs). All descriptors should be on
boarded to the NFVO in order for the NSO function to verify them (e.g.: checking the validity of all fields,
checking availability of software images at VIMs, among others). The following is a list of descriptors and a
short description of their functionality:

• NS descriptor (NSd): used by the NFVO to instantiate a NS which would be formed by one or several
VNFFG, VNF, PNF, and VL. It also specifies deployment flavors of NS.

• VNF descriptor (VNFd): describes a VNF in terms of deployment and operation behavior. It includes
network connectivity, interfaces and KPIs requirements that can be used by NFV-MANO functional
blocks to establish appropriate VL within the NFVI.

• VL descriptor (VLd): provides information of each virtual link. It is used by NFVO to determine the
appropriate placement of a VNF instance, and by the VIM to select a host with adequate network
infrastructure. The VIM or external SDN controller may use this information to establish the
appropriate paths and VLANs.

• VNFFG descriptor (VNFFGd): it includes metadata about the VNFFG itself, that is, VL, VNFs, PNFs,
and policies (e.g.: MAC forwarding rules, routing entries, firewall rules, etc.).

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D2.4 SEMIoTICS High Level Architecture (Cycle 1)

Dissemination level: [Public]

30

• PNF descriptor (PNFd): is used by NFVO to create links between VNFs and PNFs. It includes
information about connection points exposed by the PNF, and VLs that such physical connection
points should be attached to.

 VNF MANAGER

Overview: This module focuses on all virtualization-specific management tasks necessary in NFV framework.
This component is responsible for lifecycle management of Virtual Network Functions.

Core Functionalities:

• Creating and managing of the needed virtualized resources for the VNF as well as Fault, Configuration,
Accounting, Performance, Security Managing

Details: VNF lifecycle management refers to the creation and management of the needed virtualized
resources for the VNF (ETSI, ETSI.org: Network Functions Virtualisation (NFV); Management and
Orchestration (ETSI GS NFV-MAN 001), 2014), as well as the traditional Fault Management, Configuration
Management, Accounting Management, Performance Management and Security Management (FCAPS).

By making use of the information stored in a VNF descriptors (VNFd) during onboarding, VNF Management
functions make sure such requirements are met at the moment of instantiation. Furthermore, VNFd may also
contain information relevant for the lifecycle management (e.g.: constrains, KPIs, scale factor, policies, etc.).
Such lifecycle management information may be used for scaling operations, adding a new virtualized
resource, shutting down an instance, or terminating it.

VNF Management maintains the virtualized resources that support the VNF functionality, without interfering
with the VNFs’ logical functions. Like NFVO, its functions are exposed through APIs as services to other
functions. Each VNF instance is assumed to have an associated VNF Manager, and a VNF Manager could
handle several VNFs. The following non-exhaustive list gathers the functions implemented by the VNF
Manager (ETSI, ETSI.org: Network Functions Virtualisation (NFV); Management and Orchestration (ETSI GS
NFV-MAN 001), 2014):

• VNF instantiation (based on boarded VNFd).

• VNF instantiation feasibility checking.

• Scale VNFs (increase or decrease the resources of a VNF).

• Software Update/Upgrade on VNFs.

• Correlation between NFVI measurement results and faults/events, and the VNF instances.

• VNF instance assisted or automated healing.

• Terminate VNF (releasing the VNF-associated NFVI resources).

• Management of the VNF instance’s integrity during its lifecycle.

 VTN MANAGER

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D2.4 SEMIoTICS High Level Architecture (Cycle 1)

Dissemination level: [Public]

31

Overview: Responsible for assignment of individual network services to various network tenants. It further
ensures a separation of L2 traffic in scope of a virtual tenant network.

Core Functionalities:

• Providing multi-tenancy in the network,

• Enforcing of the isolation of the tenant networks in the infrastructure,

Details: VTN Manager is a component of the SEMIoTICS SDN Controller that will provide for the multi -tenancy
functionality in the network. It realizes logical slices (“virtual tenant networks”) for per -application mapping
and enforcement of isolation of the tenant networks in the infrastructure. Using the exposed northbound
interface, VTN Manager must thus allow for creation of tenant networks and translation of pattern requests
into path-request calls to Path Manager in scope of its VTN. VTN Manager will store all resulting data
structures containing information about reservations and established VTNs in the centralized data store.

 PATH MANAGER

Overview: Main network path computation engine of the SDN Controller, responsible for identification of
nodes and ports combined into a path that fulfills the pattern requirements (i.e., on fault -tolerance or
bandwidth/delay constraints).

Core Functionalities:

Translating pattern requests into path-request calls to Path Manager,

• Storing data structures containing information about reservations and established VTNs

Details: Path Manager guarantees the industrial QoS, i.e. the bandwidth provisioning, flow isolation and
worst-case delay estimation for individual per-application flows. As described in D3.1, instead of basing its
routing decision on a reactive control loop of network observations, Path Manager will provide for real -time
constraints by mechanisms for admission (and rejection) of flows. Namely, by maintaining an accurate model
of the network state and service embedding in the control plane, Path Manager will ensure per-flow isolation and
worst-case guarantees at all times.

 RESOURCE MANAGER

Overview: Provides Path Manager with a resource view of the network (i.e., the available topology resources,
port speed, no. of queues metrics etc.) exposing the metrics observable using the standardized OpenFlow
1.3 interface.

Core Functionalities:

• Embedding of real-time flows, best effort flows, the meter structures for policing purposes

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D2.4 SEMIoTICS High Level Architecture (Cycle 1)

Dissemination level: [Public]

32

Details: Resource Manager is responsible for configuration management and network control tasks, i.e.
embedding of L2/L3 OpenFlow flow rules into the network. Resource Manager will provide for embedding of:
i) real-time flows which require dedicated per-queue flow assignments; ii) best effort flows, without queue
considerations; and iii) the meter structures for policing purposes.

 SECURITY MANAGER

Overview: The security component responsible for administration of tenants and assignment of applications
with respective tokens used for fast authentication during runtime.

Core Functionalities:

• Authenticating and accounting services to the rest of the SDN controller,

• Administrating of local SDN controllers accounts

Details: The main role of the Security Manager (SM) component is the support for authentication and
accounting services. SM should accomplish the authentication and accounting services to the rest of the SDN
Controller as well as the users and applications that interact with the controller. Moreover, it exposes interfaces
for the administration of local SDN Controller accounts, in order to achieve authentication. The necessary
methods for C.R.U.D (Create, Read, Update, and Delete) Users, Roles and Domains are developed by the
SM exposed them to other controller components as well.

Depending on the requirements of any use case, we can describe two possible scenarios for the SM
component:

• User/application authentication based on a local set of entered policies / users

• User/application authentication based on an external set of entered policies / users, i.e., using an
external authentication protocol. In the case of distributed authentication, the SM must present the
tokens to the external server for validation.

 VIM CONNECTOR

Overview: The component responsible for connecting with backend VIM component.

Core Functionalities:

• ODL-OpenStack integration,

• Passing OpenStack’s Neutron API calls to ODL’s VTN manager via REST calls

Details: This section describes relevant reference points in the ETSI NFV architecture (ETSI, ETSI.org:
Network Functions Virtualisation (NFV); Architectural Framework (ETSI GS NFV 002 V1.2.1), 2014) , as well
as the set of compatible APIs employed for the realization of Network Services (NS). Specifically, the

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D2.4 SEMIoTICS High Level Architecture (Cycle 1)

Dissemination level: [Public]

33

interfaces or plugins used by external SDN Controllers that allow them to interact with the Virtualized
Infrastructure Manager (VIM).

The diagram shown in Figure 6 depicts a VNF instantiation example on a virtualization capable node, such
as the ones composing the Network and Field layers of the SEMIoTICS infrastructure. Such message flow
and triggered reference points follow the standard procedure defined by ETSI NFV Management and
Orchestration.

