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1 INTRODUCTION 
 

The SEMIoTICS SDN Controller (SSC) is the centralized network intelligence responsible for mapping of 
Virtual Tenant Networks (VTNs) and Application Services (i.e., “connectivity patterns”) onto the underlying 
physical network topology. The SSC is furthermore aware of the network devices’ capabilities and resources.  
 

The SSC is a typical example of a Network Operating System (NOS) to which the forwarding devices offload 
essential management and control tasks (i.e., path finding) to effectively decrease the data plane complexity 
and thus simplify the forwarding device costs. Contrary to specialized NOSs, which define the control plane of 
network devices and run independently of other NOS instances in the network, the SSC centralizes the NOS 
functions and provides a single logical entry point to the control plane. 
 

The SSC aims to allow for centralized control plane manipulation of devices. It does so by being able to 
intelligently configure the forwarding tables (filters and FIBs) according to a pattern specification and the 
included SPDI and QoS properties and constraints. For the purpose of fault tolerance and high availability, it 
is capable of enforcing redundant paths, with respect to the up-to-date status of network topology. The global 
view of the topology and reservation states is leveraged in order to solve tasks where deployment of custom -
tailored distributed protocol solutions might result in additional overhead and added complexity in the network. 
For example, centralized constraint-based routing based on actual network load allows for a higher degree of 
bandwidth utilization for guaranteed QoS, than the protocol-based approaches which perform routing and 
reservation in sequence. Configuration of forwarding databases, queue and ingress policing are some 
additional management tasks which the SSC is responsible for.  
 
In this deliverable, we propose the SSC architecture that encompasses the various functions required to fulfil 
the network-related requirements defined in D2.3. To this end, in this deliverable:  

▪ We present the high-level workflow of interactions between higher-layer instances of the SEMIoTICS 
architecture (Pattern Orchestrator) and the SSC. 

▪ We reiterate on the network-specific requirements, required by the various use cases. 
▪ We propose and discuss each of the controller functions necessary to realize the SEMIoTICS 

approach. 
▪ We discuss the existing interfaces between the SSC and the data-plane devices. 
▪ We compare the proposed architecture to the two state-of-art architectures, the generic OpenDaylight 

architecture and the project VirtuWind-specific SDN Controller solution. 
▪ We analyze existing wireless communication technologies that could be used for communication with 

the IoT devices in SEMIoTICS use cases requiring radio access network. 
  

The SEMIoTICS SDN Controller (SSC) is the centralized highly-available network control entity responsible 
of establishing isolated and QoS-enabling network services in both physical and virtual network topologies 
(i.e., in site-local and backend networks). To this end, SSC is enabled with an interface to parse SPDI 
pattern instance requests and is capable of evaluating and transforming the requests into network -specific 
configurations. To isolate the accessibility between end-points belonging to different tenants, SSC is 
capable of establishing Virtual Tenant Networks, i.e., a virtualized topology on top of the shared physical 
substrate. 
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1.1 SEMIoTICS approach – Networking Aspects 

 
In the SEMIoTICS approach, network operators and end-points, via architectural patterns or directly via the 
controller’s northbound interface, specify the required properties, derive network-related patterns or poll the 
network for statistics through abstracted and simplified northbound interfaces (NBIs) of the SSC. The SSC 
abstracts away the details of network configuration and the corresponding interface details by internalizing the 
decision making and enforcing the computed decisions upon network devices  without user involvement in the 
process, thus supporting the semi-autonomous operation of the SEMIoTICS framework. 
 

For the specified network-related patterns, the SSC executes the appropriate admission control and routing 
algorithms and automatically takes appropriate low-level actions to enforce the service requirements in the 
network. The SSC serves each communication service by manipulating the paths and allocating resources 
associated per service based on an abstract model of the network and its offered resources. The resulting 
configuration is then mapped to the realization method offered by each node, that allows for configuration of a 
forwarding entry per service, including the associated resources.  
 

The higher-level network management systems thus gain access to exposed functions (e.g. rule specification, 
overlay and tenant configuration) and monitoring APIs without needing to internally implement the technology-
specific network logic - device-compatible southbound interfacing. Thus, the burden of network configuration 
is moved from the management application to a centralized network controller.  
 
The southbound interface technology plugins allow for interface-specific enforcement of technology-agnostic 
network functions. This is achieved by mapping of abstracted and generally-valid configurations to low-level 
device- and technology-specific configurations. Thus, an administrator polling the forwarding database of a 
network device need not require knowing the exact technology at hand (e.g. a FIB status or OpenFlow [1] flow 
table database) in order to fetch the needed information.  
 

Furthermore, the SSC is able to execute its core functions, e.g. topology database population, constrained 
path computation etc. in a generic manner, and map the results to any controlled network device using the 
corresponding technology plugin. 
 
In case of an OpenFlow device, the OpenFlow technology plugin takes care of translation of generic controller 
computation results to a configuration compliant with the standardized OpenFlow data model. In addition, the 
non-OpenFlow data objects can be configured using a single flexible management protocol (e.g. NETCONF 
[2]) thus supporting standardized and extended information models, modeled using the IETF YANG language 
(e.g. [3]). Since not all switch features may have a NETCONF/YANG Module definition in near future, it may 
be necessary to also leverage the support for SNMP and MIB definitions in the SSC realization for SEMIoTICS 
use cases. 
 

1.2 Logical link with WP2 beneficiaries – T2.3 

 
The use case definitions in D2.2, as well as the extracted use case requirements described in D2.3 affect the 
WP3 tasks dealing with SDN and NFV, especially the ones dealing with networking requirements. Namely, 
these include: 
 

• Network level requirements at the control plane level. 

• Network level requirements at the data plane level. 

• Domain specific networking requirements. 
 

Thus, they provide an input for definition of controller functions in T3.1. We reiterate the networking-related 
requirements in Section 2. Furthermore, this deliverable provides the architectural input for the networking -
related components described in D2.4, with each of the presented SDN Controller components being directly 
mapped to the architectural components of the SDN/NFV layer. 
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1.3 Logical link with WP3 beneficiaries – T3.3, T3.4 

 
Task 3.2 discusses the role of the NFV-related management infrastructure and its interaction with the SDN 
Controller. Its output, i.e. deliverable D3.2, details the requirements of the exchange of Service Function 
Chains-related information between the MANO and the Controller, for the purpose of enabling the dynamic 
interconnection of the VIM-instantiated services at network layer at runtime. 
 
Task 3.4 and the corresponding deliverable (D3.4) defines the initial design and specification of the network 
programming interfaces that enable the development, optimization and adaptation properties required for the 
SEMIoTICS framework to support the deployment of network services from all SEMIoTICS layers and its 
seamless interaction with IoT Applications, as specified by SPDI patterns. T3.3 and T3.4 furthermore detail 
the application relations, i.e., the field and cross-domain connectivity (IIoT Gateway to Backend) relevant for 
service profiling in the SSC, and the associated semantic descriptions facilitating interoperability.  
 
Task 3.5 is an overarching integration/implementation task that aims to describe the integration path of the 
SSC in the generic SEMIoTICS middleware, as well as its implementation, comprising the networking toolkit. 

1.4 Logical link with WP4 beneficiaries – T4.1 

WP4 tackles the pattern-related approach examined by the project. This includes, among others, the 
development of patterns for orchestration of smart objects with guaranteed properties. Apart from security, 
privacy, dependability and interoperability-related (SPDI) patterns, we have observed the need for another 
category describing the connectivity-related pattern definition. Connectivity patterns are needed to express the 
need for enabling basic and fault-tolerant application relationship. While connectivity-related patterns will be 
defined in T3.4, T4.1 presents the according pattern language and syntax, as well as the representative pattern 
definitions. WP4 will implement the Pattern Orchestrator component, that directly interacts with the SSC (and 
more specifically, the pattern engine component of the SSC) for the purpose of enabling the network 
connectivity between the specified application end-points. 
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1.5 PERT chart of SEMIoTICS 

36 months Leader: SAG

31.12.202001.01.2018

WP1: Project Management

23 months Leader: ST-I

30.11.201901.01.2018

WP2: Requirements and Architecture for 
Smart Sensing and Smart Actuation

24 months Leader: SAG

30.04.202001.05.2018

WP3: Smart objects and networks

25 months Leader: FORTH

30.06.202001.06.2018

WP4: Pattern-driven smart behavior of 
IIoT with End-to-End Security and Privacy

24 months Leader: ENG

31.12.202001.01.2019

WP5: System Integration and Evaluation

36 months Leader: SAG

31.12.202001.01.2018

T1.1: Project coordination 36 months Leader: FORTH

31.12.202001.01.2018

T1.2: Project technical and innovation 
management

36 months Leader: SAG

31.12.202001.01.2018

T1.3: Coordination with EU programme 
level activities

3 months Leader: STS

31.03.201801.01.2018

T2.1: Analysis of emerging business and 
technical IoT value drivers

4 months Leader: SAG

30.04.201801.01.2018

T2.2: Specification of use case scenarios 
& applications and their requirements

4 months Leader: ST-I

30.06.201801.03.2018

T2.3: Specification of infrastructure 
requirements

18 months Leader: BS

31.12.201901.07.2018

T2.4: SEMIoTICS architecture design

22 months Leader: SAG

29.02.202001.05.2018

T3.1: Software defined Aggregation, 
Orchestration and cloud networks

22 months Leader: CTTC

29.02.202001.05.2018

T3.2: IIoT Network Function Virtualization

22 months Leader: SAG

29.02.202001.05.2018

T3.3: Semantics-based bootstrapping & 
interfacing

22 months Leader: STS

29.02.202001.05.2018

T3.4: Network-level semantic 
Interoperability

22 months Leader: IQU

30.04.202001.07.2018

T3.5: Implementation of Field-level 
middleware & networking toolbox

23 months Leader: STS

30.04.202001.06.2018

T4.1:Architectural SPDI patterns

22 months Leader: ENG

30.04.202001.07.2018

T4.2: Monitoring, prediction and 
diagnosis

22 months Leader: ST-I

30.04.202001.07.2018

T4.3: Embedded Intelligence and local 
analytics

22 months Leader: FORTH

30.04.202001.07.2018

T4.4: End-to-End Semantic 
Interoperability

22 months Leader: BS

30.06.202001.09.2018

T4.6: Implementation of SEMIoTICS 
backend API

22 months Leader: UP

30.04.202001.07.2018

T4.5: End-to-End Security and Privacy

5 months Leader: UP

31.10.201901.06.2019

T5.1: KPIs and Evaluation Methodology

15 months Leader: BS

31.08.202001.06.2019

T5.2: Software system integration

20 months Leader: IQU

31.08.202001.01.2019

T5.3: IIoT Infrastructure set-up and 
testing

13 months Leader: SAG

31.12.202001.12.2019

T5.4: Demonstration and validation of 
IWPC- Energy scenario

13 months Leader: ENG

31.12.202001.12.2019

T5.5: Demonstration and validation of 
SARA-Health scenario

13 months Leader: ST-I

31.12.202001.12.2019

T5.6: Demonstration and validation of 
IHES-Generic IoT scenario

36 months Leader: CTTC

31.12.202001.01.2018

T6.1: Impact Creation and Dissemination 31 months Leader: ENG

31.12.202001.06.2018

T6.2: Exploitation of results

24 months Leader: SAG

31.12.202001.01.2019

T6.3: Standardization
36 months Leader: CTTC

31.12.202001.01.2018

WP6: Impact, Dissemination and 
Standardization

 
Please note that the PERT chart is kept on task level for better readability.  
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2 SEMIOTICS NETWORKING INFRASTRUCTURE 
REQUIREMENTS    

 
The following subsections summarize the SDN-related requirements as defined in T2.3. The requirements can 
be abstracted into the main set of features of our controller: 

▪ The SSC should enable flexible end-to-end QoS-enabled connectivity at any level of the 
infrastructure; 

▪ The SSC should provide for a scalable control plane operation (i.e., the SSC should provide support 
for a large number of end-devices); 

▪ Fault-tolerant SSC operation (including the defense mechanisms for enabling Byzantine Fault 
Tolerance) – the controller must be resistant against availability issues and Byzantine attacks for 
arbitrary amount of failures F; 

▪ The SSC must abstract away the details of network control using the means of a northbound 
interface; 

▪ The SSC must enable a secure access to all exposed interfaces of the controller; 
▪ The SSC should support OpenFlow 1.3-based interactions with either virtualized or physical data-

plane components; 
▪ The SSC should expose an interface to the external VIM for the purpose of SFC specification and 

the corresponding functions for enforcement of the same; 
▪ The SSC should provide for an automated establishment of basic infrastructure services requiring 

network connectivity (initial bootstrapping). 
 
More details on the above are provided in the Tables below, aggregated as Control Plane, Data Plane and 
Domain-specific requirements. The Reference column links to the section providing more details on the 
method to handling the described requirement - often a component introduced in the SDN controller necessary 
to provide for the required functionality. 

2.1 Control Plane Requirements 

 
The following table portrays the control plane requirements to be fulfilled mainly by the SDN controller solution.  
 

