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EXECUTIVE SUMMARY 
 

SEMIoTICS architecture consists of three levels: the Field level, Network level, and the Backend/Cloud level. 
This deliverable provides design and the first draft of the semantic integration of the Field level into the 
SEMIoTICS architecture. In particular this includes semantics that aims to make brownfield devices form 
existing automation systems interoperable with newly bootstrapped devices. The new devices are Internet of 
Things (IoT) devices. They interact in a way, which is different to standards -conform brownfield devices. They 
can also not be engineered with existing industrial tools. On the other hand, they are cheaper and enable 
dynamic changes in automation systems. For example, it should be possible to easily plug a new IoT device 
and create a new application that process data from existing brownfield devices, as well as data from the new 
device. This possibility would significantly decrease costs of upgrading automation systems and development 
of new applications. Moreover, it would be possible to create a new class of IoT applications, which have not 
been envisioned at the time of creation of an automation system. In order to enable this we have to integrate 
the brownfield system with the IoT Field level. This assumes a common communication acces s, as well as an 
integrated data access. As a prerequisite for this, we have to describe capabilities of both brownfield and IoT 
devices with a harmonized semantic model. This will enable application developers to easily understand 
underlying infrastructure when developing new applications and will enable tool support when discovering and 
engineering devices. Therefore, in this deliverable we are developing an IoT gateway that will fulfil these 
requirements at the Field level. The integrated device semantics at this level is a key enabler for bootstrapping 
and easier integration of devices in an IoT system, as well as a facilitator for creation of new applications. 
Apart from this, this work will be the central basis for the connectivity network and the “glue” between the 
Backend/Cloud on one hand side, and Field level devices on the other side.   
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1 INTRODUCTION 

1.1 Semantic Interoperability in SEMIoTICS 

The Internet of Things (IoT) is the network of things that are connected together. They interact and exchange 
data over Internet. Things can represent physical or virtual objects. Thus manipulating IoT things, it is possible 
to impact the physical world represented by those things. Before IoT emerged as a paradigm shift networks of 
connected devices have already existed. Hence the question is what is new by IoT.  

IoT promises a new class of applications based on things that interact over Internet. The game changer is not 
the fact that we connect many things to Internet. Instead, the difference that IoT aims to make  is the 
interoperability of things, that is, the ability of things to interact in a meaningful way. How can we enable things 
to interact, knowing that there are so many diverse things and even more possible ways of their interaction, 
different communication protocols, different serialization- or data- formats they exchange, and different 
purposes of Things? A new class of IoT applications assumes even interactions of things that never before 
have been envisioned to interact together. Thus, the greatest challenge in IoT is to make things interoperable. 
One way to achieve this is to describe things, their capabilities, and data they produce or consume in a machine 
understandable form. Such a description could be then used to discover things relevant for an application. It 
can also serve to figure out how these things could interact. The description should be formalized, with a clear 
semantic meaning, so that both humans and machines can interpret it. In this way we would not have just 
Internet of mere things. Instead, IoT would be the Internet of semantically-described things. Semantics for IoT 
is the key enabler of applications that operate on physical world objects. It is a prerequisite for achieving the 
interoperability of things, and thus for realization of a new class of IoT applications. Figure 1: Enabling real-
world Applications with IoT semantics depicts this vision.   

 
FIGURE 1: ENABLING REAL-WORLD APPLICATIONS WITH IOT SEMANTICS 

The Industrial Internet of Things (IIoT) refers to the IoT, where things are industrial devices and applications 
are bound to various industrial operations. The interoperability in IIoT plays as important role as in IoT. Field 
devices in automation systems originate from different manufacturers and have to be integrated in such a way 
that a standard access to their data is possible. This aims to reduce the effort for device - engineering, 
configuration, management, operation, and versioning, as well as to enable industrial applications to operate 
on integrated data. A distinguished difference in IIoT is that semantics for describing things must be 
standardized, and a good portion of it already exists. Thus, in the context of IIoT applica tion, before enabling 
the things interoperability we have to tackle a challenge of integrating semantics of brownfield industrial 
devices with new IoT things.  

In this work we use semantic models to provide the meaning to data that is exchanged between thi ngs, and 
further to describe capabilities of things in a machine interpretable format. Our gateway will serve as a semantic 
mediator in the task of integrating semantics of brownfield industrial devices and new IoT things. As the input, 
the gateway accepts data from diverse field devices. As the output, it provides an API to access semantically-
described data along with descriptions of capabilities of connected devices. The API is based on W3C Web of 
Things (WoT) upcoming standard, and things are specified in the WoT Thing Description (TD) format. TD is 
semantically annotated with iot.schema.org. In our approach we will strive to use existing standards to describe 
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things, as only the standard semantics provides the necessary base for the interoperability. Thus we will extend 
iot.schema.org with standard semantics that is required for SEMIoTICS use cases. These semantic models 
will be a cornerstone for different tasks such as discovery of services and devices; bootstrapping and 
interfacing of IIoT field devices to enable plug-and-play functionality; creation of IIoT applications with low 
effort, and others.  

1.2 Focus and Relations to Other Project Tasks 

Figure 2 shows three main levels of concern in the SEMIoTICS project, i.e., Field level, Network level, and 
Backend/Cloud level.  

In the first level, field devices become things in the context of IoT or IIoT. Both brownfield devices and new 
devices are brought to a common accessibility layer by Gateway. The accessibility layer assumes a common 
communication interface and semantic description of capabilities of field devices, provided in a standard and 
harmonized way, see Figure 2. Field-level data and devices, described and enriched with IoT semantic models, 
are ready to be used for Edge analytics. Such localized analytics (Embedded Intelligence) deploys machine 
learning algorithms to extract the most important features of the data locally. It also transfers valuable results 
to the cloud for further, global, processing and updates of the learning model.  

The second layer is the networking layer. IIoT applications typically need to satisfy a range of quality of service 
(QoS) parameters related to the networking. In order to accomplish this, IIoT applications will need to be 
resource and network-aware. Only then they will take full advantage of agile networks and underlying network 
programmability as provided by Software Defined Networking (SDN). SDN allows network programmability, 
which can be used to decouple network control from the forwarding network (aka data) plane and to make the 
latter directly programmable by the former. Integrating IIoT and SDN will increase network efficiency as it will 
make it possible for a network to respond to changes or events detected at the IIoT application layer through 
network reconfiguration. 

The Backend/Cloud layer gathers data from different sources and provides higher-level services (apps). 
Semantic meta-data of the gathered data is passed from the Field level to this level, where it can be further 
enriched with Cloud-level semantic models (Knowledge Graphs). Semantically described assets in the Cloud 
can be used in further processing by apps. In SEMIoTICS apps will be realized as application temp lates 
(Recipes) that are instantiated with particular assets. Recipes are semantically annotated with the same 
semantic models as assets. Hence the discovery of relevant Recipes, as well as the matching between Recipes 
and applicable assets, will be based on semantic processing.    

The focus area and tasks related to the role of semantics in the SEMIoTICS project are positioned by the oval 
in Figure 2. In particular, the task T3.3 has the goal use the standardized semantic models in order to enable 
the interaction between IIoT field level on one hand side and the SDN Controller Southbound Interface on the 
other one. The task provides the accessibility layer as a common communication interface and semantic 
description of capabilities of field devices. Further on, this work will make all field -level resources discoverable 
on a Gateway-level thing directory. The same mechanism will be applied for Cloud-level discoverability. Finally, 
field-level semantics will enable bootstrapping of filed devices in a SEMIoTICS system, thereby allowing easier 
integration of brownfield and new IIoT devices in an integrated ecosystem where rapid development of IIoT 
application is possible.  
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FIGURE 2: KEY IOT CHALLENGES DRIVING SEMIOTICS 
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1.3 PERT chart of SEMIoTICS 