In SEMIoTICS, the SDN Controller is considered an external entity to the NFV Management and Orchestration
(MANO) framework presented in Figure 6. That is, the management of virtual network resources (e.g.: Virtual
Tenant Networks, Virtual Network Functions), and the control of the underlying physical network are tasks
handled by the SEMIoTICS SDN Controller. This brings benefits in terms of outage/saturation resilience,
primarily due to the isolation of network services to separate hosts. But also allows for joint optimization of
both overlay and physical network paths/resources, which could help satisfy SEMIoTICS use cases
requirements/constraints.

Infrastructure flexibility is one of the most relevant features provided by Network Functions Virtu alization
(NFV) (ETSI, ETSI.org: Network Functions Virtualisation (NFV); Architectural Framework (ETSI GS NFV 002
V1.2.1), 2014) (either at the compute, storage or networking level), and network overlays play a crucial role
in network virtualization. Through overlays, the SDN Controller is able to create different network topologies
for each project14, dubbed Virtual Tenant Networks (VTN), which are effectively isolated from each other.

14 Project, Use Case, or tenants refer to the same thing, and will be used interchangeable throughout this document.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D2.4 SEMIoTICS High Level Architecture (Cycle 1)

Dissemination level: [Public]

34

FIGURE 6 - VNF INSTANTIATION EXAMPLE ON A VIRTULISATION CAPABLE NODE WITHIN
SEMIOTICS FRAMEWORK

VTN allows creation of network functions as virtual entities without having to consider the physical network.
OpenDaylight (ODL, the reference SDN Controller for SEMIoTICS) is equipped with a VTN module for
interfacing with Virtualized Infrastructure Managers (VIM) such as OpenStack (OpenDaylight, n.d.). The ODL
VTN module is a policy manager that registers any tenant resource in the VIM via ODL’s ML2 plugin15
(OpenStack, ML2 plug-in, n.d.), so any tenant configuration modification at the VIM is reflected in ODL, too.
That is, by analyzing the information gathered for each tenant (network topologies, VNFs, MAC, IPv4
addresses, and so forth), VTN is able to replicate such policy16 using the VIM’s exposed networking APIs and
ODL’s SBIs.

15 The ML2 plugin was created for ODL-OpenStack integration. It passes all OpenStack’s Neutron API calls to
ODL’s VTN manager via REST calls (Toghraee, 2017).

16 I.e. What nodes should be able to communicate with which ones.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D2.4 SEMIoTICS High Level Architecture (Cycle 1)

Dissemination level: [Public]

35

Referring to Figure 6, the reference point through which an external SDN Controller gathers tenants’
information from the VIM is Nf-Vi. Moreover, the NFVO may also request Network as a Service (NaaS) for
the instantiation of an already on boarded Network Service (NS). Such API calls (NFVO-VIM) are realized
through the Or-Vi reference point using the corresponding VIM APIs (OpenStack, OpenStack Docs:
Networking API v2, n.d.).

 CLUSTERING MANAGER

Overview: A component with underlying Registry Handler used in state-keeping of other component’s
knowledge base, as well as for its strong consistent replication across the SDN controller instances for the
purpose of fault-tolerance and high-availability.

Core Functionalities:

• Stores and replicates the knowledge state of the stateful controller components in a YANG-modelled
data-store for purpose of highly-available SEMIoTICS SDN Controller (SSC) operation.

• Enables the backup instances to operate as leader instances in case of a leader instance failure.
Extended with support for Byzantine Fault Tolerance in SEMIoTICS.

Details: The issue of the controller’s single point of failure is resolved by means of state replication and fail -
over to one of the backup controllers on failure. We plan to address the requirement of strong consistency by
basing the implementation of this module on the RAFT consensus-based OpenDaylight Clustering project. To
ensure fault-tolerance even in the face of Byzantine/malicious adversaries, this component must be capable
of operation in the Replicated State Machine mode. Namely, each instance of the SDN Controller will execute
the client operation and propagate its result to the underlying configuration targets that are capable of
comparison of the resulting messages and will thus allow for guaranteeing the integ rity of the correct
configuration. While unavailable in off-the-shelf OpenDaylight, releases, this Byzantine Fault Tolerance mode
of operation of the SDN Controller will be investigated and discussed in more detail in D3.1.

 SFC MANAGER

Overview: Service Function Chaining Manager used in Service Function Chains given the ordering and IP
addresses of the nodes that are to be traversed by a tenant's traffic.

Core Functionalities:

• Chaining of network functions,

• Identifying an abstract set of service functions and their constrains that should be applied to packets.

Details: SFC Manager will handle service function chaining of network functions. It identifies an abstract set
of service functions and their ordering constraints that should be applied to packets and/or frames selected
as a result of classification. In the SEMIoTICS cases, service instances in service chains may include
Firewall, IDS, DPI, and HoneyPot. These services may be the physical appliances or virtual machines running
in network function virtualization infrastructures. They may be composed of one or multiple instances. SFC

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D2.4 SEMIoTICS High Level Architecture (Cycle 1)

Dissemination level: [Public]

36

Manager is responsible for administrating the services chain and mapping the
operator’s/tenant’s/application’s requirements into service chains.

 BOOTSTRAPPING MANAGER

Overview: Component used in initial flow configuration of just-connected switches, so to allow for seamless
interaction with IoT devices (i.e., to enable flow rules for propagation of unmatched application packets up to
the controller for the purposes of ARP-based end-device discovery, MAC Learning for best-effort services or
similar).

Core Functionalities:

• Deploys the initial OpenFlow rules necessary to provide for in-band / out-of-band switch-controller
connectivity.

• Triggers the installation of basic, non QoS-guaranteeing flows for non-critical and basic infrastructural
services where traffic specification is not available.

Details: Industrial SDN networks require a highly-available control plane. The control plane may require an
in-band or out-of-band realization depending on the exact use case. The wind park Use Case 1 assumes an
in-band deployment, so to minimize the CAPEX related to out-of-band cabling requirements. By means of an
automated network bootstrapping procedure, this component will guarantee a robust and resilient control
plane configuration at network runtime. To handle the impact of the data plane failures on the control plane
flows, redundant control flow embedding can be leveraged. While recent works propose slower, restoration -
based techniques in industrial scenarios, industrial scenarios typically use 1+1 protection by duplicating
controller-to-controller and controller-to-switch TCP-based flows on maximally disjoint paths, thereby ensuring
zero packet loss for control flows.

 PATTERN ENGINE

Overview: Module responsible for retrieving network specific rules and verifying them.

Core Functionalities:

• Inserting, Modifying, Executing, Retracting patterns in the SDN controller

Details: Pattern Engine (PE) will enable the capability to insert, modify, execute and retract patterns at design
or at runtime in the SDN controller, ensuring the Secure, Privacy-aware, Dependable and interoperable
operation of the SEMIoTICS network layer at design and runtime. PM can be based on a rule engine which
will be able to express design patterns as production rules. Enabling reasoning, driven by production rules,
appeared to be an efficient way to represent SEMIoTICS patterns. For that reason, a rule engine is required

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D2.4 SEMIoTICS High Level Architecture (Cycle 1)

Dissemination level: [Public]

37

to support backward and forward chaining inference and verification. Drools 17 rule engine appears to be a
suitable solution to support design patterns by applying and extending the Rete algorithm 18. More specifically,
since Drools rule engine is based on Maven, it can support the integration of all required dependencies with
the ODL controller, as well as the integration of the entities that interact with the controller to run Drools at
design and at runtime. Finally, PE will also enable the support of different components as required by the rule
engine such as the knowledge base, the core engine and the compiler. The procedure of the pattern module
is depicted in the following Figure 7.