TABLE 1: NETWORK CONTROL PLANE REQUIREMENTS 

Req-ID Functional Description 
Req. 
level 

Addressed in 
/ Adressed by 

component 

R.GP.1 Yes 

End-to-end connectivity between 
the heterogeneous IoT devices (at 
the field level) and the 
heterogeneous IoT Platforms (at the 
backend cloud level) 

MUST 

Section 3.1.1 
 

Enabling 
components: 

Pattern 
Engine, VTN 

Manager, 
Path 

Manager, 
Resource 
Manager, 

SFC 
Manager, 

SDN Data-
Plane 

Devices 
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R.GP.2 Yes 

Scalable infrastructure due to the 
fast-paced growth of IoT devices 

MUST 

Section 
3.1.1.1 

 
Enabling 

components: 
SDN Data-

Plane 
Devices, 

overall SSC 
solution 

R.GP.3 Yes 

High adaptation capability to 
accommodate different QoS 
connectivity needs (e.g. low latency, 
reliable communication)  

MUST 

Section 4.4 
 

Enabling 
components: 

Pattern 
Engine, VTN 

Manager, 
Path 

Manager, 
Resource 
Manager 

R.GP.4 Yes 

Detection of events requiring a QoS 
change and triggering network 
reconfiguration need by SPDI 
pattern 

MUST 

Section 4.2.1 
 

Enabling 
components: 

Pattern 
Engine 

R.GP.5 Yes 

Interaction between SDN controller 
and IoT backend cloud through a 
dedicated interface (called 
northbound software interface) 

MUST 

Section 4.2.1 
 

Enabling 
components: 

Pattern 
Engine 

R.GP.6 Yes 

Interaction between SDN controller 
and network nodes (e.g. switches, 
routers or IoT Gateways) through 
dedicated interface (called 
southbound software interface) 

MUST 

Section 4.5 
 

Enabling 
components: 

Resource 
Manager 

R.GP.7 Yes 

SDN controller giving feedback for a 
future generation of SPDI patterns 
to avoid using the same pattern in 
case of failure  

MUST 

Section 4.2.1 
 

Enabling 
components: 

Pattern 
Engine 

R.S.2 Yes 

Authentication and authorization of 
the stakeholders MUST be enforced 
by the Network controller, e.g. 
through access and role-based lists 
for different levels of function 
granularities (overlay, customized 
access to service, QoS 
manipulation, etc.) 

MUST 

Section 4.6 
 

Enabling 
components: 

Security 
Manager 
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R.S.7 Yes 

The negotiation interface of the SDN 
Controller SHALL be secure against 
network-based attacks 

SHALL 

Section 4.6 
 

Enabling 
components: 

Security 
Manager 

R.NL.8 / 
R.BC.12 

Yes 

The VIM and Virtual Network 
frameworks must support Interfaces 
that enable VM tenant networking 

MUST 

Section 4.3.1 
 

Enabling 
components: 

Virtual 
Tenant 

Network 
Manager 

R.NL.9 / 
R.BC.13 

Yes 

Interface between the VIM and the 
SDN controller to allow VTN 

MUST 

Section 4.3.1 
 

Enabling 
components: 

Virtual 
Tenant 

Network 
Manager 

R.NL.1 Yes 

Controller Node requirement: At 
least 6 CPU cores and 32 GB RAM 

SHOULD 

Trivial 
hardware 

requirement 
(i.e., not 

specifically 
discussed 
further in 

text). 

R.NL.2 Yes 

Controller Node requirement: At 
least 2 Network interfaces 

SHOULD 

Trivial 
hardware 

requirement 
(i.e., not 

specifically 
discussed 
further in 

text). 

R.NL.3 Yes 

Controller Node Requirement: Linux 
OS 

MUST 

Trivial 
software 
platform 

requirement 
(i.e., not 

specifically 
discussed 
further in 

text). 

R.NL.4 Yes 

Controller Node Requirement: Solid 
State Disk (SSD) of at least 1 TB  

SHOULD 

Trivial 
hardware 

requirement 
(i.e., not 

specifically 
discussed 
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further in 
text). 

 

2.2 Data Plane Requirements 

The following table portrays the data plane requirement to be fulfilled by the SDN switches.  
 
 

TABLE 2: NETWORK DATA PLANE REQUIREMENTS   

 

Req-ID Functional Description Req. level 
Addressed in / Addressed 

by component 

R.NL.7 / 
R.BC.10 

Yes 

Virtual Physical SDN Switch 
requirement: Support for 
OpenFlow v1.3 protocol or 
greater 

SHOULD 

Section 4.5 
 

Enabling components: 
Trivial software platform 
requirement for switch 

implementation. OpenFlow 
v1.3 supported by 

Resource Manager. 

2.3 Use Case-Specific Scenario Requirements 

The following table portrays the use case-specific requirements to be fulfilled by the SDN components. 
 

TABLE 3: DOMAIN-SPECIFIC SCENARIO REQUIREMENTS   

 

Req-ID Functional Description 
Req. 
level 

Addressed in / Addressed by 
component 

R.UC1.1 Yes 

Automatic establishment of 
networking setup MUST be 
performed to establish end-to-end 
connectivity between different 
stakeholders MUST 

Section  
3.1.1 

 
Enabling components: 

Pattern Engine, VTN 
Manager, Path Manager, 
Resource Manager, SFC 

Manager, SDN Data-Plane 
Devices 

R.UC1.3 Yes 

There MUST be enabled the 
definition of network QoS on 
application-level and automated 
translation into SDN controller 
configurations. 

MUST 

Section 4.4 
 

Enabling components: 
Pattern Engine, Path 

Manager, Resource Manager 

R.UC1.4 Yes 

Network resource isolation MUST 
be performed for guaranteed 
Service properties – i.e. reliability, 
delay and bandwidth constraints. 

MUST 

Section 4.4 
 

Enabling components: VTN 
Manager, Path Manager 

R.UC1.5 Yes 
Fail-over and highly available 
network management SHALL be 

SHALL 
Section 4.4 and 4.7 
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performed in the face of either 
controller or data-plane failures. 

Enabling components: Path 
Manager, Clustering Manager 

R.UC1.6 Yes 

Decisions made by unreliable, i.e. 
faulty or malicious SDN 
controllers, SHALL be identified 
and excluded. 

SHALL 

Section 4.7.1 
 

Enabling components: 
Clustering Manager 

R.UC1.7 Yes 

The operation of the SDN control 
SHALL be scalable to cater for a 
massive IoT device integration 
and large-scale request handling 
in the SDN controller(s) using a 
(near-) optimal IoT client – SDN 
controller assignment procedure. 

SHALL 

Section 4.7.1 
 

Enabling components: 
Overall SSC solution is 

scalable. However, due to 
Clustering being the largest 

scalability bottleneck, we 
focus on enhancing its design 

in forthcoming Deliverable 
D3.7. 

R.UC2.3 Yes 

The SEMIoTICS platform 
SHOULD guarantee proper 
connectivity between the various 
components of the SARA 
distributed application. The SARA 
solution is a distributed 
application not only because it 
uses different cloud services (e.g. 
AREAS Cloud services, AI 
services) from different remote 
computational nodes, but also 
because the SARA application 
logic itself is distributed across 
various edge nodes (SARA 
Hubs). The following diagram 
shows the components of the 
SARA system: 

SHOULD 

Section  
3.1.1 

 
 

Enabling components: 
Pattern Engine, VTN 

Manager, Path Manager, 
Resource Manager, SFC 

Manager, SDN Data-Plane 
Devices 

R.UC2.15 No 

The SEMIoTICS platform 
SHOULD provide low latency 
connectivity between the SARA 
hubs and cloud services (i.e. 
AREAS cloud services and AI 
services) to allow offloading of 
near real-time computation 
intensive tasks to the cloud. 
Examples include:  
• the robotic assistant (RA) 
employing AI services to analyse 
Patient's speech (audio) and body 
language (video) to identify 
significant events – e.g. "Patient 
requests an escort", "Patient asks 
where his glasses are 
• the robotic rollator (RR) 
exploiting AI Services to analyse 
Patient's gait and posture to 
identify significant events – e.g. 
"Patient has fallen”. 

SHOULD 

Section 4.4 
 

Enabling components: Path 
Manager 
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• mobile robotic Devices (RA/RR) 
exploiting cloud resources for 
simultaneous localization and 
mapping (SLAM) 
Therefore, SARA hubs need to 
send with minimal delay: 
• raw range data (e.g. from Lidar 
sensors) to identify proximal 
objects/objects, 
• real-time audio stream for 
speech analysis, 
• and real-time raw video stream 
(object/people recognition, 
gesture recognition, posture 
analysis). 

R.UC2.17 No 

The SEMIoTICS connectivity 
SHOULD support real time 
exchange of raw sensor data 
among sensors/actuators and 
SARA Hubs. 

SHOULD 

Section 4.4 
 

Enabling components: Path 
Manager 
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3 SEMIOTICS NETWORK CONTROLLER ARCHITECTURE 
 

The architecture proposed by SEMIoTICS relies on a set of virtualized services that allow the secure and 
reliable transport of sensor data from field devices towards their final destination for processing or storage. 
Such final destinations are subject to applications’ requirements, e.g.: bounded latency; are satisfied by “smart” 
path planning and embedding of network paths so that the application requirements are fulfilled. The 
virtualization dimension also includes dynamically and securely instantiating Virtual Network Functions (VNFs) 
at appropriate locations in the SEMIoTICS architecture (e.g.: at IoT Gateways, network layer, or the backend 
cloud), so to fulfil the low latency and storage requirements of the application. In light of such a dynamic 
network environment, the need for a centralized control of the whole network (physical and virtual) is 
paramount. 
 

Similarly, obliging to industrial applications’ requirements in terms of a deterministic upper bound end-to-end 
latency, high reliability of the application flows, is simplified through the centralization of the network view and 
serialization of configuration changes decisions. SDN Controller thus must internalize the path finding 
algorithms and configuration capabilities to serve the flows. 
 

In an SDN framework, the SEMIoTICS SDN Controller (SSC) employs a set of Southbound interfaces (SBI) 
for configuring network devices (such as NETCONF or OF-CONFIG), and to control such devices’ forwarding 
table (using protocols like OpenFlow). As network devices boot-up, they reach for the controller in order to 
register the devices for configuration and forwarding table modifications. After this process is finished, the SSC 
establishes a complete, centralized view/control of the network, whose topology may be visualized employing 
the SSC’s northbound interfaces (usually RESTful APIs). 
 

Physical Network Functions (PNFs) in the SEMIoTICS architecture, such as the IIoT Gateway, as well as the 
switches and routers at the Field and Network layers, are equipped with compute and storage resources, 
which, in combination with the Backend-Cloud’s resources, are managed and exposed by the Virtual 
Infrastructure Manager (VIM). These devices and their resources may be used for the spin-off of VNF (like 
virtual switches, routers, firewalls, load balancers, processing or storage endpoints), and are (virtually) 
connected together in the form of VNF Forwarding Graphs (VNF-FG) to offer network services. Such 
connections are achieved by virtual network overlays (or Virtual Tenant Networks (VTN)) built by the SSC on 
top of the underlying physical network infrastructure. In order to provide a network service, the VIM and the 
SSC share a common VNF-FG. As the VIM spins-off VNFs (e.g., virtual switches) and specifies how these 
should be connected together, the SSC modifies the forwarding table of the appropriate VNFs in order to 
ensure secure and reliable communication of the whole VNF-FG.  
 

The remainder of the section details the role of the SSC in the SEMIoTICS architecture, as well as its 
functionality exposed to the NFV Management and Orchestration framework. 
 

3.1 Role of the SDN Controller in SEMIoTICS Architecture 

Mainly driven by the explosion of the cloud technologies, networking is again retu rning to a more centralized 
model. For decades, network protocols such as Open Shortest Path First (OSPF), Border Gateway Protocol 
(BGP), Routing Information Protocol (RIP), or Spanning Tree Protocol (STP) have worked on top of the premise 
that “no entity has a complete view of the network”. This fact significantly stirred the design of networks and 
protocols. 
 

Software Defined Networking (SDN) seeks to disaggregate the control and data planes1. In this approach, a 
central control plane, i.e. SDN Controller, is endowed with a complete view of the network. This attribute 

                                                      
1 Which previously resided inside network devices. Cross compatibility is ensured by following standardized protocols.  



780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017 
Deliverable D3.1 Software-Defined Programmability for IoT Devices (first draft) 
Dissemination level: Public  

 

15 
 

dramatically changes the way networks are now conceived, transitioning to SDN networks composed of a 
single SDN Controller2 and many bare-metal SDN-enabled forwarding devices.  
 

This section describes the role of the SSC in the SEMIoTICS architecture, including its physical location in the 
SEMIoTICS topology, and how it achieves data plane control through the control plane.  
 
 

3.1.1 SDN CONTROLLER POSITIONING IN THE SEMIOTICS ARCHITECTURE 

 
The SDN components in the context of SEMIoTICS use-cases include the control and data plane counterparts, 
comprising: 

▪ The SEMIoTICS SDN Controller (SSC) as the main point of logic computation and data planes 
rules configuration 

▪ Data Plane components, i.e. physical or virtual switches with an interface exposing APIs for 
controller-based reconfiguration. 

 
The deployment of the SSC is expected in the Network Layer, i.e., at the site-level backbone. Thus, the SSC 
manages the ingress and egress connections stemming at field level. The data-plane devices, i.e.  the switches 
are available both at Network and Field Layer, with a particular subset of devices available in either Network 
Layer only (serving as a gateway for external connections), or both in field and network layer, for setups 
requiring more than a single Layer 2 domain and thus having higher scalability requirements.  
 