36 months Leader: SAG

31.12.202001.01.2018

WP1: Project Management

23 months Leader: ST-I

30.11.201901.01.2018

WP2: Requirements and Architecture for 
Smart Sensing and Smart Actuation

24 months Leader: SAG

30.04.202001.05.2018

WP3: Smart objects and networks

25 months Leader: FORTH

30.06.202001.06.2018

WP4: Pattern-driven smart behavior of 
IIoT with End-to-End Security and Privacy

24 months Leader: ENG

31.12.202001.01.2019

WP5: System Integration and Evaluation

36 months Leader: SAG

31.12.202001.01.2018

T1.1: Project coordination 36 months Leader: FORTH

31.12.202001.01.2018

T1.2: Project technical and innovation 
management

36 months Leader: SAG

31.12.202001.01.2018

T1.3: Coordination with EU programme 
level activities

3 months Leader: STS

31.03.201801.01.2018

T2.1: Analysis of emerging business and 
technical IoT value drivers

4 months Leader: SAG

30.04.201801.01.2018

T2.2: Specification of use case scenarios 
& applications and their requirements

4 months Leader: ST-I

30.06.201801.03.2018

T2.3: Specification of infrastructure 
requirements

18 months Leader: BS

31.12.201901.07.2018

T2.4: SEMIoTICS architecture design

22 months Leader: SAG

29.02.202001.05.2018

T3.1: Software defined Aggregation, 
Orchestration and cloud networks

22 months Leader: CTTC

29.02.202001.05.2018

T3.2: IIoT Network Function Virtualization

22 months Leader: SAG

29.02.202001.05.2018

T3.3: Semantics-based bootstrapping & 
interfacing

22 months Leader: STS

29.02.202001.05.2018

T3.4: Network-level semantic 
Interoperability

22 months Leader: IQU

30.04.202001.07.2018

T3.5: Implementation of Field-level 
middleware & networking toolbox

23 months Leader: STS

30.04.202001.06.2018

T4.1:Architectural SPDI patterns

22 months Leader: ENG

30.04.202001.07.2018

T4.2: Monitoring, prediction and 
diagnosis

22 months Leader: ST-I

30.04.202001.07.2018

T4.3: Embedded Intelligence and local 
analytics

22 months Leader: FORTH

30.04.202001.07.2018

T4.4: End-to-End Semantic 
Interoperability

22 months Leader: BS

30.06.202001.09.2018

T4.6: Implementation of SEMIoTICS 
backend API

22 months Leader: UP

30.04.202001.07.2018

T4.5: End-to-End Security and Privacy

5 months Leader: UP

31.10.201901.06.2019

T5.1: KPIs and Evaluation Methodology

15 months Leader: BS

31.08.202001.06.2019

T5.2: Software system integration

20 months Leader: IQU

31.08.202001.01.2019

T5.3: IIoT Infrastructure set-up and 
testing

13 months Leader: SAG

31.12.202001.12.2019

T5.4: Demonstration and validation of 
IWPC- Energy scenario

13 months Leader: ENG

31.12.202001.12.2019

T5.5: Demonstration and validation of 
SARA-Health scenario

13 months Leader: ST-I

31.12.202001.12.2019

T5.6: Demonstration and validation of 
IHES-Generic IoT scenario

36 months Leader: CTTC

31.12.202001.01.2018

T6.1: Impact Creation and Dissemination 31 months Leader: ENG

31.12.202001.06.2018

T6.2: Exploitation of results

24 months Leader: SAG

31.12.202001.01.2019

T6.3: Standardization
36 months Leader: CTTC

31.12.202001.01.2018

WP6: Impact, Dissemination and 
Standardization

 
Please note that the PERT chart is kept on task level for better readability. 
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1.4 Specific Project Requirements Related to This Project Task 

This section contains project requirements that are derived from deliverable D2.3 and are specific to this task. 
The requirements are identified by Req-IDs, see tables below. These identifiers will be used throughout the 
deliverable to denote parts thereof, which address specific requirements. 
 

TABLE 1: SPECIFIC REQUIREMENTS FOR THIS TASK FROM GENERAL PLATFORM REQUIREMENTS  

Req-ID Functional Description Req. 
level 

Status  
Referenced In 

R.GP.1 Yes 

End-to-end connectivity between the 
heterogeneous IoT devices (at the field level) 
and the heterogeneous IoT Platforms (at the 
backend cloud level) 

MUST 

Section 3.1 

 
 

TABLE 2: SPECIFIC FIELD LAYER REQUIREMENTS 

Req-ID Functional Description Req. 
level 

Status  
Referenced In 

R.FD.5 Yes 
Field devices SHOULD be able to interact 
with SEMIoTICS IIoT/IoT 
gateway   dedicated components 

SHOULD 
Section 3.1 

R.FD.6 Yes 
Field devices MUST interoperate using a 
standard communication protocol like Rest 
APIs, COAP, MQTT. 

MUST 
Section 3.1 

R.FD.7 Yes 
Field devices MUST use standardize 
interoperable message format (e.g. JSON, 
etc.). 

MUST 
Section 3.1 

R.FD.8 Yes 
Field devices MUST support secure 
bootstrapping / registration protocol. 

MUST 
Section 3.3 

R.FD.12 Yes 

Greenfield device is expected to expose its 
capability over a W3C Thing Description, 
which semantically describes field 
resources, and to be computationally 
powerful enough to run a node-wot servient 
(that exposes the TD). 

MUST 

Section 3.1 

R.FD.13 Yes 

Brownfield device is assumed to consist of a 
sensor/actuator and a controller (PLC). The 
controller is expected to expose capability of 
its sensor/actuator over a native brownfield 
protocol (without the need for IIoT Gateway 
to interact directly with them). 

MUST 

Section 4 

 

TABLE 3: SPECIFIC REQUIREMENTS FOR USE CASE 1 

Req-ID Functional Description Req. 
level 

Status  
Referenced In 

R.UC1.1 Yes 

Automatic establishment of networking 
setup MUST be performed to establish 
end-to-end connectivity between different 
stakeholders 

MUST 

Section 4 

R.UC1.8 Yes 

Semantic and robust 
bootstrapping/registration of IIoT sensors 
and actuators with IIoT gateway MUST be 
supported. 

MUST 

Section 4 
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R.UC1.9 Yes 

Semantic interaction between use-case 
specific application on IIoT Gateway and 
legacy turbine control system MUST be 
supported. 

MUST 

Section 4 

R.UC1.10 Yes 
Sufficient compute environment MUST be 
supported on the IIoT Gateway to run use-
case specific applications. 

MUST 
Section 4 

R.UC1.11 No 
Device composition and application 
creation SHALL be supported through 
template approach. 

SHALL 
 

R.UC1.12 No 
Standardized semantic models for 
semantic-based engineering and IIoT 
applications MUST be utilized. 

MUST 
Section 3, Section 4 

R.UC1.13 Yes 

Middleware functionality MUST be 
supported on IIoT gateway, to deal with 
termination of IIoT sensors, signal 
processing and termination of interfaces to 
legacy systems to provide prioritization 
and QoS for IIoT applications. 

MUST 

Section 4 

 
 
 
 
 

TABLE 4: SPECIFIC REQUIREMENTS FOR USE CASE 2 

Req-ID Functional Description Req. 
level 

Status  
Referenced In 

R.UC2.5 Yes 

The SEMIoTICS platform should allow the 
SARA solution to discover the IoT devices 
that are registered in the system. IoT 
devices deployed by the SARA solution 
are expected to register themselves into 
the system using various standard 
protocols (e.g. LwM2M, MQTT, Bluetooth 
LE, ZigBee, etc.). 

SHOULD 

Section 4 

R.UC2.6 Yes 

The SEMIoTICS platform SHOULD allow 
the SARA solution to retrieve the 
resources exposed by registered devices 
via their object model (i.e. a data structure 
wherein each element represents a 
resource, or a group of resources, 
belonging to a device). The SEMIoTICS 
platform SHOULD support at least the 
OMA LWM2M object model. 

SHOULD 

Section 3, Section 4 

 
 
 

TABLE 5: SPECIFIC REQUIREMENTS FOR USE CASE 3 

Req-ID Functional Description Req. 
level 

Status  
Referenced In 

R.UC3.2 Yes 
IoT Sensing unit shall be able to interface 
and register to the IoT Sensing gateway 

MUST 
Section 4 
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with a standard IP based (i.e. TCP 
transport) 1 to many M2M communication 
protocol to properly handle node 
registration and capabilities negotiation.  

R.UC3.9 Yes 

IoT Sensing gateway shall support 1 to 
many standard IP based (i.e. TCP 
transport) M2M communication protocol 
to interface a number N of connecting 
Sensing units (e.g. broadcast type). 

MUST 

Section 4 

R.UC3.12 Yes 
IoT Sensing gateway shall be capable to 
run Linux (e.g. Ubuntu OS) and standard 
graphics and browser libraries.  

MUST 
Section 4 

R.UC3.13 Yes 
IoT Sensing gateway should be able to 
support http and standard protocols for 
cloud interfacing.  

SHOULD 
Section 4 

R.UC3.14 Yes 

The specific M2M protocol adopted on 
UC3 is based on MQTT. A MQTT broker 
service will be available to dispatch 
messages between the coordinating 
Sensing gateway and its associated 
Sensing units. 

MUST 

Section 4 

R.UC3.15 Yes 

A use case specific serialized message 
protocol is required to coordinate the 
gateway and its associated units and 
exchange data / events / anomalies 
between them. JSON will be the preferred 
serialization format adopted. 

