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1 INTRODUCTION

This deliverable is the final output of Task 2.4 “SEMIoTICS Architecture Design”. It provides a final specification
of the overall reference architecture and a base-line specification of the interfaces and functionalities of the
core components of the SEMIoTICS framework.

The presented final version of the architecture of the pattern-driven SEMIoTICS framework aims to address
such challenges of current implementation and deployment stack of 10T applications as dynamicity, scalability,
heterogeneity, and end-to-end security/privacy. Specifically, the functional components of the proposed
architecture are presented to provide an overview of the appropriate realization mechanisms. Finally, the
architecture is mapped in three use cases (two verticals mapped in the areas of energy and health care and
one horizontal in the area of intelligent sensing) in order to demonstrate its applicability in different IoT enabling
platforms, types of smart objects, devices and types of networks.

The specification and logical composition of the architecture have been built upon the general and Use Case-
specific requirements identified during the project. Additionally, considering the initial architecture given in the
project proposal, three layers (Field Level, SDN/NFV Orchestration Layer and Application Orchestration Layer)
have been included in the SEMIOTICS architecture. Additionally, said layered approach corresponds with the
research performed within the project, leading to the vision of the architecture presented in this document.

Given its key role in the project, this architecture task features significant interplay with ongoing tasks within
WP2, WP3, and WP4, also featuring a direct connection with WP5 (focusing on integration and demonstration).
While the development of the architectural components is planned for WP3 and WP4, final integrations and
integrated demos are planned for WP5 as per DoA.

Due to the complexity of the project itself and its goals, the necessity of integration of a significant number of
requirements defined in T2.1 and T2.2, and the need to identify interactions between generic framework
components that are also able to support diverse use cases, the architecture definition has consumed
significant effort. A series of face to face and online workshops triggered many discussions on the framework
architecture composition. Since work on architecture definition started after WP3 and WP4 were already
initiated, specific components and functionalities were identifiable. Once the component identification had been
finalized, thorough analysis followed considering the requirements identified and work being delivered in WP3
and WP4 to ensure all necessary elements are included, without omissions of component needed to fulfill the
project’s requirements. Further architecture adjustments and modifications, which were necessary when
entering into the intensive development phase, were carried out following direct communications, regular status
meetings, and PTC meetings. The differences between the draft and final versions of the architecture are
described in this document for a clear understanding of the reader.

The deliverable is structured as follows:

e Section 2 describes the methodology and major steps taken to design the final version of the
architecture.

e Section 3 presents an overview of the SEMIOTICS architecture, including static architecture, high-
level interaction between the components diagram and descriptions of generic components as
building blocks of the framework as per the architectural layer. Moreover, it provides the description
of research results and contribution of the project beyond other projects of the consortium.

e Section 4 has been devoted to use-case specific architecture presenting the dynamic architecture for
each Use Case hence gives a detailed view of how the SEMIoTICS framework supports each of the
Use Cases defined in the project. It also describes how the SEMIoTICS framework could be leveraged
for additional use cases

e Section 5 is the validation section where one can see what objectives, KPIs and Requirements are
pertinent to the work presented within this deliverable

e Section 6 features the concluding remarks.
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1.1 PERT chart of SEMIOTICS

The Task 2.4 is one of the most crucial tasks in SEMIOTICS, related also to most of the other tasks as
presented in the PERT chart. Please note that the PERT chart is kept on task level for better readability.

T1.2: Project technical and innovation
01.01.2018 31122020
WP1: Project Management T1.1: Project coordination p— P —
01012018 ‘ 31122020 01.01.2018 ‘ 31122020
36 months ‘ Leader: SAG 36 months ‘ Leader: SAG T1.3: Coordination with EU programme
level activities
01012018 31.12.2020
36 months Leader: SAG
[WP2: Requirements and Architecture for] T2.2: Analysis of emerging business and T2.2: Specification of use case scenarios
Smart Actuation technical 0T value drivers & applicati d their
01012018 30112019 01012018 31032018 ——»| 01012018 ‘ 30042018
23 months Leader: ST-1 3 months Leader: STS 4 months. ‘ Leader: SAG
T2.3: Specification of infrastructure
01.03.2018 30.06.2018
4months Leader: ST-1
T2.4: SEMIOTICS architecture design
01.07.2018 31122019
18 months ‘ Leader: BS
T4.1:Architectural SPDI patterns
— 01062018 30042020 e
T3.T: Software defined Aggregation,
ors ared cloud networks 23 months Leader: STS
» 01052018 2002200 |——p
4.2 Monitoring, prediction and
22 months Leader: SAG diagnosis
01.07.2018 3002020 (e
[T3.2: loT Network Function Virtualization| 22 months Leader: ENG
> 01052018 29.02.2020
X 3.5 Implementation of Feld-level 4.6 Implementation of SEMIOTICS |« 3: Embedded Intelligence and local
WP3: Smart objects and networks 22 months ‘ Leader: CTTC o e e e backend API analytics WP4: Pattern-driven smart behavior of
T with End-to-End Security and Privacy|
01052018 30.04.2020 01.07.2018 30.04.2020 01.09.2018 30.06.2020 01.07.2018 30042020 4
T3.3: Semantics-based bootstrapping & 01.06.2018 ‘ 30062020
24 months ‘ Leader: SAG - e ™  22months Leader: QU 22 months Leader: BS 22 months Leader: ST-|
| 25 months ‘ Leader: FORTH
| 01052018 29.02.2020
T4.4: End-to-End Semantic
22 months Leader: SAG
01.07.2018 30042020 e
T3.4: Network-level semantic
5 22 months Leader: FORTH
L 01052018 2002200 ——
22 months Leader: STS T4.5: End-to-End Security and Privacy
L—  owo72018 3002020 (e
22 months ‘ Leader: UP
T5.1: KPIs and Evaluation Methodology T5.2: Software system integration
L 01062019 ‘ 31102019 01.06.2019 31.08.2020
5 months ‘ Leader: UP 15 months Leader: BS
WPS: System Integration and Evaluation
T5.3: 10T Infrastructure set-up and
01012019 31122020 testing
24 months ‘ Leader: ENG 01.01.2019 31.082020
20 months Leader: IQU
5.4: Demonstration and validation of T5.5: Demonstration and validation of 5.6 Demonstration and validation of
IWPC- Energy scenario SARA-Health scenario IHES-Generic IoT scenario
01122019 31122020 0112.2019 31122020 01122019 31122020
13 months Leader: SAG 13 months Leader: ENG 13 months Leader: ST-1
6.2: Exploi f results
i 01.06.2018 ‘ 31.12.2020
R I e + Impact Creation and Dissemination pep— ‘ R —
01012018 31122020 01.01.2018 31.12.2020
36 months Leader: CTTC 36 months ‘ Leader: CTTC
76.3: Standardization
01012019 ‘ 31122020
24 months ‘ Leader: SAG

FIGURE 1 PERT CHART
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2 METHODOLOGY OF THE ARCHITECTURE CREATION

The development of the SEMIOTICS architectural framework required four major steps in order to finalize it, as
visualized in Figure 2.

First Draft Second Draft Final

Ehvisaged SEMIOTICS SEMIOTICS SEMIOTICS
e Archltetl:ture Arclhltectslre Arclhltectslre
Barvcelona Deliverable Deliverable
Proposal Worrkshop D2.4 D2.5
Afpr 201 Nov 2018 Apr 2019 Nov 2019

FIGURE 2 STEPS OF ARCHITECTURE CREATION

e The first step was done in the proposal phase where the envisaged architecture was proposed and
described.

e The second step covered the first period of the project in order to cover all implementation building blocks
but also achieve the project objectives. The result of this preparation was discussed and agreed in a
technical workshop in Barcelona in November 2018. At that stage, most of the components were defined
and the owners were assigned.

e The third step was completed during the preparation of deliverable D2.4 which was finalized and submitted
in April 2019. The framework was updated based on updates stemming from the detailed description of the
project’s use cases.

e The final step included the finalization of the framework architecture as presented in this deliverable (D2.5)
which is the outcome of the previous steps.

2.1 Envisaged SEMIOTICS Architecture

The main focus of SEMIOTICS is to develop a dynamically configurable and evolvable framework to enable:
(a) the integration of heterogeneous smart objects that are available through heterogeneous IoT platforms into
0T applications in a manner that is scalable, secure, privacy-preserving and dependable; (b) the provision of
multi-layer intelligence capabilities enabling semi-autonomic smart object behavior and evolution; and (c) the
runtime management and adaptation of these objects and the loT applications that they form to preserve
security, privacy, and dependability.

The SEMIOTICS framework is based on the initial vision of the logical architecture of SEMIoTIC S framework
and how it relates to smart objects, I0oT applications, and existing IoT platforms, and how does it map onto a
generic deployment infrastructure consisting of private and public clouds, networks, and field devices as
depicted in Figure 3. Within the figure, blue boxes show components of the framework that are to be developed
by SEMIOTICS; white boxes indicate components of 0T applications managed by the framework. The key role
of the SEMIoTICS framework in the I1oT/IoT implementation stack is to support the secure, dependable and
privacy-preserving connectivity and interoperability of IoT applications and smart objects used by them, and
the management, monitoring, and adaptation of these applications, objects, and their connectivity. The
SEMIOTICS vision is articulated around the development of a framework for smart object and IloT/loT
application management based on trusted patterns, monitoring, and adaptation mechanisms, enhanced loT
centric networks and multi-layered embedded intelligence.
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FIGURE 3 ENVISAGED ARCHITECTURE AND DEPLOYMENT OF SEMIOTICS FRAMEWORK

2.2 First draft of SEMIoOTICS Architecture

One main goal in the first period of SEMIoOTICS was the transition from the conceptual architecture, as described
previously, to an open architectural framework including an actual description of components with a single defined
goal. In order to provide the required components regarding the construction of the diagram, the outputs and relation
between the tasks and project objectives were defined. In addition, the different proposed components as task
outputs were considered also in the draft SEMIOTICS architecture, as detailed below:

WP3 - Smart objects and networks

e Task 3.1 Software-defined Aggregation, Orchestration and cloud network
o Related Component: SDN Controller and the containing modules (Resource Manager, Resource
Monitor, VTN Manager, Security Manager, Pattern Engine, SFC Manager, Bootstrapping Manager,
Clustering Manager, Path Manager)
e Task 3.2 — lloT Network Function Virtualization
o Related Component: NFV related component (NFV Orchestrator, VNF Manager, VIM) plus the
VIM connector located in the controller
e Task 3.3 — Semantics-based bootstrapping & interfacing
o Related Component: Recipe Cooker, Thing Directory
e Task 3.4 — Network-level Semantic Interoperability
o Related Component: Semantic Mediator
e Task 3.5 — Implementation of Field-level middleware & networking toolbox
o Related Component: Semantic API & Protocol Binding
WP4 - Pattern-driven smart behavior of lloT with End-to-End Security and Privacy
e Task 4.1 — Architectural SPDI patterns
o Related Component: Pattern Orchestrator, Pattern Engine (Backend, SDN, Field)
e Task 4.2 — Monitoring, prediction, and diagnosis

8
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o Related Component: Monitoring (Backend, Field),
e Task 4.3 — Embedded Intelligence and local analytics
o Related Component: Local Embedded Intelligence
e Task 4.4 — End-to-End Semantic Interoperability
o Related Component: Semantic Mediator (Backend)
e Task 4.5 — End-to-End Security and Privacy
o Related Component: Security Manager (Backend, SDN, Field)
e Task 4.6 — Implementation of SEMIoOTICS backend API
o Related Component: Backend Orchestrator, GUI

Based on the above and the collection of requirements together with the required use case
applications/devices, a draft composite diagram of the SEMIOTICS architecture was created containing all the
described components and the corresponding functionalities. This architecture was discussed in Barcelona
during the technical project meeting in November 2018 and approved by the entire consortium after some
minor changes were introduced. Therefore, a first draft architecture including a rough combination of all
identified components from different use cases and WP tasks including some generalization was developed
as presented in Figure 4.

Backend Mindsphere Usecase Apps
= Mindsphere
z0 Semantic Security Backend Apps Usecase 1
9 = Mediator Module Orchestrator
E é E Fiware
O > !
=0 Recipe Pattern - - Usecase 2
i % 5 Cooker Orchestrator, Monitoring I;ware
o roker
<
(o] Thing Pattern Fiware
Directory Module Gul GEs Usecase 3
SDN Controller NFV
z Resource VTN Security VIM ) NFV
(@] Manager Manager Manager Connector Orchestrator
> =
14
% é w Resource Path Pattern SFC VNF
= ﬂ E Monitor Manager Module Manager Manager
oz
Q Bootstraping Clustering
14 VIM
o Manager Manager
loT Gateway Field devices
(=] 5 Semantic API Security Local Embeded Usecase 1
o E & Protocol Binding Module Inteligence
[T Usecase 2
GW semantic Pattern Monitorin
Mediator Module 9 Usecase 3

FIGURE 4 FIRST DRAFT OF SEMIOTICS ARCHITECTURE

2.3 Second Draft of SEMIOTICS Architecture

The SEMIOTICS architecture required additional generalization as a general architecture showing all of the

components that are shared between use cases. The creation of the first public version of the SEMIoTICS

architecture diagram was included in the Deliverable D2.4 SEMIoTICS High-level Architecture. It has been

followed by vivid discussions within WP2, WP3 and WP4 workshops and further fine-tuning has been
9
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constantly provided. During the preparation of the Deliverable D2.4 (High-level Architecture) some updates
were made to depict the required changes regarding the current status of the Use Cases and the component
implementation status. In addition to, the abstract description of the SEMIOTICS architecture as taken from
this deliverable was submitted and presented in the Global 10T Summit, in conjunction with loT week?.

SEMIoOTICS Architecture Updates:

e Backend Semantic Validator: During the process, Semantic Mediator in the backend evolved into
Backend Semantic Validator — a new component.
e Recipe cooker: Extension of the recipe cooker’s execution environment for loT flows to allow their
distributed IoT orchestration. Besides enabling the deployment of the components of a flow to different
devices, we allow the specification of application-specific constraints (to be auto-translated into

patterns to configure the network).

e Pattern Engine: An update of the name was done from Pattern Module to Pattern Engine.

e Security Manager: An update of the naming was done from the Security Module to Security Manager.

o Resource Manager: Logical merge of resource manager and monitoring.

e Local Thing Directory: Need for a local version of a component has been identified in order to address
possible internet connection losses.

Backend Mindsphere Usecase Apps
= Backend - Mindsphere
= Q Semantic Secumy OBTKT”C: Apps Usecase 1
CE Validator anager rchestrator
E é E Fiware
= -
Own>= R Pattern .
= ecipe attel -
Fu g Cooker Orchestrator | | Monitoring Fiware Usacase 2
S Broker
dx
(o] Thing Pattern Fiware
Directory Engine Gul GEs e
SDN Controller NFV
= Resource VTN Security NFV
(=] Manager Manager Manager Orchestrator
=
Lo :
ZEuWw Bootstraping Path Pattern VNF
S0 > Manager Manager Engine Manager
3%
1 Clustering SFC VIM
o VIM
o Manager Manager Connector
loT Gateway Field devices
Semantic API . Local Embedded
& Protocol Binding Security Manager Inteligence Usecase 1
ok i
- E aw Se‘manllc Pattern Engine Monitoring Usecase 2
w Mediator
e
Local Thing
Directory Usecase 3

FIGURE 5 SECOND DRAFT OF SEMIOTICS ARCHITECTURE

1 N. Petroulakis, E. Lakka, E. Sakic, V. Kulkarni, K. Fysarakis, |. Somarakis, J. Serra, L. Sanabria-Russo, D. Pau, M.
Falchetto, D. Presenza, T. Marktscheffel, K. Ramantas, P. V. Mekikis, L. Ciechomski, K. Waledzik, SEMIoTICS

Architectural Framework: End-to-end Security, Connectivity and Interoperability for Industrial 10T, Global IoT Summit
2019 (GloTS'19), Aarhus, Denmark, June 17- 21, 2019.
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2.4 Final SEMIOTICS Architecture

The final SEMIOTICS Architecture includes the following additional component in order to fulfill the SEMIoTICS
objectives and use case requirements.

SEMIOTICS Architecture Updates:

Semantic Edge Platform (SEP) has been introduced as a new component of IoT Gateway (Field
Layer). The gateway itself operates in the Field layer. Without the SME, it would be hard for an end-
user to scan the network and bootstrap field devices. Thus, SME provides an interface for SEMIOTICS
loT Gateway. For the further role of SEM, please see Section 3.4.8. SEP has been included in loT
Gateway to provide a convenient user interfaces for configuring SEMIOTICS loT Gateway such as
network interface, IP address range when scanning a network for new devices and initiate the device
bootstrapping process. In addition, it was required to support a convenient development environment
for creating new Apps with a newly bootstrapped device. SEMIOTICS loT Gateway either provides a
uniform API for a new device or re-uses an existing one. This API is automatically exposed over SEP.
After the bootstrapping process, there will be created a graphic component (a Node-RED node) based
on this API. Thus, the device can be accessed over that node, and the node can be used in new
applications right away. These device nodes are automatically created and installed in SPE during the
bootstrapping process. Moreover, SEP can provide a mechanism to semantically annotate brownfield
devices. So, created semantic descriptions from SEP will be stored in both Local Thing Directory and
Global Thing Directory. Furthermore, the SEP can enforce the creation of Edge- and Cloud-based
applications in SEMIoOTICS. The Recipe-Cooker component in SEMIoTICS will be fully integrated with
SEP. That is, it will be possible to instantiate a new application based on a Recipe. The process of
discovering field devices, and matching them with affordances from a Recipe will be supported via a
machine reasoner that is integrated into SEP.

Supervisor and Local DB component were added also in the architecture since it is required
specifically for supporting the Use Case 3 field devices. More specifically, UC3 final architecture
required the introduction of a dedicated new component at SEMIoOTICS gateway level, the Supervisor
and Local DB as presented in section 3.5.7. This component has been defined in order to allow the
implementation of Local DB trend analysis (through configurable InfluxDB queries and local data
aggregation policies) and local data storing (one of the two envisaged scenarios in UC3). The
Supervisor component is also required in order to efficiently handle the communication and the self-
adaptive behaviors of a system of intelligent IHES Sensing Units in a real-time environment. Last but
not least, this component acts as a logical bridge between the real-time Sensing Node units that
continuously pushed new data and events to the local MQTT broker, and the SEMIoTICS backend
layer where southbound interfaces are implemented through a GET/POST Rest APIs policy. This
facilitates the definition of new derived Use Cases that exploits the edge analytics capabilities of the
SEMIOTICS Generic IoT System.

OpenHAB Visualisation component was added as the third additional 10T platform which is necessary
for monitoring and visualizing the sensing data and raises alerts. openHAB? is a software for integrating
different automation systems and technologies into one single solution that allows over-arching
automation rules and that offers uniform user interfaces. OpenHAB is a modular, open-source loT
platform, with many functions that are relevant to SEMIoOTICS UC3. These functions include the
interaction with external sensors, data storage backends and chart libraries for sensor value
visualization. Furthermore, openHAB supports a scripting language to implement automation
scenarios. OpenHAB functions in UC3 are packaged as VNFs, orchestrated by the MANO framework
and placed at either the VIM or the virtualized SEMIoTICS gateway to address low latency monitoring
and actuation requirements.

Fiware Broker and GEs were merged into one component.