While topology-agnostic, the SSC is expected to operate on a multi-ring network or partial mesh topologies, 
offering support for disjoint path establishment and thus fault -tolerance for critical services in the face of data-
plane failures. A topology depicted in Figure 1 depicts an exemplary fully-meshed network layer, tolerant 
against both link and switch failures, also highlighting data and control plane connections.  
 
 
 
 
 
 
 

 
 

3.1.1.1 ACHIEVING GLOBAL CONTROL OF THE NETWORK FROM A CENTRALISED SDN CONTROLLER  
 

There are two main ways in which an SSC manages the underlying fabric namely, directly or via network 
overlays [4]. The former consists of the SSC directly communicating with SDN-enabled switches via 
southbound interfaces (SBI) such as OpenFlow [1], NETCONF [2], OVSDB, OpFlex, and others. These SBIs 
allow the controller privileged access to the devices’ forwarding tables, as well as other device configurations 
per se. This method is the one used by most popular off-the-shelf controllers i.e.: ODL; and its variation SSC 
which is to be developed in SEMIoTICS. The latter method uses encapsulation protocols (e.g.: VXLAN, 
NVGRE, IPSEC) on top of conventional networks3 to build the desired network topologies. Even though it is 
debatable whether overlays are SDN or not, they are indeed software defined4. 
 

                                                      
2 High-Availability (HA) clusters may host a single logical SDN Controller instance with multiple dislocated replicated 
instances.  
3 By conventional it is meant that there exists L2 or L3 connectivity among components of the network.  
4 In fact, Virtualized Infrastructure Managers (VIM, e.g.: OpenStack) employ an SDN Controller and overlays to provide 
private tenant networks. 

Summarized, the controller manages the ingress and egress connections stemming at 
field level, targeting both other field level devices as destinations or remote sinks located 
in cloud / backend layer. By providing the generic and QoS-constrained connectivity, 
controller addresses the R.GP.1, R.UC1.1 and R.UC2.3 requirements. In the remainder 
of the document we discuss the individual development plan for functions of the controller, 
comprising the capabilities necessary to enable the connectivity requirement. 
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FIGURE 1: INSTANCE OF THE SEMIOTICS ARCHITECTURE DEPLOYMENT VIEW 

 
 
Regardless of the SDN Controller vendor, there are core features that must be supported by an industrial 
variant of an SDN Controller. A non-exhaustive description of these is provided below and [4]: 

• Data plane programmability: change the way flows are forwarded, apply filters, or dynamically 
changing packet headers. Via northbound interfaces control information concentrated at the SDN 
Controller could be accessed/changed by SDN Applications. Such applications may then use such 
information to apply templates that effectively change the network configuration, e.g.: satisfy 
bandwidth constraints, QoS enforcement, forward through least expensive paths, and so on. 
 

• Southbound protocol support: the most widely used southbound protocol is OpenFlow. An SDN 
Controller should be able to interact with OpenFlow agents (or other southbound protocol) in SDN-
enabled forwarding devices in order to control the different actions to be performed while forwarding. 

o As mentioned previously, OpenFlow is not the only protocol supported by ODL as SBI.  
NETCONF, OVSDB and SNMP are some of the other alternatives [5, 4]. 
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• External API support: to ensure it could be used within various cloud orchestration environments, e.g.: 
OpenStack. Through well specified APIs, network policies exchange is realized, allowing the control 
of the networking resources of a virtual infrastructure. 
 

• Centralization: allowing administrators a complete view of the network. It should also support 
discovery protocols so new network devices are registered and bootstrapped if necessary. 

 

• Performance: as network devices rely on the SDN Controller for handling incoming flows not contained 
in the current flow table, controllers should ensure such requests are handled as fast as possible, 
otherwise the SDN Controller is prone to become a network bottleneck. 

 

• High Availability and Scalability: the ability to work as a cluster allows an SDN Controller to expand 
its performance and availability by adding more controller nodes and load balancers.  

 

• Security: as the functioning of the network depends on the SDN Controller,  it should be capable of 
authenticating/authorizing members of the network while performing intrusion detection and 
prevention, e.g.: secure southbound channels, encryption. 

 
 

 
FIGURE 2: OPENDAYLIGHT SDN CONTROLLER PLATFORM [5] 

 
Modern SDN Controllers, such as OpenDaylight (ODL), are built following a modular architecture (see Figure 
2). Each independent module could leverage services exposed by other modules in order to provide composite 
functionality. Focusing on the configuration of the data plane, the following details the most relevant 
southbound protocol modules implemented by ODL (or Southbound Interfaces and Protocol Plugins, as 
referred to at the bottom of Figure 2), which must also exist in SEMIoTICS SDN Controller: 

• NETCONF: ODL supports communication with NETCONF servers at SDN-enabled forwarding devices. 
Additionally, this module may work as a NETCONF server itself in order to expose Control plane 
information to external entities, e.g.: SDN applications. 
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• OpenFlow: Enables the SDN Controller to configure the flow table of OpenFlow enabled SDN devices 
remotely. OpenFlow Library allows the SDN Controller to listen for OpenFlow messages (spawns a 
daemon), as well of supporting multiple OpenFlow versions. 

• OVSDB: It is used for managing5 OVS-enabled switches (physical or virtual). OVS [6] is an opensource 
software that implements virtual switching that is interoperable with almost all popular hypervisors. 
OVS uses OpenFlow to perform message forwarding in the control plane for both virtual and physical 
ports. OpenDaylight’s OVSDB southbound plugin manages OVS devices supporting OVSDB schema 
and the OVSDB management protocol, 

• SNMP4SDN: This module allows ODL to interact with SNMP-enabled switches. It uses SNMP methods 
for writing forwarding as well as configuration information into the devices. 

 
Previously mentioned SBI establish communication through the control plane (see Figure 1). One module or a 
combination of these are required for effective SDN-enabled device configuration in SEMIoTICS. In the 
remainder of the document, we assume the OpenFlow-connector as the only fully required protocol in 
SEMIoTICS use cases. 
 
 
 
 
 
 
 
 
 
 
 

3.1.1.2 ACTING UPON NETWORK STATE AND SERVING NETWORK STATE INFORMATION 
 

To showcase the internal state handling and algorithms internalized in the centralized controller, we list below 
the scenario of pre-configuration, network bootstrapping and a trivial connectivity pattern evaluation and its 
enforcement; these are also depicted in the Figure 3. 
 

Startup Phase: The user pre-configures the controller and forwarding devices, i.e., using a configuration file, 
with the set of IP addresses and executes the boot up procedure. Additional, security related actions are 
executed by the user, including the roll-out of public certificates to switches associated with the allowed 
controller instances. Optionally, the devices are capable of executing the DHCP/DHCPv6/SLAAC bindings and 
autonomously receiving and applying a discovered IP address, instead of the manual configuration. 
 

Default Bootstrapping Phase: SSC must discover the devices in its network, i.e., the switches using the 
OpenFlow discovery protocol, SNMP LLDP MIB crawling or similar bootstrapping mechanism. Following the 
discovery and establishment of control session, the controller listens for incoming packets from end-devices 
(hosts), e.g., the IIoT Gateway, SCADA application etc. and updates its host database with the corresponding 
attachment points behind which the hosts are located. The SSC then proceeds to install the required flow rules, 
so to enable basic infrastructural services, i.e., a network connection between the IIoT Gateway and backend, 
in order to provide for a possibility of IIoT Gateway to report its status and the capabilities of its field devices 
(i.e., sensors and actuators) in the Thing Directory in the Backend (please refer to Deliverable D3.3). 
 

Runtime Phase: SSC is capable of accepting pattern rules specified as a set of properties, encompassed in 
invariants, that describe the intent which is to be fulfilled by the underlying data substrate. The SSC accordingly 
processes the patterns posted as REST requests, in Drools format, at its northbound interface and validates 
the viability of its enforcement in the internal modules. For example, a controller might be requested with a 
pattern necessitating and end-to-end flow embedding in a higher-than-best-effort service class, i.e., with 
specific bandwidth and delay requirements.  

                                                      
5 View, create, modify, and delete. 

Modern SDN controllers (i.e., ODL) are equipped with a east-westbound connectivity, allowing for 
for multi-controller-based interaction when establishing connections across multiple 
administrative domains. By separating network control into multiple administrative domains, 
higher scalability of the overall system can be supported, due to individual controllers 
experiencing a lower load on average, than when controlling all devices in a single domain. By 
extending an OpenDaylight based platform, SSC will remain compatible with the east -westbound 
implementations and thus enable the scalability requirement R.GP.2. 
 



780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017 
Deliverable D3.1 Software-Defined Programmability for IoT Devices (first draft) 
Dissemination level: Public  

 

19 
 

 
To adhere to the rule specification, the controller internally evaluates the topology state for a path that would 
fulfill the named criteria, i.e., using a combination of routing algorithms, designed to consider a set of 
constraints (including delay and bandwidth) [7]. If the connectivity is possible given the current amount of 
resources, the controller propagates the enforcement request for individual flow rules to the lower-level 
southbound interface (i.e., the OpenFlow plugin). The OpenFlow plugin is then in charge of se nding the 
according flow modification messages to the corresponding data plane switches.  
 

 
FIGURE 3: THE ABSTRACTED WORKFLOW OF BASIC SYSTEM INITIALIZATION, BOOTSTRAPPING 

AND PATTERN ENFORCEMENT IN THE SEMIOTICS SDN CONTROLLER 

 

3.1.2 PATTERN ENFORCEMENT USING A LOCAL PATTERN ENGINE 

 
One of the examined capabilities of Pattern Enforcement could be used to find or verify suitable paths in order 
to pre-plan and reserve paths with respect to the SPDI properties. After evaluating the available network 
components and flows, SPDI patterns could be executed to realize the verification process where new paths 
can be inserted (i.e. add the required flow rules), removed (i.e. delete flow rules) or modified (post flow rules) 
in the controller and consequently in the programmable switches. The patterns in the controller can  be used 
not only for the verification of network paths but also at runtime i.e. , following a network link failure or when a 
SPDI property is not guaranteed to reconstruct or restore required SPDI properties when such properties have 
been violated. 
 

3.1.3 NETWORK OVERLAYS SUPPORTING NFV: SDN AND NFV FROM THE SDN CONTROLLER’S 
PERSPECTIVE 



780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017 
Deliverable D3.1 Software-Defined Programmability for IoT Devices (first draft) 
Dissemination level: Public  

 

20 
 

 
VNFs are seen as virtual counterparts of physical switches, routers, firewalls, load balancers, IDS, IPS, and 
so on. As opposed to conventional Physical Network Functions (PNF), VNFs can potentially bring significant 
reductions in the total cost of the infrastructure, mainly because from a set of fairly generic hardware (i.e.: data 
center) many VNF can be spawned, used and terminated; effectively creating customized network servic es 
when needed, and freeing their used resources when terminated. 
 

As hinted previously, infrastructure flexibility is one of the most relevant features provided by Network 
Functions Virtualization (NFV) [8] (either at the compute, storage or networking level), and network overlays 
play a crucial role in network virtualization. Through overlays, the SDN Controller is able to create different 
network topologies for each project, dubbed VTNs, which are effectively isolated from each other. 
 
Specifically, in purely virtualized networking environments ( i.e., in Backend layer networking), we rely on 
instantiation of network services, including the VTNs, as well as the actual end-point VNFs using a single 
interface, i.e. a single Network Service Description (NSd files). This is in contrast to field layers of infrastructure, 
that may have to rely on controlling physical SDN infrastructure, as well as establishing communication flows 
between non-virtualized end-points, such as programmable logical controllers and field sensors. There, 
specification of virtual tenant networks is explicit, at the level of VTN Manager SSC’s component. 
 

ODL (the reference SDN Controller for SEMIoTICS) is equipped with a VTN module for interfacing with 
Virtualized Infrastructure Managers (VIM) such as OpenStack [5]. The ODL’s VTN module is a policy manager 
that registers any tenant resource in the VIM via ODL’s ML2 plugin6, so any tenant configuration modification 
at the VIM is reflected in ODL, too. That is, by analyzing the information gathered for each tenant (network 
topologies, VNFs, MAC, IPv4 addresses, and so forth), VTN is able to replicate such policy7 using the VIM’s 
exposed networking APIs and ODL’s SBIs. 
 

Service Function Chains (SFC) are a particular case for policy enforcement. SFC specif ies the order of 
PNFs/VNFs packets should flow through in order to provide a Network Service (NS). ODL is equipped with an 
SFC module which feeds from control information (including VTN received from the VIM) and builds flow 
policies to handle the sequence of VNFs a specific flow should go through. It includes the following 
components: 

• Classifier: selects flows for traversing a specific SFC based on a flow match policy.  

• Service chain: refers to the list of devices the matched flow should traverse. 

• Service path: the actual VNF instances traversed. 

• Service overlay: a topology created to visualize the service path. 

• Metadata: information passed between service functions. 
 

The SFC is also able to receive SFC designs/recipes via an exposed northbound API.   