FIGURE 7 - PATTERN ENGINE PROCESS

3.3 Field layer

Field layer is responsible for hosting all types of IoT devices such as sensors and actuators as well as IoT
gateway which provides common way for communication and ensures enforcement of SPDI patterns in this
layer. Generic gateway components are capable to work with any set of IoT devices what ensures ability to
deliver diverse use cases in various sectors.

 SEMANTIC API & PROTOCOL BINDING

Overview: Module responsible for binding different protocol and exposing common semantic API located at
the Generic IoT Gateway layer.

Core Functionalities:

• Semantic Mapping of brownfield semantic models into IoT semantic models,

17 Drools Business Rules Management System (BRMS) https://www.drools.org

18 Charles Forgy: Rete: A Fast Algorithm for the Many Pattern/Many Object Pattern Match Problem. In: Artificial
Intelligence, vol. 19, pp. 17–37, 1982.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D2.4 SEMIoTICS High Level Architecture (Cycle 1)

Dissemination level: [Public]

38

• Semantic configuration,

• Providing a uniform standardized access to Thing’s and their data

Details: This functionality is needed in order to integrate brownfield devices into a common IoT access layer.
Technology-wise, the functionality will be realized based on W3C Web of Things (WoT) building blocks, i.e.,
Thing Description, Binding Templates, and the Wot Scripting API.

Thing Description will be used to semantically describe field device resources, their interfaces, security meta -
data, and so forth. For some of brownfield devices there exist already various kinds of device descriptions.
Therefore, in order to reuse existing semantics, we will need to provide a semantic mapping from brownfield
semantic models into IoT semantic models as expected by W3C TD and iot.schema.org.

The mechanism of Binding Templates we will use in SEMIoTICS in order to provide bindings for various
brownfield protocols (e.g., Profibus19, Modbus20 etc.) into common Web application layer (e.g., HTTP, CoAP
etc.).

In SEMIoTICS we can use the WoT Scripting API to expose Things (field devices) that have been integrated
over Binding Templates and described with Thing Descriptions. In this way we can provide a uniform
standardized access to Thing’s and their data, which can greatly reduce development effort for IoT
applications at the Edge and in the Cloud.

The complete functionality of this component including also semantic configuration will be accessible over
Semantic Edge Platform. The platform will be based on Node-RED tool, and thus will on one hand-side provide
a graphic user interface for this component, and on the other hand, it can be used for developing Edge -level
applications.

 SECURITY MANAGER

Overview: Module responsible for granting access and necessary security checks at the IoT gateway.

Core Functionalities:

• Enforcing security policy decision locally,

• Facilitating authentication of sensors and actuators

Details: The Security Manager (SM) at the edge level serves as local frontend for the security manager at
the backend layer; confer also to Section 3.2.7 for a more detailed explanation of the services provided by all
security managers.

Sensors and actuators in many cases will be connected to the gateway using low-level protocols and
technologies such as MQTT, Bluetooth, etc.; in these cases it simplifies authentication if the gateway contains
its own security manager.

19 https://www.profibus.com/

20 https://en.wikipedia.org/wiki/Modbus

https://www.profibus.com/
https://en.wikipedia.org/wiki/Modbus

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D2.4 SEMIoTICS High Level Architecture (Cycle 1)

Dissemination level: [Public]

39

 LOCAL THING DIRECTORY

Overview: The local repository of knowledge containing necessary Thing models.

Core Functionalities:

• Storing semantic description of Things locally,

• Providing an interface for semantic queries,

• Keeping all semantic meta-data up to date,

• Providing a digital representation of all physical assets

Details: The purpose of Local Thing Directory is to store semantic description of Things locally in the Generic
IoT Gateway. Semantic Backend Validator will be used to provide these descriptions in accordance to W3C
WoT standard and iot.scheman.org. Once created, an application developer needs a tool to discover Thing
Descriptions, and to easily find out whether a Thing can be used for a new Edge application that she wants
to develop. Not only humans will use Thing Directory. Software components or machines may que ry Local
Thing Directory too, e.g., when automatically generating a user interface for a Thing or when matching Recipe
requirements with capabilities of Things. Local Thing Directory provides an interface for sematic queries, and
access to all Thing Descriptions stored locally. The directory keeps all semantic meta-data up to date. Thus
it provides a digital representation of all physical assets, accessible from a gateway. This includes device
capabilities, configuration parameters of devices, contextual information (e.g., location, feature of interest
etc.). The whole content of a Local Thing Directory will be synchronized with the Thing Directory, running in
the Backend.

 GW SEMANTIC MEDIATOR

Overview: Module responsible for semantic mappings between different data models.

Core Functionalities:

• Integrating brownfield semantics with IIoT semantics

Details: The goal of semantic integration (see SEMIoTICS deliverable D3.3) is to enable realization of new
IoT applications that have not been envisioned at the time of engineering of an existing automation system.
To this goal, we work on a common semantic access layer between brownfield devices and new IoT devices.
In order to integrate devices from both layers we need to map and integrate semantics from existing brownfield
devices into IoT or IIoT application semantics. Only then it will be possible to discover r equired Things when
developing an application, and to put them into semantically-correct interactions.

Semantic Mappings is a layer that we introduce in SEMIoTICS project in order to map and integrate brownfield
semantics with IIoT semantics. In this layer we have to provide a mapping knowledge, e.g., Knowledge Packs,
which can be used to map semantics from a particular brownfield semantic standard into another IIoT
standard. SEMIoTICS IoT Gateway will be able to install these Knowledge Packs and thus get enabled to

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D2.4 SEMIoTICS High Level Architecture (Cycle 1)

Dissemination level: [Public]

40

integrate data and metadata from appropriate field device into a harmonized IoT access layer, based on the
W3C WoT standard.

GW Semantic Mediator will be realized with W3C Thing Descriptions, which are serialized to JSON -LD
standard format. Thing Descriptions will be semantically enriched with application-level, domain-specific
semantics from iot.schema.org, and will be accessible over a local and backend semantic repository.

 MONITORING

Overview: Module responsible for monitoring and predictive analytics at the IoT gateway level. This module
interacts with bottom layer devices as well as with pattern engine and GW semantic mediator.

Core Functionalities:

• Generating high-level events

Details: This module is part of SEMIoTICS Monitoring component. The SEMIoTICS Monitoring component is
indeed a distributed computational entity having its modules distributed both in the cloud and at the edge. This
section describes the peculiarities of modules available at the edge.

An edge monitoring module contributes to the overall objectives of the SEMIoTICS Monitoring component (see
also section 3.6.6):

• To generate specific messages in response to the reception of a set of messages generated by the
components of an IoT application and matching some condition specified in the monitoring component
by a client application (Monitoring requirement).

• To guarantee that the messages needed to decide whether to generate a message can be produced
by an IoT application and received by the monitoring component (observability property).

The specific contribution of an edge monitoring module is to allow the execution of part of the overall monitoring
tasks close to the field devices generating the low-level events which are aggregated by the monitoring
component. This strategy allows, hence, to send to a cloud monitoring module only the result of aggregations
and not all the raw events generated at field level. The consequent reduced number of transmissions provides
a saving of those resources (i.e. energy, bandwidth) which are scarce within edge nodes (e.g. the mobile
phone acting as hub for the Body Area Network present within the SARA UC).

In general, an edge monitoring component will aggregate the low-level events generated by sensors directly
connected to it (e.g. the devices connected via Bluetooth in the case of the above-mentioned SARA Body Area
Network). However, if required, an edge monitoring module could aggregate also events generated by other
edge monitoring modules.

 PATTERN ENGINE

Overview: Module responsible for retrieving gateway specific rules and verifying them by interaction with
monitoring module.