SHOULD 

Section 4 

R.UC3.16 Yes 

Each registered sensing unit should send 
to the sensing gateway a keep alive signal 
on a specified period (e.g. few seconds) 
to notify the gateway it is correctly 
working. The sensing gateway should 
detect by this mean any non-working 
sensing unit and reconfigure the system 
accordingly. 

SHOULD 

Section 4 

R.UC3.17 Yes 

Sensing units and sensing gateway 
should share a common clock (i.e. global 
reference time), precise up to 
milliseconds, to properly classify events 
and data acquired during the processing. 
This global reference time will be 
negotiated when a sensing unit node will 
join a given gateway. Internally the 
system will work scheduling activities 
according to this global reference time.  

SHOULD 

Section 4 
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2 SEMIOTICS USE CASES & REQUIREMENTS – SEMANTICS 
PERSPECTIVE 

The Internet of Things, among other benefits, promises extensible, flexible, and dynamic applications. For 
example, an existing automation system could be equipped with additional sensors and actuators in order to 
provide a new feature. Data produced and consumed by new devices can be used for new applications. In 
certain cases, owners of automation systems are incentivized to share this data with application providers in 
order to offer new added-value services or to decrease costs of their systems. This motivates us to work on 
industrial automation systems that are easily extensible with new IoT devices. The IoT promises this feature 
in a form of plug-and-play functionality. In this section we review SEMIoTICS use cases from a semantic 
perspective, i.e., we provide requirements related to device bootstrapping, engineering and networking, where 
the use of semantics bring benefits.  

2.1 Use Case 1: Wind Energy 

Automation systems are fully integrated vertical systems. The full integration brings them efficiency. At the 
same time, it bears inflexibility too. Once these systems have been engineered and operational, they cannot 
be changed easily. For example, it is not straightforward to plug a new device into a running system and expect 
the device to be functional with respect to an already engineered system (as specified by requirement R.UC1.8 
in deliverable D2.3). Or it is not effortless to develop an added-value service for an existing automation system 
(as specified by requirement R.UC1.11 in deliverable D2.3). Automation systems are complex, diverse, and 
engineered for a specific purpose. The change in a running system must not impact the system itself. Second, 
the change, if needed, needs to be integrated in the rest of the system so that  the new system is operational 
for existing and new applications. Today these tasks are typically performed by engineers. They have required 
know-how. The main reason why an automated procedure for adding a new device, in sense of plug -and-play 
is not possible lies in the fact that the expert’s know-how is not explicitly represented in a machine-interpretable 
form. In order to enable creation of new IIoT applications in a dynamic environment we need to explicitly 
represent this knowledge, thereby expressing capabilities of field devices in machine-interpretable form. 
Moreover, device capabilities must be realized with standardized semantics as required by R.UC1.12 in 
deliverable D2.3. Only then it will be possible to extensively use reasoning machines to certain automate 
engineering tasks.  

The following use case describes problems found in the current vertically integrated automation systems and 
sketches the role of semantics in IIoT in order to amend these problems. Figure 3 depicts three parts: an 
existing control system in a wind turbine; a new IoT device; and an industrial network, which connects all 
components. The existing control system runs and is expected to continue its functionality also after adding a 
new IoT device. For example, a Siemens SIMATIC S7 controller controls sensors and actuators, which are 
needed for a normal operation of a wind turbine. Values from these sensors and actuators are exposed over 
a SIMATIC S7 controller or an OPC-UA server. Our goal is to realize a new application, which requires an 
additional temperature sensor. This is often a case, for example, when the position of an existing temperature 
sensor is not appropriate for measurements needed for the new application. Therefore, we need to add a new 
sensor. Suppose for our application, the new temperature sensor can be an inexpensive IoT device. The 
question which arises here is how to integrate an IoT device with an existing automation system  (see also 
requirement R.UC1.9 from deliverable D2.3). First, the IoT device cannot communicate over standard industrial 
protocols. Second, the IoT device cannot be added to the system over existing engineering tools (e.g., Siemens 
TIA Portal). Third, it is not effortless to develop a new added value application since the know-how for an 
existing and new systems are contained by different experts. Fourth, the application may impose additional 
requirements, e.g., quality of service (QoS) constraints related to the under lying network. These requirements 
are expressed in Figure 3 as a network constraint rule (NCR) and assumed by requirement R.UC1.1 in 
deliverable D2.3.  

Based on this example application we will explain the role of semantics for interfacing SEMIoTICS field level 
devices. In order to enable an application to process data from brown field automation system and new IoT 
devices, we first need to enable a common application protocol. Second, we need to provide a common data 
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model. Third, we need to provide a common semantic model, which will describe interaction patterns and 
capabilities of devices. The semantic model will also involve con textual information and expert’s know-how, 
explicitly represented in a machine-interpretable format. Forth, QoS network-related criteria can be 
semantically described and interpreted by Software Defined Network (SDN) controllers prior to the deployment 
of the application in order to check whether the communication infrastructure can meet the requirements of an 
application. Thus, it is also a goal of our work in SEMIoTICS to provide a semantic model for describing QoS 
network-related parameters and SDN/NFV infrastructure so that an automated evaluation of both is possible. 
Only then, it will be possible for an application developer to efficiently discover field devices (based on 
capabilities they provide), and to put them into semantically-correct interactions, also when they demand 
different functional and non-functional requirements to be fulfilled. Overall, we see that the plug-and-play 
functionality is not easily achievable. Nevertheless, our goal is to enable realization of new IoT applications 
that have not been envisioned at the time of engineering an existing automation system.    

Further on, semantic models and tools that we will provide as a part of this task can support other use cases 
too. For example, semantic validation of produced and consumed device data can be enabled in an automated 
manner. The same will be possible for an automatic matchmaking of the devices capabilities with the 
requirements of an application, or replacement of a malfunctioning automation device with a new IoT device, 
and so forth. 

 
FIGURE 3: SEMANTIC-BASED ENGINEERING & NETWORKING 

In the following we summarize the current state of the practice in existing automation systems and specify 
goals to be achieved with our semantic-based approach. 

2.2 Use Case 2: SARA-Health 

The aim of the SARA case study (UC2) is to evaluate how the technologies and methodologies developed in 
the SEMIoTICS research project could improve the development of an Information and Communication 
Technology (ICT) solution aimed at sustained independence and preserved quality of life for elders with Mild 
Cognitive Impairment or mild Alzheimer’s disease, with the overall goal of delaying institutionalization: 
supporting both 'aging in place' (individuals remain in the home of choice as long as possible) and 'community 



780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017 
Deliverable D3.3: Bootstrapping and Interfacing SEMIoTICS Field Level Devices (first 
draft) 
Dissemination level: [Public]  

 

15 
 

care' (long-term care for people who are mentally ill, elderly, or disabled provided within the community rather 
than in hospitals or institutions). 

 
FIGURE 4: SARA KEY COMPONENTS AND PROTOCOLS 

This envisaged solution relies on a network of sensors and actuators. The communications within the network 
may be either wired or wireless. The nodes in the network are highly heterogeneous ranging from single 
accelerometers, presence sensors (e.g. camera) to sophisticated robotic components (e.g. a rollator frames 
improved with sensors and actuators, Pepper - a humanoid robot). The sensors and actuators network also 
need to communicate with backend cloud services not only to store data (e.g. measures that are used as 
monitoring data by doctors to improve treatment and provide assistance) and run computationally intensive 
tasks entailed by the assistive tasks provided by the solution to their users (e.g. patients, caregivers) , see 
requirement R.GP.1 in deliverable D2.3. The field devices part of the solution communicates with cloud back-
end services either via wired network or cellular connectivity.  

The development of the software component of such a solution presents a number of challenges: 

• the development of software aimed to control physical processes (i.e. falls).  

• the integration of heterogeneous application protocols brought in the system by the use of off -the-shelf 
components (e.g. the humanoid robot). 

• the customization of the software with respect to the introduction of new sensors/actuators needed to 
address patient-specific care requirements as formulated by doctors/carers.  

• the provisioning of self-adaptation mechanisms to enable opportunistic networking with IoT elements 
deployed by third parties (e.g. sensors and actuators part of the smart environment).  

• At the technological level the solution integrates a wide range of components, including commercial 
products, third-party components and research prototypes. Though most of the components of the 
solution are readily available, their integration results in a clear technological innovation.  