                                                      
6 The ML2 plugin was created for ODL-OpenStack integration. It passes all OpenStack’s Neutron API calls to ODL’s VTN 
manager via REST calls [4]. 
7 I.e. What nodes should be able to communicate with which ones. 
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3.1.3.1 ACHIEVING DATA TRANSPORT LEVERAGING VIRTUAL NETWORK FUNCTIONS 
 
NFV and SDN are the key enablers of interconnected virtual functions. The virtualized application elements 
for each UC are conceived as VNFs instantiable by the Virtual Infrastructure Manager (VIM) on top of a NFV 
infrastructure. Networking for both these virtual and physical application functions is provided in the form of 
overlays handled by the SDN Controller, while VNF instantiation and lifecycle management 8 is handled by the 
NFV Orchestrator. Table 4 provides an overview of requirements relying specifically on interaction or 
depending on SDN/NFV function calls and discusses our method of handling the requirement. 
 

TABLE 4: UC2 NETWORK REQUIREMENTS (SARA HEALTHCARE) 

Req-ID General Description Specific NFV/SDN Requirements Reference / Enabled by 

R.UC2.1 

The SEMIoTICS platform 
SHOULD support time- 
and safety-critical 
requirements by allowing 
SARA application logic to 
be deployed on resource-
constrained edge 
gateways (e.g. 
smartphones, vehicles, 
mobile robots). 
SEMIoTICS platform 
functionalities SHOULD 
be locally available even 
in case of failure of 
communication with the 
SEMIoTICS cloud nodes. 

IIoT devices MUST support 
virtualization and MUST be 
reachable by NFV MANO 
components. Furthermore, the 
topology supporting the UC MUST 
be expressed in form of a NFV 
MANO-compatible network service 
via the corresponding descriptors.  

While the first requirement on 
generic connectivity is 
discussed throughout this 
document, the fulfilment and the 
format of the network service 
specification (using NSd – 
networking service descriptors) 
is detailed in Deliverable D3.2. 

R.UC2.2 

The SEMIoTICS platform 
SHOULD support the 
SARA solution to 
manage the trade-off 
between different 
requirements (e.g. 
reliability, power 
consumption, latency, 
fault-tolerance) by 
allowing both SARA 
application logic and 
platform features to be 
distributed over a cluster 
of gateways (SARA 
Hubs). 

VNF network overlays MUST exist 
among SARA Hubs.  

 

The fulfilment of this 
requirement is enabled by 
Virtual Tenant Network 
instantiation, as described in 
Section 4.3.1 and to more 
extent in Deliverable D3.2. 
 
Enabling components: VTN 
Manager. 

R.UC2.3 

The SEMIoTICS platform 
SHOULD guarantee 
proper connectivity 
between the various 
components of the SARA 
distributed application. 

VNF network overlays MUST exist 
among SARA Hubs. Achieving the 
network overlays is to be done by 
use of Virtual Tenant Network 
instantiation using the VTN 

The fulfilment of this 
requirement is enabled by 
Virtual Tenant Network 
instantiation, as described in 
Section 4.3.1. 
 

                                                      
8 Including scaling in or out. 
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The SARA solution is a 
distributed application not 
only because it uses 
different cloud services 
(e.g. AREAS Cloud 
services, AI services) 
from different remote 
computational nodes, but 
also because the SARA 
application logic itself is 
distributed across various 
edge nodes (SARA 
Hubs). 
 

Manager component of the SDN 
Controller.  

Enabling components: VTN 
Manager. 

R.UC2.5 

The SEMIoTICS platform 
should allow the SARA 
solution to discover the 
IoT devices that are 
registered in the system. 
IoT devices deployed by 
the SARA solution are 
expected to register 
themselves into the 
system using various 
standard protocols (e.g. 
LwM2M, MQTT, 
Bluetooth LE, ZigBee, 
etc.). 

SARA components handling the 
registration of devices, and 
supported IoT devices MUST be 
located in the same VTN. 

The fulfilment of this 
requirement is enabled by 
allocating the SARA devices in a 
single Virtual Tenant Network. 
 
Enabling components: VTN 
Manager. 

R.UC2.15 

The SEMIoTICS platform 
SHOULD provide low 
latency connectivity 
between the SARA hubs 
and cloud services (i.e. 
AREAS cloud services 
and AI services) to allow 
offloading of near real-
time computation 
intensive tasks to the 
cloud. Examples include: 
• the robotic assistant 

(RA) employing AI 
services to analyse 
Patient's speech 
(audio) and body 
language (video) to 
identify significant 
events – e.g. 
"Patient requests an 
escort", "Patient 
asks where his 
glasses are 

• the robotic rollator 
(RR) exploiting AI 

The SDN Controller SHOULD be 
able to modify the path followed by 
packets from this UC VTN if 
necessary. Such modifications seek 
to reduce end-to-end delay and 
comply with UC constraints.  

The fulfilment of this 
requirement is enabled by path 
computation that is aware of 
QoS constraints on the resulting 
identified paths, as discussed in 
more detail in Section 4.4. 
 
Enabling components: Path 
Manager, SFC Manager. 
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Services to analyse 
Patient's gait and 
posture to identify 
significant events – 
e.g. "Patient has 
fallen”. 

• mobile robotic 
Devices (RA/RR) 
exploiting cloud 
resources for 
simultaneous 
localization and 
mapping (SLAM) 

Therefore, SARA hubs 
need to send with 
minimal delay: 
• raw range data (e.g. 

from Lidar sensors) 
to identify proximal 
objects/objects, 

• real-time audio 
stream for speech 
analysis, 

• and real-time raw 
video stream 
(object/people 
recognition, gesture 
recognition, posture 
analysis). 

 

TABLE 5 UC3 NETWORK REQUIREMENTS (AI SENSOR FOR EVENT DETECTION) 

Req-ID Description 
Specific NFV/SDN 

Requirements 
Reference / Enabled by 

R.UC3.6 

MCU into IoT Sensing unit 
should be associated with 
a high-level tool for 
automatic generation of 
optimized code to support 
pre trained neural 
networks. 

There MUST be network 
connectivity among 
components (UC components 
may reside in the same VTN). 
Such components may be 
VNFs on top of IIoT 
Gateways, or PNFs. 

The fulfilment of this 
requirement is granted by 
providing generic connectivity 
property by the networking 
infrastructure, as discussed in 
Section 3.1. 

 
Enabling components: 
Pattern Engine, VTN 
Manager, Path Manager, 
Resource Manager, SFC 
Manager, SDN Data-Plane 
Devices 

R.UC3.7 

MCU IoT Sensing unit 
shall be able to send 
change detection and 
signal local changes / 
anomalies to IoT Sensing 
gateway. 
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R.UC3.14 

The specific M2M protocol 
adopted on UC3 is based 
on MQTT. A MQTT broker 
service will be available to 
dispatch messages 
between the coordinating 
Sensing gateway and its 
associated Sensing units. 

An MQTT broker MUST exist 
within this VTN in order to 
support MQTT. 

The fulfilment of this 
requirement is enabled by 
interconnecting an MQTT 
broker with other sensing 
devices in a single Virtual 
Tenant Network. 

 
Enabling components: VTN 
Manager 

 
SDN/NFV in context of Backend Layer Networking: Deployment of interactions between NFV/SDN in the 
backend relies on Network Service descriptors (NSd9) [9]. NSd descriptors are static text files that describe 
the desired network topology, VM images to use, resources to be used, scaling factors, event triggers, KPIs, 
physical location of the instantiation, among others. Later on, NSd are onboarded onto the NFV Orchestrator 
(NFVO), which in turn translates them into API calls to the VIM in order to instantiate a copy of said virtual 
network service. 
 

As opposed to a traditional PNF network deployment, typical for the flexibility provided by NFV/SDN admits 
fast deployment modifications. This attribute allows the Network Service (or UC in this context) to scale in/out10 
according to the load and subject to NFVI resources availability, as well as constant monitoring and 
modification of forwarding paths according to UC constraints. 
 

3.1.4 MANAGING VIM NETWORKS WITH AN EXTERNAL SDN CONTROLLER 

 
VIMs often incorporate their own SDN Controller, e.g.: Neutron in OpenStack; but there are a number of 
benefits associated with delegating the management of the network to another software. These range from 
fault tolerance through service isolation, or simply additional functionality.  
 

Most popular VIMs are composed of different isolated projects that work together. For instance, OpenStack 
Nova [10] handles compute, Cinder [11] storage, Neutron [12] networking, and so on. It is also possible to 
keep each project on a separate physical node (or cluster of nodes) in order to provide resilience against 
network or resource outage/saturation. 
 

The SEMIoTICS SDN Controller falls within this model. That is, a stand-alone external SDN Controller which 
uses the ML2 northbound plugin [13] in order to relay/retrieve network information to/from VIMs [4].  
Furthermore, it uses the OpenFlow and OVSDB southbound plugins to act upon the virtual network devices 
(e.g.: OVS) running on compute hosts within the VIM domain, as well as the underlying physical network  
connecting compute nodes to the network. This characteristic allows for a central network policy enforcement 
entity, where virtual and physical networks may be jointly optimized to provide UCs with the necessary network 
performance. 

3.2 SDN Controller Function Blocks 

In the following section we provide a brief overview of the internal architecture of the SEMIoTICS SDN Controller 
and its differentiation to related state-of-the-art activities, such as the controller developed in the context of the 
VirtuWind project.  
 

3.2.1 SEMIOTICS SDN CONTROLLER FUNCTION BLOCKS: COMPONENT DIAGRAM 

 
In the network control approach in SEMIoTICS, we leverage the centralized control plane and programmability 
offered by the SDN paradigm and exploit the flexibility of NFV. Each authorized application or tenant that needs 

                                                      
9 Even though NSd are in turn composed by other descriptors (for VNFs, virtual links, among others), here the generic 
NSd term is preferred. 
10 E.g.: increase or reduce the compute/storage resource of a VM. 
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connectivity is served one or multiple related communication services. Specification of application recipes ensures 
the composition of application relations at global level. Connectivity patterns stem from  a combination of 
different connectivity and QoS service requirements, ranging from E2E-delay and bandwidth requirements, to 
different path protection schemes (e.g. duplication or fast-failover). 
 
As in previous related projects from the industrial domain (i.e., VirtuWind [14]) each request is mapped to a 
unique network tenant. To ensure isolation when competing for a limited set of network resources, in an 
industrial network, each tenant must be served a guaranteed pool of resources (e.g., in scope of its Virtual 
Tenant Network).  
 
Figure 4 depicts the key architecture blocks of our SDN approach, a brief description of which can be found 
below: 

1) Pattern-based northbound interface of the SSC: Allows the network operator to specify and collect 
information about enforced patterns. Similarly, it allows for specification of pattern rules and thus the 
orchestration of network from perspective of an automated service, such as the Pattern Orchestrator 
(please see D4.1) or pattern-enabled end-devices. 

2) The set of core SSC components: They enable the decision-making related to pattern enforcement, 
reference storage and pattern eviction at runtime. The core components are furthermore in charge of 
collecting, maintaining and modifying the network configuration according to the presented set of 
pattern rules.   

3) An exposed interface for NFV Management and Orchestration (MANO) interactions: MANO 
components (i.e., the VIM or VNF Manager) may interact with the SEMIoTICS SDN Controller so to 
interconnect the virtual network functions (VNFs) and thus enable the required service function chains 
(SFCs) interconnection at network layer;  

4) The set of southbound interfaces providing connectivity between the SSC and network devices.  
5) Network Devices: Which expose the set of standardized interfaces so to allow for enforcement of 

network configurations (i.e., the packet matching rules composed of filters and actions). 
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FIGURE 4: SEMIOTICS SDN ARCHITECTURE 

 

 
FIGURE 5: COMPONENT OVERVIEW OF THE VIRTUWIND SDN CONTROLLER 

 

3.2.2 COMPATIBILITY WITH STATE-OF-ART SDN CONTROLLER ARCHITECTURES 

 
In the following sub-sections, we discuss the compatibility and extensions of the SEMIoTICS controller 
architecture with the state-of-art distributions controllers proposed in the ODL and VirtuWind projects. 
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OpenDaylight and VirtuWind are the only SDN controller platforms fulfilling a larger subset of proposed 
SEMIoTICS system and networking requirements, hence they were selected for the reference implementation 
in SEMIoTICS. 
 
 

3.2.2.1 COMPATIBILITY WITH VIRTUWIND SDN CONTROLLER ARCHITECTURE 
 
As we have previously mentioned, the SSC is responsible for the orchestration of field- and network-level 
switching devices and is implemented on top of the revised SDN controller ODL, which was published as a 
result of the VirtuWind project. SEMIoTICS employs many of the VirtuWind’s built-in SDN components for the 
initial implementation. For example, VirtuWind’s Path Manager is reused for QoS-based path identification for 
realizing the end-to-end connectivity between the connecting partners. On the other hand, some off -the-shelf 
modules from ODL platform, such as its OpenFlow implementation (OpenFlowPlugin) is leveraged to enable 
interaction with the OpenFlow enabled SDN switches, but also to utilize and extend its data -store 
implementation and data models for storage of the SDN controller information.  
 
In Figure 5 the components of the VirtuWind SDN controller are presented. By comparing Figure 5 with Figure 
4, it can be observed that many of the components in both architectures are common. In both cases, each 
authorized application or tenant that needs connectivity requests an appropriate VTN, and later issues 
communication service flow requests to the system. The isolation of tenants is administered using the VTN 
north-bound interface of the SDN Controller, while the service requirements define a  communication service 
interface as per tenant’s intent specification. Each application service is mapped to a unique VTN and a 
network tenant. 
 