Core Functionalities:

• Enforcing patterns provided by Pattern Orchestrator

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D2.4 SEMIoTICS High Level Architecture (Cycle 1)

Dissemination level: [Public]

41

Details: Pattern engine in the gateway is able to host design patterns as provided by the Pattern Orchestrator
located in the application orchestration layer. Since the capabilities of the gateway are limited, the module will
be able to host patterns in an executable form compared to the pattern rules as provided in the other layers.
The executable patterns will be able to monitor and guarantee the Security, Privacy, Dependability and
Interoperability properties locally, based on the data retrieved and processed by the monitoring module, the
thing directory in the IoT gateway and based on the interaction as well with other components in the field
layer. As such, it would be used to monitor and guarantee, for example, that secure communications are
enforced between the IoT Gateway and sensors and actuators on the field. Finally, the Pattern Engine in
gateway will keep stored the patterns executable in a local knowledge base that will be updated from by the
pattern orchestrator as needed and requested.

 LOCAL EMBEDDED INTELLIGENCE

Overview: Module with use case specific logic (e.g. body area network GW in SARA UC) and embedded
intelligence at the IoT gateway level.

Core Functionalities:

• Executing use case specific application logic

Details: A local embedded intelligence module is any software entity (i) executing a use case specific
application logic (ii) relying on at least one of the services provided by the SEMIoTICS framework and (iii)
deployed on a field device.

The Controller on board of the Robotic Rollator part of the SARA UC is an example of Local Embedded
Intelligence since: (i) it address a requirement specific of the UC (i.e. to power the hub wheels in order to
balance the user’s weight) (ii) it relies on the GW Semantic Mediator to discover how to address the hub
wheels available on the specific rollator (iii) it is deployed on the Single Board Computer (SBC) (i.e. a
Raspberry Pi 3) on board of a Robotic Rollator.

 USE CASE 1

Overview: Field devices and components related to UC1: “Local smart behavior in a wind turbine to provide
value added services”.

Details: The wind turbine use-case include the following devices:

• An IIoT Gateway with compute capacity to instantiate IIoT applications as VMs. The IIoT gateway will
connected to various sensors as well as the simulated legacy wind turbine control system.

• A Power Line Controller (PLC) simulating a wind turbine control system. The PLC will facilitate the
connectivity to the legacy sensors and actuators.

• A small-scale wind turbine which will be directly controlled by the legacy control system. The small-
scale wind turbine is used to visually demonstrate the use case.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D2.4 SEMIoTICS High Level Architecture (Cycle 1)

Dissemination level: [Public]

42

 USE CASE 2

Overview: Field devices and components related to UC2: “Socially Assistive Robotic Solution for Ambient
assisted living”.

Details: The SARA field devices include:

• A smartphone (iOS or Android) acting as hub for the Bluetooth wearable devices forming the Body
Area Network subsystem of the SARA solution.

• A Robotic Rollator which is a standard rollator frame equipped with hub motors and various sensors
(e.g. Inertial Measurements Units, Laser Range finder). The Robotic Rollator hosts a Raspberry Pi 3
single board computer acting as hub for the onboard devices connected via a Controller Area Network
(CAN) Bus.

• An Aldebaran Pepper Robot which is a humanoid robot materializing the SARA Robotic Assistant
subsystem. The Pepper Robot hosts an ARM computer dedicated to the management of the robot
hardware and the execution of the software implementing the behaviors of the robot. Moreover the
robot hosts an Android tablet available to host applications having the need to present a graphical
user interface (GUI) to the users.

• A Raspberry Pi 3 acting as hub for the ZigBee devices instrumenting the Smart Environment
subsystem of the SARA solution.

 USE CASE 3

Overview: Field devices and components related to UC3: “Artificial Intelligent Embedded Sensing Platform”.

Details: The IHES Generic IoT field devices are composed by:

• A set of N IHES sensing units mapped to an STM32 MCU prototype board equipped with a Wi-Fi and
a sensor shield expansion board. During Cycle 1 demonstrator deployment an X-Nucleo-F401RE21
board will be used. The board will run a bare metal firmware that includes a library for the local
analytics mapping and MQTT communication with a dedicated MQTT broker running on the IoT
gateway

A Raspberry Pi3 (or similar) ARM Board equipped with Embedded Linux OS where the IHES
Supervisor Service and the local MQTT broker are deployed. Part of the analytics will run on that IHES
Supervisor Service that will have also a MQTT client interface to interoperate with the GW Semantic
Mediator of the SEMIoTICS architecture

3.4 External platforms’ components

 FIWARE CONTEXT BROKER GE

21 https://www.st.com/en/evaluation-tools/nucleo-f401re.html

https://www.st.com/en/evaluation-tools/nucleo-f401re.html

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D2.4 SEMIoTICS High Level Architecture (Cycle 1)

Dissemination level: [Public]

43

Overview: The main component of FIWARE allowing to manage context information.

Core Functionalities:

• Managing of the lifecycle of context information (updates, queries, registrations, subscriptions)

Details: In FIWARE, the Orion Context Broker fulfils the pub/sub Message Broker functionality and must be
federated with SEMIoTICS. FIWARE leverages the NGSIv2 Data Model and API, which relies on JSON
representation to make data from multiple providers accessible for data consumers. The interaction with both
data providers and data consumers is taking place via the FIWARE NGSI 10 context data API. SEMIoTICS
must leverage the API for context queries, context subscription and context updates to interact with the
respective context elements (i.e., sensors and actuators) in a FIWARE domain.

 FIWARE GES

Overview: Set of FIWARE components enhancing SEMIoTICS possibilities.

Core Functionalities:

• Accessing context elements in other domains,

• Generating context,
Exploiting context information

Details: Set of FIWARE components for SEMIoTICS interoperability

• A Context Provider is employed by FIWARE to access context elements in other domains (in this
case SEMIoTICS). It can be registered via its URL as the source of context information for specific
entities and attributes included in that registration, using the ORION NGSIv1 and NGSIv2 APIs. If
FIWARE Orion fails to find a context element locally (i.e. in its internal database) for a query or update
operation but a Context Provider is registered for that context element, then it will forward the query
or update request to the respective Provider. In this case, Orion acts as proxy, while the client that
issues the request, the process is transparent. SEMIoTICS must implement the respective NGSI10
API (at least partially) to support query/update operations from FIWARE to a context element in the
SEMIoTICS domain

• Context Producer. A Context Producer (CP) is an actor (e.g., a temperature sensor) able to generate
context. The basic Context Producer is the one that spontaneously updates context information, about
one or more context attributes according to its internal logic. This communication is between CS and
CB is in push mode, from the CP to the CB.

• Context Consumer. A Context Consumer (CC) is an entity (e.g. a context-based application) that
exploits context information. A CC can retrieve context information sending a request to the CB or
invoking directly a CP over a specific interface. Another way for the CC to obtain information is by
subscribing to context information updates that match certain conditions (e.g., are related to certain
set of entities). The CC registers a call-back operation with the subscription for the purpose, so the
CB notifies the CC about relevant updates on the context by invoking this call -back function.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D2.4 SEMIoTICS High Level Architecture (Cycle 1)

Dissemination level: [Public]

44

 MINDSPHERE

Overview: MindSphere platform component enhancing SEMIoTICS possibilities.

Core Functionalities:

• Enabling industrial customers to connect various automation systems and devices to the platform

Details: MindSphere22 is a Cloud platform customized for industrial IoT applications, which is developed by
Siemens.. The data is accessible over the MindSphere Asset model and MindSphere API. Customers may

apply different Apps in order to make decisions based on valuable factual information, e.g., predictive
maintenance, automated production, vehicle fleet management, and so forth.

In the context of the Use Case 1 implementation (see Section 4.1), the MindSphere platform will be used as
the Backend system. The Backend/Cloud system will gather data from field devices over Generic IoT Gateway
(see Section 3.3). The gateway also provides the semantics of this data. The same semantics will be used to
create MindSphere Asset model. Pre-processed data from wind turbines will be sent from the IoT Gateway,
over Wind Park Control Network, to the MindSphere Backend. MindSphere Apps can then be applied to further
analyze this data and visualize it. Depending on detailed analysis of the use case we may apply different
Apps, e.g. for event-driven alarm detection and visualization of time series data.