2 https://www.openhab.org
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3 ARCHITECTURE OVERVIEW AND COMPONENTS

The SEMIOTICS Architectural Framework aims to leverage generic architecture components combined in
layered structure in order to deliver an Embedded Intelligence at all layers of the framework with the
mechanisms empowering SPDI patterns verification across all layers as envisioned in the SEMIOTICS
envisaged architecture. Created SEMIOTICS pattern-driven framework is capable of supporting diverse
scenarios with a specific focus on Smart Energy, Healthcare and Smart Sensing Use Cases. More specifically
the SEMIOTICS architecture consists of three layers as follows:

e Application Orchestration Layer — consisting of all applications receiving communication from the field
layer. The layer provides the framework with security, availability and scalability, privacy, de pendability,
interoperability as well as intra- and cross-layer monitoring.

o SDN/NFV Orchestration Layer — offers flexible, programmable, dynamic and scalable ways to reconfigure
network resources in order to provide the QoS demanded by SEMIoTICS Use Cases. It provides end-to-
end service connectivity, meets different 10T application requirements in terms of bandwidth, latency, and
energy efficiency.

e Field Layer — responsible for hosting heterogeneous types of IoT devices. It provides semantic
interoperability between 10T devices and seamless flexibility.

By designing the architecture this way, all of the requirements and assumptions of the project are fulfilled.
Figure 6, presents the component logical architecture consisting of three layers: Field Layer, SDN/NFV
Orchestration Layer and Application Orchestration Layer while more details of each layer are presented further.
In the following subsections, the background and the analysis of the deployed component that constitute these
layers are described. Finally, the high-level interaction between the components of the framework is also
presented.

3.1 Deployment of the SEMIOTICS Framework

As detailed previously, the main scope of SEMIoTICS is to provide a framework to ensure project a dynamicity,
scalability, heterogeneity, end-to-end security and privacy based on the three main layers of architecture that
have been distinguished: the field, the network (SDN/NFV) and the application. The top layer, where the
application orchestration takes place, defines the system's backend components that are partly run on the
Cloud or on a server within the network of the lower layers.

To deploy the above layers and the required goal per layer, a number of different components on each layer
are required to develop the SEMIoOTICS framework. Different types of components are proposed and deployed
in this architecture. Some components are developed from scratch or leveraging existing technologies. Other
components are adapted for SEMIOTICS needs or existing tools are used without any modification. Apart from
the newly developed components in SEMIOTICS, regarding the reuse or extension of existing tools
SEMIOTICS, the candidate list includes the following:

e Components from other research projects that partners have participated or involved such as:

e Virtuwind3: The aim in Virtuwind was to develop and demonstrate an SDN & NFV ecosystem, based
on open, modular and secure framework showcasing a prototype for intra-domain and inter-domain
scenarios in real wind parks as a representative Use Case of industrial networks, and validate the
economic viability of the demonstrated solution. SEMIoTICS reuses the basis of the Virtuwind SDN
controller by using (VTN Manager, Security Manager, Path Manager) or adapting (Resource
Manager, Bootstrapping Manager, Clustering Manager, and SFC Manager) existing components
or inserting new ones such as Pattern Engine.

3 Virtual and programmable industrial network prototype deployed in operational Wind park, 5G-PPP Phase 1, 2015-
2018, http://www.virtuwind.eu
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e Agile loT# It builds a modular hardware and software gateway for the Internet of Things with support
for protocol interoperability, device and data management, 0T apps execution, and external Cloud
communication. SEMIOTICS benefits by this project by enhancing the gained knowledge to the field
and application layer located in the cross-layer Security Managers.

e BIGIoT® SEMIOTICS reuses the Recipe Cooker and the Thing Directory from the BIGIoT project.
The Recipe Cooker module is extended in SEMIoOTICS to support the definition of QoS requirements
from an application point of view and to produce a conversion from application flows (recipes) that
include QoS requirements into SPDI patterns. These patterns are then sent to and interpreted by the
Pattern Orchestrator. Beyond these conceptual changes to the Recipe Cooker, its implementation
is adapted and refactored to the popular Node-RED platform for IoT mash-up building.

e FIWARES: Core platform project, offering generic enablers (GEs) for a broad range of areas (i.e.
Cloud, Apps & Services, 10T, Interfaces to network and devices, Data & Context management and
Security), where SEMIOTICS is able to use such as FIWARE Broker and other GEs.

e Tools from the Open Source Community such as VIM (i.e. OpenStack), Kubernetes and Open Source
Mano for NFV Orchestrator that can be adapted in the SEMIoTICS framework or a VNF Manager such as
Tacker supported by Openstack.

e Commercial solutions such as the MindSphere IoT platform.
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FIGURE 7 ARCHITECTURE DIAGRAM DEPLOYMENT

4 an Adaptive & Modular Gateway for the 10T, loT EPI, 2016-2018, https://agile-iot.eu/
5 Bridging the Interoperability Gap of the Internet of Things, loT EPI, 2016-2018, http://big-iot.eu
6 FIWARE: The Open Source Smart Platform, www.fiware.org
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Based on the above, a more detailed representation of the proposed architecture providing deployment details
for each existing adapted component and newly developed components is presented in Figure 7.

Table 1 presents all components comprising the SEMIoOTICS architecture. Moreover, what has been provided
is detailed information on component owners as well as the task in the context of which the component will be
developed. During the project course, there has been identified a need for a change of the integration
approach, hence the specific role of Integrator needs to be defined per Use Case. The definition of the new
integrated approach, roles, and scope of work is being identified within WP5 and will be integrated into that
workstream.

Further subsections advance the description and deliver more details about each component and its role per
layer.

TABLE 1 ARCHITECTURE COMPONENT LIST

Component Layer Owner Implementation  Maturity level
(coordinator) task
AREAS External 10T Platforms ENG 5.2 Existing tool
Backend Application BS 4.6 Developed from scratch for
orchestrator Orchestration Layer SEMIOTICS, leveraging
existing technologies
Backend Application FORTH 4.4 Developed from scratch for
Semantic Orchestration Layer SEMIOTICS, leveraging
Validator existing technologies
Bootstrapping SDN Orchestration SAG 3.1,35 Adapted for SEMIOTICS
Manager Layer
Clustering SDN Orchestration SAG 3.1,35 Adapted for SEMIoOTICS
Manager Layer
FIWARE / GE X External 0T Platforms = 1QU 35,52 Adapted for SEMIOTICS
FIWARE/ Context = External loT Platforms  1QU 35,52 Adapted for SEMIOTICS
Broker
GUI Application BS 4.6 Developed from scratch for
Orchestration Layer SEMIOTICS, leveraging
existing technologies
GW Semantic Field Layer SAG 3.3 Developed from scratch for
Mediator SEMIOTICS
Local embedded Field Layer ST 4.3 Developed from scratch for
intelligence SEMIOTICS
Local thing Field Layer SAG 3.3 Adapted for SEMIOTICS
directory
MindSphere External 10T Platforms = SAG 5.4 Existing tool
Monitoring Field Layer ENG 4.2 Developed from scratch for
SEMIOTICS, leveraging
existing technologies.
Monitoring Application ENG 4.2 Developed from scratch for
Orchestration Layer SEMIOTICS, leveraging
existing technologies
NFV Orchestrator = NFV Orchestration CTTC 3.2,35 Adapted for SEMIoTICS
Layer
Path Manager SDN Orchestration SAG 3.1,35 Existing tool
Layer
Pattern Engine Field Layer FORTH 4.1 Developed from scratch for
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3.2 Application Orchestration Layer

The Application Orchestration Layer consists of all applications receiving communication from the Field Layer.
Backend Orchestrator will be leveraged for the application orchestration purposes and to provide common
functionalities across all deployed applications.

Additionally, Application Orchestration Layers hold the Use Case flows as well as the SPDI pattern definition.

3.2.1 BACKEND ORCHESTRATOR

Overview: A component responsible for integrating all backend services and exposing API. The technology
is to be chosen (OpenShift/Kubernetes/OpenStack).

Core Functionalities:

o Application availability monitoring (health checks).

e Monitoring of application resource consumption.

Delivering common API for pattern enforcing components.

Delivering common API for monitoring components.

Delivering common API for CI/CD tools.

Providing auto-scaling capabilities for applications ensuring scalability in case of resource saturation.
Easing application/component deployment.

e Giving one centralized place for backend component management.

Details: The Backend Orchestrator (BO) is a component responsible for provisioning all other
applications/components residing in the backend. BO should provide SEMIOTICS Framework with
functionalities for application/component development, such as:

Application availability monitoring (health checks).

Monitoring of application resource consumption.

Delivering common API for pattern enforcing components.

Delivering common API for monitoring components.

Delivering common API for CI/CD tools.

Integration with Fiware components.

Providing auto-scaling capabilities for applications ensuring scalability in case of resource saturation.
Easing application/component deployment.

Giving one centralized place for backend component management.

The possible tools for orchestration were revised in detail. While comparing available solutions, out of the box
features and restrictions were considered. One of the tasks in the first draft of WP4 implementation was
focused on choosing the most suitable tools for backend orchestration. Approaches which were taken into
consideration were:

e Kubernetes’ on bare metal.
e Openstack® on bare metal.
e Kubernetes on Openstack.

After analyzing all of the above possibilities, Kubernetes on bare metal was the most appropriate choice for
the SEMIOTICS project. This tool allows all partners of a consortium to keep applications in one place that
makes them easier to manage and maintain. Each user who has access to BO can manage their application,
but only in a specific namespace. It means that interference in the components of other partners is not allowed.
This solution ensures that unconscious user action can destroy only one component and does not have any
impact on another. Kubernetes uses Docker image to deploy an application, therefore only basic knowledge
of using Docker is necessary. Moreover, Docker images are universal and support all environments, so there

7 https://kubernetes.io
8 https://www.openstack.org
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is no risk that one of the components will not work because of the technology used. BO provides support not
only for components residing in the backend layer(e.g. Thing Directory, Pattern Orchestrator, GUI) but also for
FIWARE components. All of FIWARE GEs' implementation provides a Docker container that can be used to
run own instance.

3.2.2 RECIPE COOKER

Overview: Module responsible for creating recipes reflecting user requirements on different layers (cloud,
edge, network) as well as transforming recipes into understandable rules for each layer. It uses Thing Directory
with all necessary models to create these rules.

Core Functionalities:

e Creating and instantiating recipes.
e Translates recipes into pattern language and transmits them to Pattern Orchestrator to be executed.

Details: Recipe Cooker (RC) is a module able to instantiate recipes. A recipe is a template for a workflow of
interactions between multiple ingredients, i.e., devices or services. When a recipe is instantiated, ingredients
are replaced with concrete things, described with their own respective Thing Description. A draft for a user
interface (Ul) for the specification of recipes can be seen in Figure 8. Besides the workflow of the recipe, QoS
constraints and SPDI patterns can be defined in the interactions.

The user of this tool would be typically an 10T application developer. This user wants to focus on the logic of
the application flow. Specifically, the user does not have to be an expert in configuring the network and physical
connections between the involved 10T devices. The benefit of the recipe approach is that these configurations
are automatically done by the tool and the underlying technologies, a user only sets SPDI properties (e.g.
latency, rate).

@ Accelerometer Anemometer

- Privacy Ingredient

Recipe /

« Defines abstract structure of application

+ Allows multiple instantiation and reuse

« Allows easy configuration of application

« Enables automated discovery of matching
devices

motion windSpeed + To be instantiated with a Thing
+ Defines metadata of device

Audio Bitrate > 128 kB/s |

QoS Contraint

‘[ Latency <20ms + Defines a networking constraint from
application perspective

SPDI Pattern

@ » Defines constraints related to:
* Security
+ Connectivity + Privacy

ziDependabilty + Dependability

* Interoperability
that shall be enforced on the
application flow

FIGURE 8 DRAFT OF RECIPE COOKER Ul

3.2.3 THING DIRECTORY
Overview: The repository of knowledge containing necessary Thing models.

Core Functionalities:

e Searching for a Thing based on its metadata, properties, actions or events.
e Creating a new Thing's TD or updating an existing one.
e Deleting a Thing's TD.
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e Generating a runtime environment based on a discovered thing.
e All CRUD operations are supported either over HTTP or CoAP.

Details: The Thing Directory hosts Thing Descriptions of registered Things. The Thing Description (TD) model
is a recommendation of the W3C Web of Things® working group to describe Things. The directory features an
API to create, read, update and delete (CRUD) a TD. The directory can be used to browse and discover Things
based on their TDs.

3.2.4 PATTERN ORCHESTRATOR

Overview: This module is responsible for translating IoT and service orchestrations (such as cooked recipes
from the Recipe Cooker component) into patterns and passing them to pattern engines on each layer.

Core Functionalities:

e Receives recipes in pattern language from Recipe Cooker.

e Breaks down orchestrations in pattern language to rules and facts in a machine-processable format
(Drools rules)

e Sends rules and facts to the corresponding Pattern Engines

e Relays orchestration and SPDI properties status to the backend GUI

Details: The Pattern Orchestrator module features an underlying semantic reasoner able to understand the
internal components of 10T Service orchestrations expressed using the pattern language (see D4.1, Section
3.3), received from the Recipe Cooker module (see subsection 3.2.2 above) and transform them into
architectural patterns. The Pattern Orchestrator is then responsible to pass said patterns to the corresponding
Pattern Engines (as defined in the Backend, Network, and Field layers), after translating them to a machine-
processable format (in Drools), selecting for each of them the subset of patterns that refer to components
under their control (e.g. passing Network-specific patterns to the Pattern Engine present in the SDN controller).
Through the above functions, the module achieves automated configuration, coordination, and management of
the SEMIOTICS patterns across different layers and service orchestrations. Moreover, the Pattern Orchestrator
relays the status of orchestration and the SPDI properties of said orchestrations to the backend GUI.

A high-level view of the operation of the Pattern Orchestrator and its key interactions in IoT Orchestration
definition and deployment is depicted in Figure 9.

° https://www.w3.0rg/WoT/
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FIGURE 9. PATTERN ORCHESTRATOR; KEY INTERFACES AND INTERACTIONS

3.2.5 (BACKEND) PATTERN ENGINE

Overview: Module responsible for monitoring and reasoning on pattern rules related to SPDI properties of
backend components as well as end-to-end orchestration properties.

Core Functionalities:

e Inserting, Modifying, Executing, Retracting patterns at the backend
e (Backend and end-to-end properties’) Drools reasoning
e Aggregating properties’ status (facts) from the lower layer pattern engines

Details: The Pattern Engine features the pattern engine for the SEMIoTICS framework. Variants of pattern
engine can be found at the backend (detailed here), at the network (SDN controller; detailed in subsection
3.3.12) and field (IoT gateway; detailed in subsection 3.4.6) layers. As such, it enables the capability to insert,
modify, execute and retract patterns at design or at runtime in the backend; these interactions will typically
happen through the interfacing with the Pattern Orchestrator (see subsection 3.2.4 and Figure 9 above) or
between Pattern Engines, though additional interfaces can be introduced to allow for more flexible deployment
and adjustments if needed.

At the backend, using said patterns and the Drools® rule engine, along with monitoring capabilities present at
the backend layer, the Backend Pattern Engine is able to reason on the Security, Privacy, Dependability, and
Interoperability (SPDI) properties of aspects pertaining to the operation of the SEMIoTICS backend. Moreover,
at runtime the Backend Pattern Engine may receive fact updates from the individual Pattern Engines present
at the lower layers (Network & Field), allowing it to have an up-to-date view of the SPDI state of said layers
and the corresponding components.

10 Drools Business Rules Management System (BRMS) https://www.drools.org
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For example, a security pattern can be used to define integrity protection on a logical communication link,
helping at design time to select components that can provide said integrity protection, but also monitoring at
runtime that these components indeed do enforce this protection. Moreover, adaptations can be triggered if,
e.g. at runtime it is detected that one of the involved components fails to satisfy this requirement, replacing it
with an alternative one.

In Figure 10 below high-level representation of the communication of the Backend Pattern Engine, the Pattern
Engines of the other layers and the Pattern Orchestrator is presented in the form of a sequence diagram.
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Overview: Component responsible for monitoring, learning, and predictive analytics.

Core Functionalities:

Fusion of intra- and cross-layer monitoring results generated by monitors that may exist on the
platforms of different smart objects and components of 0T applications in order to detect violations

Details: The monitoring component in the backend layer has two key requirements:

To generate specific messages in response to the reception of a set of messages generated by the
components of an IoT application and matching some condition specified in the monitoring component
by a client application (Monitoring requirement).
To guarantee that the messages needed to decide whether to generate a message can be produced
by an lIoT application and received by the monitoring component (Observability property).

Figure 11 presents the main required inputs and outputs of the SEMIOTICS monitoring component.
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FIGURE 11 MAIN INPUT AND OUTPUT OF THE MONITORING COMPONENT

In particular, the Monitoring component receives as input:

Low-level events: the messages generated by the computational nodes belonging to the three layers
identified by the SEMIoTICS architecture: field (e.g. sensors, gateways), network (e.g. routers) and
cloud (e.g. FIWARE cloud services, MindSphere services). These low-level events are generated by
the computational nodes by means of signaling mechanisms specific to the technology used to
implement a computational node.

High-level events definitions: the conditions stating whether a new event should be generated in
the response of the reception of a set of low-level events.

The monitoring component emits as outputs:

High-level events: the messages generated by the monitoring component itself in response to the
reception of a set of low-level events matching one of the events definitions.

Configuration commands: messages requesting a specific configuration of the mechanisms allowing
the computational nodes to generate the low-level events. The possibility to issue these commands
allows the monitoring component to properly select and configure the signaling mechanisms needed
for the monitoring purpose.

In order to provide the observability property, the Monitoring component embeds learning and predictive
analytics components (not shown in Fig. 3) that enables the anticipatory behavior needed to guarantee that
the monitoring tasks can continue with the expected QoS despite the failure of some of the components (e.g.
event collectors) contributing to the overall monitoring task.

3.2.7

SECURITY MANAGER

Overview: Module responsible for granting access and necessary security checks at the Backend Layer.

Core Functionalities:

Providing services to Authentication, Key distribution, Management of users, roles, access rights.

Details: The Security Manager (SM) provides the following services to other SEMIoTICS components, devices,
and (human) users:
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e Authentication.
o Key distribution.
¢ Management of users, roles, and access rights.

Furthermore, it stores and takes decisions on security policies across all SEMIoTICS components. The security
manager at the backend layer is the Policy Decision Point (PDP). In contrast, the security managers at SDN
and edge level are Policy Enforcement Points (PEP). The security managers at SDN and edge levels only
have a local view on security policies and authentication, whereas the security manager at the backend has a
global view. Therefore, the following case can happen: The security manager at the edge level (or SDN level
respectively) might not have the information required to decide whether to grant or deny an action; it then
gueries the security manager at the backend layer on what decision to take.

The security manager is responsible for all authentication decisions. It supports both local authentications as
well as relying on external identity providers using OAuth2. By means of OAuth2, particularly strong
authentication mechanisms such as two-factor-authentication (2FA) are also supported. As a result, the
security manager shares a long-term key with each component and device.

Another service provided by the security manager is key distribution. Whenever two components or devices
want to protect the confidentiality of a direct communication link, they require keys for encryption. As the
security manager shares a long-term key with both components, it can use this key for securely exchanging a
session key with both components. Additionally, the security manager may have better means for securely
generating keys, for example by using hardware support; in contrast, in particular sensors and actuators with
limited computational power may lack the resources to securely generate keys at all.

The security manager is also responsible for managing roles, users, and access rights across SEMIoTICS.
Users may assume one or more roles such as regular users, security analysts, etc. Access rights are defined
by security policies that are stored in the security manager.

Finally, the security manager offers cryptographic functionality to combine the last two mentioned
functionalities: managing the access control via roles and managing keys: it supports the functionality of
attribute-based encryption, where a role can be set as an attribute, e.g. user can have the attribute is_doctor
and by generating a key for the encryption of data with this attribute the Security Manager is able to ensure
that only users who have a decryption key containing that role can later decrypt it.

3.2.8 BACKEND SEMANTIC VALIDATOR
Overview: Module responsible for semantic validation mechanisms at the Backend Layer.

Core Functionalities:

o Detection of any potential semantic conflicts in Things Description.

e Resolving semantic conflicts.

o Development of data transformation techniques and validation mechanisms to ensure end-to-end
semantic interoperability.