• At the service level the solution leads to added-value personalized solutions and services. This will allow 
care services providers (e.g., health organizations, housing organizations, insurance companies) to 
include innovative added-value solutions to their services portfolio. 
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• The implementation of the SARA solution requires to address interoperability issues at various stages 
of the development: 

• Design time: due to the heterogeneous application protocols (e.g. Bluetooth, ZigBee) brought in the 
system by the use of off-the-shelf devices. As an example consider the situation faced by the developer 
of the Weight Balancer controller of the Robotic Rollator. The Weight Balancer is one of the software 
modules running on the single board computer on board of the Robotic Rollator. Its function is to control 
the motorized hub wheels trying to counteract the forces that might result in a fall of  the user of the 
rollator. The Weight Balancer takes its decisions based on the measures taken by a series of sensors 
(e.g. IMUs, proximity sensors) residing either on the rollator or worn by the user (i.e. belonging to the 
BAN - Body Area Network - subsystem). The Weight Balancer, hence, during its initialization phase 
have to discover which are the sensors available and suitable for its purposes. However, as shown by 
Figure 4, the communication protocol of the sensors on board of the rollator and that of the sensors 
within the BAN varies (e.g. CAN Bus vs Bluetooth). As a consequence, the code initializing the Weight 
Balancer has to be conceived to deal with two different discovery protocols and object models. The 
situation is not satisfactory since, apart from the low manageability of the resulting code, the solution 
would be fragile with respect to possible changes in the protocols adopted by the rollator or the  BAN. 
The use of a semantic layer has a positive impact on the development of a Weight Balancer relying on 
it since it would isolate the code of the Weight Balancer from the differences brought by the different 
protocols. 

• Deploy time: although all the instances of the SARA solution will share a common set of functions, it is 
expected that additional features may have to be deployed in specific instances to address patient -
specific care requirements as formulated by doctors/carers (e.g. the need of an oxygen concentrator for 
patients affected by respiratory diseases). The deployment of this feature occurs when technologies 
(e.g. robotic rollator, BAN) are configured for a specific patient. However, the set of the possible 
additional features has to be left open given the high variability of the conditions and needs we may 
encounter across different patients. Taking again the rollator as an example, we want to minimize the 
effort required to implement a new functionality very specific to a patient: the cost of developing a patient 
specific functionality should be a fraction of the cost of the design of the entire rollator. As an example 
let us take the situation where on a specific rollator has to be extended with an additional functionality, 
say a Gait Analysis module. A Gait Analysis module is a software module that takes low level measures 
from the sensors on board of the rollator, aggregates them into higher level measures and forward them 
to the SARA backend cloud services (e.g. for storage or furthermore complex analysis). Part of the effort 
needed to develop such module for an already engineered rollator would be devoted to discover, which 
sensors are available for that purpose, and more importantly, the settings of their operational 
parameters (e.g. sampling rate). This part of the effort would be reduced by the availability of a semantic 
layer enabling the development of module with reflective capabilities and, hence, having the capacity to 
self-configure. 

• Run time: the activation of some of the functionalities envisaged for the SARA solution requires the 
availability of services/devices external to the solution. As an example, the support to navigation offered 
by the Robotic Rollator relies on the availability of a service able to provide a map of the env ironment. 
This service could be offered, for example, by a Building Information Management (BIM) system external 
to SARA. The Guidance module is activated only if a map service is available from the surrounding 
environment. A desired behavior for the Robotic Rollator is to automatically activate the Guidance 
functionality whenever required (implicitly or explicitly) by the user and a map service is available. Also, 
in this case, the availability of a semantic layer eases the development of a service discovery function 
by hiding the differences between the protocols used by the different map services to advertise their 
capabilities. 

• On course a development based on the availability of the semantic layer introduced to address the 
above-mentioned interoperability issues should not prevent the achievement of other key general 
requirements for the solutions:  
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• The SARA solution should process sensors data in a real-time fashion to be able to control physical 
processes (i.e. falls). 

• The solution should support a highly heterogeneous range of sensors/actuators: from single 
accelerometers, presence sensors (e.g. camera) to sophisticated rollator frames improved with sensors 
and actuators. 

2.3 Use Case 3: Generic-IoT  

In the following we specify requirements for the case study (UC3): the Intelligent Heterogeneous Embedded 
Sensors for future IoT systems. 
 

• IoT (SEMIoTICS) system should be based on standardized IoT technologies, e.g., JSON-LD and W3C 

WoT (see requirement R.UC1.12 in deliverable 2.3). 

• IHES generic IoT UC will implement / deploy within SEMIoTICS a distributed local intelligent unsupervised 

learning pattern: several intelligent sensing devices are coordinated by a local supervisor in order to enable 

all system functionalities. In this respect interoperability and clear semantic pattern messages are a key-

focus (see requirement R1.10 in deliverable 2.3). 

• IHES system should provide bootstrapping capabilities to IHES sensing nodes to join/detach from a local 

computing intelligent cluster managed by IHES supervisor. A semantic pattern to register a new IHES 

sensor node to the local IHES supervisor should be defined (see requirement R.UC1.8 in deliverable 2.3). 

• Each IHES sensing node will analyze locally sensed data and will detect at single node level any anomaly 

(according to a self-learned model) and will be reported to joined IHES supervisor node. Raw sensing data 

are transmitted only during node bootstrap and will not be propagate outside local computing cluster 

managed by a single supervisor instance running on IoT gateway. IoT gateway deployed IHES supervisor 

will be responsible to propagate to upper level Semiotics components all relevant events collected by 

underlying connected sensing nodes. 

• IHES UC Local analytics will be implemented by means of unsupervised learning algorithms further 

detailed as part of D4.3 

• IHES supervisor is implemented as a service component into IIoT Semiotics Gateway. End-to-end 

semantic interoperability will be ensured at this level of the architecture by the Gateway Semantic Mediator 

component (see D2.4 for further details)  

• Goal 1: implement an unsupervised learning distributed system at edge level devices by implementing 

intelligent self-sensing/self-learning algorithms at Micro-controller units (MCUs). Provide e reference 

infrastructure for this kind of distributed systems. 

• Goal2: allow massive system scalability by spreading system overall complexity at several levels of the 

architecture (MCUs, RPi like gateway devices, Backend/Cloud), allow for lower power consumption and 

network congestion by processing sensor raw data directly on the sensing unit and/or local supervisor 

cluster. These distributed systems are more resilient to the environment and devices disconnection 

compared to IoT centric ones in which any kind of analytics is deployed at cloud level.   

• Goal 3: Plug & Play a new IHES sensing unit in the IoT IHES Supervisor, and make its resources at 

disposal for other Semiotics components through the GW Semantic Mediator Component 

2.3.1.1 SEMANTIC MAPPING USING JSON-LD INTERCHANGE FORMAT 

The IHES Generic IoT UC main goals could be summarized in two main objectives:  

• Provide a reference generic framework for local distributed intelligence and analytics as opposed to the 

cloud-centric traditional approach (this aspect will be analyzed and better discussed in T4.3). In short these 

ones are the specific IHES UC (local analytics) components that will be presented in D2.4 referred in 
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Figure 6 (i.e. “Model Validation”, “AI Online learning” and “Event Detection”): they will be all implemented 

at MCU level as a binary firmware on STMicroelectronics STM32 prototype boards. 

• Provide a new communication pattern where intelligent nodes cooperates together to form a local / 

lightweight computation cluster resilient on one side to the sensed environment and to poor connection 

conditions in the other side (i.e. vs the backend / cloud level). For this a new semantic will be needed and 

has been presented. 

During WP2 activities IHES UC has been detailed and analyzed and specific requirements has been defined 
by considering main-stream enabling technologies and innovative approaches inspired by the emerging IoT 
edge computing paradigm. From the beginning it was evident that in such distributed systems communication 
plays relevant roles: in particular communication between “intelligent” devices. Thus more complex and 
heterogeneous semantic patterns have to be defined. At the very beginning we considered the communication 
aspect and the associated semantic as different aspects of the whole problem, even if it is common sense to 
say that a communication pattern implies a specific semantic to be considered.  
So we focused first on defining the right communication pattern for the IHES use case. Three of them are available 

in literature: 1-to1 communication patterns (e.g. a request/response client/server communication is a typical 

example of this), 1-to-N communication patterns (i.e. message broadcasting like UDP datagrams), N to N 

asynchronous communication patterns (e.g. the publish/subscribe pattern implemented in MQTT).  The first pattern 

is not suitable for the IHES demonstrator because it implies a 1-to-1 synchronous communication: not the ideal 

one when more connected devices are involved. Thus we had the option to adopt a UDP 1-to-N pattern or a more 

generic N-to-N one. Even if 1-to-N will in theory fits the requirements of the demo (in theory a supervisor is 

connected with N registered nodes), we opted instead for the N-to-N publish/subscribe pattern over TCP networks. 