 CLOE-IOT

Overview: CloE-IoT platform component enhancing SEMIoTICS possibilities.

Core Functionalities:

• Simplifying the integration of IoT solutions

Details: The CloE-IoT platform is part of Engineering’s cloud offering (CloE) and aims to simplify the
integration of highly distributed, complex and robust IoT solutions exploiting computational resources both in
the cloud and at the edge.

The CloE-IoT platform is intended to support the Engineer ing’s products facing common IoT requirements
(connectivity, device management, device security, data storage, etc.).

CloE-IoT embeds some of the FIWARE technologies (a.k.a. Generic Enablers) like the ORION Context Broker
and the PROTON Complex Event Processor.

22 www.mindsphere.io

http://www.mindsphere.io/

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D2.4 SEMIoTICS High Level Architecture (Cycle 1)

Dissemination level: [Public]

45

 USE CASE SPECIFIC ARCHITECTURE

This chapter showcases three demonstration scenarios (use cases) to be presented within SEMIoTICS
framework. Each use case is described from the perspective of the generic SEMIoTICS architecture with
special focus on showing specificity of each use case and how dedicated components are leveraged in order
to follow generic architectural guidelines. It is important to note that use case specific architectures shown
and described below, depict components which have been found useful from the general perspective of the
respective use cases. In further project progress, within further SEMIoTICS framework and use case
development, it will be identified which components explicitly will be used for the final demonstration purposes
and what functionalities will be leveraged. Outcome of such analysis and research will be documented within
dynamic architecture delivered in D2.5 as well as WP5 validation tasks (T5.3, T5.4 and T5.5).

4.1 Use case 1 – Wind Energy

This use case will showcase IIoT integration in Wind Park Control Network providing value added services
such as Local smart behavior, Predictive Maintenance and Monitoring etc. Current state of the art of Wind
Turbine Controller in a Wind Park control network is typically an embedded or highly integrated operating
system, which follows rigorously development and pre-qualification prior to deployment in the real world.
Because of this slow process, new features, adding new sensors, actuators and related advancements require
several months or even years to be fully matured and operational in the field.

There are two sub use cases, namely,

1) Embedded Intelligence on structured data: It refers to taking local action on sensing and analyzing
structured data to find the inclination of a steel tower. When the nacelle is turned during a cable untwisting
event (Sensing), the gravity acceleration (Ag) component measured by an accelerometer in longitude
direction (Ay) will vary as a function of the inclination (Inc) of the steel tower. O&M personnel in remote
control center wants to know the inclination of all the steel towers on a number of specific wind farms, as
these details will have to be shared with the customer to monitor the deformation and fatigue of the steel.
To find the inclination of a steel tower, a full cable-untwist procedure has to be activated. This happens,
depending on wind conditions, 3-4 times a month. It is also possible to manually instruct the wind turbine
to perform the unwind procedure. At the time of the unwinding- procedure a hi-frequency set of data is
recorded. A relatively large amount of data is required to calculate the inclination. This datasheet needs
to be sent back to the remote-control center to model and calculate the inclination. In SEMIoTICS,
localized edge analytics will be applied which will result in semiautonomous IIoT behavior as only the
container containing the algorithm and result of the inclination calculation is transferred to between the
wind turbine and the remote-control center. The unnecessary data traffic between each turbine and
remote-control center is greatly reduced.

2) Smart Actuation by sensing unstructured video/audio data: Within the turbine, there are many events

which can be captured by IIoT sensors such as Grease leakage detection during normal operation or
unintended noise detection when the turbine rotor is changing the direction in the line of wind to maximize
energy production. The sensing of this unstructured data and acting locally to prevent any damage to the
parts of the turbine in the long run will be of key importance. Localized analytics, as proposed in
SEMIoTICS, which will lead in smart actuation to protect the critical infrastructure of renewable energy
resources.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D2.4 SEMIoTICS High Level Architecture (Cycle 1)

Dissemination level: [Public]

46

 USE CASE 1 ARCHITECTURE

Use case specific components/hardware are shown in the following SEMIoTICS architecture layers namely,
Field, Network and Application orchestration layer. The exact interfaces of different architectural components
will be detailed in WP3 and WP4 deliverables respectively and UC1 specific architecture will be detailed in
the final high-level architecture of SEMIoTICS (D2.5).

 FIGURE 8 - USE CASE 1 - ARCHITECTURE

As depicted in the Figure 8, the new sensors will be used in UC1 namely Video, Audio and Inclination
measuring sensor for additional data. The IoT Gateway with its different components will do local analytics

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D2.4 SEMIoTICS High Level Architecture (Cycle 1)

Dissemination level: [Public]

47

on the collected data through different sensors and will take local action to avoid any damage to the rotating
parts in the turbine in case where the observed variables cross a certain threshold value. The details of the
message flow can be seen in D3.1, D3.3 and D4.1 respectively.

 MESSAGE FLOW AND COMMUNICATION

The new sensors will be used in UC1 namely Video, Audio and Inclination measuring sensor for additional
data. The IoT Gateway with its different components will do local analytics on the collected data through
different sensors and will take local action to avoid any damage to the rotating parts in the turbine in case
where the observed variables cross a certain threshold value. The details of the message flow can be seen
in D3.1, D3.3 and D4.1 respectively.

4.2 Use case 2 – Assisted Living

This use case employs the SEMIoTICS technologies to develop an Information and Communication
Technology (ICT) solution aimed at sustained independence and preserved quality of life for elders with Mild
Cognitive Impairment or mild Alzheimer’s disease, with the overall goal of delaying institutionalization:
supporting both 'aging in place' (individuals remain in the home of choice as long as possible) and 'community
care' (long-term care for people who are mentally ill, elderly, or disabled provided within the community rather
than in hospitals or institutions).

A detailed description of the requirements for the SARA solution can be found within deliverable D2.2 -
“SEMIoTICS usage scenarios and requirements”.

 USE CASE 2 ARCHITECTURE
The SARA UC design envisages two groups of modules: cloud modules (deployed in the cloud and drawn
above the SEMIoTICS Platform box) and field modules (deployed on field nodes and drawn above the
SEMIoTICS Platform box). In this design the SEMIoTICS Platform is envisaged to offer the services (e.g.
networking, monitoring, security) facilitating the integration of the modules belonging to the two groups.

Cloud modules include:

• Localization and Mapping: providing the services for localization and mapping especially needed by
the mobile robots (i.e. the Robotic Rollator and the Robotic Assistant). The Localization and Mapping
service is hosted by the CloE-IoT platform since it uses

• Gait analysis: utilizes the CloE-IoT platform to access the measurements taken via the Body Area
Network and the Robotic Rollator. The result of the analysis performed by this component are stored
in the Patient Health record via the AREAS Service Bus.

• Head Pose and Gaze Estimation: providing the services for the estimation of pose and gaze needed
by the Human-Robot Dialog Manager to support the interaction between humans and the Robotic
Assistant

• Object Detection and Tacking: providing the services for detection and tracking of objects needed
by the Human-Robot Dialog Management.

• Human-Robot Dialog Management: manages the interaction between the Robotic Assistant and
humans. It relies on the information provided by other cloud components (Localization, Object
Detection/Tracking and Pose and Gaze Estimation) to decide which behavior of the Robotic Assistant
should be activated/deactivated in order to support a smooth interaction with the user.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D2.4 SEMIoTICS High Level Architecture (Cycle 1)

Dissemination level: [Public]

48

• Assistive Tasks Management: represents the core of the SARA solution since it is responsible to
orchestrate and, if needed, to configure the processes providing the Assistive Tasks aimed at Patients
and Caregivers. The Assistive Tasks Management takes its decisions relying on the information
produced by other modules (e.g. Fall Detection Head & Pose and Gaze Estimation)

• Tele-monitoring: provides the services enabling an operator of the Call-center Operator or a Medical
Expert, in case of emergency, to rely on the video cameras of the Robotic Assistant to set up a real
time video connection to inspect the scene of a possible incident.