Details: The aim of the Backend Semantic Validator component (see SEMIoTICS deliverable D4.4) is to tackle
the semantic interoperability issues that arise in the SEMIoTICS framework, at the Application Orchestration
Layer. The Backend Semantic Validator can receive a request from loT application for interaction between two
Things (i.e. sensor, actuator), which are described with two different TDs (based on W3C Thing Descriptions
that are serialized to JSON-LD standard format), respectively. The functionality of this component consists of:

e Searching for the necessary Thing models in Thing Directory component (Section 3.2.3), in order to
detect any potential semantic conflicts between the interacting domains.

e Connecting with Recipe Cooker (Section 3.2.2) and Semantic Edge Platform (in the field) to resolve
these semantic conflicts using the Adaptor Nodes that configure an Interaction Pattern in accordance
with the application's requirements. The Adaptor Nodes and their functionality will be described and
analyzed in D4.11.
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3.2.9

Transferring the translated request to the Semantic API & Protocol Binding component (Section 3.4.1)
which is responsible to trigger the GW Semantic Mediator (Section 3.4.4) in the Field Layer, in order
to send the request in an appropriate format to the target Thing (actuator).

GRAPHICAL USER INTERFACE

Overview: A component responsible for the presentation layer.

Core Functionalities:

Details: Graphical User Interface is a component responsible for providing one centralized point of

Visualization of SPDI pattern monitoring, pattern details, recipes.

Interacting with smart devices (Things)Things.

Performing CRUD operations on Thing Descriptions.

Collecting data gathered from IoT devices.

Providing user dashboard interface.

Providing routing to other SEMIOTICS' components.

Providing visualization of monitoring data (leveraging FIWARE Knowage GE).

interaction with the platform while giving meaningful insights into the platform and centralized visualization of
the whole framework as well as a layer of presentation for specific Use Cases.

The following approaches are to be considered:

e GU
e GU
e GU

Further
3.2.10

| that communicates through the API with an external application.
| that loads the view itself from the external application.
| that is dedicated to the given backend application.

definition of GUI is subject to Task 4.5 within the project.
USE CASE 1 APPLICATIONS

Overview: Use Case 1 backend application including all necessary underlying components. It applies UC1
business logic to the platform.

Core Functionalities:

Details:

web-Ul:

Translation of application-level network requirements to network constraints and monitoring and
enforcing them in a decentralized edge infrastructure of a wind turbine.

The distributed application transfers video data to the analytics engine (for oil detection) and stops the
wind turbine in a detected emergency case.

The backend/cloud module, to demonstrate UC1, consists of a variety of modules supported by a single

Application definition: flow-based programming tool used in the creation of abstract applications
allowing multiple instantiation and reuse. Applications definition is based on pre-defined models &
capabilities derived from sensors and actuators, i.e. video and audio feeds, inclinometers, temperature
sensors, etc. The module supports regular functions such as if/else and for-loops.

Application deployment: Ul supporting the execution of defined applications. The module facilitates
the configuration, validation, and execution of an application. Examples of functionalities include a
selection of ingredients required by the application to be executed, and instantiations parameters, e.g.
if the application shall be run in the cloud or at the 1loT gateway. Furthermore, this module validates if
all pre-requisites, e.g. QoS constraints, can be met by the architecture prior to deployment and
execution of the application.

MindSphere Apps: There are Use Case specific Apps in MindSphere cloud platform used for time-
series data processing and/or visualization. These apps take the current and historical data from the
field layer.

Edge Apps: Not all field data needs to be transferred to the Cloud. Apps can also run on the Edge.
These Apps typically operate on data, which is accessible from SEMIOTICS IoT Gateway. For apps
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that should operate on a global view (e.g., data from a whole plant) Cloud Apps (MindSphere Apps)
are more suited.

3.2.11 USE CASE 2 APPLICATIONS

Overview: Use Case 2 backend application including all necessary underlying components (Daily Activity
Monitor, Patient Activities Scheduler and HR Interaction Manager).

Core Functionalities:

Enforcement of Security, Privacy, Dependability and Safety properties stemming from GDPR.
Enforcement of access control policies.

Detection of anomalies within patterns of discrete events generated by the Smart Environment.
Standardized access to CoAP and ZigBee device.

Discovery of heterogeneous (CoAP and ZigBee) devices.

Aggregate and analyze data from heterogeneous devices.

Distributed Al at the edge (e.g. Gait Analysis).

Manage the optimal configuration of networking resources w.r.t. uncertainty and unpredictability in the
distributed computational loads.

Details: The SARA module represents the backend of the SARA solution. It consists of a set of services
providing all the functionalities required to fulfill the requirements presented in deliverable D2.1. Examples of
functionalities provided by the SARA module include the Daily Activity Monitor, the Patient Activity, Scheduler,
the Tele-monitoring service, the Localization, and Mapping service, the Human-Robot Dialog Manager.

Some of the above services (e.g. he Human-Robot Dialog Manager) require access to third party Al services
(e.g. IBM Watson, Google) to provide advanced functionalities.

Moreover, the SARA solution includes a web application providing the Graphical User Interfaces supporting the
various user roles envisaged for the solution:

e Call-center operator: access patient details for incident appraisal and handling, record incident
reports in the Patient Diary, update the Patient Diary with incident tracking/outcome info, access first
responder details for incident handling.

e Medical expert: query patient’s monitored daily activities, perform statistical analysis of Patient data,
manage Patient records, manage Patient-specific calendar of scheduled activities, and manage first
responder records.

e Technician: access patient-specific service configuration, maintain the Technical Inventory (e.g.
replacement of a battery in a Robotic Rollator).

The SARA module, as part of the AREAS® software suite, interfaces other modules of AREAS® through the

AREAS® service bus. The AREAS® service bus allows the SARA solution to access the AREAS® Patient
Health Record service.

The SARA module relies on the CLoOE-IoT platform (see Section 3.4.4) for what concerns the management of
loT requirements.

3.2.12 USE CASE 3 APPLICATION

Overview: Use Case 3 backend application including underlying components. UC3 Application is a specific
component developed in SEMIOTICS leveraging existing 10T technologies that will be responsible for the
visualization, management, data aggregation, system monitoring of the IHES Edge Analytics System.

Core Functionalities:

e Visualization of the global system status (l.e. the status up-to-single IHES node) of the IHES System.

e Visualization of the relevant events (l.e. anomalies, etc.) generated by each IHES unit or cluster of
units.

e Visualization of the correlation graph, the status of aggregated IHES Units by the aggregated
information provided by each Supervisor Service deployed at the Field layer.
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e Exposing interface with Local DB that stores all events and the related event generated by a set of
IHES Sensing Units associated with a specific Supervisor on a given gateway.
e Visualization and management of alerts generated by the IHES system.

Details: As a testbed application to validate the generic IHES demonstrator and shows its capabilities will be
developed as part of the WP5 activities within the project. A dedicated web app will be defined and
implemented as part of T5.6 activities with the goal of demonstrating the system at work. The UC3 app will
report in a simple GUI the environmental processes monitored by the IHES system in order to demonstrate in
a straightforward way the two main scenarios declared in D2.2 (section 2.3.2.2). The application will report any
(relevant) anomaly detected by the system at single/multiple nodes level and will provide at a glance a complete
overview of the relevant events globally aggregated by the IHES system. Since the proposed enabling
technology has no major limitations on data series processing, the system can deal with any kind of time-series
signal, with no specific a priori knowledge on its dynamic. IHES system will be able to deal with most
environmental sensors that will be incrementally demonstrated during the project lifespan: initially by
supporting low-frequency signals like temperature/humidity/pressure to move in a 2" phase to the deployment
of more complex inertial sensors management (i.e. 3-axis accelerometers and gyroscopes).

3.3 SDN/NFV Orchestration Layer

SDN and NFV offer flexible, programmable, dynamic, scalable to reconfigure network resources in order to
provide the QoS demanded by SEMIOTICS loT Use Cases. To this end, the SEMIoTICS SDN approach is as
follows: network control assumes a centralized network decision making entity. It is in charge of configuring
(optionally) QoS-constrained paths required by the field layer devices as well as the control flows required for
VNF and device management throughout all layers of the architecture. Additionally, the SDN controller is in
charge of isolating the interactions between various tenants of the infrastructure by means of virtual tenant
networks. The SDN controller components are prevalent both in the backend and intra-site infrastructure, so
to provide for interconnection of virtualization services (i.e., VNF interconnection) as well as for field-layer and
field-backend layer interactions. NFV deployment in SEMIOTICS assumes general-purpose hardware devices
deployed throughout different parts of the network. In the SEMIOTICS architecture, this corresponds to the loT
Gateway, network nodes such as switches, and compute nodes at the backend cloud. Moreover, it is assumed
that these machines allow the virtualization of their resources in terms of e.g. virtual machines (VM) or
containers, yielding a pool of virtual computing, storage and communication resources available to deploy
virtual Network Services (NS). The virtualization of the hardware resources is managed by a so-called
virtualization layer. As can be seen in Figure 12, the set of physical hardware resources, the virtualization layer
and the virtualized computing storage and networking resources is the so-called NFV Infrastructure (NFVI).
Thereby, NFVI contains all the available resources available in the network. NFVI paves the way to obtain a
flexible, programmable, dynamic and scalable network, as the virtual network resources exposed to the
network services can be dynamically assigned or released in different parts of the network to meet the required
QoS requirements.

We next discuss the main components of the SDN/NFV layer in the SEMIOTICS architecture.
3.3.1 VIRTUALIZED INFRASTRUCTURE MANAGER

Overview: Virtual Infrastructure Manager (VIM) is a component that is aware of the physical infrastructure
(compute, storage and networking resources). Its main task is to control the virtualization of those resources
and to expose them to the services that run on top of the virtualized infrastructure. VIM also enables
communication with SDN Controllers to provide network resources.

Core Functionalities:

e Providing communication with SDN Controllers.
e Monitoring of the physical infrastructure,
e Managing of software resources,
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Details: NFVI defines two Administrative Domains 1 namely, the Infrastructure and Tenant domains. The
former contemplates the physical infrastructure upon which virtualization is performed and therefore it is
application agnostic. The latter makes use of virtualized resources to spawn VNFs and create NS. Unlike
resource allocation in other virtualized environments, in NFVI requests simultaneously ask for computing,
storage, and network resources. Moreover, NS could be composed of VNFs with hardware affinity/anti-affinity
or require specific latency/bandwidth constraints in virtual links connecting VNFs. Such demands occur
dynamically, allocating or freeing resources that could be used for other NS, e.g. scaling up VNF’s compute.

A VIM lies in the Infrastructure Domain. It takes care of abstracting the physical resources of the NFVI and
making them available as virtual resources for VNFs. This is achieved through the reference point Nf-Vi, which
interconnects the VIM and NFVI (see Figure 12). It allows the VIM to acknowledge the physical infrastructure
(compute, storage) as well as enabling communication with network controllers (SDN Controllers) to provide
virtual network resources to NS. Even-though VIMs could well control all resources of the NFVI (compute,
storage and network), they could also be specialized in handling only a certain type of NFVI resource (e.g.
compute-only, storage-only, network-only)11,

Beyond the already-mentioned, functions carried on by the VIM are the following:

e Orchestrate requests made to the NFVI from higher layers (NFVO), e.g.
allocation/update/release/reclamation of resources.
Keep an inventory of allocated virtual resources to physical resources.
Ensure network/traffic control by maintaining virtual network assets, e.g. virtual links, networks,
subnets, ports.

e Provide network-level security functions via VNFs such as Honeypots, Intrusion Detection/Prevention
Systems, Firewalls

e Management of VNF Forwarding Graphs (VNFFG) by guaranteeing their compute, storage and
network requirements.

e Management and reporting of virtualized resources utilization, capacity, and density (e.g. virtualized
to physical resources ratio).

e Management of software resources (such as hypervisors and images), as well as the discovery of
capabilities of such resources.

As detailed in ! other relevant VIM responsibilities within the NFVI network are:

e Provide “Network as a Service” northbound interface to the NFVO (realized via the Or-Vi reference
point, see Figure 12).

e Abstract the various southbound interfaces (SBI) and network overlay mechanisms exposed by the
NFVI network.

¢ Invoke SBI mechanisms of the underlying NFVI network.

e Establish connectivity by directly configuring forwarding instructions to network VNFs (e.g.
vSwitches), or other VNFs not in the domain of an external network controller.

3.3.2 NFV ORCHESTRATOR

Overview: A component responsible for the orchestration of Network Function Virtualization. Combined with
the other VIM Manager Component creates the so-called Management and Orchestration (MANO) framework.

Core Functionalities:

e Providing VNF with the NFVI resources,
e Registration of the available VNF and Network Service.

11 ETSI. (2014, December). ETSI.org: Network Functions Virtualisation (NFV); Management and Orchestration (ETSI GS
NFV-MAN 001). Retrieved November 2018, from https://www.etsi.org/deliver/etsi_gs/NFV -
MAN/001_099/001/01.01.01_60/gs_NFV-MAN001v010101p.pdf
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Details: NFV MANO framework is composed of a Virtualized Infrastructure Manager (VIM), VNF Manager
(VNFM), and NFV Orchestrator (NFVO) (see Figure 12). This section deals with the functional description of
the NFVO, patrticularly, the Network Service and Resource Orchestration functions, and the related Information
Models (IM) used to build descriptors that help spawn NS.

Management and Orchestration of VNF relate to providing each VNF with the NFVI resources they need. But
also, other aspects such as registering available VNFs or NS, scaling in/out each VNF according to policies or
load, lifecycle management, snapshots, modifying the network interconnection among VNFs, modifying the
VNFs in a VNFFG, creation, and termination of NS. These are potentially complex tasks, primarily because
VNF’s NFVI resource requirements and constraints need to be satisfied simultaneously on top of a very
dynamic environment (VNFs are instantiated or terminated, changing the pool of available resources). To
leverage this, the NFV MANO (VIM+VNFM+NFVO) should expose services that support accessing these
resources, preferably using standard APIs!l. The NFVO performs two main functions, called Network Service
and Resource Orchestration functions (NSO and RO, respectively). Capabilities of each function are exposed
via standard interfaces consumed by other elements of the NFV MANO.

The following non-exhaustive list gathers some of the functionality performed by the NFVO employing the NSO
function:

e Checks that VNF or NS descriptors include all mandatory information for onboarding.

o Through VIM’s exposed services, NSO checks that the software images specified in the descriptors
are available at the targeted VIM.

e NS lifecycle management, that is instantiation, update, scaling, event collection and correlation, and

termination.

Collects performance metrics from NS.

Management of the instantiation of VNFs (alongside VNFM).

Validation and authorization of NFVI requests from VNFM.

Management of the relationship between NS instances and VNF instances.

NS automation management based on triggers specified in the NS descriptors.

On the other hand, the RSO function interfaces with the NFVI to make sure resources are available for the
instantiation of VNF/NS. The following non-exhaustive list gathers some of the services provided by the RSO
function:

e Validation and authorization of NFVI requests from VNFM.

e NFVI resource management (distribution, reservation, and allocation) by maintaining an NFVI
repository.

e Leverages resource utilization information gathered from VIMs to manage the relationship between
VNF instances and NFVI resources.

e Policy management and enforcement, e.g.: NFVI resource access control, affinity/anti-affinity rules,
resource usage, among others.

e Collects usage information of NFVI resources by VNF instances.

Apart from APIs exposed by VIMs (which are triggered through the Or-Vi reference point, see Figure 12,
descriptors are the main element in the instantiation of NS. In them, administrators specify details about VNFs,
as well as Virtual Links (VL), VNFFG, and the NS as a whole (even PNFs). All descriptors should be on-
boarded to the NFVO in order for the NSO function to verify them (e.g.: checking the validity of all fields,
checking the availability of software images at VIMs, among others). The following is a list of descriptors and
a short description of their functionality:

e NS descriptor (NSd): used by the NFVO to instantiate an NS which would be formed by one or several
VNFFG, VNF, PNF, and VL. It also specifies the deployment flavors of NS.

e VNF descriptor (VNFd): describes a VNF in terms of deployment and operation behavior. It includes
network connectivity, interfaces and KPIs requirements that can be used by NFV-MANO functional
blocks to establish appropriate VL within the NFVI.
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e VL descriptor (VLd): provides information about each virtual link. It is used by NFVO to determine the
appropriate placement of a VNF instance, and by the VIM to select a host with adequate network
infrastructure. The VIM or external SDN controller may use this information to establish the
appropriate paths and VLANS.

e VNFFG descriptor (VNFFGd): it includes metadata about the VNFFG itself, that is, VL, VNFs, PNFs,
and policies (e.g.: MAC forwarding rules, routing entries, firewall rules, etc.).

e PNF descriptor (PNFd): is used by NFVO to create links between VNFs and PNFs. It includes
information about connection points exposed by the PNF, and VLs that such physical connection
points should be attached to.

3.3.3 VNF MANAGER

Overview: This module focuses on all virtualization-specific management tasks necessary in the NFV
framework. This component is responsible for the lifecycle management of Virtual Network Functions.

Core Functionalities:

e Creating and managing of the needed virtualized resources for the VNF as well as Fault, Configuration,
Accounting, Performance, Security Managing.

Details: VNF lifecycle management refers to the creation and management of the needed virtualized resources
for the VNF, as well as the traditional Fault Management, Configuration Management, Accounting
Management, Performance Management and Security Management (FCAPS).

By making use of the information stored in VNF descriptors (VNFd) during onboarding, VNF Management
functions make sure such requirements are met at the moment of instantiation. Furthermore, VNFd may also
contain information relevant for the lifecycle management (e.g.: constrains, KPIs, scale factors, policies, etc.).
Such lifecycle management information may be used for scaling operations, adding a new virtualized resource,
shutting down an instance, or terminating it.

VNF Management maintains the virtualized resources that support the VNF functionality, without interfering
with the VNFs’ logical functions. Like NFVO, its functions are exposed through APIs as services to other
functions. Each VNF instance is assumed to have an associated VNF Manager, and a VNF Manager could
handle several VNFs. The following non-exhaustive list gathers the functions implemented by the VNF
Manager?!?t;

VNF instantiation (based on-boarded VNFd).

VNF instantiation feasibility checking.

Scale VNFs (increase or decrease the resources of a VNF).

Software Update/Upgrade on VNFs.

Correlation between NFVI measurement results and faults/events, and the VNF instances.
VNF instance assisted or automated healing.

Terminate VNF (releasing the VNF-associated NFVI resources).

Management of the VNF instance’s integrity during its lifecycle.

3.3.4 VTN MANAGER

Overview: Responsible for assignment of individual network services to various network tenants. It further
ensures a separation of L2 traffic in the scope of a virtual tenant network.

Core Functionalities:

e Providing multi-tenancy in the network,
o Enforcing of the isolation of the tenant networks in the infrastructure

Details: VTN Manager is a component of the SEMIoTICS SDN Controller that will provide for the multi-tenancy
functionality in the network. It realizes logical slices (“virtual tenant networks”) for per-application mapping and
enforcement of isolation of the tenant networks in the infrastructure. Using the exposed northbound interface,
VTN Manager must thus allow for the creation of tenant networks and translation of pattern requests into path-
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request calls to Path Manager in the scope of its VTN. VTN Manager will store all resulting data structures
containing information about reservations and established VTNs in the centralized data store.

3.3.5 PATH MANAGER

Overview: Main network path computation engine of the SDN Controller, responsible for the identification of
nodes and ports combined into a path that fulfills the pattern requirements (i.e., on fault-tolerance or
bandwidth/delay constraints).

Core Functionalities:

e Translating pattern requests into path-request calls to Path Manager.
e Storing data structures containing information about reservations and established VTNs.

Details: Path Manager guarantees the industrial QoS, i.e. the bandwidth provisioning, flow isolation and worst-
case delay estimation for individual per-application flows. As described in D3.1, instead of basing its routing
decision on a reactive control loop of network observations, Path Manager provides for real-time constraints
by mechanisms for admission (and rejection) of flows. Namely, by maintaining an accurate model of the network
state and service embedding in the control plane, Path Manager ensures per-flow isolation and worst-case
guarantees at all times. In addition to providing for constrained QoS path computation, it is capable of computing
resilient flows for incorporation of seamless redundancy in flow transmission, i.e., in the case of data-plane failures
(i.e., a switch/port/link failure), given sufficiently disjointness of the paths in the physical network topology, resilient
transmission of flows, with no packet loss can be provided.