This is the more general one and will allow us to have more flexibility in order to integrate the solution into 

SEMIoTICS or other vertical apps or services. In particular among all the possible technologies implementing a 

public/subscribe pattern we opted for the MQTT infrastructure, widely used in IoT connected systems: this 

infrastructure relies on asynchronous messages published to a centralized broker service, over a specific topic 

(i.e. dashboard), via optionally secured TCP transport stream). These messages could be received from a recipient 

that subscribe to the specific topic on a specific broker. Eventually as part of the QoS capabilities a broker could 

be asked to retain a message for a given timeframe. This way it is possible to realize an event-driven, 

asynchronous reliable transmission to N parties. In a subsequent step, once defines the transfer technology we 

focused on the specific semantic (i.e. data formats) conveyed by the message sent over MQTT transport stream, 

and the naming convention for the topics. We considered several options there as well: from more compact binary 

serialized data (usually non-human readable), such as the google protocol buffers or flat buffers, to more common 

textual based (human readable) such has XML or JSON formats. Both have pro and cons: the former usually have 

a more compact representation of a given message, but they are not very interoperable and requires an additional 

file named “.proto” shared between communicating partners in order to know how to parse the binary message. 

Latter ones are less compact (each message is a readable string composed by Ascii or UTF8 characters), but 

offers better interoperability, since the syntax is already embedded in the message and there is no need to share 

an additional file to parse them. So for the IHES use case we opted for using JSON format. An example of some 

message / event shared between an IHES sensing node and its supervisor is shown in Figure 5, where a “node-

join”, “node-heartbeat”, “node-state” and “node-change-detected” are shown. All messages have a @type field 

discriminating the type of message. They also have a “NODE_ID” to uniquely identify the node in the local cluster 

(e.g. the MAC address of the device), and a timestamp “TS” field useful to coherently plot on a consistent shared 

timeline the messages received. This timestamp could be for example any kind of monotonic increasing clock. For 

the IHES demonstrator we opted to use as timestamp the number of milliseconds from each node boot time. 

According to the type of message other additional (extensible) attributes are possible in order to implement all the 

requirements for the communication defined in D2.3. 
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{ 

"@type": "node-join", 

"TS": 170784, 

"NODE_ID": "00:80:e1:00:00:00:00:0f", 

"S_MASK": 8, 

"S_CAPS": [ 

{ 

"index": 0, 

"m_sensor_id": 3, 

"m_unit_id": 7, 

"m_datastreams_cardinality": 3, 

"m_datastreams_buffer_count": 200, 

"m_range_tsampling_m": [500, 500] 

} 

] 

} 

{ 

"@type": "node-hearthbeat", 

 “TS”: 1996753, 

"NODE_ID": "00:80:e1:00:00:00:00:0c" 

} 

 

{ 

"@type": "node-state", 

"TS": 2784532, 

"NODE_ID": "00:80:e1:00:00:00:00:0e", 

"DS_ID": 12, 

"state": "TRAINING_STATE" 

} 
{ 

"@type": "node-change-detected", 

"TS": 3744532, 

"NODE_ID": "00:80:e1:00:00:00:00:0e", 

"DS_ID": 12, 

"DS_NAME": "AMBIENT_LIGHT", 

"TAU": 3714532, 

"DATA": [66000, 66000, 66000, 66000, 67000] 

} 

 

FIGURE 5: EXAMPLE OF JSON-LD MESSAGES ON IHES GENERIC IOT 
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3 DEVICE BOOTSTRAPPING AND SEMANTIC INTEGRATION IN 
SEMIOTICS 

3.1 Building Blocks for Realization of Semantic Integration in SEMIoTICS 

In the following we provide main building blocks, which will be used to address requirements imposed by 
previous section. 

3.1.1 W3C WEB OF THINGS 

The Web of Things (WoT) is a standardization activity by the World Wide Web Consortium1 (W3C). WoT seeks 
to counter the fragmentation of the IoT through standard complementing building blocks (e.g., metadata and 
APIs) that enable easy integration across IoT platforms and application domains [1]. Figure 6 shows the three 
levels where the WoT building blocks can be applied: the device level, the gateway level (or Edge level), and 
the cloud level [2]. There exist interactions between different Things at each of these levels, including Web 
browser interactions too. The problem targeted by W3C WoT is a seamless integration of Things at different 
levels so that these interactions can be accomplished easier than today (without W3C WoT).  

 
FIGURE 6: ABSTRACT ARCHITECTURE OF W3C WOT 

Figure 7: Conceptional Architecture of the WoT Building Blocks shows WoT building blocks [2]. A Thing is the 
abstraction of a physical or virtual entity that needs to be represented in IoT applications. This entity can be a 
device, a logical component of a device, a local hardware component, or even a logical entity such as a location 
(e.g., room or building) [2]. Thing is represented by a Thing Description. 

                                                      
1 https://www.w3.org/  

https://www.w3.org/
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FIGURE 7: CONCEPTIONAL ARCHITECTURE OF THE WOT BUILDING BLOCKS 

3.1.1.1 THING DESCRIPTION 

W3C Thing Description (TD) is a building block in the WoT architecture, see Figure 7: Conceptional 
Architecture of the WoT Building Blocks. It is a machine-readable description of a Thing. A TD provides general 
metadata of a Thing as well as metadata about the Interactions, data model, communication, and security 
mechanisms of a Thing [2]. Thing’s Interactions are specified in a so-called Interaction Model. The model 
defines three types of Interactions: Property, Action, and Event.  

Properties expose the internal state of a Thing (its data points) that can be directly retrieved via GET method 
of the HTTP protocol or optionally modified via HTTP’s POST method. For example, a GET method at the URI 
“https://mysensor.example.com/status” will return a string status value for that sensor.  Properties can be 
observable which means pushing the new state after a change occurs (not an event).  

Actions are functions that may manipulate the internal state of the thing in a way that is not possible through 
setting Properties. For example, change states that are not exposed as  a property, modifying multiple 
properties, changing properties over time or with a process that should not be disclosed. Moreover, actions 
can be just functions, which do not use the internal state at all, and may simply process input data and return 
an output. HTTP’s POST is the default method for invoking actions on a URI resource. 

Events provide a mechanism that enables the Thing to asynchronously push messages. These messages are 
not stating but rather state transitions (events). Events could be triggered by internal state changes that are 
not exposed as Properties. Events must follow a consistent delivery approach to ensure that all occurred 
events are delivered. To that end subscriptions are utilized with HTTP’s long polling sub -protocol at, for 
example, subscribing https://mysensor.example.com/oh will enable the sensor to provide a steady feed of data. 

Form is a type of communication metadata that indicates one or more endpoints at which operation(s) on this 
resource are accessible. Using this metadata, various methods (e.g. GET, POST etc.) can be explicitly 
specified for properties and/or actions.   

Links expose an operation like a regular web link works, as specified by IETF RFC 8288.2  

Versioning is a metadata that provides information about the current version of the Thing Description instance. 
This can be extended to include firmware and hardware versions. 

                                                      
2 https://tools.ietf.org/html/rfc8288  

https://mysensor.example.com/oh
https://tools.ietf.org/html/rfc8288
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ExpectedResponse is a communication metadata used for response messages (e.g. contentType of the 
response). 

Figure 8: Thing Description Sample [3] shows an example of Thing Description describing a lamp. The lamp 
is accessible over HTTP protocol and is secured over a basic authentication security configuration (using an 
unencrypted username and password). This TD is serialized in JSON3 format. The lamp has: Property “status”, 
which can be used to check whether it is on or off; Action “ toggle” to turn it on or off; and Event “overheating” 
to indicate the lamp is overheated.   

 

3.1.1.2 WOT BINDING TEMPLATES 

In order to provide support for multiple protocols, the current version of WoT, specifies protocol binding 
templates. These templates enable Things, which communicate over different protocols, still to interact 
together. The WoT Binding Templates are an informal collection of communication metadata blueprints that 
explain how to interact with different IoT Platforms [2]. For example, if an HTTP-enabled Web Thing, providing 
data in plain JSON, needs to interact with an CoAP-enabled OCF4 Thing, which serializes data in CBOR5, then 
                                                      

3 https://www.json.org/  
4 Open Connectivity Foundation (OCF): https://openconnectivity.org/  
5 http://cbor.io/  

{ 
    "id": "urn:dev:wot:com:example:servient:lamp", 

    "name": "MyLampThing", 
    "description" : "MyLampThing uses JSON-LD 1.1 serialization", 
    "securityDefinitions": { 
        "basic_sc": {"scheme": "basic", "in":"header"} 
    }, 
    "security": ["basic_sc"], 
    "properties": { 
        "status" : { 
            "type": "string", 
            "forms": [{"href": "https://mylamp.example.com/status"}] 
        } 
    }, 
    "actions": { 
        "toggle" : { 
            "forms": [{"href": "https://mylamp.example.com/toggle"}] 
        } 
    }, 
    "events":{ 
        "overheating":{ 
            "data": {"type": "string"}, 
            "forms": [{ 
                "href": "https://mylamp.example.com/oh", 
                "subprotocol": "longpoll" 
            }] 
        } 
    } 
} 

FIGURE 8: THING DESCRIPTION SAMPLE [3] 

https://www.json.org/
https://openconnectivity.org/
http://cbor.io/
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it is needed only to provide corresponding Binding Templates for these two Things in their TDs. Of course, the 
prerequisite is that there exist implementations of protocol bindings for the used binding templates, see Figure 
9. For example, W3C WoT already provides few Binding Implementations for protocols such as HTTP, CoAP, 
MQTT etc. But implementations for specific protocols, such as for example Siemens S7comm6 (as needed in 
Use Case 1), do not exist. Thus, we need to implement them.     
 