The main difference between the two architectures is that, in SEMIoTICS, the north-bound interface is generic-
pattern-based, allowing the network operator to specify and collect information about enforced patterns, while 
allowing for specification of pattern rules and thus the orchestration of network from the perspective of an 
automated service, hence the exclusion of Reference Monitor component in our architecture.  
 
On the other hand, due to the QoS-constrained nature of power control systems, the north-bound interface in 
VirtuWind is specialized in QoS metrics. For instance, the flow requests are a combination of different 
connectivity and QoS service requirements, ranging from E2E-delay and bandwidth requirements, to different 
path protection schemes (e.g. duplication or fast-failover).  
 
To that end, instead of a pattern orchestrator, there is a QoS orchestrator that i s specialized for setting up a 
QoS-enabled end-to-end connectivity service via multiple network operator domains.  Moreover, a QoS 
negotiator is responsible for the communication between the SDN Controller and the QoS Orchestrator and 
the translation of orchestrator’s requests to domain-specific actions.  
 
 

3.2.2.2 COMPATIBILITY WITH OPENDAYLIGHT MODULAR CONTROLLER ARCHITECTURE 
 
OpenDaylight (ODL)11 is an SDN controller that lets the user to programmably manage OpenFlow capable 
switches. ODL is a large open-source project with a number of features and compatible northbound 
applications. OpenStack, as described in the previous sections, is a cloud orchestration platform that can work 
independently without ODL, but with the SDN controller provides the user more programmatic control over the 
infrastructure; hence, improving the scope for automation. 
 
In SEMIoTICS, one of the advantages of using an ODL-based implementation is the compatibility with 
OpenFlow, NETCONF/YANG and OVSDB protocols, supported by numerous of network vendors. Similarly, 
ODL already internalizes particular functions useful for the SSC UCs, including topology discovery and graph 
population, capability discovery and JAVA-to-REST API bindings (using the YangTools [15] project).  
 

                                                      
11 https://www.opendaylight.org 
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As a modular framework, ODL allows the developers and the users to: 

• Install the protocols and services needed on-demand. 

• Combine multiple services and protocols to solve more complex problems when needed . 

• Develop custom functionality for extending the existing platform to support the specialized use cases. 
 

The modular development pursued by the ODL project furthermore allows us a relatively straightforward 

extension, so to include the modules necessary for industrial use-cases, e.g., to enable flexible QoS, pattern-

based service instantiation as well as the multi-tenant operation, which are pillars of the SEMIoTICS solution 

realization. 

 
 



780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017 
Deliverable D3.1 Software-Defined Programmability for IoT Devices (first draft) 
Dissemination level: Public  

 

29 
 

4 DETAILED SDN CONTROLLER FUNCTION DESCRIPTIONS  

4.1 Control / Data Plane Bootstrapping Manager 

 
Implementation Status: To be reused from VirtuWind project and updated afterwards. In SEMIoTICS, the 
Bootstrapping Manager is updated with extensions to provide for an automated deployment of basic 
infrastructural network services. 
 

 
Industrial SDN networks require a highly-available control plane. The control plane may require an in-band or 
out-of-band control plane realization depending on the exact use case. In-band control plane revolves around 
reusing the physical SDN data plane to host the control plane flows - i.e., the control traffic exchanged between 
the SDN Controller and switches shares the same network as the application flows . In contrast to in-band, the 
out-of-band-control plane relies on exclusive physical links for interconnection of the controller and managed 
switches. The wind park Use Case 1 assumes an in-band deployment, so to minimize the Capital Expenditures 
(CAPEX) related to out-of-band cabling requirements. By means of an automated network bootstrapping 
procedure, the SSC guarantees a robust and resilient control plane configuration at network runtime.  
 
The robustness to controller failures is ensured by bootstrapping a multi-controller state replication design as 
described in Section 4.7.  
 
To handle the data plane failures, and their effect on the control plane flows, redundant control flow embedding 
can be leveraged. While recent works propose slower, restoration-based techniques in industrial scenarios, 
industrial scenarios typically use 1+1 protection by duplicating controller -to-controller and controller-to-switch 
TCP-based flows on maximally disjoint paths, thereby ensuring zero packet loss for control flows, at the 
expense of doubled bandwidth requirements per control flow connection. Since these typically have low 
bandwidth requirements, we do not consider it a crucial drawback in our approach. 
 

Enabling point-to-point connectivity in OpenDaylight and reference VirtuWind implementations requires manual 
or scripted specification of end-points to be interconnected by the network flows. This would lead to a large 
manual effort complexity due to a high number of infrastructural services necessary by SEMIoTICS 
components in the field and backend layer that require such connectivity. To this end, we will extend the 
Bootstrapping Manager from VirtuWind project, to support an automated instantiation of network services for 
infrastructural network flows (e.g., Thing Directory synchronization, IoT Gateway <-> Router <-> Internet flows) 
as required by the SEMIoTICS use cases to minimize the scenario deployment efforts.  

4.2 Pattern Engine 

 
Implementation Status: To be developed from scratch for purposes of SEMIoTICS use cases. 
 

4.2.1 PATTERN ENGINE DESCRIPTION 
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Pattern Engine (PE) module enables the capability to insert, modify, execute and retract patterns at design or 
at runtime in the SDN controller. PE can be based on a rule engine which is able to express design patterns 
as production rules. Enabling reasoning, driven by production rules, appeared to be an efficient way to 
represent SEMIoTICS patterns. For that reason, a rule engine is required to support backward and forward 
chaining inference and verification. Drools [16] rule engine appeared to be a suitable solution to support design 
patterns by applying and extending the Rete algorithm [17]. More specifically, since Drools rule engine is based 
on Maven, it can support the integration of all required dependencies with the ODL controller, as well as the 
integration of the entities that interact with the controller to run Drools at design and at runtime. Finally, PE 
integrates different subcomponents required by the rule engine such as the knowledge base, the core engine 
and the compiler. 

 
 

4.2.2 PATTERN SPECIFICATION NBI 

 
To support insertion, modification and deletion of facts and rules in the knowledge base by administrators or 
users, suitable northbound interfaces (YANG APIs and the respective REST APIs) are implemented. Finally, 
a number of different YANG interfaces is implemented to interact with the different components including also 
network components such as switches, service functions and end-hosts, active links and statistics from the 
controller as required by the pattern rules. 

4.3 VTN Manager 

 
Implementation Status: To be reused from VirtuWind project. If modified for the purposes of SEMIoTICS use 
cases, an according update will be presented in D3.7. 
 

4.3.1 SPECIFICATION OF VIRTUAL TENANT NETWORKS 

 
VTN Manager is a component of the that provides for a multi-tenancy functionality. It should realize logical 
slices (“virtual tenant networks”) for per-application mapping and enforcement of isolation of the tenant 
networks in the infrastructure. VTN Manager’s APIs in SEMIoTICS is planned to leverage the logical VTN 
primitives (VTN definition, vInterface definition, port-mappings, flow-filters and flow-conditions) and exploit 
YANG/RESTCONF as modelling language and transport protocol. VTN Manager must thus allow for creation 
of tenant networks and translation of pattern requests into path-request calls to Path Manager in scope of its 
VTN. VTN Manager stores all resulting data structures containing information about reservations and 
established VTNs in the centralized data store. 

Pattern Engine is able to detect invalid rule configurations by means of component observations – i.e., 
connectivity-related patterns requiring flow installation will evaluate to False on failure of intermediate 
network elements (detected by subscribing to network topology events). Thus, the event detection 
requirement R.GP.4. will be fulfilled by the monitoring component implemented in Pattern Engine. The 
Pattern Engine additionally exposes a bidirectional interface towards backend, i.e., the Pattern 
Orchestrator component. On each status change of an active pattern instance, the remote Pattern 
Orchestrator is notified, so that additional reconfiguration steps can be partaken there. This adheres to 
the Requirement R.GP.5 and R.GP.7. 
 
The final implementation of the Pattern Engine will be provided in future Deliverable D3.7.    
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4.3.2 AN NBI FOR A MULTI-TENANT CAPABLE NETWORK SERVICE ORCHESTRATION 

 
This SEMIoTICS module provides a north-bound interface API (NBI API). It translates the application’s request 
into low-level APIs of underlying components (VTN Manager and Security Manager). It provides RESTCONF 
RPC calls modelled in YANG. Additionally, it verifies the applications authenticity using credentials issued by 
Security Manager, also it logs application’s requests and responses in the distributed data store.  

4.4 Path Manager 

 
Implementation Status: To be reused from VirtuWind project. If modified for the purposes of SEMIoTICS 
use cases, an according update will be presented in D3.7. 
 

For the guaranteed industrial QoS, i.e. the bandwidth provisioning, flow isolation and worst-case delay 
estimation, we plan to leverage the Path Manager component. The related project VirtuWind [14] has 
previously proposed using network calculus, a deterministic mathematical modeling framework for 
communication networks to enable delay-bound, bandwidth-guaranteeing end-to-end network service [7]. 
Instead of basing its routing decision on a reactive control loop of network observations, Path Manager 
provides for real-time constraints by mechanisms for admission (and rejection) of flows. Namely, by 
maintaining an accurate model of the network state and service embeddings in the control plane, Path Manager 
ensures per-flow isolation and worst-case guarantees at all times. 

 

4.5 Resource Manager 

 
Implementation Status: To be reused from VirtuWind project. If modified for the purposes of SEMIoTICS use 
cases, an according update will be presented in D3.7. 
 

Resource Manager is responsible for configuration management and network control tasks, i.e. embedding of L2/L3 
OpenFlow flow rules into the network. Resource Manager provides for embedding of: i) real-time flows which require 
dedicated per-queue flow assignments; ii) best effort flows, without queue considerations; and iii) the meter 
structures for policing purposes. 

Using the Path Manager, SSC will enable path computation under consideration of different QoS 
connectivity needs, including the requirement on low latency and reliable communication, thus 
supporting the platform design requirements across multiple Use Cases: R.GP.3, R.UC1.3, R.UC2.15 
and R.UC2.17. The computation of paths is done according to isolation properties, i.e., the individual 
new reservations will not affect existing flows, thus supporting requirement R.UC1.4. Additionally, Path 
Manager supports the computation of maximally redundant paths, required to provide resilience in the 
face of network failures and thus enabled fulfillment of requirement R.UC1.5. 
 

VTN Manager isolates individual tenants of the network at Layer 2 level, i.e., unmapped participants 
deployed in different tenant networks will be unable to interact with each other. Thus, VTN Manag er 
provides network-level security end-point interactions. The VTNs can be provisioned by means of a 
YANG-modeled REST interface, thus providing for R.NL.8 and R.NL.9 requirement support.  
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4.6 Security Manager 

 
Implementation Status: To be reused from VirtuWind project. If modified for the purposes of SEMIoTICS 
use cases, an according update will be presented in D3.7. 
 

The SEMIoTICS security management system includes the Security Manager (SM) component which offers support 
for authentication and accounting services. SM should realize the authentication and accounting services to the 
rest of the SDN Controller as well as the users and applications that interact with the controller. With respect to 
authentication, the SM exposes interfaces for the administration of local SDN Controller accounts. The necessary 
methods for C.R.U.D (Create, Read, Update, Delete) Users, Roles and Domains are developed by the SM exposed 
them to other controller components as well. Moreover, the SM provides authentication capabilities based on 
credentials stored by exposing a method which has local credentials as input and its output is an authentication 
token. Also, it exposes a token validation technique which can be used by the other controller components. It verifies 
both the validation of the provided token and the bearer of the token if it is the one who he claims to be. Additional 
APIs are exposed for applications to present their credentials. If these credentials prove valid, the SM can issue an 
authentication token to the requesting party. The token can then be presented to the Pattern NBI when attempting 
to interact with the SDN Controller. The Pattern NBI can be responsible for transferring these tokens to the SM 
internally for validation, so the former can then proceed to evaluate the request (i.e., if it is allowed based on the 
active policies). Depending on the use case, we can distinguish two scenarios: 

- User/application authentication based on a local set of entered policies / users 
- User/application authentication based on an external set of entered policies / users, i.e., using an 

external LDAP server or similar. In the case of distributed authentication, the SM must present the 
tokens to the external server for validation. 

 
 

4.7 High-Availability Controller Clustering 

 
Implementation Status: To be reused from VirtuWind project. The component will be extended to (a) support 
Byzantine Fault Tolerance operation in SEMIoTICS; (b) to provide a more scalable operation in Byzantine 
Fault Tolerance mode. An according update will be presented in D3.7. 
 

The issue of the controller’s single point of failure is resolved by means of state replication and fail-over to one of 
the backup controllers on failure.  
 

Resource Manager is capable of interacting with the infrastructure (switches, routers) etc. using one or 
multiple of the following interfaces: OpenFlow/OVSDB/SSH. This adheres to the requirement R.GP.6. 
The SSC controller will be capable of interacting both with virtual and physical OpenFlow switches. 
Open vSwitch is an exemplary production-ready virtual switch software (R.NL.7), that is to be used in 
SEMIoTICS Backend Layer for enabling the virtualization infrastructure.  

Every interface to the SDN controller is protected by authentication/authorization mechanisms. 
Interfaces relevant for SEMIoTICS, including the Security Manager, VTN Manager and Pattern Engine 
northbound interfaces, are protected by HTTPS digest authenticat ion, thus supporting the R.S.7 
requirement. To protect and isolate access to particular internal APIs of the controller, Security Manager 
enables role-based definition of authorities granted access to the service, thus fulfilling the requirement 
R.S.2. 