3.3.6 RESOURCE MANAGER

Overview: Provides Path Manager with a resource view of the network (i.e., the available topology resources,
port speed, no. of queues metrics, etc.) exposing the metrics observable using the standardized OpenFlow 1.3
interface.

Core Functionalities:

o Embedding of real-time flows, best-effort flows, the meter structures for policing purposes.

Details: Resource Manager is responsible for configuration management and network control tasks, i.e. embedding
of L2/L3 OpenFlow flow rules into the network. Resource Manager will provide for the embedding of: i) real-time
flows that require dedicated per-queue flow assignments; ii) best effort flows, without queue considerations; and iii)
the meter structures for policing purposes. Furthermore, the Resource Manager exposes its internal data-store
using a REST-based approach, so to allow access to internal data-state of the controller, free to use in higher layer
Network Management System or monitoring components — i.e., the number of admitted flows, the computed paths
for the admitted flows, the occupied resources, the admitted Virtual Tenant Networks as well as the general topology
and network device capabilities.

3.3.7 SECURITY MANAGER

Overview: The security component responsible for the administration of tenants and assignment of
applications with respective tokens used for fast authentication during runtime.

Core Functionalities:

e Authenticating and accounting services to the rest of the SDN controller,
e Administrating of local SDN controllers accounts

Details: The main role of the Security Manager (SM) component is the support for authentication and accounting
services. SM should accomplish the authentication and corresponding services to the rest of the SDN Controller
as well as the users and applications that interact with the controller. Moreover, it exposes interfaces for the
administration of local SDN Controller accounts, in order to achieve authentication. The necessary methods for
C.R.U.D (Create, Read, Update, and Delete) Users, Roles, and Domains are developed by the SM and also
made available to other controller components as well.

To support the Use Case requirements, two operating modes are possible scenarios for the SM component:
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e User/application authentication can be based on a local set of entered policies/users

e User/application authentication can be based on an external set of entered policies/users, i.e., using
the OAuth2 authentication protocol. In the case of distributed authentication, the SM presents the
tokens to the external server for validation.

3.3.8 VIM CONNECTOR
Overview: The component responsible for connecting with the backend VIM component.

Core Functionalities:

e ODL-OpenStack integration,
e Passing OpenStack’s Neutron API calls to ODL’s VTN manager via REST calls

Details: This section describes relevant reference points in the ETSI NFV architecture!?, as well as the set of
compatible APIs employed for the realization of Network Services (NS). Specifically, the interfaces or plugins
used by external SDN Controllers that allow them to interact with the Virtualized Infrastructure Manager (VIM).

The diagram shown in Figure 12 depicts a VNF instantiation example on a virtualization capable node, such
as the ones composing the Network and Field layers of the SEMIoTICS infrastructure. Such message flow
and triggered reference points follow the standard procedure defined by ETSI NFV Management and
Orchestration.

In SEMIOTICS, the SDN Controller is considered an external entity to the NFV Management and Orchestration
(MANO) framework presented in Figure 12. That is, the management of virtual network resources (e.g.: Virtual
Tenant Networks), and the control of the underlying physical network are tasks handled by the SEMIoTICS
SDN Controller. This brings benefits in terms of outage/saturation resilience, primarily due to the isolation of
network services to separate hosts. But also allows for joint optimization of both overlay and physical network
paths/resources, which could help satisfy SEMIoTICS Use Case requirements/constraints.

Infrastructure flexibility is one of the most relevant features provided by Network Functions Virtualization
(NFV)12 (either at the compute, storage or networking level), and network overlays play a crucial role in
network virtualization. Through overlays, the SDN Controller is able to create different network topologies for
each project!?, dubbed Virtual Tenant Networks (VTN), which are effectively isolated from each other.

12 ETSI. (2014, February). ETSI.org: Network Functions Virtualisation (NFV); Architectural Framework (ETSI GS NFV

002 V1.2.1). Retrieved November 2018, from

https://www.etsi.org/deliver/etsi_gs/NFV/001_099/002/01.02.01_60/gs_NFV002v010201p.pdf

13 Project, Use Case, or tenants refer to the same thing, and will be used interchangeable throughout this document.
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FIGURE 12 VNF INSTANTIATION EXAMPLE ON A VIRTUALISATION CAPABLE NODE WITHN
SEMIOTICS FRAMEWORK

VTN allows the creation of network functions as virtual entities without having to consider the physical network.
OpenDaylight'* (ODL, the reference SDN Controller for SEMIOTICS) is equipped with a VTN module for
interfacing with Virtualized Infrastructure Managers (VIM) such as OpenStack. The ODL VTN module is a
policy manager that registers any tenant resource in the VIM via ODL’s ML2 plugin>%, so any tenant
configuration modification at the VIM is reflected in ODL, too. That is, by analyzing the information gathered
for each tenant (network topologies, VNFs, MAC, IPv4 addresses, and so forth), VTN is able to replicate such
a policy!” using the VIM’s exposed networking APIs and ODL’s SBIs.

Referring to Figure 12, the reference point through which an external SDN Controller gathers tenants’
information from the VIM is Nf-Vi. Moreover, the NFVO may also request Network as a Service (NaaS) for the

14 OpenDaylight. OpenDaylight Lithium. Retrieved January 2019, from https://www.opendaylight.org/what-we-
do/current-release/lithium

15 OpenStack. ML2 plug-in. Retrieved January 2019, from https://docs.openstack.org/newton/networking -guide/config-
mi2.html

16 The ML2 plugin was created for ODL-OpenStack integration. It passes all OpenStack’s Neutron API calls to ODL'’s
VTN manager via REST calls (Toghraee, R. (2017). Learning OpenDaylight: The art of deploying successful networks.
Birmingham: Packt Publishing Ltd)

17 1.e. What nodes should be able to communicate with which ones.
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instantiation of an already on-boarded Network Service (NS). Such API calls (NFVO-VIM) are realized through
the Or-Vi reference point using the corresponding VIM APIs®8,

3.3.9 CLUSTERING MANAGER

Overview: A component with underlying Registry Handler used in state-keeping of other component’s
knowledge base, as well as for its strong consistent replication across the SDN controller instances for the
purpose of fault-tolerance and high-availability.

Core Functionalities:

e Stores and replicates the knowledge state of the stateful controller components in a YANG-modelled
data-store for purpose of highly available SEMIoTICS SDN Controller (SSC) operation.

e Enables the backup instances to operate as leader instances in case of a leader instance failure.
Extended with support for Byzantine Fault Tolerance in SEMIoTICS.

Details: The issue of the SDN controller’s single point of failure is resolved by means of state replication and fail-
over to one of the backup controllers on failure. Network application relies on the availability of up-to-date state of
the network controller replicas. The requirement of strong consistency is addressed by incorporating RAFT
consensus in the synchronization procedure of the controller state across redundant controller instances. To ensure
fault-tolerance even in the face of Byzantine/malicious adversaries, this component is also capable of operation in
the Replicated State Machine mode. Namely, each instance of the SDN Controller executes the client operation
and propagates its result to the underlying configuration targets that are capable of comparison of the resulting
messages and thus allow for guaranteeing the integrity of the correct configuration. While unavailable in off-the-
shelf OpenDaylight releases, this Byzantine Fault Tolerance mode of operation of the SDN Controller was
investigated and will be discussed in more detail in D3.2.

3.3.10 SFC MANAGER

Overview: Service Function Chaining Manager used in Service Function Chains given the ordering and IP
addresses of the nodes that are to be traversed by a tenant's traffic.

Core Functionalities:

e Chaining of network functions.
e Identifying an abstract set of service functions and their constraints that should be applied to packets.

Details: SFC Manager handles the service function chaining of network functions. It identifies an abstract set
of service functions and their ordering constraints that should be applied to packets and/or frames selected as
a result of classification. In the SEMIOTICS cases, service instances in service chains may include Firewall,
IDS, DPI, and HoneyPot. These services can be deployed as the physical appliances or virtual machines
running in network function virtualization infrastructures. They may be composed of one or multiple instances.
SFC Manager is responsible for administrating the services chain and mapping the
operator’s/tenant’s/application’s requirements into service chains.

3.3.11 BOOTSTRAPPING MANAGER

Overview: Component used in initial flow configuration of just-connected switches, so to allow for seamless
interaction with 10T devices (i.e., to enable flow rules for propagation of unmatched application packets up to
the controller for the purposes of ARP-based end-device discovery, MAC Learning for best-effort services or
similar).

Core Functionalities:

e Deploys the initial OpenFlow rules necessary to provide for in-band / out-of-band switch-controller
connectivity.

18 OpenStack Docs: Networking APl v2. Retrieved from https://developer.openstack.org/api-ref/network/v2/
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SEMilelics

Triggers the installation of basic, non-QoS-guaranteeing flows for non-critical and basic infrastructural services

where traffic specification is not available.

Details: Industrial SDN networks require a highly available control plane. The control plane may require an in-
band or out-of-band realization depending on the exact Use Case. The wind park Use Case 1 assumes an in-
band deployment, so to minimize the CAPEX related to out-of-band cabling requirements. By means of an
automated network bootstrapping procedure, this component guarantees a robust and resilient control plane
configuration at network runtime. To handle the impact of the data plane failures on the control plane flows,
redundant control flow embedding is leveraged. While recent works propose slower, restoration-based
techniques in industrial scenarios, industrial scenarios typically use 1+1 protection by duplicating controller -to-
controller and controller-to-switch TCP-based flows on maximally disjoint paths, thereby ensuring zero packet

loss for control flows.

3.3.12 (SDN) PATTERN ENGINE

Overview: Module responsible for retrieving network-specific rules and reasoning on them.

Core Functionalities:

¢ Inserting, Modifying, Executing, Retracting patterns in the SDN controller

o (Network properties’) Drools reasoning

Details: The SDN Pattern Engine enables the capability to insert, modify, execute and retract patterns at

design or at runtime in the SDN controller, ensuring the Secure, Privacy-
aware, Dependable and Interoperable operation of the SEMIOTICS network
layer at design and runtime. The Pattern Engine is based on a rule engine
able to express design patterns as production rules. Enabling reasoning,
driven by production rules, appeared to be an efficient way to represent
SEMIOTICS patterns. For that reason, a rule engine is required to support
backward and forward chaining inference and verification. Drools?® rule engine
appears to be a suitable solution to support design patterns by applying and
extending the Rete algorithm?°. More specifically, since the Drools rule engine
is based on Maven, it supports the integration of all required dependencies
with the ODL codebase, as well as the integration of the entities that interact
with the controller to run Drools at design and at runtime. The Pattern Engine
may send at runtime fact updates to the backend Pattern Engine, allowing the
latter to have an up-to-date view of the SPDI state of the SDN layer and the
corresponding components. Finally, PE enables the support of different
components as required by the rule engine such as the knowledge base, the
core engine, and the compiler. The procedure of the pattern module is
depicted in the following Figure 13..

3.4 Field Layer

The field layer is responsible for hosting all types of 10T devices such as sensors and actuators as well as loT
gateway which provides a common way for communication and ensures enforcement of SPDI patterns in this
layer. Generic gateway components are capable to work with any set of 0T devices that ensures the ability to

deliver diverse Use Cases in various sectors.

3.4.1 SEMANTIC APl & PROTOCOL BINDING

19 Drools Business Rules Management System (BRMS) https://www.drools.org
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20 Charles Forgy: Rete: A Fast Algorithm for the Many Pattern/Many Object Pattern Match Problem. In: Artificial

Intelligence, vol. 19, pp. 17-37, 1982.
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Overview: Module responsible for binding different protocols and exposing common semantic API located at
the Generic loT Gateway layer.

Core Functionalities:

e Semantic Mapping of brownfield semantic models into lIoT semantic models.
e Semantic configuration.
e Providing uniform standardized access to Thing’s and their data.

Details: This functionality is needed in order to integrate brownfield devices into a common IoT access layer.
Technology-wise, the functionality will be realized based on W3C Web of Things (WoT) building blocks, i.e.,
Thing Description, Binding Templates, and the Wot Scripting API.

Thing Description will be used to semantically describe field device resources, their interfaces, security meta-
data, and so forth. For some of the brownfield devices there exist already various kinds of device descriptions.
Therefore, in order to reuse existing semantics, we will need to provide a semantic mapping from brownfield
semantic models into IoT semantic models as expected by W3C TD and iot.schema.org.

The mechanism of Binding Templates we will use in SEMIOTICS in order to provide bindings for various
brownfield protocols (e.g., Profibus2!, Modbus, 22 etc.) into common Web application layer (e.g., HTTP, CoAP,
etc.).

In SEMIOTICS we can use the WoT Scripting API to expose Things (field devices) that have been integrated
over Binding Templates and described with Thing Descriptions. In this way, we can provide uniform
standardized access to Thing’s and their data, which can greatly reduce development effort for loT applications
at the Edge and in the Cloud.

The complete functionality of this component including also semantic configuration will be accessible over the
Semantic Edge Platform. The platform will be based on the Node-RED tool, and thus will on one hand-side
provide a graphic user interface for this component, and on the other hand, it can be used for developing Edge-
level applications.

3.4.2 SECURITY MANAGER

Overview: Module responsible for granting access and necessary security checks at the 10T gateway.

Core Functionalities:

e Enforcing security policy decisions locally.
o Facilitating authentication of sensors and actuators.

Details: The Security Manager (SM) at the edge level serves as local frontend for the security manager at the
backend layer; confer also to Section 3.2.7 for a more detailed explanation of the services provided by all
security managers.

The two main purposes of the additional security manager in the gateway are:

e Facilitating authentication of sensors and actuators towards SEMIoTICS
e Enforcing security policy decisions locally

Sensors and actuators in many cases will be connected to the gateway using low-level protocols and
technologies such as MQTT, Bluetooth or other protocols. In such cases, it simplifies the authentication of the
clients if the gateway contains its own security manager which handles all relevant security concerns.

3.4.3 LOCAL THING DIRECTORY

21 https://www.profibus.com/
22 https://en.wikipedia.org/wiki/Modbus
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Overview: The local repository of knowledge containing necessary Thing models.

Core Functionalities:

Storing semantic description of Things locally.
Providing an interface for semantic queries.

Keeping all semantic meta-data up to date.

Providing a digital representation of all physical assets.

Details: The purpose of the Local Thing Directory is to store a semantic description of Things locally in the
Generic 0T Gateway. Backend Semantic Validator will be used to provide these descriptions in accordance
with W3C WoT standard and iot.scheman.org. Once created, an application developer needs a tool to discover
Thing Descriptions, and to easily find out whether a Thing can be used for a new Edge application that she
wants to develop. Not only humans will use Thing Directory. Software components or machines may query
Local Thing Directory too, e.g., when automatically generating a user interface for a Thing or when matching
Recipe requirements with capabilities of Things. Local Thing Directory provides an interface for semantic
gueries and access to all Thing Descriptions stored locally. The directory keeps all semantic meta-data up to
date. Thus, it provides a digital representation of all physical assets, accessible from a gateway. This includes
device capabilities, configuration parameters of devices, contextual information (e.g., location, a feature of
interest, etc.). The whole content of a Local Thing Directory will be synchronized with the Thing Directory,
running in the Backend.

3.4.4 GW SEMANTIC MEDIATOR
Overview: Module responsible for the integration of brownfield semantics with 10T semantics.

Core Functionalities:

¢ Integrating brownfield semantics with IloT semantics.

Details: The goal of semantic integration (see SEMIOTICS deliverable D3.3) is to enable the realization of new
loT applications that have not been envisioned at the time of engineering of an existing automation system.
To this goal, we work on a common semantic access layer between brownfield devices and new IoT devices.
In order to integrate devices from both layers, we need to map and integrate semantics from existing brownfield
devices into 10T or IloT application semantics. Only then it will be possible to discover required Things when
developing an application and to put them into semantically correct interactions.

Semantic Mappings is a layer that we introduce in the SEMIoOTICS project in order to map and integrate
brownfield semantics with 1loT semantics. In this layer, we have to provide a mapping knowledge, e.g.,
Knowledge Packs, which can be used to map semantics from a particular brownfield semantic standard into
another IloT standard. SEMIOTICS loT Gateway will be able to install these Knowledge Packs and thus get
enabled to integrate data and metadata from appropriate field device into a harmonized IoT access layer,
based on the W3C WoT standard.

GW Semantic Mediator will be realized with W3C Thing Descriptions, which are serialized to JSON-LD
standard format. Thing Descriptions will be semantically enriched with application-level, domain-specific
semantics from iot.schema.org, and will be accessible over a local and backend semantic repository.

3.45 MONITORING

Overview: Module responsible for monitoring and predictive analytics at the 10T gateway level. This module
interacts with bottom layer devices as well as with pattern engine and GW Semantic Mediator.

Core Functionalities:

e Fusion of intra- and cross-layer monitoring results generated by monitors that may exist on the
platforms of different smart objects and components of 10T applications in order to detect violations
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Details: This module is part of the SEMIoTICS Monitoring component. The SEMIoTICS Monitoring component
is indeed a distributed computational entity having its modules distributed both in the cloud and at the edge.
This section describes the peculiarities of modules available at the edge.

An edge monitoring module contributes to the overall objectives of the SEMIoTICS Monitoring component (see
also section 3.6.6):

e To generate specific messages in response to the reception of a set of messages generated by the
components of an loT application and matching some condition specified in the monitoring component
by a client application (Monitoring requirement).

e To guarantee that the messages needed to decide whether to generate a message can be produced
by an IoT application and received by the monitoring component (observability property).

The specific contribution of an edge monitoring module is to allow the execution of part of the overall monitoring
tasks close to the field devices generating the low-level events which are aggregated by the monitoring
component. This strategy allows, hence, to send to a cloud monitoring module only the result of aggregations
and not all the raw events generated at the field level. The consequently reduced number of transmissions
provides a saving of those resources (i.e. energy, bandwidth) which are scarce within edge nodes (e.g. the
mobile phone acting as a hub for the Body Area Network present within the SARA UC).

In general, an edge monitoring component will aggregate the low-level events generated by sensors directly
connected to it (e.g. the devices connected via Bluetooth in the case of the above-mentioned SARA Body Area
Network). However, if required, an edge monitoring module could aggregate also events generated by other
edge monitoring modules.

3.4.6 (FIELD) PATTERN ENGINE

Overview: Module responsible for retrieving gateway specific rules and reasoning on them.

Core Functionalities:

¢ Inserting, Modifying, Executing, Retracting patterns at the field layer
o (Field layer properties’) Drools reasoning

Details: The Pattern engine at the field gateway is able to host design patterns as provided by the Pattern
Orchestrator located in the Application Orchestration Layer. Since the capabilities of the gateway are limited,
this module will be a lightweight version of the backend and network reasoning engine. The patterns will be
able to monitor and guarantee the Security, Privacy, Dependability and Interoperability properties locally,
based on the data retrieved and processed by the monitoring module, the thing directory in the loT gateway
and based on the interaction as well with other components in the field layer. As such, it would be used to
monitor and guarantee, for example, that secure communications are enforced between the 10T Gateway,
sensors, and actuators on the field. The Pattern Engine in the gateway, similarly to the Pattern Engine in the
SDN, may send at runtime fact updates to the backend Pattern Engine, allowing the latter to have an up-to-
date view of the SPDI state of field layer and the corresponding components. Finally, the Pattern Engine in the
gateway will keep stored the patterns in a local knowledge base that will be updated by the Pattern Orchestrator
as needed and requested.

3.4.7 LOCAL EMBEDDED INTELLIGENCE

Overview: Module with Use Case specific logic (e.g. body area network GW in SARA UC) and embedded
intelligence at the 10T gateway level.