 

 
FIGURE 9: FROM BINDING TEMPLATES TO PROTOCOL BINDINGS [2] 

3.1.1.3 WOT SCRIPTING API 

The Wot Scripting API provides a programing interface for a Thing as described by its Thing Description. It 
provides a convenient and standardized way of accessing Thing’s metadata, Properties, Actions, Events and 
so forth. In this way IoT applications can be developed easier. Moreover these applications are easier to 
maintain as, for example, they don’t need to be changed when Things are changed, as far as new Things 
provide equivalent data used by the application logic. Furthermore, standardized APIs enable portability for 
application modules, for instance, to move compute-intense logic from a device up to a local gateway, or to 
move time-critical logic from the cloud down to a gateway or edge node [2]. The Wot Scripting API is an optional 
building block. 

3.1.2 IOT.SCHEMA.ORG 

iot.schema.org is a community organization for extending schema.org to connected Things. The organization 
provides an open, publicly available, repository of semantic definitions for connected Things [ 4]. It is an 
extension of well-known schema.org to enable descriptions of Things in the physical world and their data. 
iot.schema.org provides a way for domain experts to easily create semantic definitions that are relevant to 
their application domain. iot.schema.org reuses existing standardized semantic definitions whenever possible.  

W3C Thing Description (TD) abstracts a Thing in terms of Properties, Actions, and Events. When creating a 
TD, one needs to specify semantic types of Things Properties, Actions, and Events. For example, it is not 
enough to know that “status” is a Property. For an application developer it is valuable to know also that the 
Thing has the light capability, a binary switch control etc. Further on, it is required to know that the “sta tus” is 
a Property of type SwitchStatus, as defined by iot.schema.org. There it is specified that this Property has data 
type Boolean. Thus, the application client “knows” not only the URL of the Property (from its TD), but it also 
“knows” what the Property is about and what data to expect when invoking the URI. Moreover, the type 
SwitchStatus has a unique Web identifier. Hence it is possible to discover all Things from a Thing registry that 

                                                      
6 S7comm: https://wiki.wireshark.org/S7comm   

https://wiki.wireshark.org/S7comm
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have the light capability or the SwitchStatus Property. Semantics, provided by iot.schema.org, greatly help 
when developing IoT applications. In particular, it enables an application development based on so called 
Recipes. Recipes are application templates, created based on semantic descriptions from iot.schema.org. 
They can be used to automate application development by matching real Thing’s Interaction Patterns, which 
are annotated with iot.schema.org semantics, and Recipe requirements.  
 
 

 
FIGURE 10: IOT.SCHEMA.ORG - THING CAPABILITY MODEL 
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The complete iotschema.org can be accessed online7 and browsed online8. Semantic specifications for smart 
objects, contributed by SEMIoTICS, are also online, see for example semantic description for a camera (used 
in use case 1)9. Semantic specifications for brownfield devices will be mapped to the semantic model of 
iot.schema.org and will be published in the next version of this deliverable (D3.9).   

                                                      
7 https://github.com/iot-schema-collab/iotschema 
8 http://iotschema.org/docs/full.html 
9 http://iotschema.org/Camera 

{ 

    "@context": [ "http://www.w3.org/ns/td", 

                {"iot": "http://iotschema.org/"} ], 

    "@type" : [ 

        "Thing", "iot:LightControl", "iot:BinarySwitchControl" 

    ], 
    "id": "urn:dev:wot:com:example:servient:lamp", 
    "name": "MyLampThing", 
    "description" : "MyLampThing uses JSON-LD 1.1 serialization", 
    "securityDefinitions": { 
        "basic_sc": {"scheme": "basic", "in":"header"} 
    }, 
    "security": ["basic_sc"], 
    "properties": { 
        "status" : { 
            "@type" : "iot:SwitchStatus", 
            "type": "string", 
            "forms": [{ 
                 "href": https://mylamp.example.com/status, 
                 "mediaType": "application/json"}] 
        } 
    }, 
    "actions": { 
        "toggle" : { 
            "@type" : "iot:ToggleAction", 
            "forms": [{ 
                 "href": https://mylamp.example.com/toggle, 
                 "mediaType": "application/json"}] 
        } 
    }, 
    "events":{ 
        "overheating":{ 
            "@type" : "iot:TemperatureAlarm", 
            "data": {"type": "string"}, 
            "forms": [{ 
                "href": "https://mylamp.example.com/oh", 
                "subprotocol": "longpoll" 
            }] 
        } 
    } 
} 

FIGURE 11: THING DESCRIPTION ANNOTATED WITH IOT.SCHEMA.ORG 

https://github.com/iot-schema-collab/iotschema
http://iotschema.org/docs/full.html
http://iotschema.org/Camera
https://mylamp.example.com/status
https://mylamp.example.com/toggle
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3.1.3 JSON-LD 

JSON for Linking Data (JSON-LD) [5] is a serialization format for JSON (a widely adopted serialization and 
messaging format on the Web). JSON-LD enables JSON data to be interlinked and structured based on 
semantic models. Thus, it brings the Linked Data paradigm to JSON. There exist implementations and tools 
for processing and querying JSON-LD data.  

3.1.4 SEMANTIC INTEGRATION IN SEMIOTICS 

In the previous section we have describe main building blocks that we will use as technology blocks in 
realization of semantic integration in SEMIoTICS. These building blocks are to large extending based on 
standards and are widely adopted in IoT communities.   

Thing Description will be used to semantically describe field device resources, their interfaces, security meta -
data, and so forth. For some of brownfield devices there exist already various kinds of device descriptions. 
Therefore, to reuse existing semantics we will need to provide a semantic mapping from brownfield semantic 
models into IoT semantic models, as expected by W3C TD and iot.schema.org.  

The mechanism of Binding Templates we will use in SEMIoTICS in order to provide bindings for various 
brownfield protocols (e.g., S7comm, Profibus10, Modbus11 etc.) into common Web application layer (e.g., HTTP, 
CoAP etc.). 

In SEMIoTICS we can use the WoT Scripting API to expose Things (field devices) that have been integrated 
over Binding Templates and described with Thing Descriptions. In this way we can provide a uniform 
standardized access to Thing’s and their data, which can greatly reduce development effort for IoT applications 
at the Edge and in the Cloud.  

Thing Descriptions are serialized to JSON-LD as it offers a good trade-off between machine-understandable 
semantics and usability for Web developers. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                      
10 https://www.profibus.com/  
11 https://en.wikipedia.org/wiki/Modbus  
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3.2 Mapping the Semantics from Brownfield Automation Devices into IoT Semantics 

3.2.1 INDUSTRIAL DOMAIN 

In Section 2.1 we stated the goal of semantic integration, which is to enable realization of new IoT applications 
that have not been envisioned at the time of engineering an existing automation system. To this  goal, we have 
discussed a common semantic access layer between brownfield devices and new IoT devices. In order to 
integrate both kinds of devices we need to map and integrate semantics from existing brownfield devices into 
IoT or IIoT application semantics. Only then it will be possible to discover required Things when developing an 
application, and to put them into semantically-correct interactions.  

Figure 13 depicts the concept for the integration of brownfield automation systems into the industrial IoT 
domain by considering semantic aspects of systems. We distinguish a few layers of concern divided into two 
blocks, i.e., existing automation systems and IIoT-based automation systems. The existing semantics from 
brownfield automation systems is largely contained in various forms of device descriptions (see Field Device 
Semantics in Figure 13). Field Device Semantics is standardized throughout different standards such as 
Electronic Device Description12 (EDD) and its EDD Language13 (EDDL), GSD14, FDT/DTM15, IO Device 
Description16 (IODD) etc. Another level of semantics is introduced by data models from various Field 
Communication protocols, see Figure 13. In the industrial domain, common protocols are for exampleHART17, 
PROFIBUS18, Modbus, and many others.     