780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017 
Deliverable D3.1 Software-Defined Programmability for IoT Devices (first draft) 
Dissemination level: Public  

 

33 
 

Centralized controller state registry: The Clustering module may handle the controller relationship per-data state in 
the distributed data-store. The controller state as well as the up-to-date network information can be collected in a 
single registry shard that is replicated across multiple controller instances.  
 
Strong (SC) primitives for update ordering: Components that have stringent requirements on the data state 
staleness, such as the Path Manager which makes critical routing and resource reservation decisions, may require 
serialized updates across all instances of the replicated controller. By serializing the individual updates, we ensure 
that no data-store updates are applied without having first observed the previous history of the updates made to 
that state. Such components make use of the controller state distribution based on SC primitives (e.g., using 
distributed RAFT [18] consensus).  
 

 
 

4.7.1 ENABLING BYZANTINE FAULT TOLERANT SDN CONTROL PLANE OPERATION 

 
Distributed SDN were introduced as a way to improve the scalability of the control plane and mitigate the problem 
of single-point-of-failure. However, control plane correctness may be endangered by malicious controllers that 
enforce incorrect configurations, i.e., as a result of adversary attack or corrupt controller instance state [19] [20].  
 
We have recently proposed MORPH [20], a framework that enables a Byzantine Fault Tolerant (BFT) SDN control 
plane, by allowing for runtime detection of malicious controllers and their dynamic exclusion from the system 
configuration, and thus the SEMIoTICS requirements R.UC1.5, R.UC1.6 and R.S.7. MORPH framework’s function 
is based on the working principle that the switch processes all control packets originating from all the controllers in 
their administration domain, before deciding to apply the configuration.  
 

 
 
In the network phase where no malicious or unavailable controllers are identified, such approach results in a high 
system footprint and limited scalability, which is an additional requirement of the SEMIoTICS project (refer to 
requirements R.UC1.7 and R.GP.2). Moreover, the current data plane implementations of SDN-enabled switches 
do not have the necessary capabilities to process multiple control packets before applying them. If the packet 
comparison is executed in software, the deployment of a Byzantine Fault Tolerant SDN Control plane would clearly 
result in a highly loaded switch control plane. 

To provide for a higher scalability of the proposed solution and thus fulfillment of R.GP.2 and R.UC1.7, an 
alternative solution by offloading some of the tasks from the control plane of the switches to their data plane. In 
order to do so, the switches’ data plane is programmed using the P4 language binding, which is a special-
purpose language that allows for programming of packet forwarding planes. We aim to decrease the system 
footprint and enable a higher number of total control flows deployable in the SDN. The final design of the high 
scalability solution for the control plane will be presented in D3.7. 
 

By providing for hot-standby failover in case of controller failures/faults, the HA clustering component will 
enable the industrial-grade high-availability requirement R.UC1.5. The final design of the high availability 
controller clustering solution for the SDN control plane will be presented in D3.7. 
 

To cater for tolerating unreliable controller decisions, made by faulty/malicious SDN controllers, we 
introduce the above Byzantine Fault Tolerance extensions, which extends the existing Clustering solution 
proposed and implemented by OpenDaylight and VirtuWind project. Thus, we are able to cover the 
requirement for reliable control plane, made in R.UC1.6. The final design of this module will be presented 
in D3.7. 
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4.8 SFC Manager 

 
Implementation Status: SFC Manager will be reused from VirtuWind project and subsequently adapted  as 
required to support the interactions with the Pattern Engine of the SDN Controller, so to support orchestrated 
SFC deployment in Use Case 2 scenario (ref. Section 7). 
 
The SFC Manager (SFCM) component of OpenDaylight is able to handle service function chaining of network 
functions. An SFC determines an abstract set of service functions and their ordering constraints that should 
be applied to packets and/or frames selected as a result of classification. Additionally, the implied order could 
not be a linear progression, due to the fact that the architecture allows for nodes which copy to more than one 
branch; also, the architecture allows for cases where there is flexibility in the order in which services need to 
be applied.  
 
In the SEMIoTICS cases, service instances may include Firewall, IDS, DPI, and HoneyPot. These services 
may be the physical appliances or virtual machines running in network function virtualization infrastructures. 
They may be composed of one or multiple instances. At the Management and Control planes, the SFCM is 
responsible for administrating the services chains, i.e., for mapping the operator’s/tenant’s/ application’s 
requirements into service chains. SEMIoTICS has identified the benefit of incorporation the NFV and SDN 
world in order to bring the best of both worlds related to network setup, configuration and management 
together. For that reason, the SFCM will be enhanced to handle the interactions between the SDN controller 
and the MANO, in order to receive networking information about instantiated VMs, as well as to provide 
information about possible paths fulfilling the requirements of the SFC. 
 

4.8.1 AN NBI ENABLING SFC ORCHESTRATION 

The SFC Manager should expose a number of NBI interfaces that various components can use to provide and 
receive information about service chains. Information such as SFC required, which tenants want to use them, 
which destinations are being accessed, what applications the traffic pertains to and about the service ins tances 
of the network functions can also be supported.  That includes the exposure of both an administration interface 
through the controller’s NBI which is also used by NFV MANO, and a login interface for the applications through 
the development of suitable YANG and RESTful interfaces. 

4.9 NFV MANO/VIM Connector 

 
Implementation Status: To be reused from OpenDaylight project. In particular, the ML2 connector seems 
the good contender for implementation of this component in Use Case 2. If modified for the purposes of 
SEMIoTICS use cases, an according update will be presented in D3.7. 
 

Within ETSI’s standardized NFV Architecture (see Figure 6), the Management and Orchestration (MANO) 
components are those responsible for hardware resources abstraction (VIM), VNF lifecycle management 
(VNFM), and orchestrator (NFVO). Each one of these expose services (or functions) through well -defined 
interface abstractions (usually REST APIs), which in turn are used by other MANO components (e.g.: for 
instantiating a Network Service), or external elements (e.g.: for gathering information about VNFs).  
 

The SEMIoTICS SDN Controller is an external component to the reference NFV MANO framework of Figure 
6. That is, the management of virtual network resources (e.g.: VTN, VNF), and the control of the underlying 
physical network are tasks handled by the SEMIoTICS SDN Controller. This brings benefits in terms of 
outage/saturation resilience, primarily due to the isolation of network services to separate hosts. But also 
allows for joint optimization of both overlay and physical network paths/resources, which could help satisfy 
SEMIoTICS’s UC requirements/constraints. 
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FIGURE 6: FUNCTIONAL BLOCKS OF AN NFV PLATFORM [8] 

 
For the instantiation of an end-to-end service, the NFVO requests a “Network as a Service” through the 
corresponding exposed interfaces at the VIM (realized through the Or-Vi reference point shown in Figure 6). 
Then, through well-defined interfaces (e.g.: ML2 plugin [21]) the VIM exchanges the tenant’s network policy 
with the SDN Controller (realized through the Nf-Vi reference point shown in Figure 6), which in turn may 
request the instantiation of VNFs and other virtual network resources to complete the network service 
instantiation. 
 
Other relevant information exchange occurring through relevant NFV MANO reference points are  [9]: 

• Or-Vi 
Orchestrator-VIM communication reference point. It is used for: 

o Resource reservation and/or allocation requests by the Orchestrator.  
o Virtualized hardware resource configuration and state information exchange.  

The Os-Ma-Nfvo reference point (see Figure 6) can be used by OSS/BSS (or other entity such as 
SEMIoTICS global pattern orchestrator) to gather information of the NFVI and trigger the 
creation/modification of a NS; but is the Or-Vi reference point the one that enables direct 
communication between MANO and VIM in order to realize such service by allocating resources from 
the infrastructure. 

• Nf-Vi 
This reference point is used for NFVI-VIM communication. Particularly: 

o Assignment of virtualized resources after an allocation request.  
o Forwarding of virtualized resources state information. 
o Hardware resources configuration, information exchange and events capture.  
o Information exchange with external SDN Controllers. 

• Os-Ma-Nfvo 
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It realizes Operations Support System/Business Support System (OSS/BSS)-NFV Management and 
Orchestration communication. It is used for: 

o Request for network service lifecycle management. 
o Requests for VNF lifecycle management. 
o Forwarding of NFV related state information. 
o Policy management exchanges. 
o Data analytics exchanges. 
o Forwarding of NFV related accounting and usage records. 
o NFVI capacity and inventory information exchanges. 

It is valid to assume the use of this reference point to software other than OSS/BSS. That is, any 
authorized software external to NFV could use this reference point  for gathering information of the 
physical/virtualized infrastructure, as well as signaling the intention to create a network service via 
the NFVO. 
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5 INTERACTIONS WITH DATA-PLANE DEVICES 
 

5.1 OpenFlow for Control Plane Interactions 

 
SDN decouples data and control planes, concentrating control information of the whole network at the SDN 
Controller. In this paradigm shift, network devices obey to whatever forwarding instructions the SDN Controller 
dictates. For instance, when a packet arrives at an SDN-enabled forwarding device, it checks if there are any 
matching entries in its local forwarding table. If it fails to find one, it queries the SDN Controller through the 
control plane and waits for a reply containing the instructions on how to handle such flow. 
 
The most widely used protocol for forwarding table modifications and SDN Controller -forwarding device 
communication, is Open Network Foundation (ONF) OpenFlow (OF) [1]. It works as a standard interface SDN 
Controllers use to interact with the forwarding table of network devices.   
 
OF spurs from an initiative to promote innovation in networking (originally aimed to campus networks), where 
there was almost no practical way of experimenting and testing new protocols on networks with real traffic. 
Instead of hoping for hardware vendors to provide an open and programmable interface to their routers and 
switches (which may threaten companies with undesired competition), OpenFlow exploits a common set of 
functions related to flow tables, simply requiring a minimum set of actions 12. 
 

An SDN-enabled forwarding device (or VNF) relies on the SDN Controller for updating its flow table and to 
determine all forwarding decisions. This is done exclusively using protocols such as OpenFlow messages 
through a separate control channel. The following summarizes relevant terminology related to OpenFlow:  
 

• Open flow tables: a collection of flow rules, each one composed of: 
o Match fields: specific packet header information that can be used to filter flows. A flow is said 

to match a rule if its constituent packets have the same characteristics as specified on the 
match fields of the rule. 

o Actions: to be executed once a flow is matched. 
o Statistics: e.g.: keep track of the number of packets and bytes that matched a flow rule. 

• A secure channel towards the Controller: often referred to as the control channel. 

• OpenFlow Agent: running the OpenFlow protocol on SDN-enabled devices, thus realizing the 
communication between the SDN Controller and network devices' flow tables. 

 
The most recent OpenFlow version, for example, defines up to 45 matching fields per flow rule [22]. That is, a 
particular forwarding decision taken at the Controller can be based on a wider criterion than that employed in 
traditional routing and switching; for instance, using the source and destination transport layer port numbers, 
protocol type, or a combination. Furthermore, OpenFlow network devices can be queried by the SSC in order 
to retrieve physical ports state information, or flow table statistics; widening even more the criteria upon which 
forwarding strategies could be defined. 
 

The SEMIoTICS SDN Controller (SSC) is equipped with an OpenFlow module, which acts as Southbound 
Interface (SBI) for configuring OF-enabled devices’ (physical or virtual) forwarding decisions. 

5.2 OVSDB/NETCONF/YANG for Management Plane Interactions 

 
From SEMIoTICS SDN Controller’s perspective, there are southbound interfaces specifically used for device 
configuration [4].  

                                                      
12 E.g.: Forward packets to a given port, Encapsulate and forward first packet in a new flow to Controller, or Drop. 
Nevertheless, other actions are available, like: pushing new VLAN tags, TTL reduction, set a header field, among others.  
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NETCONF [2] is an XML-based protocol used as a southbound interface for remote configuration or 
communication with (physical) devices. Additionally, it could be employed as a northbound interface of the 
SDN Controller in the form of NETCONF servers to: 

• Spawn, reconfigure or destroy SDN Controller’s modules or applications.  

• Read, write remote procedure calls (RPC, or functions provided by SEMIoTICS SDN Controller). 
 
OVSDB [23] is another popular southbound protocol used for managing Open vSwitch-enabled (OVS) physical 
or virtual switches. It enables the SDN Controller to view, create, modify, and delete OVS objects such as 
bridges, tunnels, and ports. Reference SDN Controllers, such as ODL, implement an OVSDB module which, 
among other things, offers: 

• Network virtualization. 

• Southbound plugin for configuring OVS devices. 

• Library for encode/decode OVSDB protocol. 

• REST interfaces for configuring OVS devices. 
 

The semantic modelling and data organization of NETCONF configuration data, notifications, and SDN 
Controller’s RPCs are developed using YANG. It directly maps XML, allowing fast prototyping and modification 
of configurations. It supports several programming language-like statements such as leaf (single value, no 
children), leaf-lists (one value, no children, multiple instances), containers (no value, holds related children), 
must, list (like hashes or dictionaries), and more. Furthermore, it contains built-in types like integrals, strings, 
binary data, bit fields, references, or other. All of these features allow the deployment/consumption of SDN 
Controller applications from YANG models guaranteeing API contracts . 
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6 EVALUATION OF WIRELESS FIELD TECHNOLOGIES 
 
In this section, we analyze existing wireless communication technologies that could be used for communication 
with the IoT devices in the different SEMIoTICS use cases defined in D2.2.  
 