Core Functionalities:

e Exposes the capabilities of the local analytics provided in SEMIOTICS at Gateway / Field Devices
Level.

e Wrap and abstract Use Case specific logic and algorithms (enabling the Gait Analysis and the Generic
loT appliances set).
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Details: The local embedded intelligence module is any software entity (i) executing a Use Case specific
application logic (ii) relying on at least one of the services provided by the SEMIoTICS framework and (iii)
deployed on a field device. In SEMIOTICS the specific application logic that has been identified according to the
requirements are:

The Controller on board of the Robotic Rollator part of the SARA UC is an example of Local Embedded
Intelligence since: (i) it address a requirement specific of the UC (i.e. to power the hub wheels in order to balance
the user’s weight) (ii) it relies on the GW Semantic Mediator to discover how to address the hub wheels available
on the specific rollator (iii) it is deployed on the Single Board Computer (SBC) (i.e. a Raspberry Pi 3) on board
of a Robotic Rollator.

The Supervisor component in the UC3 is another example of Local Embedded Intelligence because it (i) execute
all the intelligent validations on changes (e.g. local vs global) specifically for the UCS; (ii) it relies on the Local
Embedded Analytics component deployed on the IHES Sensing Unit and (iii) is deployed on a Raspberry Pi 3
at Field Device Level.

3.4.8 SEMANTIC EDGE PLATFORM

Overview: Module that enables a user to interact with SEMIoTICS loT Gateway at the Field Level.

Core Functionalities:

e A user interfaces for configuring 10T Gateway.
e Development environment for creating new Apps.
e Semantic annotation of brownfield devices.

Creating Edge- and Cloud-based applications in SEMIoTICS.

Details: Semantic Edge Platform (SME) has been introduced in 10T Gateway (Field Layer). SME has multiple
purposes in SEMIOTICS architecture. First, SME provides a convenient user interface for configuring
SEMIOTICS loT Gateway. That is, a user can choose a network interface, define an IP address range when
scanning a network for new devices, and initiate the device bootstrapping process.

Second, SME provides a convenient development environment for creating new Apps with a newly bootstrapped
device. SEMIOTICS IoT Gateway either provides a uniform API for a new device or re-uses an existing one.
This API is automatically exposed over SME. After the bootstrapping process, there will be created a graphic
component (a Node-RED node) based on this API. Thus, the device can be accessed over that node, and the
node can be used in new applications right away. These device nodes are automatically created and installed
in SME during the bootstrapping process.

Third, SME will provide a mechanism to semantically annotate brownfield devices. So created semantic
descriptions from SME will be stored in both Local Thing Directory and Global Thing Directory.

Fourth, SME will be used as a framework for creating Edge- and Cloud-based applications in SEMIoTICS. The
Recipe-Cooker component in SEMIoTICS will be integrated with SME. That is, it will be possible to instantiate
a new application based on a Recipe. The process of discovering field devices and matching them with
affordances from a Recipe will be supported via a machine reasoner that is integrated into SME.

3.4.9 SUPERVISOR AND LOCAL DB

Overview: Module responsible for data persistence and self-adapting mechanism of the Generic 10T System.

Core Functionalities:

e Manage a set of IHES Sensing Units
e Store data and events
e Implements part of Field Device-level intelligence
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Details: The Supervisor component in SEMIOTICS is a dedicated module that implements the intelligent
behaviors and policies required to manage a generic set of N Intelligent 10T IHES Sensing Units. Its main
features are:

e To manage the IHES Sensing Units by interfacing with them through a dedicated MQTT Broker system
and dedicated JSON protocol.

¢ Todefine and manage a common reference clock for time synchronization between all connected IHES
devices, the Supervisor itself and the local storage DB.

e Toimplement dedicated frontend APlIs to store data and events into the Local DB: to enable this feature
the component parses and stores MQTT messages in the Local DB. This database has been
implemented exploiting the time-series database InfluxDB?3.

e To dynamically allocate on-demand communication pipelines exploiting Node-RED?* infrastructure.

e To implement some of the Field Device Level local embedded intelligence algorithms aimed at
supervising the connected IHES nodes (e.g. for the UC3, when a change is detected by one more
device, the Supervisor manages all the operations for the local/global validation).

All the specific Generic IoT communications at field device level use MQTT + JSON wrapped protocol redirected
to a local MQTT broker (Eclipse Mosquitto?®) running on the IoT gateway as an additional mapped service. On
the contrary, all the external communication and DB queries are performed through standard HTTP GET/POST
RestAPI. This has been specifically designed in SEMIoTICS framework in order to provide an abstraction
interface and semantic bridging between the field device physical level where data and events are always pushed
on areal-time basis and the upper backend services where typically the loT platforms requires them “on-demand”
through dedicated web service APIs or ad-hoc queries to the local DB.

3.4.10 USE CASE 1 FIELD DEVICES

Overview: Field devices and components related to UC1: “Local smart behavior in a wind turbine to provide
value-added services”.

Core Functionalities: Includes all the field devices related to UC1.

Details: The wind turbine use-case includes the following devices:

e An lloT Gateway with computing capacity to instantiate lloT applications as VMs. The IloT gateway
will be connected to various sensors as well as the simulated legacy wind turbine control system.

e A Power Line Controller (PLC) simulating a wind turbine control system. The PLC will facilitate
connectivity to the legacy sensors and actuators.

e A small-scale wind turbine which will be directly controlled by the legacy control system. The small-
scale wind turbine is used to visually demonstrate the Use Case.
3.4.11 USE CASE 2 FIELD DEVICES

Overview: Field devices and components related to UC2: “Socially Assistive Robotic Solution for Ambient
assisted living”.

Core Functionalities: Includes all the field devices related to UC2.
Details: The SARA field devices include:

e A smartphone (iOS or Android) acting as a hub for the Bluetooth wearable devices forming the Body
Area Network subsystem of the SARA solution.

e A Robotic Rollator is a standard rollator frame equipped with hub motors and various sensors (e.g.
Inertial Measurements Units, Laser Range finder). The Robotic Rollator hosts a Raspberry Pi 3 single-

23 https://www.influxdata.com/products/influxdb-overview/
24 https://nodered.org/docs/
25 https://mosquitto.org/
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board computer acting as a hub for the onboard devices connected via a Controller Area Network
(CAN) Bus.

e An Aldebaran Pepper Robot which is a humanoid robot materializing the SARA Robotic Assistant
subsystem. The Pepper Robot hosts an ARM computer dedicated to the management of the robot
hardware and the execution of the software implementing the behaviors of the robot. Moreover, the
robot hosts an Android tablet available to host applications having the need to present a graphical
user interface (GUI) to the users.

e A Raspberry Pi 3 acting as a hub for the ZigBee devices instrumenting the Smart Environment
subsystem of the SARA solution.

3.4.12 USE CASE 3 FIELD DEVICES
Overview: Field devices and components related to UC3: “Artificial Intelligent Embedded Sensing Platform”.

Core Functionalities: Includes all the field devices related to UC3.

Details: The IHES Generic loT field devices are composed by:

o A setof N IHES sensing units mapped to an STM32 MCU prototype board equipped with a Wi-Fi and
a sensor shield expansion board. During Cycle 1 demonstrator deployment an X-Nucleo-F401RE?5
board will be used. The board will run a bare-metal firmware that includes a library for the local
analytics mapping and MQTT communication with a dedicated MQTT broker running on the loT
gateway

o A Raspberry Pi3 (or similar) ARM Board equipped with Embedded Linux OS where local MQTT broker,
the Supervisor Service, and the Local DB are deployed. Part of the analytics will run on that Supervisor
Service that will have also an MQTT client interface to interoperate with the GW Semantic Mediator
of the SEMIoTICS architecture

3.5 External platforms’ components

3.5.1 MINDSPHERE
Overview: MindSphere platform component enhancing SEMIoTICS possibilities.

Core Functionalities:

e Enabling industrial customers to connect various automation systems and devices to the platform.

Details: MindSphere?’ is a Cloud platform customized for industrial 10T applications, which is developed by
Siemens. MindSphere enables industrial customers to connect various automation systems and devices to this
platform. The data is then accessible over the MindSphere Asset model and MindSphere API. Customers may
apply different Apps in order to make decisions based on valuable factual information, e.g., predictive
maintenance, automated production, vehicle fleet management, and so forth.

In the context of the Use Case 1 implementation (see Section 4.1), the MindSphere platform will be used as
the backend system. The Backend/Cloud system will gather data from field devices over Generic |0T Gateway
(see Section 3.4). The gateway also provides the semantics of this data. The same semantics will be used to
create the MindSphere Asset model. Pre-processed data from wind turbines will be sent from the 10T Gateway,
over Wind Park Control Network, to the MindSphere Backend. MindSphere Apps can then be applied to further
analyze this data and visualize it. Depending on detailed analysis of the Use Case we may apply different
Apps, e.g. for event-driven alarm detection and visualization of time series data.

26 https://www.st.com/en/evaluation-tools/nucleo-f401re.html

27 www.mindsphere.io
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3.5.2 FIWARE

The interaction of SEMIoOTICS framework with the FIWARE external 10T platform allows manage context
information, incorporate generic enablers by simplifying the integration of 10T solutions.

3.5.2.1 CONTEXT BROKER GE

Overview: The main component of FIWARE allowing to manage context information.

Core Functionalities:

¢ Managing the lifecycle of context information (updates, queries, registrations, subscriptions).

Details: In FIWARE, the Orion Context Broker fulfills the pub/sub Message Broker functionality and must be
federated with SEMIOTICS. FIWARE leverages the NGSIv2 Data Model and API, which relies on JSON
representation to make data from multiple providers accessible for data consumers. The interaction with both
data providers and data consumers are taking place via the FIWARE NGSI 10 context data API. SEMIoTICS
must leverage the API for context queries, context subscription, and context updates to interact with the
respective context elements (i.e., sensors and actuators) in a FIWARE domain.

3.5.2.2 FIWARE GES
Overview: Set of FIWARE components enhancing SEMIOTICS possibilities.

Core Functionalities:

e Accessing context elements in other domains.
e Generating context.
e Exploiting context information.

Details: Set of FIWARE components for SEMIOTICS interoperability

e A Context Provider is employed by FIWARE to access context elements in other domains (in this
case SEMIOTICS). It can be registered via its URL as the source of context information for specific
entities and attributes included in that registration, using the ORION NGSIvl and NGSIv2 APIs. If
FIWARE Orion fails to find a context element locally (i.e. in its internal database) for a query or update
operation but a Context Provider is registered for that context element, then it will forward the query
or update request to the respective Provider. In this case, Orion acts as a proxy, while the client that
issues the request, the process is transparent. SEMIOTICS must implement the respective NGSI10
API (at least partially) to support query/update operations from FIWARE to a context element in the
SEMIOTICS domain.

e Context Producer. A Context Producer (CP) is an actor (e.g., a temperature sensor) able to generate
context. The basic Context Producer is the one that spontaneously updates context information, about
one or more context attributes according to its internal logic. This communication is between CS and
CB is in push mode, from the CP to the CB.

e Context Consumer. A Context Consumer (CC) is an entity (e.g. a context-based application) that
exploits context information. A CC can retrieve context information sending a request to the CB or
invoking directly a CP over a specific interface. Another way for the CC to obtain information is by
subscribing to context information updates that match certain conditions (e.g., are related to a certain
set of entities). The CC registers a call-back operation with the subscription for the purpose, so the
CB notifies the CC about relevant updates on the context by invoking this call-back function.

A number of other FIWARE GE’s are available. Variety of GE’s functionalities are giving numerous
opportunities to integrate FIWARE with SEMIOTICS framework depending on the maturity level of specific
GE'’s.

3.5.2.3 CLOE-IOT
Overview: CLOE-IoT platform component enhancing SEMIOTICS possibilities.

Core Functionalities:
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e Simplifying the integration of IoT solutions.

Details: The CLoE-loT platform is part of Engineering’s cloud offering (CLoE) and aims to simplify the
integration of highly distributed, complex and robust 10T solutions exploiting computational resources both in
the cloud and at the edge. The CLoE-IoT platform is intended to support the Engineering’s products facing
common loT requirements (connectivity, device management, device security, data storage, etc.). CLOE-IoT
embeds some of the FIWARE technologies (a.k.a. Generic Enablers) like the ORION Context Broker and the
PROTON Complex Event Processor.

3.5.3 OPENHAB

Overview: OpenHAB is a flexible automation tool for integrating a multitude of devices that enhances
SEMIOTICS possibilities.

Core Functionalities:

e interaction with external sensors
e data storage backends and chart libraries for sensor value visualization
e support for a scripting language to implement automation scenarios

Details: openHAB? is a flexible, open-source, technology-agnostic automation platform that is able to integrate
a multitude of devices and systems. It includes various technologies into one single solution, in order to provide
a uniform user interface and a common approach for automation rules across the entire framework, regardless
of manufacturers and sub-systems involved. It communicates electronically with smart and not-so-smart
devices, performs user-defined actions and provides web-pages with user-defined information as well as user-
defined tools to interact with all devices. To achieve this, openHAB segments and compartmentalizes certain
functions and operations. openHAB uses Apache Karaf to create an Open Services Gateway initiative (OSGi)
runtime environment. Jetty is used as the HTTP server, which implements the Dashboard and Management
GUI and also hosts the openHAB REST API. openHAB is extended through “add-ons” that handle the interaction
with external sensors, data storage backends and chart libraries for sensor value visualization.

3.6 High-level component interactions

In this section, we present a high-level view of the interaction between the components. This is given within the
layers as well all the communication between the layers. The diagram allows to identify the integration interfaces.
Any details related to the specific endpoints, direction, and scope of communication will be given in the WP5
deliverables, which are related to the integration.

28 openHAB official website: https://www.openhab.org
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In Table 2, an analysis of the interaction between the components of the architecture is given.

TABLE 2 HIGH-LEVEL COMPONENT INTERACTIONS

LAYER OF ENDPOINT

BACKEND

SDN/NFV

Field

FROM
Recipe Cooker
Backend Semantic Validator
Pattern Engine
Security Manager (Field)
Local Embedded Intelligence (Field)
Security Manager (SDN)
Pattern Engine (Field)
Pattern Engine (SDN)
Recipe Cooker
GUI
GUI
Pattern Engine
Monitoring (Field)
VIM (NFV)
Context Broker (Fiware)
MindSphere (MindSphere)
VIM
Backend Semantic Validator
Semantic API & Protocol Binding
Recipe Cooker
GUI
Pattern Orchestrator
Pattern Engine (SDN)
Pattern Engine (Field)
Bootstrapping Manager
Path Manager
VTN Manager
SFC Manager
Pattern Engine (SDN)
Security Manager (SDN)
Security Manager (Field)
Path Manager
VTN Manager
Pattern Orchestrator
Pattern Engine (SDN)
SFC Manager
Pattern Engine (Backend)
VIM Connector
GUI
Semantic API & Protocol Binding
Monitoring (Field)
Pattern Orchestrator
uc2
Semantic Mediator
ucCs3
ucl1
Semantic API & Protocol Binding
UCs3
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TO
Backend Semantic Validator
Semantic API & Protocol Binding (Field)
Security Manager
Security Manager
Security Manager
Security Manager
Security Manager
Security Manager
Pattern Orchestrator
Pattern Orchestrator
Monitoring
Monitoring
Monitoring
Monitoring
Monitoring
Monitoring
Monitoring
Thing Directory
Thing Directory
Thing Directory
Thing Directory
Pattern Engine (Backend)
Pattern Engine (Backend)
Pattern Engine (Backend)
Resource Manager
Resource Manager
Resource Manager
VTN Manager
VTN Manager
VTN Manager
Security Manager
Bootstrapping Manager
Path Manager
Pattern Engine (SDN)
SFC Manager
VIM Connector
NFV Orchestrator
VIM
Semantic API & Protocol Binding
Semantic Mediator
Pattern Engine (Field)
Pattern Engine (Field)
Monitoring (Field)
Local Thing Directory
Local Thing Directory
Local Thing Directory
Local Thing Directory
Supervisor and Local DB
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4 USE CASE SPECIFIC ARCHITECTURE

This chapter showcases three demonstration scenarios (Use Cases) to be presented within the SEMIOTICS
framework. Each Use Case is described from the perspective of the generic SEMIoOTICS architecture with a
special focus on showing the specificity of each Use Case and how dedicated components are leveraged in
order to follow generic architectural guidelines. It is important to note that Use Case-specific architectures
shown and described below, depict components which have been found useful from the general perspective
of the respective Use Cases. Dynamic architecture sections presented per Use Case, are describing the goal
for a final demonstration of the Use Cases. Within tasks T5.4, T5.5 and T5.6 feasibility study and validation of
taken approach will be presented with a detailed description of the choice of components and functionalities
which proves to be valid for the relevant Use Case. Finally, a methodology on how SEMIoTICS framework can
support additional use cases is presented.

4.1 Use Case 1 — Wind Energy

This Use Case will showcase 10T integration in Wind Park Control Network providing value-added services
such as Local smart behavior and Monitoring etc. The current state of the art of Wind Turbine Controller in a
Wind Park control network is typically an embedded or highly integrated operating system, which follows
rigorously development and pre-qualification prior to deployment in the real world. Because of this slow
process, new features, adding new sensors, actuators, and related advancements require several months or
even years to be fully matured and operational in the field.

There are two sub-Use Cases, namely:

1) Embedded Intelligence on structured data: It refers to taking local action on sensing and analyzing
structured data to find the inclination of a steel tower. When the nacelle is turned during a cable
untwisting event (Sensing), the gravity acceleration (Ag) component measured by an accelerometer in
longitude direction (Ay) will vary as a function of the inclination (Inc) of the steel tower. O&M personnel
in remote control center wants to know the inclination of all the steel towers on a number of specific
wind farms, as these details will have to be shared with the customer to monitor the deformation and
fatigue of the steel. To find the inclination of a steel tower, a full cable-untwist procedure has to be
activated. This happens, depending on wind conditions, 3-4 times a month. It is also possible to
manually instruct the wind turbine to perform the unwind procedure. At the time of the unwinding-
procedure a hi-frequency set of data is recorded. A relatively large amount of data is required to
calculate the inclination. This datasheet needs to be sent back to the remote-control center to model
and calculate the inclination. In SEMIoTICS, localized edge analytics will be applied which will result
in semiautonomous |loT behavior as only the container containing the algorithm and result of the
inclination calculation is transferred to between the wind turbine and the remote-control center. The
unnecessary data traffic between each turbine and remote-control center is greatly reduced.

2) Smart Actuation by sensing unstructured video/audio data: Within the turbine, there are many events
that can be captured by lloT sensors such as Grease leakage detection during normal operation or
unintended noise detection when the turbine rotor is changing the direction in the line of wind to
maximize energy production. The sensing of this unstructured data and acting locally to prevent any
damage to the parts of the turbine, in the long run, will be of key importance. Localized analytics, as
proposed in SEMIOTICS, will lead to smart actuation to protect the critical infrastructure of renewable
energy resources.

4.1.1 USE CASE 1 - STATIC ARCHITECTURE

Use case specific components/hardware are shown in the following SEMIoTICS architecture layers namely,
Field, Network and Application Orchestration Layer. The extensive description of the final interfaces of different
architectural components will be detailed in final WP3 and WP4 deliverables respectively.
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FIGURE 15 USE CASE 1 ARCHITECTURE

As depicted in Figure 15, the new sensors will be used in UC1 namely Video, Audio and Inclination measuring
sensor for additional data. The 10T Gateway with its different components will do local analytics on the colle cted
46



780315 — SEMIoTICS — H2020-10T-2016-2017/H2020-10T-2017
Deliverable D2.5 SEMIOTICS High Level Architecture (final)

Dissemination level: [Public]

SEMilelics

data through different sensors and will take local action to avoid any damage to the rotating parts in the turbine
in the case where the observed variables cross a certain threshold value. The details of the message flow can
be seen in D3.1, D3.3 and D4.1 respectively. Table 3 lists the components and their role in the context of this

UCL1 -specific architecture.