In the second block we have IIoT-based automation systems and their semantics. Different IoT ecosystems 
are based on different IIoT information models. For example, OPC UA19 is an established standard in this area. 
Its model enables information integration, where vendors and organizations can model their complex data and 
take advantage of the service-oriented architecture. W3C WoT Thing Description is another prominent 
candidate in this layer, see Section 3.1.1.1 for more information. Apart from the standard-based models, there 
exist IoT information models from ecosystems, which are provided by large industrial players. One such 
example is Siemens’ MindSphere20 IoT asset model. Finally, IIoT information models need to be extended with 
application-level, domain-specific semantics (see Figure 13). At this level there are various candidates, and 
two prominent ones are: iot.schema.org (see Section 3.1.2) and OPC UA Companions21.  
 
 
 
 
 
 
 
 
 
 
 
 

                                                      
12 http://www.eddl.org/  
13 https://webstore.iec.ch/publication/23481  
14 https://www.profibus.com/products/gsd-files/  
15 https://fdtgroup.org/  
16 IO Device Description: http://www.io-link.com/  
17 https://www.fieldcommgroup.org/technologies/hart  
18 https://www.profibus.com  
19 https://opcfoundation.org  
20 https://siemens.mindsphere.io/en  
21 https://opcfoundation.org/forum/opc-ua-companion-standards/  

http://www.eddl.org/
https://webstore.iec.ch/publication/23481
https://www.profibus.com/products/gsd-files/
https://fdtgroup.org/
http://www.io-link.com/
https://www.fieldcommgroup.org/technologies/hart
https://www.profibus.com/
https://opcfoundation.org/
https://siemens.mindsphere.io/en
https://opcfoundation.org/forum/opc-ua-companion-standards/
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Semantic Mappings is a layer that we introduce in the SEMIoTICS project with the aim to map and integrate 
brownfield semantics with IIoT semantics (see Figure 13). In this layer we have to harmonize semantics from 
a particular brownfield semantic standard with the IIoT standardized semantics, e.g., iot.schema.org (including 
both the semantics and serialization format). Once we have a harmonized model, we will offer this model in 
chunks that cover a specific domain. The SEMIoTICS IoT Gateway will be able to install these chunks 
(semantic nodes or packs), and thus to enable an engineer to accomplish the brownfield integration.  

3.2.2 HEALTHCARE DOMAIN 

A Figure 14 depicts the key semantics relevant for the SARA UC.  At the field level SARA solution results from 
the integration of four subsystems: Body Area Network, Robotic Rollator, Robotic Assistant, Hom e Automation. 

Within each subsystem the communication among the devices is enabled by a specific protocol: the devices 
belonging to the Body Area Network communicate using the Bluetooth protocol, the devices on board of the 
Robotic Rollator exchange information using the Controller Area Network Protocol (CAN-BUS), the devices 
part of the Robotic Assistant uses a proprietary protocol, Home automation devices relies on ZigBee.  

The communication between these four subsystems is enabled by the existence of four  devices acting as 
communication bridges between the devices belonging to different subsystems:  

IIoT Information Models 

Model Mappings Semantic Mappings 

Application-level Domain Semantics 

EDD, GSD, FDT/DTM, IODD   

Field Communication S7comm, HART, PROFIBUS/PROFINET, Modbus… 

Field Device Semantics 

Existing Automation Systems 

OPC UA IM, W3C WoT TD, MindSphere asset model (Edge)   

iot.schema.org , OPC UA Companions 

FIGURE 13: MAPPING THE EXISTING BROWNFIELD SEMANTICS INTO THE IIOT SEMANTICS 

IIoT Automation Systems 
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• a smartphone enables the communication between the Bluetooth devices belonging to the BAN and 
the SARA backend services relying on cellular connectivity 

• the controller of the Robotic Rollator can communicate both with the hub of the BAN (i.e. a 
smartphone) via Bluetooth, with the devices on board of the rollator via CAN-BUS, with the Robotic 
Assistant and the Home gateway via Wi-Fi. 

• the Robotic Assistant communicates with the Robotic Rollator and the Home gateway via Wi-Fi 

• the Home gateway enables the communication with the ZigBee devices belonging to the Home 
Automation subsystem, with the Robotic Rollator and the Robotic Assistant via Wi-Fi and with SARA 
backend services using landline connection. 

• However, as already introduced by the previous sections, the existence of communication gateways 
does not guarantee per se the possibility for the SARA application (or any other IoT application) to 
access in a uniform way the device belonging to different subsystems (e.g. the possibility for a Gait 
Analysis function to read in a uniform way both the IMUs on the smartphone and the IMUs on the robotic 
rollator): there will be the need to develop Semantic Mappings to enable th is. 

The Semantic Mappings developed in the context of SEMIoTICS cannot ignore the existing semantics which 
appear relevant of the SARA UC: HL7 FHIRE22, LOINC23, SNOMED CT24, SAREF25, UniversAAL26, 
SmartBAN27, CORA28, AuR29, CLoE-IoT30. 

 
FIGURE 14: MAPPING THE EXISTING SEMANTICS TO THE IIOT SEMANTICS-SARA HEALTH 

SCENARIO 

3.2.3 IHES GENERIC IOT 

                                                      
22 http://www.hl7.org/fhir/summary.html   
23https://loinc.org/get-started/what-loinc-is/ 
24 https://www.snomed.org/about  
25 http://www.etsi.org/technologies-clusters/technologies/smart-appliances 
26  
27 http://www.etsi.org/technologies-clusters/technologies/smart-body-area-networks  
28 https://standards.ieee.org/develop/project/1872.2.html  
29 http://www.ieee-ras.org/industry-government/standards/autonomous-robotics-group  
30 http://cloud.esl.eng.it/cloe-iot/#/main  

http://www.hl7.org/fhir/summary.html
https://loinc.org/get-started/what-loinc-is/
https://www.snomed.org/about
http://www.etsi.org/technologies-clusters/technologies/smart-appliances
http://www.etsi.org/technologies-clusters/technologies/smart-body-area-networks
https://standards.ieee.org/develop/project/1872.2.html
http://www.ieee-ras.org/industry-government/standards/autonomous-robotics-group
http://cloud.esl.eng.it/cloe-iot/#/main
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The IHES Generic IoT UC will be implemented as a self-consistent demo within SEMIoTICS project. The 
demonstrator will focus on distributed intelligent systems. As of todays this envisioned approach is not yet very 
common in IoT systems where a more centralized cloud-centric approach is preferred. This implies that 
currently there are no specific ontologies or semantic patterns available to  code the interactions of those 
intelligent devices. In this respect SEMIoTICS will be the perfect testbed to introduce these new communication 
patterns. The only limitations will be related to the actual middleware available for the simple MCU sensing 
units that should be adapted to the new semantics. A 1-to-N reliable protocol should be available to allow these 
devices to smoothly cooperate together. Sadly current cloud-oriented middleware (e.g. Microsoft Cloud Azure 
or Amazon AWS) could not be used since they are designed specifically for the cloud-centric approach. Thus 
their semantic, patterns, enabling reference frameworks, could not be used: a new reference design and a 
completely new semantic will be thus defined in SEMIoTICS for these specific IHES UC devices & intelligent 
nodes. An IHES system will be a local / lightweight deployment of data analytics and local processing able to 
interoperate at semantic level with existing legacy components by exploiting a newly defined interaction 
pattern. Network-related metadata for a Thing (to be exposed over a TD) 
Network-related metadata involves information on device registration on SEMIoTICS, such as:  

• name: the name of the device on the network; 

• MAC: the physical network address of the device; 

• owner: to indicate the owner of the device and/or the domain it belongs to;  

• location: where the device is located; 

• type: to indicate whether it is a physical or virtual device; 

• function: a brief description of the device’s function (e.g. type of healthcare or industrial sensor or actuator); 

• interfaces: list of the device’s interfaces, their location (endpoint), their type (e.g. REST), and if they are 

secured 

• sensitive_data: Boolean value to indicate whether the devices handle private sensitive data 

Utilizing this data directly from the thing description will enable seamless interoperability between devices in 
the field, including devices from different domains. 
 