While the wireless technologies, i.e., radio access points are not to be managed through SDN, we 
nevertheless give an overview of technologies deployed in the prototypical Use Case deployments, 
due to D3.1/D3.7 being the only network-focused deliverables in the project. 
  
Relation to Use Cases: 
 
Use Case 1 does not rely on wireless technologies and instead assumes a completely cabled setup, typical 
for industrial wind park deployments. An LTE router deployment is available for providing internet connectivity 
in the setup in non-wired environment (but only for the purpose of demonstrator showcase). 
 
Use Case 2 leverages IEEE 802.11 Wireless LAN and IEEE 802.15.4 in the field layer, in particular:  

▪ The four SARA hubs (i.e. User Mobile Phone, Robotic Rollator, Robotic Assistant and Home Gateway) 
communicate via IEEE 802.11 Wireless LAN 

▪ The User Mobile Phone uses also cellular connectivity (LTE/HSPA depending on availability, to 
communicate with remote call center) 

▪ The Home Gateway communicates with appliances and home automation via 802.15.4 ZigBee 
 
Use Case 3 field devices, i.e., the IHES Sensing nodes are connected to the IoT Gateway hosting the IHES 
supervisor service using 802.11 Wireless LAN. From IoT gateway on, the connection is assumed to be cabled 
one. The final use case demonstrator will be connected to relevant web services in mobility exploiting a 
HSPA/LTE router connection (but this is required only to allow the demo more portable and does not present 
a design constraint). 
 
The selected technologies were chosen due to their applicability in the shown use cases and availability in 
commodity hardware. Nevertheless, the deployment of SEMIoTICS architecture, and in particular the gateway 
solution is not limited to combining with these wireless technologies only. Hence, for completeness, we next 
provide the description of alternative wireless technologies applicable to SEMIoTICS field layer:  
 

Wireless Technology Description 
Applicable for use in 

 Use Cases 

IEEE 802.11 Wireless LAN 

Frequency bands: 
▪ 900 MHz (802.11ah) 
▪ 2.4 GHz (802.11b/g/n/ax) 
▪ 3.65 GHz (802.11y) 
▪ 5.0 GHz (802.11j) WLAN 
▪ 5 GHz or 5.8 GHz 

(802.11a/h/j/n/ac/ax) 
▪ 5.9 GHz (802.11p) 
▪ 60 GHz (802.11ad/ay) 

 
Data rates:  
1 Mbps up to a theoretical limit of 
1Gbps (802.11ac) 

Use Case 1 (802.11ac/b/g/n for 
backend communication and 
802.11ah for long-range 
communication, i.e., to / between 
offshore turbines). 
 
Use Case 2 (as discussed) 
 
Use Case 3 (as discussed) 

IEEE 802.15.4  

Frequency bands:  
868/915/2450 MHz 
 
Data Rate:  
250kbps (WirelessHART) 

Use Case 1: N/A 
Use Case 2: Home Gateway to 
Home appliances 
Use Case 3: IHES Sensing nodes 
to IHES supervisor 
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WiMAX 

Frequency bands:  
2.5 and 3.5 GHz (requires 
license), 5.8 GHz (license-free) 
 
Data rates:  
Up to 1Gbps for fixed stations 

Use Case 1: As an alternative to 
LTE deployment for 
internet/backend connectivity. 
 
Use Case 2: As an alternative to 
LTE deployment for remote call 
center connectivity. 
 
Use Case 3: As an alternative to 
LTE deployment for mobility web 
services connectivity. 

Xbee PRO 
 Frequency bands: 868/915 MHz 
 Data rates: 250kbps 

Use Case 1: N/A 
Use Case 2: Home Gateway to 
Home appliances 
Use Case 3: IHES Sensing nodes 
to IHES supervisor 

LoRaWAN 

Frequency bands:  
433/868/915 MHz 
 
Data rates: Up to 50kbps 

Use Case 1: N/A 
Use Case 2: Home Gateway to 
Home appliances 
Use Case 3: IHES Sensing nodes 
to IHES supervisor 

SIGFOX 
Frequency band: 868 MHz 
 
Data rate: Up to 100bps 

Use Case 1: N/A 
Use Case 2: N/A 
Use Case 3: N/A 

Narrowband-IoT 

Frequency bands:  
1800/900/800 MHz 
 
Data rate: 250kbps 

Use Case 1: As an alternative to 
LTE deployment for remote call 
center connectivity. 
 
Use Case 2: Home Gateway to 
Home appliances or/and as an 
alternative to LTE deployment for 
remote call center connectivity. 
 
Use Case 3: IHES Sensing nodes 
to IHES supervisor or/and as an 
alternative to LTE deployment for 
remote call center connectivity. 

Public Cellular (HSPA & LTE) 

Frequency bands: 
850/900/1800/1900/2900 MHz  
 
Data rate (LTE): ~1200 Mbit 
downstream, ~225 Mbit upstream 

Use Case 1: As described above. 
 
Use Case 2: As described above. 
 
Use Case 3: As described above. 

Satellite Communications 

Frequency bands:  
137 MHz – 150 MHz or 1,6 GHz 
 
Data rate:  
2400bps (Iridium), 15 kbps 
upstream / 60kbps downstream 
(ACeS) 

Use Case 1: Alternatively, for 
interconnection of local site to 
backend in case of off-shore / rural 
deployments. Limited applicability 
due to reliability/availability 
constraints. 
 
Use Case 2: N/A 
 
Use Case 3: Alternatively, for 
interconnection of IoT Gateway to 
backend in case of off-shore / rural 
deployments. Limited applicability 



780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017 
Deliverable D3.1 Software-Defined Programmability for IoT Devices (first draft) 
Dissemination level: Public  

 

41 
 

due to reliability/availability 
constraints. 

 

6.1 IEEE 802.11 Wireless LAN 

The IEEE 802.11 Wireless LAN (WLAN) is one of the most prevalent wireless communication standards. The 
technology is mature and stable, and mass production has driven hardware module prices down. WLAN is not 
only limited to the 2.4 GHz and the 5 GHz ISM bands, as changes in the firmware can allow the usage of 
neighboring frequencies. One example of this is the case with the 5.9 GHz spectrum reserved for 
communication on Intelligent Transport Systems. Some countries allow additional frequencies, as is the case 
of the IEEE 802.11j amendment, which allows the operation of WLAN in the 4.9 GHz to 5 GHz band. Yet 
another example is the IEEE 802.11y amendment, which enables high power data transfer equipment to 
operate on the 3650 to 3700 MHz band in the United States of America.  
 
An additional approach, which is not limited to WLAN or to unlicensed frequency bands, is remixing the analog 
signal from a standard device into another frequency using analog radio equipment. The new signal will have 
the same bandwidth of the original signal but will have a different center frequency. 
 
The data rate of WLAN goes from 1 Mbps up to a theoretical limit of 480 Mbps, depending on the modulation 
used. The current draft of the IEEE 802.11ac aims to achieve data rates over 1 Gbps. As a general rule, the 
larger the range, the slower the data rate that can be achieved; an exception is on data rates below 12 Mbps, 
in which the faster orthogonal frequency-division multiplexing (OFDM) modulated data can be transmitted 
farther than the slowed direct sequence spread spectrum (DSSS) modulation.  
 
Several installations exist worldwide using the 2.4 GHz band, which achieve more than 1 km of range. 
However, most, if not all of them, have a direct line-of-sight, bridging a building and a mountain installation 
using high-gain directional antennas. For the first scenario as defined above, the limited range will not allow 
using the 2.4 GHz band. For the second scenario, the communication range of WLAN is sufficient to fulfill the 
distance as well as the data rate. 
 
In the 5 GHz band, there is the possibility of sending up to 1000 mW of power (+30 dBm, 1 Watt), which can 
easily exceed one kilometer. This sending power is permitted in the USA when using the 5.725 GHz – 5.875 
MHz ISM band without any further restrictions. In the USA and Europe, the 5.250 MHz - 5.725 MHz permits 
this sending power only when employing dynamic frequency selection (DFS) so that any potential interference 
with airport radar equipment operating in the vicinity can be detected and avoided. It should be mentioned that 
the specific frequency requirements as defined by the Federal Communications Commission are undergoing 
an overhaul; the exact changes haven’t been defined yet.  

6.2 IEEE 802.15.4  

The IEEE 802.15.4 is a standard for low-rate personal area networks (PAN), which defines the physical layer 
and the media access control. The basic IEEE 802.15.4 is the foundation of ZigBee and WirelessHART and 
uses mainly three frequency bands: 868.0-868.6MHz (Europe), 902-928 MHz (North America), 2400-2483.5 
MHz (Worldwide). There are additional frequency bands for specific countries, for example 950-956 MHz for 
Japan (IEEE 802.15.4d) and 314-316 MHz, 430-434 MHz, 779-787 MHz for China (IEEE 802.15.4c). 
 
WirelessHART has been specifically designed for industrial wireless sensor networks. Siemens has products 
available for the WirelessHART [24] standard in the SITRANS product line, including temperature and pressure 
sensors. WirelessHART allows for the use of multihop technology, effectively increasing the range of coverage. 
There is a maximum hop count of five and the base data rate of 250 kbps reduces with the number of hops. 
 
 

6.3 IEEE 802.15.4k  



780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017 
Deliverable D3.1 Software-Defined Programmability for IoT Devices (first draft) 
Dissemination level: Public  

 

42 
 

In general, the channel modulation used by the basic IEEE 802.15.4 combined with the permitted radiated 
power in Europe of 100 mW (in the USA 200 mW) in the 2.4GHz band makes it a challenge to achieve 3 km 
of range. Hence, there are many amendments from which to choose from, and one of them, IEEE 802.15.4k, 
has proven to communicate at such distances. 
 

The IEEE 802.15.4k Low Energy Critical Infrastructure Monitoring (LECIM) achieves the required range with 
commercial off-the-shelf hardware. Using an extremely slow, direct sequence spread spectrum modulation, 
the transmitters are in operation for extended periods of time, before the receiver can understand the signal.  
The company onRamp Wireless is, at the moment of writing this report, the only manufacturer of IEEE 
802.15.4k LECIM hardware. Their hardware achieves a range of several kilometers and their endpoints can 
work on batteries. Their radio modules have the advantage of working on the 2.4GHz ISM frequency band and 
have a channel bandwidth of 1MHz. The center frequency can be determined by the user in a 1 MHz raster.  
 

The radio modules have -141dBm receiver sensitivity, providing for a very large link budget, which will allow 
for large transmission ranges. The typical transmission power in Europe is 10mW EIRP. The modules use 
600mW of power while transmitting and 350mW while receiving. Most of the times the modules will be in deep 
sleep using just 15µW. Using very low duty cycles of a few messages per day, such a radio module can operate 
for 10 years on battery power. 
 

Access points use 15W-20W of power and have to be always on. Due to the duty cycle constrain ts and the 
use of a very slow ‘direct sequence spread spectrum’ (DSSS), any communication will have a delay of up to 
45 seconds. 
 

The OnRamp system uses a star topology, and every access point will require a 128 kb/s uplink to a network 
control center, which is managed by OnRamp Wireless. This presents an important limitation as the 
communications system cannot provide a simple point-to-point or point-to-multipoint connection. Endpoints 
cannot communicate with each other directly and the endpoints cannot communicate to each other over an 
access point directly, as all communications have to be managed by the centralized equipment.  

6.4 WiMAX  

 
The IEEE 802.16 Worldwide Interoperability for Microwave Access (WiMAX) communications standard 
concentrates on metropolitan area networks and in its latest version can provide connection speeds of up to 1 
Gbps. Channel bandwidth depends on the specific profile used and goes between 1.25 MHz and 20 MHz. 
Specified to work in just about any frequency between 2 to 66 GHz, hardware is available for the following 
spectrum profiles: 700 MHz, 1.5 GHz, 1.9 GHz, 2.3 GHz, 2.5 GHz, 2.8 GHz, 3.3 GHz, 3.5 GHz, 3.7 GHz, 4.9 
GHz, 5.2 GHz, 5.4 GHz, 5.8 GHz and 5.9 GHz. Communications range can run up to 50 km using the lowest 
data rate and very high sending power. Independent tests confirm that WiMAX is more energy efficient than 
GSM, UMTS and LTE mobile communication when compared under similar conditions (data rate, 
communications range, and ambient temperature). 
 
The major disadvantages are similar to mobile communication. They require a licensed band and additional 
backend components to support simple point-to-point communication. The requirement for a licensed band 
means that a frequency must be acquired from the government authorities, in each country in which operation 
is desired. This is typically linked with very high costs. 
 

6.5 Xbee PRO 868  

Instead of using the 2.4 GHz frequency band, going to a lower frequency will help achieve the required range 
for the same amount of power. This led to the usage of the 868 MHz unlicensed band, e.g., utilized by the 
XBee-PRO 868, from the company Digi International, which uses a proprietary protocol. The data sheet quotes 
a distance of 40km, which has also been proven under line-of-sight conditions (+25dBm sending power, 
+2.1dBi antenna gain). Independent tests show good results for 10.6km (+14dBi Antenna, Line -of-Sight, 
sending telemetry data from a model airplane). The same data sheet quotes a range of 550m for indoor and 
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urban environments. As the range with line-of-sight is very good, an alternative for non-line-of-sight would be 
to position one or two nodes as repeaters to forward the information. 
 