TABLE 3 UC1 COMPONENTS

Architectural Components Used in UC1
Recipe Cooker

Thing Directory

Security Manager

VTN Manager

Clustering Manager

Pattern Engine

Bootstrapping Manager

Path Manager

Purpose of Deployment

The Recipe Cooker is used in this Use Case to build
the application flow of the Al pipeline for grease
leakage detection. l.e., appropriate nodes are
selected to (1) read video stream from a camera, (2)
transmit images of stream via the network, (3) read
in image-by-image, (4) transform image to tensor,
(5) classify tensor using underlying neural network
model (with 2 classes: “no grease” or “grease
detected”). The transmission via the network needs
to be configured according to minimum QoS.

The Recipe Cooker selects devices for deploying
the above-described application flow according to
the metadata received from the Thing Directory.
Security Manager is used to authenticating external
users and assign access roles to internal module
functions to external interfacing components (i.e.,
the Pattern Orchestrator).

VTN Manager is used to deploying the virtual
network used to isolate basic connectivity services
(e.g., Local Thing Directory — backend Thing
Directory), as well as to enable QoS-constrained
service deployment in dedicated virtual tenant
networks.

While not used to showcase the resilient SSC
functionality in UC1 specifically, the Clustering
Manager is generally used to host individual
components’ state of reservations in the YANG-
modeled data-store.

Pattern Engine is used to parse the connectivity and
SPDI-related pattern instances provided by the
Pattern Orchestrator and enforce and monitor their
validity at runtime.

Used to bootstrap the network from an initially
unconfigured state using in-band or out-of-band
control plane channel. The Use Case 1
demonstrator will showcase the out-of-band
network deployment.

Used to identify network paths fulfilling the QoS
requirements required by the application service.
Alternatively, if QoS requirements are left
unspecified, the Path manager identifies the
shortest paths computed using Dijkstra algorithm.
Path Manager will be used to compute all paths and
provide them to Resource Manager for embedding
for interconnecting all Use Case 1 distributed
components, e.g., Greenfield Sensors <-> loT
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Gateway <-> Brownfield Actuator or PLC1 <-> PLC2
communication as per Figure 15.

Resource Manager Resource Manager is used for embedding all paths
computed by the Path manager into the physical /
data plane, using OpenFlow 1.3.1 flow syntax.

Brownfield and greenfield devices (video Field devices provide and consume data in UC1

camera, microphone, inclinometer, controllers, (sensors, actuators, and controllers). For example,

etc.) a camera is a device that we will bootstrap and
make it available (via lloT Gateway) for the
application flow by Recipe Cooker (the Al pipeline
for grease leakage detection). The controller is
another field device that will be interfaced over the
gateway. For instance, the application for detection
of grease leakage will be able to stop a wind turbine
over the controller that is exposed via the gateway.

Semantic API & Protocol Binding Semantic APl & Protocol Binding integrates
brownfield devices into a common IoT access layer.
The interface will be accessible over lloT Gateway,
and mostly it will be used via Semantic Edge
Platform (for Edge applications) and via Recipe
Cooker (for Cloud applications).

GW Semantic Mediator GW Semantic Mediator integrates brownfield
semantics with [loT semantics. The mediator
provides a means to configure brownfield devices
with 1loT semantics. In UC1l the examples of
brownfield devices will be data points to control a
wind turbine, i.e., start the turbine, stop the turbine,
etc. The lloT semantics (iotschema.org) is created
with common ontology editors, e.g. Protégé. Once
the semantic model has been created it can be used
by the mediator to configure the brownfield devices.

Local Thing Directory Local Thing Directory makes the knowledge about
Things (e.g. Field devices) discoverable for
applications. Local Thing Directory will be typically
accessed by Semantic Edge Platform (for Edge
applications).

Semantic Edge Platform Semantic Edge Platform provides a user interface
for the functionality of loT Gateway. In the scope of
UC1, it will be possible to scan the network and
bootstrap a video camera, microphone,
inclinometer, controllers, etc. Further on, we will
semantically configure brownfield device with GW
Semantic Mediator (integrated into Semantic Edge
Platform), and to create a Thing Description (TD).
TD for the wind turbine will be stored in the Local
Thing Directory, which is also configurable over the
Semantic Edge Platform.

4.1.2 USE CASE 1-DYNAMIC ARCHITECTURE — MESSAGE FLOW AND COMMUNICATION

The new sensors will be used in UC1 namely Video, Audio and Inclination measuring sensor for additional
data. The loT Gateway with its different components will do local analytics on the collected data through
different sensors and will take local action to avoid any damage to the rotating parts in the turbine in the case
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where the observed variables cross a certain threshold value. The details of the message flow can be seen in
D3.1, D3.3, and D4.1 respectively.

In the bootstrapping process, we distinguish two different classes of devices. The first class consists of devices
that already have a Web-based RESTful interface and are described by W3C Thing Description. The second
class comprises of all other devices that yet need to be made accessible over a Web-based RESTful interface.
These devices do not have a semantic description, or it exists, but needs to be mapped to standardized
semantic loT models. This is a case, for example, with brownfield devices, see Figure 16. In order to realize
IoT applications, it is convenient to map these brownfield descriptions into descriptions based on standardized
loT semantic models.

Let us consider now a sequence diagram of activities that occur during the bootstrapping of the WoT device,
see Figure 16. The user performs the first step during the initialization of a new device. This assumes the
provision of information such as an IP address, device capability, domain of use, location, etc. Since the device
already has a Thing Description (TD), this information is directly put in its TD. The device can then be registered
with SEMIOTICS lloT Gateway (with GW Semantic Mediator, which is an internal component of the Gateway).

If a brownfield device needs to be initialized, then a user in addition to previously mentioned information needs
to specify metadata related to the communication protocol and the encoding format. This information will be
an important part of a Thing Description and is used by SEMIoTICS IloT Gateway to realize a protocol binding.

In comparison to the sequence diagram for bootstrapping and interfacing field devices in deliverable D3.3,
here we have added a component called Semantic Edge Platform (SME), see Section 3.4.8. SME eases the
interaction with SEMIoTICS loT Gateway, including the interaction with the Local Thing Directory too.

<<Field>> “Field))_ <<Fi.e‘d> “Fiem?) ((Fi'_aldn <<Backend>>
u 1-devi GW Semantic Semantic Edge Local Thing Semantic APl & Thing Direct
5S¢ case T-device Medjator Platform Directory Profncal Rinding ing Lirectary
i H

i
Prerequisite for both type of devices: !
coenfigure discovery IP range M

If WoT devic/ej
discover & register

plug a device a WoT device

If brownfield
devige

download mapping knowledge for brownfield device
i

discover & register -

Optional:

i a brownfield i
initialize a brownfield device |:| device map & harmonize

o semantic models

provide Thing Description

Opticnal: semantically annotate & configure TD
(provide Thing capabilites, location etc.)

register Thing Description
register .
Thing Description expose thing via its
H Thing Description
> »
AN
Occurs over SDN
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via Semantic AP| return (OK)

|
accesses Thing Description
|

FIGURE 16: SEQUENCE DIAGRAM FOR BOOTSTRAPPING AND INTERFACING SEMIOTICS FIELD
LEVEL DEVICES
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FIGURE 17 OPERATION OF SSC IN USE CASE 1 (GENERALIZED)

SSC is used to bootstrap the network and enable connectivity between infrastructural services deployed in the
Use Case 1 as well as the pattern evaluation and its enforcement. Figure 17 showcases the operation of SSC
during bootstrapping time and runtime operation, to be fully showcased in Use Case 1 as well. We encompass
all granular components of the SSC in a single actor (SDN Controller) for the brevity of visualization.

SSC discovers the devices in its network using the OpenFlow protocol. Following the discovery and
establishment of control sessions, SSC listens for incoming packets from end-devices (hosts), e.g., the lloT
Gateway and SCADA application and updates its host database with the corresponding attachment points
behind which the hosts are located. The SSC then proceeds to install the required flow rules, so to enable
basic infrastructural services, i.e., a network connection between the loT Gateway and backend, in order to
provide for a possibility of Local Thing Directory of the 10T Gateway to report its status and the capabilities of
its field devices (i.e., sensors and actuators) in the Thing Directory in the Backend.

To embed QoS-constrained services, SSC is enabled to parse, evaluate and enforce connectivity patterns
specifying a set of connection properties, encompassed in invariants, that describe the intent which is to be
fulfilled by the underlying data substrate. The SSC subsequently processes the connectivity requests, specified
as Drools rules at its northbound interface and validates the viability of its enforcement in its internal modules.
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To adhere to the rule specification, the controller internally evaluates the topology state for a path that would
fulfill the named criteria, i.e., using a combination of routing algorithms, designed to consider a set of
constraints (including delay and bandwidth). If the connectivity is possible given the current amount of
resources, the controller propagates the enforcement request for individual flow rules to the lower-level
southbound interface (i.e., the OpenFlow plugin). The OpenFlow plugin is then in charge of sending the
according to flow modification messages to the corresponding data plane switches.

4.2 Use Case 2 — Assisted Living

This Use Case employs the SEMIOTICS technologies to develop an Information and Communication
Technology (ICT) solution aimed at sustained independence and preserved quality of life for elders with Mild
Cognitive Impairment or mild Alzheimer’s disease, with the overall goal of delaying institutionalization:
supporting both 'aging in place' (individuals remain in the home of choice as long as possible) and ‘community
care' (long-term care for people who are mentally ill, elderly, or disabled provided within the community rather
than in hospitals or institutions).

A detailed description of the requirements for the SARA solution can be found within deliverable D2.2 -
“SEMIOTICS usage scenarios and requirements”.

421 USE CASE 2 - STATIC ARCHITECTURE

The SARA UC design envisages two groups of modules: cloud modules (deployed in the cloud and drawn above
the SEMIOTICS Platform box) and field modules (deployed on field nodes and drawn above the SEMIOTICS
Platform box). In this design, the SEMIOTICS Platform is envisaged to offer the services (e.g. networking,
monitoring, security) facilitating the integration of the modules belonging to the two groups.

Cloud modules include:

e Localization and Mapping: providing the services for localization and mapping especially needed by
the mobile robots (i.e. the Robotic Rollator and the Robotic Assistant). The Localization and Mapping
service is hosted by the CLoE-IoT platform since it uses it.

e Gait analysis: utilizes the CLoE-IoT platform to access the measurements taken via the Body Area
Network and the Robotic Rollator. The result of the analysis performed by this component is stored in
the Patient Health record via the AREAS Service Bus.

e Head Pose and Gaze Estimation: providing the services for the estimation of pose and gaze needed
by the Human-Robot Dialog Manager to support the interaction between humans and the Robotic
Assistant.

e Object Detection and Tracking: providing the services for detection and tracking of objects needed
by the Human-Robot Dialog Management.

e Human-Robot Dialog Management: manages the interaction between the Robotic Assistant and
humans. It relies on the information provided by other cloud components (Localization, Object
Detection/Tracking and Pose and Gaze Estimation) to decide which behavior of the Robotic Assistant
should be activated/deactivated in order to support a smooth interaction with the user.

e Assistive Tasks Management: represents the core of the SARA solution since it is responsible to
orchestrate and, if needed, to configure the processes providing the Assistive Tasks aimed at Patients
and Caregivers. The Assistive Tasks Management takes its decisions relying on the information
produced by other modules (e.g. Fall Detection Head & Pose and Gaze Estimation).

e Tele-monitoring: provides the services enabling an operator of the Call-center Operator or a Medical
Expert, in case of emergency, to rely on the video cameras of the Robotic Assistant to set up a real-
time video connection to inspect the scene of a possible incident.

e Al Services: represent the collection of third parties cloud platform offering Al services (e.g. IBM
Watson) needs by some of the modules within the SARA UC (e.g. speech-to-text service needed by
the Robotic Assistant).

Field modules comprise of:
o Fall detection: is the module responsible for the detection of patients’ falls.
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Gait Analysis: is the module to perform a preliminary analysis of the measurements concerning the
gait and to forward the result of that analysis to the corresponding cloud service. The Gait Analysis
module is deployed both within the hub of the Body Area Network (i.e. a smartphone) and the Robotic
Rollator since both devices can take measure relevant of the analysis.

Weight Balancing: is the module that tries to balance the patient weight by controlling the hub motors
of the Robotic Rollator. The Weight Balancing module is deployed both in the BAN and the Robotic
Rollator to implement a dual redundant control scheme providing fault tolerance and contributing to
patient safety.

Navigation: is the module responsible for providing the robotic components (i.e. Robotic Rollator and
Robotic Assistant) with navigation capabilities. This module relies on the localization and mapping
service available from the CLoE-IoT platform.

HR Dialog Management: is the counterpart of the HR Dialog Management module available in the
cloud. Itis intended to support a simple form of dialog not requiring access to extended computational
resources available in the cloud.

Human Activity Monitoring: is the module deployed within the Smart Environment gateway and is
responsible for monitoring the occupant movements and locations (e.g. by tracking the entrance of
people in and out from rooms). Results from monitoring can trigger automated actions like entering
security mode if there are no occupants. The monitoring may concern also the outside (e.g. garden)
for privacy and security.

Figure 18 highlights (in blue color) the main possible interactions between the edge nodes and between
end nodes and backend services:

The smartphone (BAN gateway) supports the communication between the field nodes backend
services by means of LTE connectivity.

The Home Gateway supports the communication between the field nodes backend services by means
of IP connectivity.

the smartphone (BAN gateway) communicates with Home Gateway to access the services provided
by the Smart Environment subsystem and, for reliability purposes, provide additional connectivity to
between the field nodes a backend service.

The smartphone (BAN gateway) and the Robotic Rollator communicates (via Wi-Fi) to support joint
functionalities (e.g. to enable redundant weight balance control there is the need to exchange the
inertial data between the smartphone and the Robotic Rollator).

The Robotic Assistant (Pepper robot) communicates with the Home Gateway to access the backend
services (e.g. to request the execution of compute-intensive Al task), to access the Smart Environment
services (e.g. to increase the luminosity of the environment to facilitate computer vision tasks) and
coordinate (via the coordination service) its activity with those of the other field devices.

The Robotic Assistant (Pepper robot) and the Robotic Rollator communicate to coordinate their
activities in the context of specific task (e.g. during navigation).

The specific components leveraged in UC2 are listed in Table 4.

TABLE 4 UC2 COMPONENTS

Architectural Purpose of Deployment

Components Used

in UC1

Recipe Cooker SPDI Patterns - Description of SARA 10T orchestrations

Pattern Compliance with GDPR = Translation of SARA IoT Service orchestrations into SPDI patterns
Orchestrator

Pattern Engine Enforcement of SPDI patterns relevant for SARA
Security Manager Enforcement of security policies

Monitoring Monitoring events as requested by the Pattern Engine
Thing Directory Semantic Discover devices registered in the system

Semantic APl & Interoperability Accessing the resources of devices in a uniform way
Protocol Binding Mechanisms — Uniform
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GW Semantic access to Map and integrate semantics from ZigBee devices into

Mediator heterogeneous devices iot.schema.org semantics

Backend Semantic Detect and resolve possible semantic conflicts that may exist within
Validator SARA 10T orchestrations

Local embedded Embedded Intelligence  Extraction and encoding of gait features collected by means of the
intelligence and local analytics — Robotic Rollator

Uniform access to
heterogeneous devices

SDN Controller Network Management -  Management of network routes to fulfill requests from pattern
Dynamically adapt the engine.

NFV Infrastructure = network to the Chaining of Virtualised Network Functions to fulfill requests from
unpredictable pattern engine.

computational load
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FIGURE 18 UC2 - MAIN MODULES OF THE SARA UC
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4.2.2 USE CASE 2 - DYNAMIC ARCHITECTURE - MESSAGE FLOW AND COMMUNICATION

4.2.2.1 USE CASE 2 DYNAMIC ARCHITECTURE — SEARCH AND RESCUE INTERACTION

The Search and Rescue interaction (Figure 19) occurs whenever SARA detects a possible Fall Event. The
interactions develop across three main phases: Early Warning, Search, and Rescue.

interaction SARA Search and Rescue )

«Field» kend: d k «Field» «Backend» «Field» «Field» «Field» «Field» «Field»
ut: UC2 cd: uC2 Eﬁ] sm: E@ owa: UC2 Eﬁ] sp: Eil se: UC2 Is: UC2 Eﬁ] ra: UC2 Robot EE Itd: Local sapb: Eﬁl vs: UC2 Eﬁl Ib: UC2 EE'
User [] Call [ Security [ Operator [ Security [ Smart [ 1 Navigation [ Thing [ Semantic APIC_] Video [ 1 Lightbulb [
Tacker Distributor Manager Web App Manager Environment Service Directory and Protocol Streamer
. . PEP - Binding
ref
Early warning

ref
Search

ref
Rescue

FIGURE 19 SARA SEARCH AND RESCUE INTERACTION

interaction Early Warning J
«Field» «Backend» 1d» 1d» «Backend» «Field»

ut: UC2 User cd: UC2 Call sm: Security owa: UC2 sp: Security se: UC2 Smart
Tacker Distributor Manager Operator Web Manager Environment

' ' App PEP '

1 : help(usr,evt.loc) : , 5

2 : request policy update :

T mmnemEreE ] |

3:return '

4% notnfy(usr,ev? 5 : get request for patient location

6 : ask for permission

7 : evaluate current policy to get decision :

8 : retyirm access control decision(granted) N :

& 9} det request for patient location i

10 : return patient location > ;

: N TR :

11 : return patient location :

12 : help(usr,evt,loc) =|—|

FIGURE 20 EARLY WARNING INTERACTION
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The Early Warning phase (Figure 20) initiates with the User Tacker sending and help request to the Call
Distributor service. The Call Distributor requests to the Security Manager to update the current security policy
to enable the Operator Web Application to access user location. Once the update is done the Call Distributor
selects the operator responsible to manage the call and notifies her the help request via the Web App instance
she is using. Since the patient’s location is sensible information the Operator Web Application requests to the
Sidecar Proxy to retrieve the patient’s location stored within the Call Distributor. The Sidecar Proxy asks the
Security Manager permission to access the patient’s location on behalf of the Operator Web App. Since the
security policy has been changed during the previous steps the permission is granted. Once received the
permission the Sidecar Proxy access and return to the Operator Web App location of the user.

The objective of the Search phase (Figure 21) is to allow the Robotic Assistant to reach the location where the
(possible) fall event occurred. This phase is initiated by the Smart Environment sending to the Robot the
request to move to the location of the event. The Robot requests to the backend Navigation Service to be
guided to the target location indicated by the Smart Environment. Once the Navigation Service is ready the
Robot starts to notify the readings from the onboard depth camera. Using this information, the Navigation
Service estimates the current position of the Robot and returns to it the indication of the new velocities. When
the Navigation Service estimates that the Robot has reached the desired location, it notifies to the Robot the
event. The Robot, in turn, notifies the achievement of the navigation goal to the Smart Environment.

It is worth noting that even if the description of the Search interaction does not mention any SEMIoOTICS
component the interaction between the SARA system and SEMIOTICS indeed exists. In fact, it is the
SEMIOTICS SDN Controller that takes care of the timely delivery of the messages exchanged between the
Robot and the Navigation Server. The point is that the proper configuration of the network transport
infrastructure is done by the SDN Controller implicitly without explicit request by the application logic. That’s
why in Figure 21 the SDN Controller is not shown.

interaction Search
«Field» «Field» «Backend»
se: UCZ Smart ra; UC2 Robot ns; UC2
Environment : Navigation
: 1 : moveTo(loc) : Service
2 : guideTo(loc) o
3 : ready
loop Navigation J
[curLoc!=loc]
4 : observed(distances)
5 JcurLoc = estimateLocation(distances)
e e
6 : speed(vx;vy)
opt Navigation End )
7 : locationReached
[curLoc==loc]
8: done

FIGURE 21 SEARCH INTERACTION
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The objective of the Rescue interaction is to allow the Call Center operator (selected during Early Warning) to
directly see which is the current situation at the location of the fall event. Once the Operator Web App has
received the user location from the Sidecar Proxy (see Early Warning interaction) the Web App uses the Thing
Directory to retrieve the video cameras available at the location of the event. The Thing Directory returns the
identifier of the Robot. The Operator Web App requests to be notified when the Robot will reach the location.