• AI Services: represent the collection of third parties cloud platform offering AI services (e.g. IBM
Watson) needs by some of the modules within the SARA UC (e.g. speech-to-text service needed by
the Robotic Assistant)

Field modules comprises of:

• Fall detection: is the module responsible for the detection of patients’ falls.

• Gait Analysis: is the module to perform preliminary analysis of the measurements concerning the
gait and to forward the result of that analysis to the corresponding cloud service. The Gait Analysis
module is deployed both within the hub of the Body Area Network (i.e. a smartphone) and the Robotic
Rollator since both devices can take measure relevant of the analysis.

• Weight Balancing: is the module that try to balance the patient weight by controlling the hub motors
of the Robotic Rollator. The Weight Balancing module is deployed both in the BAN and the Robotic
Rollator to implement a dual redundant control scheme providing fault tolerance and contributing to
patient safety.

• Navigation: is the module responsible for providing the robotic components (i.e. Robotic Rollator and
Robotic Assistant) with navigation capabilities. This module relies on the localization and mapping
service available from the CloE-IoT platform.

• HR Dialog Management: is the counterpart of the HR Dialog Management module available in the
cloud. It is intended to support simple form of dialog not requiring access to extended computational
resources available in the cloud.

• Human Activity Monitoring: is the module deployed within the Smart Environment gateway and is
responsible for monitoring the occupant movements and locations (e.g. by tracking the entrance of
people in and out from rooms). Results from monitoring can trigger automated actions like entering
security mode if there are no occupants. The monitoring may concern also the outside (e.g. garden)
for privacy and security.

 MESSAGE FLOW AND COMMUNICATION

The Figure 9 highlights (in blue color) the main possible interactions between the edge nodes and between
end nodes and backend services:

• The smartphone (BAN gateway) supports the communication between the field nodes a backend
services by means of LTE connectivity.

• The Home Gateway supports the communication between the field nodes a backend services by
means of IP connectivity.

• the smartphone (BAN gateway) communicates with Home Gateway to access the services provided
by the Smart Environment subsystem and, for reliability purposes, provide additional connectivity to
between the field nodes a backend service

• The smartphone (BAN gateway) and the Robotic Rollator communicates (via Wi-Fi) to support joint
functionalities (e.g. to enable redundant weight balance control there is the need to exchange the
inertial data between the smartphone and the Robotic Rollator).

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D2.4 SEMIoTICS High Level Architecture (Cycle 1)

Dissemination level: [Public]

49

• The Robotic Assistant (Pepper robot) communicates with the Home Gateway to access the backend
services (e.g. to request the execution of compute intensive AI task), to access the Smart Environment
services (e.g. to increase the luminosity of the environment to facilitate computer vision tasks) and
coordinate (via the coordination service) its activity with those of the other field devices.

• The Robotic Assistant (Pepper robot) and the Robotic Rollator communicate to coordinate their
activities in the context of specific task (e.g. during navigation)

Figure 9 depicts the main software modules envisaged in the preliminary design for the SARA UC.

FIGURE 9 USE CASE 2 - MAIN MODULES OF THE SARA UC

4.3 Use case 3 – Smart Sensing

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D2.4 SEMIoTICS High Level Architecture (Cycle 1)

Dissemination level: [Public]

50

IoT embedded Things are more and more referred as being smart devices. “Smart” usually is associated to
some Thing that show some form of intelligence or adaptability, being able to better interoperate in the
environment in which they are in. Unfortunately current way of making these objects “smart” are through a
quite naive approach were the physical device is locally executing dummy local algorithms and are always
connected to some cloud infrastructure were more complex algorithms are running for providing the feel of
being “smart”. Therefore these devices transmit sensed data to the cloud without any analytic being performed
locally and without showing remarkable forms of computational intelligence. An example is the Microsoft Azure
or Amazon AWS cloud platforms and related ecosystem. The major weakness of these solutions is that they
are poorly scalable and rely on the main assumption the connection is always present.

An IoT thing is “really” intelligent if it has local capabili ties to learn from, and act upon environment it is
sensing.

The IHES use case offers an interesting specular approach to this scenario (somehow influenced by “Edge
Computing” or “Pervasive Computing”). Main assumption is that intelligent data processing sh all take place
at sensor level, and that distributed data classification and clustering is a key aspect for massive system
scalability. Moreover in this use case algorithms derived from AI techniques will be deployed at Gateway,
down to MCU level, allowing as well to online/self-learn from the environment: this latter a quite challenging
aspect by itself on the AI field.

On these systems distributed data computing and semantic interoperability are key aspects of design and on
this respect, SEMIoTICS offers the perfect deployment testbed. Research on this field, especially for the self -
learning distributed part, is highly fragmented with solutions exploring different but specific aspects of the
problem (C. Krupitzer, 2015) (Roveri, 2017), e.g., the properties or the architecture of the system, the
challenges or the adaptation mechanisms. A holistic view of the problem and a mainstream methodology for
the design are still missed. These systems are distributed intelligently interacting devices in which physical
and software components are deeply intertwined, each operating on different spatial and temporal scales,
exhibiting multiple and distinct behavioral modalities. Such systems consist of intelligent heter ogeneous
sensor networks, monitoring physical processes and processing real-time data to extract relevant information
with very limited supervision, learning from them and aggregating compact information related to their time
varying nature. Intelligent data processing can happen at the single sensor, group of sensors or at server
level, to learn from time varying heterogeneous data, trigger events on them, take decisions on what type of
intelligent behaviors must be adapted to new conditions so adapting themselves. The main characteristic of
this new generation of distributed intelligent systems is the ability to closely interact with the environment, in
which they operate, learn from it (without human supervision), and enable automatically self -adaption to new
time varying operating conditions at different levels of the architecture.

 USE CASE 3 ARCHITECTURE

Local Embedded Intelligence is a key aspect in SEMIoTICS. It will enable the infrastructure to migrate from
the cloud-centric computation intensive mainstream approach to a more scalable one where some part of the
currently used AI algorithms are moved to the edge: in SEMIoTICS they will be mainly deployed in the IoT
Gateway and the Field level Node Devices. These aspects will be considered and covered in full details as
part of the deliverable D4.3 activities. These algorithms will be deployed and instantiated w ithin a specific
architectural component named “Local Embedded Intelligence Component” (see Figure 2 of the general
architecture) that will implement all of those algorithms and will interoperate with all the other components
identified at IoT gateway level primarily to make those capabilities available to the other network and backend
layers of the architecture. The major challenge at field devices level of UC3 will be the deployment of such

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D2.4 SEMIoTICS High Level Architecture (Cycle 1)

Dissemination level: [Public]

51

Local Embedded Intelligence component directly down to each single field device node, tightly coupled with
data gathered from sensors.

Local analytics algorithms will be adapted as well at this level of the architecture mainly for data-reduction
purposes: the raw data acquired from the sensor are processed locally in order to derive from them relevan t
info sent as events to other layers. The communication interfaces will be designed in order to ensure event -
driven end-to-end semantic interoperability by adopting widely used standards such as iot.org, JSON data
format. The focus of the horizontal generic IoT UC3 is thus to provide a specific working deployment at IoT
sensing nodes of a data-driven unsupervised (data) monitoring infrastructure. This will be achieved as part of
WP4 activities by defining the specific low-level architecture and incremental mapping of all required local
analytics algorithm to sustain those technologies that will be integrated as part of WP3 activities.