The XBee product is not compatible with IEEE 802.15.4, using a proprietary protocol instead. The 868MHz 
frequency band is an SDR band in Europe, providing operation free of charge. The equivalent frequency for 
Region 1 (Americas) is 915MHz, which use is also free of charge. 

6.6 RF Mesh / multihop 

RFmesh, also called multihop, is a networking concept in which nodes that are member of a network can relay 
the information to other nodes, so that data can be propagated along the network. Using mul tihop, the basic 
communications range can be extended several times, at the cost of an increase in latency and power usage, 
and the decrease of data throughput rate. An important advantage is the self -healing mechanisms that include 
the communication protocols used. If a network node fails, the traffic is routed around the problem.  
 
Many of the technologies analyzed in this document allow for a multihop communication. One common 
example is WLAN, which in the IEEE 802.11s amendment to the standard supports multihop. Another example 
is the IEEE 802.15.4. Together, these two represent almost all the available RF mesh devices available on the 
market. They work in the ISM frequency bands that permit for a license-free operation in any region in the 
world. 

6.7 LPWAN 

The low-power wide-area network (LPWAN) is a type of wireless communication technology. LPWAN is wide 
area network designed to allow long range communication at a low bit rate among remote and energy 
constrained objects. It is an umbrella for different specific technologies, as described below.  
 

6.7.1 LORAWAN 

 
Long Range Wide Area Network (LoRaWAN) is a communications standard in the 868/915MHz SRD frequency 
band. Due to the relatively low frequency, relatively high sending power (20dBm) and good receiver sensitivity 
(-148dBm), devices have been reported to achieve a typical range of 2km (with a theoretical maximum range 
of 16km).  
 

LoRaWAN is the network on which LoRa operates and can be used by remote and unconnected industries. 
LoRaWAN is a media access control (MAC) layer protocol. It is a network layer protocol for managing 
communication between LPWAN gateways and end-node devices as a routing protocol, maintained by the 
LoRa Alliance. Under the network architecture demanded by LoRa, each client device requires a logical 
connection to one or more LoRa gateways to achieve a connection; the protocol does not allow clients to talk 
to each other directly. The devices use less power than cellular mobile communication, and they have low data 
rates, which go from 0.3kbps up to 50 kbps. 
 
The standard is driven by the LoRa Alliance, with Cisco, IBM, Semtech and Gemalto among its members.  
 

6.7.2 SIGFOX 

 
Sigfox uses the 868MHz/915MHz license-free frequency band to enable a business model similar to mobile 
network operators. As of October 2018, the Sigfox IoT network has covered a total of 4.2 million square 
kilometres in a total of 50 countries and is on track to reach 60 countries by the end of 2018 13. Sigfox provides 
cost effective communication (1€ - 5€ per device per year) for devices which don’t need a fast connection.  
 

                                                      
13 https://www.electronicsweekly.com/news/products/rf-microwave-optoelectronics/sigfox-iot-network-reaches-50-
countries-2018-10/ 
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This system has a channel bandwidth of 200kHz and a slow connection speed (100bps). The communication 
latency is of 4s for a typical message, and 60s maximum. Moreover , it has to be taken into account that this 
technology allows to exchange 140 messages per day as a maximum which is expected to be an exclusion 
criterion for most scenarios even if low bandwidth is needed. 
 
Many manufacturers of Sigfox clients can be found on the market, including Atmel and Texas Instruments. 
 
Before Sigfox is selected as the preferred communications technology, special attention has to be paid to the 
network coverage in the area of use, as today (October 2015) it covers only one city in Germany (Munich). 
 

6.7.3 NB-IOT 

 
Narrowband IoT (NB-IoT) is developed by 3GPP to enable a wide range of cellular devices and services.  It 
aims to address the needs of very low data rate devices (often powered by batteries) that need to connect to 
mobile networks. As a cellular standard, the goal of NB-IoT is to standardize IoT devices to be interoperable 
and more reliable. The 3GPP standard is currently in Release 13 (LTE Advanced Pro). It defines the device 
receiving bandwidth as 180 kHz with a download/upload rate of 250 kbits and a latency of 1.6s–10s. 
 

6.8 Satellite Communication   

 
An interesting option is using satellite data communication in the bands of 137 MHz – 150 MHz or 1,6 GHz. 
Some of the current satellite systems available allow usage of a simple and relatively small rod antenna. 
Examples are Iridium and Orbcomm in Low Earth Orbit (LEO), as well as Globalstar and Inmarsat in 
geosynchronous orbit (GEO). Modules for machine-to-machine communication (M2M) are available on the 
market. 
 
Using satellite communication has the disadvantage of generating running costs. However, it has the 
advantage of not requiring any infrastructure for a long-range communication. Unfortunately, such systems 
have a significant latency when delivering the data. As an example, Orbcomm announces that 2% of all the 
data have a delay of over 15 minutes, while Iridium defines waiting times between 1-8 minutes as possible. 

6.9 Public Cellular NB (GPRS, GSM): MHz & BB (HSPA, LTE) 

 
Mobile communication allows the possibility of packet switched digital data communication using GPRS, 
EDGE, Evolved EDGE and HSPA. If the field components which require communication are all in range of a 
mobile communications network, then a very simple solution would be to provide the elements with  
communication over GSM/UMTS. These wireless technologies work in the bands of 850/900/1800/1900/2900 
MHz.  
 
As this is not always the case, an alternative is the setup of a local microcell. For a microcell, a low power 
cellular base station providing mobile communication coverage over a few kilometers, standard GSM/UMTS 
modules can be used. It should be noted that this microcell would require a connection to the backbone 
systems of the mobile network operator, as a cellular base station is going to require different resources located 
there, i.e., the home location register and the base station controller. 
 
Different manufacturers offer such microcell products, for example Huawei and Alcatel-Lucent. The 
communications module can be obtained from many manufacturers, including Qualcomm, CSR and SIMCom. 
License to the appropriate frequency band will run by the mobile network operator.  
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7 SDN IN CONTEXT OF SEMIOTICS USE CASES 
 

The SSC with the majority of its functions will be deployed in Use Cases 1 and 2 as the main network 
connectivity enabler. Both Use Case 1 and Use Case 2 will deploy complete SSC function set, i.e., including 
all modules of Figure 4, however, they will highlight individual features of the architecture, due to Use Cases 
encompassing a vast larger number of overall SEMIoTICS components, apart from networking.  

 
Use Case 1: 
 
SEMIoTICS Use Case 1 comprises multiple programmable logic controllers, IIoT gateway, network routers 
(internet gateway) and SCADA application instances, interacting for purpose of field level monitoring, actuation 
and reporting of observed system state values to MindSphere platform in the backend. All interactions require 
basic field-layer and internet network connectivity, enabled by the SDN controller in automated and reliable 
manner. Furthermore, field layer services, such as: (i) the wind park controller-to-turbine actuation; (ii) updating 
of threshold values by SCADA in the turbine controller, with goal of per-turbine frequency and voltage 
optimization in energy production, as well as; (iii) proactive/reactive actuation in case of failure (i.e., stoppin g 
the turbine in case of oil/grease detection and outlier sound samples); require QoS-constrained interaction 
between the observing instance and the actuator.  
 
To this end, SSC enables QoS-constrained network flows, fulfilling the individual latency, bandwidth 
requirements of the service, and will demonstrate: 

(I) The initial automated bootstrapping of the network (focuses on Bootstrapping Manager)  
(II) Instantiation of Virtual Tenant Networks in the field-layer (focuses on using Security Manager 

for authentication/authorization in SSC’s UI and the VTN Manager for VTN enforcement).  
(III) Providing best-effort flows for interconnecting infrastructural components in scope of the 

established VTN (focuses on interaction between Path Manager, Bootstrapping Manager, VTN 
Manager and Resource Manager components). 

(IV) Providing QoS-constrained flows for interconnecting critical components (i.e., Programmable 
Logic Controller-to-Monitoring App connection). This workflow will require interaction between 
Path Manager, Pattern Engine, VTN Manager and Resource Manager, but will also necessitate 
the reservation state updates in Clustering Manager).  

 
 

 
Use Case 2: 
 
The second use case of SEMIoTICS focuses on an ambient assisted living scenario. It encompasses a complex 
environment, requiring support for integration of heterogeneous devices and communication protocols, high 
degrees of interoperability and support for distributed services and applications (each with its own set of 
intrinsic requirements), while guaranteeing the safety of the patient and the security and privacy of her patient 
data. There is a significant motivation to leverage the flexibility provided by Service Function Chaining (SFC; 
as detailed in deliverable D3.2), to define specific service chains for each type of traffic in this scenario. With 
the functionality of each individual service functions in the chains being in line with the details presented in 
deliverable D3.2 (Section 2, in specific), we foresee the enablement of following SFCs:  
    • Chain 1 – Mobile Phone: Firewall -> Header Enrichment -> IDS -> Output  
    • Chain 2 – Robotic Rolator: Firewall -> IDS -> Load Balancer -> Output 
    • Chain 3 – Smart Home: Firewall -> IDS -> Output 
    • Chain 4 – Robot:  Firewall -> Load Balancer -> Output  
    • Chain 5 - Malicious: Firewall -> Honeypot 
 
SSC will enable the Service Function Chaining, i.e., the configuration of paths fulfilling the forwarding of 
matched traffic through the VNF chains, as required by the above SFCs. To this end, VIM will interact with the 
SFC Manager of the SSC to request the according translation of SFC graph into the resulting network 
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configuration and will showcase SSC’s enablement of connectivity in backend layer using the VIM connector 
API of the SSC. 
 

Use Case 3: 
 

While in principle SDN could be deployed in Use Case 3 as well, we will focus on highlighting other components  
of the SEMIoTICS architecture except SDN there. 
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8 NEXT STEPS AND CONCLUSIONS 
 
 

Next Steps:  
 
As a core component, positioned between the SEMIoTICS backend/cloud (more specifically the Pattern 
Orchestrator) and physical forwarding data plane, the SSC is a complex piece of software. Thus, we will next 
initiate building and extending the SEMIoTICS controller based on the existing open-source and VirtuWind 
code base, instead of initiating an error-prone and costly from-the-scratch development. The overview of the 
existing implemented SSC components that are to be reused, and those that are to be developed from scratch 
/ newly implemented is provided in Figure 4 and individual component sections in this document. 
 
In the following, we summarize the most important development activities planned for the upcoming period:  
 
Pattern Engine Implementation and adjusting of interacting components: To support pattern-model in 
specification of connectivity requirements, we will require and thus will develop and integrate the Pattern 
Engine controller component. Additional changes to other relevant modules of the controller will be made, so 
to support the Pattern Engine interactions. Additionally, to support the connectivity specific requirements and 
QoS properties, we will develop the support for patterns capable of requesting, enforcing and monitoring QoS-
enabled connectivity.  
 
Enabling scalability in failure-tolerant SSC: The SSC’s Clustering Manager component will be developed / 
extended from existing OpenDaylight-based release, as necessary to support Byzantine Fault Tolerance 
approach to high availability of the controller instances. Indeed, as described in Section 4.7, current planned 
conceptual solution to providing for Byzantine Fault Tolerance comes with large overhead of replicated 
computation and replicated control flows necessary to support redundant decision-making by multiple 
controller instances. We will investigate, document and provide a Proof -of-Concept of Byzantine Fault Tolerant 
computation with focus on scalability aspects of the SSC solution. 
 
Automated establishment of basic network services: Enabling point-to-point connectivity in OpenDaylight 
and reference VirtuWind implementations requires manual or scripted specification of end -points to be 
interconnected by the network flows. This would lead to a large manual effort complexity due to a high number 
of infrastructural services necessary by SEMIoTICS components in the field and backend layer that require 
such connectivity. To this end, we will implement an automated instantiation of network services for 
infrastructural network flows (e.g., Thing Directory synchronization, IoT Gateway <-> Router <-> Internet flows) 
as required by the SEMIoTICS use cases to minimize the scenario deployment efforts.  
 
Final SSC component responsibilities: In the subsequent deliverable D3.7 (scheduled for M26), we will 
provide the final design of the SSC components. During the development phases of SEMIoTICS, if further gaps 
and differences to the presented component overview arise, then those will be documented in the Deliverable 
D3.7. 
 

Conclusion: 
 
The present deliverable provides an overview of the purpose, architecture placement and the design of the 
SEMIoTICS SDN Controller (SSC) solution. Furthermore, we shed light on the currently available wireless 
technologies for connecting (low-powered) sensor/actuator at large scale and long distance for industrial use 
cases. The SSC with the majority of its functions will be deployed in Use Cases 1 and 2 as the main network 
connectivity enabler. The mapping of selected wireless technologies on the individua l Use Cases 1, 2 & 3 is 
presented in introduction of Section 6. 
 

The SSC provides a mean to dynamically and flexibly provision, monitor and evict virtual tenant networks and 
network services at per-application granularity, both during the engineering phase (pre-planned services) and 
at runtime. The flexibility in deployment of services comes from the wide gamut of specifiable and guaranteed 
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properties associated with the provisionable network services, including but not limited to the end-to-end delay, 
bandwidth and redundancy properties.  
 
This deliverable provides the insight on planned development efforts, new and modified components and the 
introduced deltas to existing state-of-the-art controller platforms based on OpenDaylight open-source controller 
solution.   
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