As soon as the Robot receives the notification that it is at the event location, the Robot updates its current
location in the Local Thing Directory. The Local Thing Directory takes care to communicate to the Backend
Thing Directory the updated location of the Robot. This update results in the Thing Directory notifying the new
location to the Operator Web App. At this point, the Operator Web App can subscribe to the video stream
originating from the onboard camera of the Robot. The result of this subscription is that the Video Streamer
will start to push video frames towards the Operator Web App. Also, in the case of this interaction, it is worth
to note that the timely delivery of video frames from the Video Streamer to the Operator Web App is guaranteed
by the SEMIoOTICS SDN Controller. Since, as explained in the case of the Search interaction, the configuration
of the network transport infrastructure is done without explicit request by the SARA solution, the SDN Controller
is not shown in Figure 21.

interaction Rescue )
«Backend» «Backend» «Backend» «Field» «Field» «Field» «Field» «Field»
owp: UC2 td: Thing ns: UC2 ra: UC2 Robot Itd: Local Thing vs: Video sapm: Ib: UC2 Lightbulb
Operator Web Directory Navigation : Directory Streamer Semantic APl A
App ' Service ' ' and Protocol
' H . Binding
i _1:getDeviceAl(cameraloc) _ :

ey T .

3 : notifyWhen(ra,location,loc)

i4 - reach log) | ! i
w; 5 : updateResource(ra,location loc) !

6 : updateResource(fajlocation,loc)

5 [
7 : observed(r,location loc) J
H 8 : getDeviceAi(lightbulbJoc) : [
S ! i
9:lb H H
10 : doCall(switchOn,Ib) : H
T > 11 : switchOn H
12 :EonenCamera(uwu) > 13 : addSubscriber(owp)
I U — 1]
VT 14vs 7
loop Show Video Frame ) ;
: 15 : frame
16 : show(frame) :

FIGURE 22 RESCUE INTERACTION
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4.2.2.2 USE CASE 2 DYNAMIC ARCHITECTURE — REMOTE GAIT ANALYSIS INTERACTION

The Remote Gait Analysis Interaction Figure 23 is started whenever a Doctor schedules by means of the
AREAS® Web Booking System a new gait assessment session for a patient. A gait assessment schedule
prescribes a time period for the execution of the assessment session. During this period (usually a week) the
Web Booking System sends a reminder message to the User Tracker App hosted by the mobile phone of the
user. If the user decides to delay the execution of the exercise the decision is notified to the Web Booking
System which re-schedule the exercise. In the case, the user agrees to start the exercise the decision is
notified to the Web Booking System and the data collection phase is initiated. The data collection phase is
described by the Gait Data Collection Interaction.

interaction Gait Analysis Management )

X =l =l

d: UC2 Doctor wbs: UC2 Web ut: UC2 User Tacker
' Booking System '

1 : schedule(gae)

2 : remind(gae)

3 : agreed = showReminder

i

alt Reminder follow-up )

[aQreedzfalse]

4 : delayed
5 : reschedule(gae)

[agreed=true]

6 : started

ref
Data collection

B

FIGURE 23 GAIT ANALYSIS MANAGEMENT

The Gait Data Collection Interaction Figure 24 occurs during the execution of a physical exercise (e.g. five
meters walk) done using the SARA Robotic Rollator. The interaction is initiated by the User Tacker which is
an App hosted on the Hub (typically the patient’'s mobile phone) of the Body Area Network. The User Tracker
signals to the Gait Analyzer (a SARA application hosted by the Robotic Rollator) the start of the exercise.
Consequently, the Gait Analyzer puts an observation on the Range Sensor.

Whenever the Range Sensor sends a new measure to the Gait Analyzer, the Gait Analyzer checks whether
this represents the end of a gait. If this is the case the Gait Analyzer encodes the time series representing a
single gait and stores it in the Local Storage Service. The Local Storage Service is a service of the CLoOE-IoT
platform hosted by the Robotic Rollator. The “Observe and Store” loop is interrupted by the arrival of an
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endExercise message from the UserTacker. Once the “Observe and Store” loop is terminated, the Gait
Analyzer clusters the time series collected by the “Observe and Store” loop. The clustering is done using the
SEMIOTICS Local Embedded Intelligence component also hosted on the Robotic Rollator. The Local
Embedded Intelligence component retrieves the times series to be clustered from the Local Storage Service.
The Gait Analyzer stores in the backend CLOE-IoT Storage Service the clusters created by the Local
Embedded Intelligence.

interaction Gait Data Collection Sequence )

=] =] =8 =] =] =]

«Field» «Field» «Field» «Field» «Field» «Backend»
ut: UC2 ga: UC2 Gait rs: UC2 Range s: UC2 Local tsc: Local s: UC2 Storage
User Tacker Analyzier Sensor Storage Service Embedded Service
1 : startExercise(e) . ' Intelligence '
2 : observe .
' [loop Observe and Store
[endOfExercise=false] 3:dl

4 : endOfGait = checkEndOfGait
5:ge= enéode(ls)

6: sté:.re(ge)

opt Store gait encoding

[endOfGait=true]

7 : endExercise(e)

8 : computeClusters(e)

: getEncodings(e)

e e e meanae
11 : clusters

12 : store(clusters)

FIGURE 24 GAIT DATA COLLECTION
4.2.2.3 USE CASE 2 DYNAMIC ARCHITECTURE — SERVICE FUNCTION CHAINING

Smart assisted living monitoring systems situated at homes can facilitate the monitoring of patients’ activities and
enable the remote provision of assisted services. They improve the quality of elder population well-being in a non-
obtrusive way, allowing greater independence, maintaining good health, preventing social isolation for individuals
and delay their placement in institutions such as nursing homes and hospitals. In this context, one of the scopes of
the second use case of SEMIOTICS is to provide security guarantees through the traffic forwarding via different

58



780315 — SEMIoTICS — H2020-10T-2016-2017/H2020-10T-2017
Deliverable D2.5 SEMIOTICS High Level Architecture (final)
Dissemination level: [Public]

SEMilelics

network security functions by applying the Service Function Chaining (SFC; as detailed in deliverable D3.2) concept

on an ambient assisted living scenario, whereby a smart home environment.

Investigating this use case, and considering the different types of traffic reaching the backend where the chaining
of services will take place, the following intricacies are observed: traffic originating from the mobile phone is of low
trust and low priority, as the mobile device is not trusted (e.g., can be easily targeted by malicious software) and
the reporting from the BAN devices has low bandwidth and latency requirements; traffic from the Robotic Rolator
are of medium trust (relatively restricted devices) but high priority, as messages need to arrive in a timely fashion
(e.g., in case a patient fall is detected); the smart home traffic is of medium trust (commercial devices which may
be vulnerable to, e.g., incorrect configuration) and of low priority, and finally; traffic from the robot are of high trust
(closed/restricted device) and high priority, as low latency and relatively high bandwidth is required to enable

seamless interactions with the robot.
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depicted in

Figure 25 including the following interactions with the components of the SEMIoTICS architecture:

e The Pattern Orchestrator forwards a specific chain request to the pattern engine for forwarding the
traffic between entities through a specific chain of functions.
e The Backend Pattern Engine forwards this request to the SFC manager which is located in the SDN
Controller responding to the pattern engine whether the chain exists or not.
o If the chain exists, then a respond of the chain satisfaction is returned to the pattern
orchestrator.
o If the chain does not exist, then a requested is forwarded to the VIM asking whether the
service functions exist or not.
= |If functions exist in the VIM, then
¢ the chain can be instantiated in the SFC Manager,
e arespond of the chain satisfaction is returned to the pattern orchestrator.
= If functions do not exist in the VIM then,
o function instantiation request is forwarded to the NFV Orchestrator, which is
responsible to instantiate them in the VIM,
¢ the chain can be instantiated in the SFC Manager,
e arespond of the chain satisfaction is returned to the pattern orchestrator.

Considering the above, there is significant motivation to leverage the flexibility provided by SFC to define specific
service chains for each type of traffic. By applying the previously described procedure of chain instantiation, the
SARA Use Case can be extended to support traffic forwarding through specific service functions. That includes
traffic forwarding for the different type of traffic exchanged between the different actors as following and depicted in
Figure 26:
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o Chainl: Mobile phone traffic having low trust and low priority e.g. delay of exercise in the Gait Analysis
Interaction (SFC1 — Phone: FW -> DPI -> IDS -> Web Booking System)

o Chain2: Mobile phone traffic having high trust and high priority e.g. emergency call in the Early Warning
phase of the Fall Management Interaction (SFC2 — Phone: FW -> Load Balancer -> Call Distributor)

o Chain3: Call Center Operator traffic having of medium trust but high priority e.g. access to the onboard
camera of the robot in the Rescue phase of the Fall Management Interaction (SFC3 — Operator: Load
balancer -> FW -> Robot)

interaction SFC Sequenceliagram )

=] =] 3] =] =] 3] 8] 3] ]

ut: User ra: Robaot ap: Ancess fa Flrewal\ dpi: Deep Packet |d9 Irmuuon Load opefa r
Tacl(el : nt Inspe(tor sys}em Balancef Bool:lng Syslem m A Dlslnhumr
alt SFC datallows )
[low I.'rustal nd low prior '?-'E
- 1. delayed i
D : 2 : packet(delayed) |

3 : packet(delayed) .

4 : packetidelayed) | Ein.

[might thust and high priary]

D 6 hdlp{usrevtjoc) _

7: packet(help) | :
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FIGURE 26 SEMIOTICS SARA SFC DATA FLOW

Based on the provided dynamic instantiation of service chains and service functions through the pattern
engine, the potentiality within the SARA use case can be increased and extended by the support of additional
service chains to enable traffic classification through different combinations of service functions to guarantee
different secure end to end traffic forwarding.

4.3 Use case 3 — Smart Sensing

loT embedded Things are more and more named as being smart devices. “Smart” usually is associated with
some Things that show some form of intelligence or adaptability, being able to better interoperate in the
environment in which they are in. Unfortunately, the current way of making these objects “smart” is through a
quite naive approach where the physical device is locally executing dummy local algorithms and is always
connected to some cloud infrastructure were more complex algorithms are running for providing the feeling of
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being “smart”. Therefore. these devices transmit sensed data to the cloud without any analytic being performed
locally and without showing remarkable forms of computational intelligence. An example is Microsoft Azure or
Amazon AWS cloud platforms and the related ecosystem. The major weakness of these solutions is that they
are poorly scalable and rely on the main assumption the connection is always present. An loT thing is “really”
intelligent if it has local capabilities to learn from, and act upon the environment it is sensing.

The IHES use case offers an interesting specular approach to this scenario (somehow influenced by “Edge
Computing” or “Pervasive Computing”). The main assumption is that intelligent data processing shall take
place at the sensor level, and that distributed data classification and data aggregation is a key aspect for
massive system scalability. Moreover, in this use case algorithms derived from Al techniques will be deployed
at Gateway, down to MCU level, allowing as well to online/self-learn from the environment: this latter a quite
challenging aspect by itself on the Al field. On these systems, distributed data computing and semantic
interoperability are key aspects of design and in this respect, SEMIOTICS offers the perfect deployment
testbed. Research on this field, especially for the self-learning distributed part, is highly fragmented with
solutions exploring different but specific aspects of the problem?2° 30, e.g., the properties or the architecture of
the system, the challenges or the adaptation mechanisms. A holistic view of the problem and a mainstream
methodology for the design are still missed. These systems are distributed intelligently interacting devices in
which physical and software components are deeply intertwined, each operating on different spatial and
temporal scales, exhibiting multiple and distinct behavioral modalities. Such systems consist of intelligent
heterogeneous sensor networks, monitoring physical processes and processing real-time data to extract
relevant information with very limited supervision, learning from them and aggregating compact information
related to their time-varying nature. Intelligent data processing can happen at the single sensor, group of
sensors or at the server level, to learn from time-varying heterogeneous data, trigger events on them, take
decisions on what type of intelligent behaviors must be adapted to new conditions so adapting themselves.
The main characteristic of this new generation of distributed intelligent systems is the ability to closely interact
with the environment, in which they operate, learn from it (without human supervision), and enable
automatically self-adaption to new time-varying operating conditions at different levels of the architecture. For
a better understanding of the scenario description, and the two sub UCs, please refer to D2.2 (section 2.3.2.2).

4.3.1 USE CASE 3 - STATIC ARCHITECTURE

Local Embedded Intelligence is a key aspect of SEMIOTICS. It can enable the infrastructure to migrate from
the cloud-centric computation-intensive mainstream approach to a more scalable one where some part of the
currently used AI/ML algorithms are moved to the edge (i.e. at Field Device-level): in SEMIOTICS, they are
mainly deployed in the IoT Gateway and the Field level Node Devices. These aspects are considered and
covered in full details as part of the task 4.3 activities and will be reported in the final deliverable D4.10. These
algorithms can be deployed and instantiated within a specific architectural component named “Local
Embedded Intelligence” component (see Figure 6, SEMIOTICS general architecture) that implement all of those
algorithms and interoperate with all the other components identified at 10T gateway level primarily to make
those capabilities available to the other network and backend layers of the architecture. The major challenge
at the field devices level of UC is the deployment of such a Local Embedded Intelligence component directly
down to each single field device node, tightly coupled with data gathered from sensors.

Local analytics algorithms are adapted as well at this level of the architecture mainly for data-reduction
purposes: the raw data acquired from the sensor are processed locally in order to derive from the relevant info
sent as events to other layers. The communication interfaces are designed in order to ensure event-driven
end-to-end semantic interoperability by adopting widely used standards such as iot.org, JSON data format.
The focus of the horizontal generic 10T UC3 is thus to provide a specific working deployment at 10T sensing

29 C. Krupitzer, F. M. (2015). A survey on engineering approaches for self-adaptive systems. Pervasive and Mobile
Computing, vol. 17, pp. pp. 184-206.

30 Roveri, C. A. (2017). The (not) far-away path to smart cyber-physical systems: An information-centric framework.
Computer, vol. 50, no. 4, (pp. 38-47).
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nodes of a data-driven unsupervised (data) monitoring infrastructure. This can be achieved as part of WP4
activities by defining the specific low-level architecture and incremental mapping of all required local analytics
algorithms to sustain those technologies that is integrated as part of WP3 activities.

The developed algorithms are derived from well-known approaches in the field of Al, Statistical Analysis,
Causal inference, and prediction analysis. Differently from widely used algorithms deployed at the central
Cloud level, light-weight versions of those are derived for accounting the specific needs of these constrained
domain architectures. Most of those algorithms are implemented as key components of the IHES generic Use
Case demonstrator whose major goal is to provide those enabling new local analytics-enabled technologies to
SEMIOTICS architecture. Depending on the specific device that host this component there are different
deployments of the same component functionalities done by exploiting their specific device
capabilities/limitations/ecosystems. The main factors that drive light-weight porting are mainly due to limitations
in real-time constraints, memory, computation, power consumption, and existing legacy software middleware
support. In particular, for the IHES tailored component a specifically designed version of a subset of those
named algorithms made available as part of the bare metal firmware (FW) at microcontroller sensing unit
directly (i.e. a set of dedicated STM32 MCUs tightly coupled with communication and sensing capabilities
expansion board shields — the 10T Thing).

A monitoring sample app deployed at Raspberry Pi3 level or aside PC for monitoring the status of the whole
IHES system and to be used for supporting the specific demo that is implemented as a reference
implementation to demonstrate the system capabilities. The monitoring web app basically reports the status of
the system in a specific deployment of the technology, in order to report environmental relevant events
(anomalies on temperatures and humidity, abrupt changes on luminosity). From this web app template, other
3rd party apps could be derived by interfacing the IHES system through other SEMIOTICS components. An
overview of the envisaged system architecture at the field level is reported in Figure 27.

loT Gateway
Local Thing Pattern
Directory Engine

Semantic
Edge Platform

= Hand
Analytical
Model crafted

Input data ‘

00 --0 00— Predictor

Statistical
models ‘

S Event/anomaly
Detection Validation oo ey IHES Supervisor
Service and
EAIing IHES Sensing Unit

Machine
Learning

FIGURE 27 IHES LOCAL ANALYTICS (I0OT GW + DEVICE NODE)

Moreover, an overview of the envisaged end-to-end system architecture is reported in Figure 28. NFV has a
prominent role in UC3 architecture. As it is described in this section, UC3 involves SEMIOTICS components at
the 1oT GW level (Supervisor and Local DB component, Pattern Engine, Local Thing Directory, etc.) and at the
Application Orchestration Layer (GUI, Monitoring, Pattern Orchestrator). These functionalities need to be
deployed in a flexible manner, for instance by allowing software updates. Also, they require the dynamic
provision of storage and processing resources to face the scaling nature of IoT. Fortunately, this flexibility,
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programmability and dynamic resource provisioning is provided by NFV. More specifically, NFV is composed
of several components. First, a network infrastructure that allows the virtualization of its computing, storage
and networking resources, which is so-called NFVI. In our case, this is the 10T GW and the backend. Then, on
top of the NFVI, one can deploy network functionalities that are so-called VNFs. Finally, the NFVI is managed
by the VIM and the lifecycle of the VNFs is managed jointly by the VNF manager and the NFV Orchestrator,

see Figure 28.
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FIGURE 28 USE CASE 3 SYSTEM ARCHITECTURE
In the SEMIOTICS UCS3, different functionalities are deployed in the form of VNFs:

e VNF1: This VNF contains the “Supervisor service” and the “Local DB” component in the IoT GW as it
is described in Figure 28. That is, basically VNF1 gathers data from different Field devices, which are

stored and then correlated to generate events.
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e VNF2: This VNF is also deployed at the l1oT GW and opens API endpoints for reporting data analytics
events to the backend via MQTT.

e VNF: This is the global data aggregator located at the backend. Its main function is to receive and to
store the data sent by the VNF2 of several 1oT GW. To this end, it exposes API endpoints. Also, it
paves the way for further processing of the events generated at the IoT GW, e.g. providing a global
view rather than a local context. And last but not least, it permits to trigger external endpoints, e.g.
VNF4 for data visualization. VNF3 can be considered as the SEMIoTICS “Monitoring” component of
the backend.

e VNF4: This VNF contains the SEMIoTICS GUI component located at the backend, allowing data
visualization.

e VNF5: This VNF contains the SEMIOTICS pattern engine at the 10T GW.

As part of the core functionalities of the IHES system, a lightweight version of algorithms focused on data
monitoring and data model prediction is derived from the generic SEMIOTICS components and deployed on
the IHES Sensing node. This functionality is responsible at the edge device level to support monitoring of the
relevant events generated by the data-reduction algorithms developed. These algorithms are deployed likely
in different instances due to the specific constraints and middleware’s available for a given device/target
ecosystem. In the case of UC3, the devices are low power STM32 MCUs units, so very different from the
raspberry Pi3 ones adapted e.g. in UC1 and UC2. Considering the heavily constrained domain imposed by
those MCUs units a subset of the functionalities deployed in the generic Gateway component will be mapped.
Anyhow interoperability of the different modules will be ensured by the interoperable semantic patterns
identified on WP3 activities.

Focusing on the UC3 scenario, The IHES Generic IoT Use Case the monitoring is intended on real-time time-
variant generic signals that are locally processed in order to self-learn a predictive model and based on this
prediction monitor any relevant deviation from the estimated model. In case of anomalies, these will be reported
to the IHES service deployed in the 10T Gateway that in the case will propagate them to the upper level of
SEMIOTICS architecture. Moreover, the Supervisor subcomponent will be interfaced to a Local DB
subcomponent that will collect all relevant events accumulated by the system during its operations, in order to
make them available to the other components of SEMIoTICS by mean of the GW Semantic Mediator and/or
legacy Rest APIs exposed by the database.