The algorithms that will be developed will be derived from well-known approaches in the field of Artificial
Intelligence (AI), Statistical Analysis, Causal inference, and prediction analysis. Differently from widely used
algorithms deployed at central Cloud level, light-weight versions of those will be derived for accounting the
specific needs of these constrained domain architectures. Most of those algorithms will be implemented as
key components of the IHES generic use case demonstrator whose major goal is to provide those enabling
new local analytics enabled technologies to SEMIoTICS architecture. Depending on the specific d evice that
will host this component there will be different deployments of the same component functionalities done by
exploiting their specific device capabilities / limitations / ecosystems. The main factors that will drives the
light-weight porting is mainly due to: limitations in real-time constraints, memory, computation, power
consumption and existing legacy software middleware support. In particular for the IHES tailored component
a specifically designed version of a subset of those named algorithms will be made available as part of the
bare metal firmware (FW) at microcontroller sensing unit directly (i.e. a set of dedicated STM32 MCUs tightly
coupled with communication and sensing capabilities expansion board shields – the IoT Thing).

A monitoring sample app deployed at Raspberry Pi3 level or aside PC for monitoring the status of the whole
IHES system and to be used for supporting the specific demo that will be implemented as a reference
implementation to demonstrate the system capabilities. The monitoring web app will basically report the status
of the system in a specific deployment of the technology, in order to report environmental relevant events
(anomalies on temperatures and humidity, abrupt changes on luminosity). From this web app template, other
3rd party apps could be derived by interfacing the IHES system through other SEMIoTICS components.

An overview of the envisaged system architecture is reported in Figure 10.

As part of the core functionalities of the IHES system, a lightweight version of algorithms focused at data
monitoring and data model prediction will be derived from the generic SEMIoTICS components and will be
deployed on the IHES Sensing unit. This functionality is responsible at edge device level to support monitoring
of the relevant events generated by the data-reduction algorithms developed. These algorithms will be
deployed likely in different instances due the specific constraints and middleware’s available for a given device
/ target ecosystem. In the case of UC3 the devices will be low power STM32 MCUs units, so very different
from the raspberry Pi3 ones adapted e.g. in UC1 and UC2. Considering the heavily constrained domain
imposed by those MCUs units a subset of the functionalities deployed in the generic Gateway component will
be mapped. Anyhow interoperability of the different modules will be ensured by the interoperable semantic
patterns identified on WP3 activities.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D2.4 SEMIoTICS High Level Architecture (Cycle 1)

Dissemination level: [Public]

52

FIGURE 10: USE CASE 3 SYSTEM ARCHITECTURE

Specifically for UC3, IHES Generic IoT use case the monitoring is intended on real -time time-variant generic
signal that are locally processed in order to self-learn a predictive model and based on this prediction monitor
any relevant deviation from the estimated model. In case of anomalies these will be reported to the IHES
service deployed in the IoT Gateway that in case will propagate them to the upper level of SEMIoTICS
architecture by leveraging on the GW Semantic Mediator. A functional flow with a very high-level overview of
the envisaged architecture and algorithms mapping are shortly presented in Figure 11. Data monitoring will
be locally done at field device level by analyzing the event patterns generated at device level evaluating them
by statistical methods.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D2.4 SEMIoTICS High Level Architecture (Cycle 1)

Dissemination level: [Public]

53

FIGURE 11 - IHES LOCAL ANALYTICS (IOT GW + DEVICE NODE)

The generic architecture of the IHES use case is shown in Figure 11. In blue are reported the components
that are specific of the UC3 or that has been derived from other components but has been adapted to the
specific field device platform. The system is composed ideally by two different kind of functional modules: a
set of IHES Intelligent sensing nodes and a set of IHES Supervisor Service. They act as asynchronous
coordinated communicating using a specific defined JSON messages sent to a MQTT broker deployed at IoT
local gateway. Both modules will implement a local analytics processing pipeline composed by several
algorithms in order to realize a generic unsupervised sensing node data monitoring facility. At the very end of
this edge computing-oriented ecosystem there is a small, power efficient sensing IoT node composed by an
STM32 MCU equipped with a Wi-Fi expansion board and a sensor shield board equipped with the following
sensors:

• Environmental Sensors: temperature, humidity, pressure, luminosity

• Inertial Sensors: Accelerometer, Gyroscope, Magnetometer

The MCUs device maps both AI algorithm and hand-crafted algorithm (e.g. linear predictors) for implementing
a predictive model estimation close to the source of data to process. The device node functionalities will be
mapped on top of legacy ST middleware Software to manage the communication with the IoT gateway from
one side and the acquisition of data from the sensor board on the other side. Each node will be able to monitor
several sensors in the same device: as an example it will be possible to instantiate a bare metal FW
encompassing an accelerometer and another node implementing the monitoring of

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D2.4 SEMIoTICS High Level Architecture (Cycle 1)

Dissemination level: [Public]

54

temperature/pressure/humidity at once. Similar algorithms will be mapped using different Middleware at IoT
gateway level where the gateway likely will have an Embedded Linux OS Available. To enable interoperability
between the different algorithms and deployment on these heterogeneous devices a specific EAL (Embedded
Analytic Library) analytic library will be developed with portability over Linux and STM32 in m ind. Due to these
technological constraints only a subset of the functionalities of relevant identified components will be deployed
in UC3, from the generic ones described in the SEMIoTICS reference architecture. As an example the Recipe
cooker mentioned in section 3.1.2 will not be relevant for the IHES system because the Recipe cooker is more
oriented to target a Cloud Centric Approach, so we do not envisage its adoption in UC3. Moreover the IHES
Supervisor Service module mapped onto the IoT Gateway will be interfaced to a NoSQL database that will
collects all the relevant events (i.e. anomalies) collected by the system during its operations, in order to make
them available to the other components of SEMIoTICS interfacing the ecosystem at gateway level by a subset
of SEMIoTICS components available at this level (e.g. the Gateway Semantic Mediator, etc.) as reported in
Figure 10 that highlights also the distributed nature of this system and how the analytics is distributed at
several levels (mainly field devices and IoT Gateway) of the architecture. The architecture will be flexible in
order to support a generic number of connected IHES devices with different capabilities (i.e. environmental
vs inertial sensors). For this reason the bootstrap interfaces have been carefully designed as part of WP3
activities (Task 3.3). A detailed discussion about the specific algorithms used to support this use case (a brief
rational on the technical choices made) will be made available in D4.3 that will cover all the aspects related
to the local embedded analytics in SEMIoTICS.

 USE CASE 3 MESSAGE FLOW AND INTEROPERABILITY

The pattern communication on UC3 is heavily impacted by the underlying computational paradigm: distributed
computing systems need to have as a requisite strong communication capability in term of QoS and
associated semantic, usually relying on very complex message patterns. This is already complex in a cloud -
dependent thing like most of today’s devices, but it becomes a key aspect when intelligence is massively
deployed (and distributed) at the nodes level. Semantics interoperability among heterogeneous devices and
consistent message pattern flows need to be carefully design when devices start to exchange not only raw
data or simple events, but more complex messages patterns, used to describe more interaction between
intelligent things. IHES devices will be able to join / detach from a local cluster computation network
coordinated by a local IHES Supervisor Service node.

Our use case will deploy this distributed communication pattern by relying on two powerful available
communication infrastructures: the MQTT protocol and the JSON data format for data interoperability. These
infrastructures will be used both for handling custom message patterns between the IHES nodes and the
IHES Supervisor Service, and for interfacing the IHES Supervisor Service with the GW semantic mediator
and Semantic API & protocol binding components of SEMIoTICS. More details about these semantic
communication patterns and a subset of those used during the bootstrap interfacing phase has been provided
in D3.3.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D2.4 SEMIoTICS High Level Architecture (Cycle 1)

Dissemination level: [Public]

55

 LEVERAGING SEMIOTICS FRAMEWORK FOR NEW USE
CASES

SEMIoTICS can framework offer multiple core functionalities that can be used to support a variety of IoT use
cases. In order to be able to fully utilize proposed functionalities of the framework, there is number of steps
which needs to be followed. The key areas of SEMIoTICS which needs to be taken into considerations and
analysis run when implementing new use case within SEMIoTICS framework are following:

• IoT device – WoT description: SEMIoTICS can support IoT devices which are described according
to WoT schema. WoT schema can be generated for existing devices using the Recipe Cooker app.
Moreover, SEMIoTICS is capable to cooperate with "brownfield devices", however, to do that some
additional implementation is required in the component called Semantic API & Protocol Binding.