The generic architecture of the IHES Use Case and mapped algorithms is shown in Figure 28. In blue are
reported the components that are specific of the UC3 or that have been derived from other components but
has been adapted to the specific field device platform. The system is composed ideally of two different kinds
of functional modules: a set of IHES Sensing Units nodes and a set of Supervisor subcomponent. They act as
asynchronous coordinated communicating using specific defined JSON messages sent to an MQTT broker
deployed at 10T local gateway. Both modules will implement a local analytics processing pipeline composed of
several algorithms in order to realize a generic unsupervised sensing node data monitoring facility. At the very
end of this edge computing-oriented ecosystem there is a small, power-efficient sensing loT node composed
by an STM32 MCU equipped with Wi-Fi expansion board and a sensor shield board equipped with the following
sensors:

e Environmental Sensors: temperature, humidity, pressure, luminosity
e |nertial Sensors: Accelerometer, Gyroscope, Magnetometer

The MCUs device maps both Al algorithms and hand-crafted algorithm (e.g. linear predictors) for implementing
a predictive model estimation close to the source of data to process. The device node functionalities will be
mapped on top of legacy ST middleware Software to manage the communication with the loT gateway from
one side and the acquisition of data from the sensor board on the other side. Each node will be able to monitor
several sensors in the same device: as an example, it will be possible to instantiate a bare metal FW
encompassing an accelerometer and another node implementing the  monitoring  of
temperature/pressure/humidity at once. Similar algorithms will be mapped using different Middleware at IoT
gateway level where the gateway likely will have an Embedded Linux OS Available. To enable interoperability
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between the different algorithms and deployment on these heterogeneous devices a specific EAL (Embedded
Analytic Library) analytic library will be developed with portability over Linux and STM32 in mind. Due to these
technological constraints, only a subset of the functionalities of relevant identified components will be deployed
in UC3, from the generic ones described in the SEMIOTICS reference architecture.

UC 3 architecture presented in Figure 28 that highlights the distributed nature of this system (many intelligent
nodes connected to a local gateway, and potentially many gateways interfacing the backend layer) and how
the analytics are distributed at several levels (mainly field devices and IoT Gateway) of the architecture. The
architecture will be flexible in order to support a generic number of connected IHES devices with different
capabilities (i.e. environmental vs inertial sensors). For this reason, the bootstrap interfaces have been
carefully designed as part of WP3 activities (Task 3.3). A detailed discussion about the specific algorithms
used to support this Use Case (a brief rationale on the technical choices made) will be made available in D4.3
that will cover all the aspects related to the local embedded analytics lightweight algorithms in SEMIOTICS.

A quick summary table of the components suitable for adoption in UC3 and their scope is presented in Table
5.

TABLE 5 UC3 COMPONENTS

Architectural Components Used in UC3 Purpose of Deployment

openHAB Visualization This openHAB IoT platform component is used in
UC3 to realize the GUI frontend to monitor/manages
the IHES system from an operator.

Thing Directory Thing Directory contains the metadata of all the
Local Things Directory entries to make all Things
discoverable to the backend level as well.

Pattern Orchestrator Pattern orchestrator is responsible to forward the
respective UC3 pattern to the field layer pattern
engine.

Pattern Engine Pattern Engine is used to parse the connectivity and

SPDI-related pattern instances and enforce and
monitor their validity at runtime as received by the
pattern orchestrator.

Local Thing Directory Local Thing Directory makes the knowledge about
Things (e.g. Field devices) available for
applications. Local Thing Directory is typically
accessed by Semantic Edge Platform (for enabling
Edge applications).

Semantic Edge Platform Semantic Edge Platform provides a user interface
for the functionality of loT Gateway. It can scan the
network and discover sensing units and their
capabilities. Moreover, the Local Thing Directory will
be configurable over the Semantic Edge Platform.

Supervisor and Local DB This component can supervise and manages the
IHES Sensing units by either change their inner
states (e.g. analytics processing) and collects data
and events from them. It is able to store that data
end events on a proper local specialized database
in order to enable data aggregation and trend
analysis at the backend level.

Local Embedded Intelligence This component is the key one in UC3 wrapping the
majority of local analytics tasks by implementing a
set of ML / Al unsupervised algorithms (see D4.3).
It provides interface the Supervisor in order to be
coordinated by it.
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4.3.2 USE CASE 3 DYNAMIC ARCHITECTURE — MESSAGE FLOW AND INTEROPERABILITY

The communication pattern in UC3 is heavily impacted by the underlying computational paradigm: distributed
computing systems need to have a requisite strong communication capability in terms of QoS and associated
semantic, usually relying on very complex message patterns. This is already complex in a cloud-dependent
thing like most of today’s devices, but it becomes a key aspect when intelligence is massively deployed (and
distributed) at the level of the node. Semantics interoperability among heterogeneous devices and consistent
message pattern flow, needs to be carefully designed when devices start to exchange not only raw data or
simple events, but more complex message patterns used to describe more interaction between intelligent
things. IHES devices are able to join/detach from a local cluster computation network coordinated by a local
Supervisor subcomponent.

This Use Case deploys this distributed communication pattern by relying on two powerful available
communication infrastructures: the MQTT protocol and the JSON data format for data interoperability. These
infrastructures are used both for handling custom message patterns between the IHES nodes and the
Supervisor and Local DB and for interfacing this same component with some other field device components of
SEMIOTICS. More details about these semantic communication patterns and a subset of those used during
the bootstrap interfacing phase have been provided in T3.3.
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4.b Field layer devices
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The UC3 dynamic architecture, derived from Figure 29, could be described as composed by the following
functionalities:

Local data collection & processing phase

Raw data are collected by the IHES Sensing Unit and forwarded to the Supervisor subcomponent that stores
itin the Local DB part. At the same time, the sensing unit starts the computation of the local embedded analytics
algorithms in order to find out anomalies and local changes. these distribute analytics are sent to the Supervisor
and stored into the Local DB. At the same time, the Supervisor computes and saves the Node Dependency
Graph exploiting data correlations between actual working nodes.

Anomaly detection and actuation

When during the operative phase a change is detected by an IHES Sensing Unit, an alert is sent to the
Supervisor. Then the supervisor, based on Node Dependency Graph information about the correlation of
connected Sensing Units, categorizes the event and push it to the backend. This event is classified, and the
correct actuation endpoint is selected. Then, the actuation procedures start.

Data visualization procedure

MQTT Proxy Service, when receiving an IHES Sensing Units change the message, stores the message in the
visualization database. It also requests raw data around the event windows to Local DB. Requested data and
received change messages are used to update the openHAB visualization GUI.

Field layer device reconfiguration (a)

At this point the openHAB visualization GUI request for field layer reconfiguration. This request is conveyed to
the IHES Sensing Units and after the reconfiguration procedures, an ACK is sent back to the GUI.

Field layer device reconfiguration (b)

In this case, the reconfiguration request is sent to IHES Sensing Units from the Supervisor. After the
reconfiguration procedures, an ACK is sent back to Supervisor.

Pattern-based monitoring

Within the UC3 scenario scope, the focus of the pattern-driven monitoring and adaptation will on the
dependability property. Considering the criticality of the monitoring application, it is considered that redundant
sensors will be used in the deployment to ensure that, even in the case of failures, another sensor will always
be available to provide inputs. In this context, relevant pattern rules have been defined some and will be
included as part of the demonstrating scenario. Leveraging said pattern rules, there is continuous monitoring
of the monitor nodes that are connected and their current status. Thus, when a node fails and a redundant one
takes over, the field pattern engine reasons on the reduced dependability condition, informing the backend for
this change to a non-desired state in order to derive recover actions (node replacement, system
reconfiguration, alerting, etc.); equivalently, when a node is restored and is back in action, this is detected and
reasoned upon, informing that the system is back in the normal (dependable monitoring) state.

4.4 Leveraging the SEMIOTICS Framework for New Use Cases

The SEMIOTICS framework offers multiple core functionalities that can be used to support a variety of 10T use
cases in addition to the ones already detailed in project use cases. In order to be able to fully utilize the
proposed functionalities of the framework, there is a number of steps that need to be followed. The key areas
of which need to be taken into considerations and analysis when implementing new use cases with SEMIoTICS
framework are the following:

e |oT device — WoT description: SEMIOTICS can support 10T devices which are described according
to WoT schema. WoT schema can be generated for existing devices using the Recipe Cooker app.
Moreover, SEMIOTICS is capable to cooperate with "brownfield devices", however, to do that some
additional implementation is required in the component called Semantic APl & Protocol Binding.
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Use case apps (field and backend level): Use case business logic must be implemented by a new
Use Case owner. SEMIOTICS doesn't provide ready-to-use applications logic. For new Use Cases,
dedicated apps containing specific business logic must be created either as separate applications or
as blocks in Recipe Cooker. The Recipe cooker delivers the functionality of modeling many different
scenarios and can be easily enhanced with new logical blocks that can represent various
functionalities of outside applications, platforms or components.

SPDI patterns — Patterns description: One of the key features of SEMIOTICS is seamless
orchestration through SPDI patterns. SEMIOTICS can set up cross-layer guarantees (backend,
network, field layer) for a particular new Use Case with different properties in place such as QoS (i.e.
bandwidth-delay, etc.) or SPDI properties (security dependability, etc.). These patterns can interact
with the Recipe Cooker via the deployed recipe as received by the Pattern Orchestrator. Moreover,
Pattern Orchestrator is responsible to pass the information to the respective Pattern Engines at all
layers (Backend, Network and Field level). In this context, it is important to review the intrinsic
architecture and SPDI requirements of the new use cases where SEMIOTICS is to be deployed and
elaborate on the I0T system model (if needed), while also defining additional pattern rules, if the ones
provided by SEMIOTICS are not adequate.

Monitoring — intelligence: SEMIOTICS offers sophisticated monitoring component which collects,
and monitors events form all of the components present in the platform. Platform users can subscribe
to chosen complex events in order to get notified as soon as they occur. This gives enormous
opportunities for platform monitoring at a central point with no information dispersion and scarcity.
This monitoring procedure can enable the detection and prediction capabilities of SEMIOTICS.

High-level steps which are required for a newly approached Use Case owner are:

1.
2.
3.

o gk

Describe the devices with WoT schema
Create field and backend applications with business logic (optional)
Create a recipe in Recipe Cooker
a. Auto discover WoT devices
b. Model a recipe
c. Add patterns
Validate/instantiate the required pattern to guarantee the SPDI or QoS properties
Deploy a recipe and forward it to the pattern orchestrator.
Configure complex alerts
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5 VALIDATION

This chapter summarizes the validation features of SEMIOTICS that are related to the platform architecture
delivery and the various topics that are covered in this deliverable.

5.1 Related Project Objectives and Key Performance Indicators (KPIs)

The T2.4 related objectives and their mapping to D2.5 content is summarized in Table 6.

TABLE 6 TASK’S OBJECTIVES

T2.4 Objectives D2.5 Chapters

I . . L 2,3
e Specification of the overall reference architecture and a base-line specification

of the interfaces and functionalities of the core components of the SEMIoTICS

framework
e Architectural and functional specification driven by the requirements identified
in Tasks 2.1 and Task 2.2
. . . : - 3
e The reference architecture will contain the logical decomposition of
SEMIOTICS to specific components with assigned roles, functionality and short
description of the interaction between them.
4

e User-centric approach to design to ensure that user requirements are
addressed by it.

The overall deliverable constitutes the initial contribution towards fulfilling the project’s requirements regarding
SEMIOTICS’ objectives, and the associated KPIs, as shown in Table 7.

TABLE 7 TASK’S KPIS

Objective KPI-ID Description

2 Semantic interoperability KPI-2.3 Semantic interoperability with 3 10T
platforms

5 loT-aware Programmable Networks KPI-5.1 Deployment of a multi-domain SDN
orchestrator

6 Development of a Reference Prototype KPI-6.3 Delivery of 3 prototypes of lloT/loT
applications

7 Promote the adoption of EU technology KPI-7.1 Provision of the SEMIOTICS framework

offerings internationally and building blocks

5.2 End-user involvement in the Use Cases requirements elicitation

Process of Use Case-specific requirements gathering, for all three SEMIoTICS requirements, involved domain
experts or end-users. Series of interviews and discussions with relevant stakeholders allowed to Use Case
owners to identify and define the Use Case specific requirements.

For Use case 1 (Wind Energy), the detailed requirement descriptions were defined through an interview
process with subject matter experts within the wind industry. BWC (Wind park operator) has verified the scope
and details of these requirements, which will be considered for the lab trials where it is not planned to inv olve
further end-users (e.g. other wind park operators). Furthermore, BWC as a consortium partner is involved in
the project within the implementation and verification of UC1.

For Use case 2 (Assisted living) the elicitation of the SARA requirements was performed by the Engineering’s
Business Unit taking care of the evolution of the AREAS® E-Health Integrated Platform. This elicitation process
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relied on the network of customers and partners that Engineering has in the Healthcare market. The
requirements for the SARA component were collected through stakeholder interviews and focus groups.

Finally, use case 3 (Smart Sensing) has been deriving the Use Case specific requirements via domain expert
interviews and based on extensive ST-I expertise in the field.

5.3 Project requirements mapping to Tasks and Architectural Components

Apart from the previously described role of the developed components, one additional scope of them is to
satisfy the SEMIOTICS project requirements which were derived and documented in D2.3. More specifically,
the procedure followed to provide this final correlation is based on the relationships between the different
architectural logical components as being mapped in the tasks, KPIs or through the individual direct
relationships between the requirements. In Table 8, the correlation between components and related
requirements is presented. Finally, the full list of the mapping between the requirements, the Tasks and the
Components and how they have derived can be found in Appendix 7.1.

TABLE 8 CORRELATION BETWEEN COMPONENT AND REQUIREMENTS

Component
Resource Manager

VTN Manager

Bootstrapping
Manager
Path Manager

Clustering Manager

SFC Manager

VIM Connector

NFV Orchestrator

Virtualized
Infrastructure
Manager

VNF Manager

Semantic APl &
Protocol Biding

GW Semantic
Mediator

Semantic Edge
Platform

Local thing directory
Pattern Orchestrator

Pattern Engine

Pattern Engine

Pattern Engine

Layer

SDN orchestration
layer
SDN orchestration
layer
SDN orchestration
layer
SDN orchestration
layer
SDN orchestration
layer
SDN orchestration
layer
SDN orchestration
layer
NFV orchestration
layer
NFV orchestration
layer

NFV orchestration
layer

Field layer

Field layer
Field layer

Field layer
Application
Orchestration
Layer

Application
Orchestration
Layer

SDN orchestration
layer

Field layer

Owner

SAG

SAG

SAG

SAG

SAG

FORTH

CTTC

CTTC

CTTC

CTTC

SAG

SAG

SAG

SAG

STS

STS

FORTH

FORTH

Related
Task
3.1,35

3.1,35
3.1,35

3.1,35

3.1,35

3.1,35

3.1,3.2,
35
3.2,35

3.2,35

3.2,35
3.3

3.3
3.3

3.3
4.1

4.1

3.1, 34,
4.1,45

4.1
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Related Requirements

R.GP.1t0 3, R.GP.6, R.BC.10, R.BC.12, R.NL.7, R.UC1.1,
R.UC2.3, R.UC3.6 to 7
R.GP.1t0 3, R.NL.81t0 9, R.S.11, R.UC1.1, R.UC1.4

R.GP.2

R.GP.1t0 3, R.S.11, R.UC.1, R.UC1.3 t0 5, R.UC2.3,
R.UC2.15, R.UC2.17, R.UC3.6 tO 7
R.GP.2, R.UC1.5t0 7

R.GP1, R.NL.11, R.S.7 to 16, R.GSP.1 to 2, R.UC1.1,
R.UC2.3, R.UC2.15, R.UC3.6 t0 7
R.GP.2t0 3, R.BC.12 t0 13, R.NL.8 t0 9, R.NL.11, R.NL.12

R.GP.2 t0 3, R.BC.110 4, R.BC.14 t0 15, R.NL.1 to 4,
R.NL.10 to 11, R.S.4, R.UC2.12, R.UC3.9, R.UC3.12 to 14
R.GP.2 t0 3, R.BC.1 10 4, R.BC.14, R.NL.1 to 4, R.NL.10,
R.UC2.12, R.UC3.9, R.UC3.12 to 14
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6 CONCLUSION

This deliverable described the SEMIOTICS architectural framework, which addresses the complicated
requirements of IoT/lloT applications such as security, privacy, dependability, and interoperability. It
documented the core mechanisms of the SEMIoOTICS framework and presented their mapping to the
architecture structure. The functional components of the proposed architecture are illustrated in detail. Finally,
the representation of use case scenarios is described and presented in the context of the SEMIOTICS
Framework and its presented architecture.

To optimize time and resources, work was carried out in parallel with tasks carried out within WP3, WP4, and
WP5. All results from said tasks have provided feedback and led to continuous updates of the SEMIOTICS
architecture. Since through research and development new concepts and needs arose, the architectural
approach had to be changed and some modifications needed to be introduced. The evolution of architecture
was presented herein to highlight the changes made at every stage of the project.

The final version of the SEMIoTICS high-level architecture deliverable (i.e., D2.5) is focused on the dynamic
architecture aspects considering the design decisions made in WP3 and WP4. Each component was analyzed
in detail to ensure satisfaction of the project’s requirements is achieved. Moreover, to fulfill the assumptions
about the use of external platform components, the consortium made every effort to examine the intrinsic
requirements of external 10T platforms and the use case environments. The output of these efforts in the
context of the architecture definition, i.e., the detailed specification of components and their interactions, was
documented herein.

Based on the above, and per the deliverable’s scope, D2.5 covers use case -specific message flows and
diagrams with connections to modules and layers. To facilitate readers’ understanding, the architecture is
presented for each specific use case with the actual devices and sensors present in each of these contexts
(e.g. robots, sensors, actuators) and the scenarios that are applicable within said use cases.

Through this interaction with the implementation tasks (i.e. WP3, WP4) and the use case owners, work on this
task has also resulted in a useful exchange of knowledge regarding specific components and technologies
between partners, also enabling the consortium to gain a common and homogeneous vision about the role of
each components and the SEMIOTICS framework as a whole. Armed with this knowledge and common
understanding, this deliverable and the resulting architecture will drive the integration and demonstration
efforts of WP5.
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APPENDIX

7.1 Mapping between requirements, architectural component and tasks.

7.1.1 GENERAL PLATFORM, BACKEND, NETWORK, FIELD AND PROJECT REQUIREMENTS
MAPPING TO TASKS AND ARCHITECTURAL COMPONENTS

SDN Layer NFV Layer WP3 - Smart objects and networks (SAG) 'WP4 - Pattern-driven smart behavior of lloT with End-to-End Security and Privacy (FORTH) 'WPS (ENG)

Backend Layer | Field Layer T3.5 - Implementation of Field-level middleware & networking toolbox {IQU) T4.6 - Implementation of SEMIGTICS backend API (BS) T5.2-153
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7.1.2

SECURITY AND PRIVACY PROJECT REQUIREMENTSMAPPING TO TASKS AND
ARCHITECTURAL COMPONENTS

SDN Layer NEV Layer WP3 - Smart objects and networks (SAG) \WP4 - Pattern-driven smart behavior of lloT with End-to-End Security and Privacy (FORTH) WPS (ENG)
Backend Layer | Field Layer T3.5 - Implementation of Field-level middleware & networking toolbox (1QU) T4.6 - Implementation of SEMIGTICS backend API (BS) 15.2-153
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7.1.3 USE CASE SPECIFIC PROJECT REQUIREMENTS MAPPING TO TASKS AND ARCHITECTURAL
COMPONENTS

SDN Layer NFV Layer WP3 - Smart objects and networks (SAG) 'WP4 - Pattern-driven smart behavior of lloT with End-to-End Security and Privacy (FORTH) WPS (ENG) |
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