• Use case apps (field and backend level): Use case business logic must be implemented by new
use case owner. SEMIoTICS doesn't provide ready-to-use applications logic. For new use cases,
dedicated apps containing specific business logic must be created either as separate applications or
as blocks in Recipe Cooker. Recipe cooker delivers functionality of modelling many different scenarios
and can be easily enhanced with new logical blocks that can represent various functionalities of
outside applications, platforms or components.

• SPDI patterns – Patterns description: One of the key features of SEMIoTICS is seamless
orchestration through SPDI patterns. SEMIoTICS can set up cross-layer guarantees (backend,
network, field layer) for a particular new use case with different properties in place such as QoS (i.e.
bandwidth delay etc.) or SPDI properties (security dependability etc.) . These patterns can interact
with the Recipe Cooker via the deployed recipe as received by the Pattern Orchestrator. Moreover,
Pattern Orchestrator is responsible to pass the information to the respective Pattern Engines at all
layers (Backend, Network and Field level).

• Monitoring - intelligence: SEMIoTICS offers sophisticated monitoring component which collects and
monitors events form all of the components present in the platform. Platform users can subscribe to
chosen complex events in order to get notified as soon as they occur. This gives enormous
opportunities of platform monitoring in a central point with no information dispersion and scarcity. This
monitoring procedure can enable the detection and prediction capabilities of SEMIoTICS,

High level steps which are required for a newly approached use case owner are:

1. Describe the devices with WoT schema
2. Create filed and backend applications with business logic (optional)
3. Create a recipe in Recipe Cooker

a. Auto discover WoT devices
b. Model a recipe
c. Add patterns

4. Validate/instantiate the required pattern to guarantee the SPDI or QoS properties
5. Deploy a recipe and forward it to the pattern orchestrator.
6. Configure complex alerts

 VALIDATION

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D2.4 SEMIoTICS High Level Architecture (Cycle 1)

Dissemination level: [Public]

56

This chapter summarizes the validation features of SEMIoTICS that are related with the platform architecture
delivery and the various topics that are covered in this deliverable.

6.1 Related Project Objectives and Key Performance Indicators (KPIs)

The objectives of the related T2.4 and their mapping to D2.4 content is summarized in the following table.

TABLE 2 TASK’S OBJECTIVES

T2.4 Objectives D2.4 Chapters

• Specification of the overall reference architecture and a base-line specification
of the interfaces and functionalities of the core components of the SEMIoTICS
framework

2

• Architectural and functional specification driven by the requirements identified
in Tasks 2.1 and 2

3

• The reference architecture will contain the logical decomposition of
SEMIoTICS to specific components with assigned roles, functionality and short
description of the interaction between them.

3.1, 3.2, 3.3, 3.4

• User-centric approach to design to ensure that user requirements are
addressed by it.

4

The overall deliverable constitutes the initial contribution towards fulfilling the project’s requirements regarding
SEMIOTIC’s objectives:

Objective KPI-ID Description

2 Semantic interoperability KPI-2.3 Semantic interoperability with 3 IoT
platforms

5 IoT-aware Programmable Networks KPI-5.1 Deployment of a multi-domain SDN
orchestrator

6 Development of a Reference Prototype KPI-6.3 Delivery of 3 prototypes of IIoT/IoT
applications

7 Promote the adoption of EU technology
offerings internationally

KPI-7.1 Provision the SEMIoTICS framework and
building blocks

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D2.4 SEMIoTICS High Level Architecture (Cycle 1)

Dissemination level: [Public]

57

6.2 Project requirements mapping to Tasks and Architectural Components

In this section one can find all requirements which were derived in the project and documented in D2.3 being
mapped to the Tasks which addresses those requirements as well as mapping to the architectural logical
components. A more detailed presentation of the correlation between the project requirements and the project
tasks and components can be found below.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D2.4 SEMIoTICS High Level Architecture (Cycle 1)

Dissemination level: [Public]

58

 GENERAL PLATFORM, BACKEND/NETWORK/FIELD PROJECT REQUIREMENTS MAPPING TO
TASKS ARCHITECTURAL COMPONENTS

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D2.4 SEMIoTICS High Level Architecture (Cycle 1)

Dissemination level: [Public]

59

 SECURITY AND PRIVACY PROJECT REQUIREMENTS MAPPING TO TASKS ARCHITECTURAL
COMPONENTS

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D2.4 SEMIoTICS High Level Architecture (Cycle 1)

Dissemination level: [Public]

60

 USE CASE PROJECT REQUIREMENTS MAPPING TO TASKS AND ARCHITECTURAL
COMPONENTS

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D2.4 SEMIoTICS High Level Architecture (Cycle 1)

Dissemination level: [Public]

61

 CONCLUSION

In this work, we described the SEMIoTICS architectural framework, which addresses the complicated
requirements of IoT/IIoT applications such as security, privacy, dependability and interoperability. There has
been clarified the core mechanisms of the SEMIoTICS framework and presented their mapping to the
architecture structure. The functional components of the proposed architecture are illustrated in detail. Finally,
the representation of use case scenarios is described and presented in the SEMIoTICS Framework.

As the first draft of the architecture, the work will be continued in parallel with works carried within WP3, WP4
and WP5. Every result of project finding will be consulted and aligned with the initial architectural concepts of
the framework architecture. However, if research and development will bring some new concepts,
architectural approach will be discussed, and some modifications introduced if necessary.

In the final version of the SEMIoTICS high level architecture deliverable (D2.5), focus will be on the dynamic
architecture aspects considering the design decisions made in WP3 and WP4. D2.5 Deliverable will cover
topics such as specificity of components interactions, detailed use case massage flows and diagrams
describing such interactions together with description of data exchanged.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D2.4 SEMIoTICS High Level Architecture (Cycle 1)

Dissemination level: [Public]

62

 BIBLIOGRAPHY

C. Krupitzer, F. M. (2015). A survey on engineering approaches for self -adaptive systems. Pervasive and
Mobile Computing, vol. 17, pp. pp. 184–206.

ETSI. (2014, February). ETSI.org: Network Functions Virtualisation (NFV); Architectural Framework (ETSI GS
NFV 002 V1.2.1). Retrieved November 2018, from
https://www.etsi.org/deliver/etsi_gs/NFV/001_099/002/01.02.01_60/gs_NFV002v010201p.pdf

ETSI. (2014, December). ETSI.org: Network Functions Virtualisation (NFV); Management and Orchestration
(ETSI GS NFV-MAN 001). Retrieved November 2018, from https://www.etsi.org/deliver/etsi_gs/NFV-
MAN/001_099/001/01.01.01_60/gs_NFV-MAN001v010101p.pdf

OpenDaylight. (n.d.). OpenDaylight Lithium. Retrieved January 2019, from https://www.opendaylight.org/what-
we-do/current-release/lithium

OpenStack. (n.d.). ML2 plug-in. Retrieved January 2019, from https://docs.openstack.org/newton/networking-
guide/config-ml2.html

OpenStack. (n.d.). OpenStack Docs: Networking API v2. Retrieved from https://developer.openstack.org/api-
ref/network/v2/

Roveri, C. A. (2017). The (not) far-away path to smart cyber-physical systems: An information-centric
framework. Computer, vol. 50, no. 4, (pp. 38–47).

Toghraee, R. (2017). Learning OpenDaylight: The art of deploying successful networks. Birmingham: Packt
Publishing Ltd.