In addition to the above, and with regards to exposing the thing via its description, metadata found in the 
common representation of for the Web of Things can be utilized. This includes the following:  
Properties expose the internal state of a Thing that can be directly retrieved via GET method of the HTTP 
protocol or optionally modified via HTTP’s SET method. For example, a GET method at the URI 
“https://mysensor.example.com/status” will return a string status value for that sensor.  Properties can be 
observable which means pushing the new state after a change occurs (not an event). 
Actions are functions that may manipulate the internal state of the thing in a way that is not possible through 
setting Properties. For example, change states that are not exposed as a property, modifying multiple 
properties, changing properties over time or with a process that should not be disclosed. Moreover, actions 
can be just functions, that do not use the internal state at all, and may simply process input data and return an 
output. HTTP’s POST is the default method for invoking actions on a URI resource. 
Event Interaction Pattern provides a mechanism that enables the Thing to asynchronously push messages. 
These messages are not stating but rather state transitions (events). Events could be triggered by interna l 
state changes that are not exposed as Properties. Events must follow a consistent delivery approach to ensure 
that all occurred events are delivered. To that end subscriptions are utilized with HTTP’s long polling sub -
protocol at, for example, subscribing https://mysensor.example.com/oh will enable the sensor to provide a 
steady feed of data. 
Form is a type of communication metadata that indicates one or more endpoints at which operation(s) on this 
resource are accessible. Using this metadata, various methods (e.g. GET, POST, SET etc.) can be explicitly 
specified for properties and/or actions.   
Links expose an operation like a regular web link works, as specified by IETF RFC 8288.31  

                                                      
31 https://tools.ietf.org/html/rfc8288 

https://mysensor.example.com/oh
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Versioning, metadata that provides information about the current version of the Thing Description instance. 
This can be extended to include firmware and hardware versions. 
ExpectedResponse, communication metadata used for response messages (e.g. contentType of the 
response). 
 
To provide support for multiple protocols, the current version of WoT, specifies protocol binding templates that 
enable clients to accommodate particular protocols and network-facing API constructions. These example 
descriptions include HTTP, CoAP and MQTT. Thing description also allows the addition of other protocols that 
may be introduced in the context of SEMIoTICS, following the same methodology and using JSON compatible 
payload mappings. Finally, additional information to be included in a TD that are also network-related are listed 
in Section 0, Section 3.3, and Section 3.4 that follow. 

3.3 Metadata related to security, privacy, and dependability 

While security metadata does not have a semantic relevance per se, there are two important links:  
Firstly, when a new device is connected to Semiotics, two processes will start. Identification and authentication 
will ensure that the newly connected device is benign (or otherwise will be rejected). Different modes of 
identification and authentication will be described in detail in D4.5. However,  authentication only ensures a 
logical connection, not a semantic one. Therefore, semantic bootstrapping is required, and needs to be 
compatible with the more security-oriented authentication process. 
Secondly, during the authentication and semantic bootstrapping various metadata will be collected and stored 
together. The following security metadata will be stored: 

• Mode of authentication: Several modes of authentication are supported by SEMIoTICS, providing different 

levels of security. Examples include password-based authentication, two-factor authentication, and smart 

card-based authentication, and no authentication. The mode of authentication affects the trustworthiness 

of the data delivered by the respective device. Thus, this information is relevant, e.g., for patterns: A pattern 

can require that particularly sensitive data may only be communicated via devices using strong 

authentication mechanisms. 

• Identity provider: The security manager in the backend supports several identity providers, both internal 

and external. For each device authentication, the identity provider will be stored. This information is 

relevant in the scenario that at some point in time an identity provider is found out to be compromised: In 

this case all connections authenticated using the compromised identity provider must be terminated. 

• Time of authentication: Security metadata will include the time at which a new device authenticated. This 

information may become useful for example during investigations into an attack at a later point in time. 

• (Network) Location: The security metadata also include information on which SEMIoTICS device a new 

device was connected to, e.g. which gateway a new sensor was connected to. 

Metadata for SPDI patterns are specifications regarding each one of the properties; some of which need to be 
monitored to enable the functionality of the pattern engine. The pattern engine has to effectively support the 
SPDI properties; to that end monitoring of certain metadata must be facilitated. It should be noted tha t the 
semantic metadata presented herein can be exposed through the descriptions of the different components that 
will be used to instantiate IoT orchestration Recipes. 

For the purpose of security, an example of metadata that could be observed is how many login efforts were 
attempted; using this information the patterns could activate certain security measures to 
detect/prevent/mitigate an attack. For privacy, monitoring the encryption/decryption calls could be a great hint 
to indicate that a malicious entity is abusing the cryptographic operations. Additionally, monitoring the 
encryption metadata to check if encryption is applied on data at test and in transit is essential. In regard to 
dependability, the patterns could monitor the reliability values of a component and cross check them with the 
DependCert list to examine if it operates according normally. In terms of interoperability, worth monitoring are 
metadata such as, protocols, data formats, semantic and programming interfaces that drive the initialization of 
the communication. Moreover, monitoring what kind of certification the communicating components have could 
improve the efficiency of establishing the connection, in terms of time and computational power.  
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In this context, some metadata information that can be useful in the context SPDI pattern monitoring and 
verification are listed below. 

For Security, some security metadata such as tokens, domains, authentication and accountability interfaces 
have already been mentioned in this section, but additional information related to SPDI properties may need 
to be included. Some examples are listed below, while which subset will be included in each case and the 
exact content within the fields will depend on the exact setup and patterns monitored.  

Confidentiality metadata may include information such as if encryption is applied (on data at rest and data in 
transit), what type of encryption, size of keys and tracking data on calls to cryptographic functions that enable 
encrypting/decrypting or key generation. SecCert can also be used to list the collection of certificates that the 
specific component bears. 

Moreover, to guarantee Integrity in all states of data, metadata that indicate relevant information must be 
facilitated, this involves toggles that i) data integrity checks in transit using specific secure protocols (e.g. TLS) 
ii) data at rest integrity checks, such as hardware (e.g. TPM) or software (e.g. filesystem level) ones iii) and 
data in processing if integrity checks are included at the function level .  

Further, to guarantee Availability, metadata that displays the degree to which a device/service operates and 
is accessible at any given time (e.g. uptime). This data may include information on network components, such 
as SDN controllers and nodes, alternate paths, signal strength, noise etc. As in all cases, the exact measures 
and thresholds of availability have to be defined on a per case basis.  

Privacy metadata are utilized to ensure data is handled in a private manner according to data protection laws . 
Some potential instances for this type of metadata are: DataSensitivity that indicates if data handled by this 
device is sensitive (e.g. health relate data) and if additional measures are used (true/false) to protect it (e.g. 
pseudoanonymization, anonymization), with an additional hasConsent field with a Boolean value confirming 
if the data subject has given his/her consent; DataUsage, that provides information on when the data was 
acquired, for how long will be kept, are there any duplicates, if is it marked for safe deletion etc.; Finally, 
PrivCert metadata facilitates a compilation of certifications that the component handling the data follows may 
hold.  

Dependability metadata are used to guarantee devices and services run in a way they are supposed to.  This 
type of metadata involve reliability values, such as delay, packet losses etc. (for hardware these values are 
usually provided by the manufacturer); FaultResponse, that marks information on if and what operations are 
used to ensure the component continues normal operation despite software or hardware flaws (e.g. replicated 
paths for forwarding traffic in parallel); finally,  DependCerts, that contains a list of certifications that a 
device/application holds, if any. 

Interoperability metadata are used to specify information with regards to establishing seamless connectivity 
between, for example, two devices. This includes, configurations, protocols, data formats, information models, 
ontologies, common semantic and programming interfaces etc.; finally, InteropCerts, that accommodates a 
list of standards and certifications that a device/application integrates related to its interoperability (e.g. two 
device might share a standard, which makes them interoperable by default)  

In addition to the above, extra fields to hold information against various types of attacks may also be used. 
These could include AuthenticationRequests, providing information on successful/unsuccessful login 
attempts; AuthorisationRequests, that hold information on successful/unsuccessful authorization checks to 
get access to a protected endpoint or invoke a protected operation; InteractionRequests, that contains data 
used to limit, and track requests on open interfaces (e.g. to mitigate DDoS attempts on exposes interfac es); 
or ResourceUsage, that provides information on use of network and computer resources (e.g. to deal with 
resource exhaustion attacks). In cases of sensitive data or of critical importance from a security perspective, 
DataAccess can be defined to track access level of the data, who & when accessed it, effectively providing 
means for auditability and accountability. 
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3.4 QoS-related metadata  

In SEMIoTICS the monitoring of QoS related parameters will be driven by Architectural Patterns (see Task 4.1, 
Deliverable D4.1), much like the SPDI properties mentioned in Section 3.3 above. In this context, QoS 
requirements of the various IoT orchestrations supported by SEMIoTICS are defined in Recipes and then 
encoded as patterns for monitoring and enforcement.  

To achieve such QoS-aware orchestrations, the devices should, ideally, expose through their Thing Description 
typical QoS-related information such as the Goodput (i.e. application-level throughput), Packet loss 
(percentage of packets lost to packets sent), Errors (detected packets corrupted), Latency (i.e. network delay),  
Packet delay variation (i.e. packet jitter), and Out-of-order delivery (delivery of data packets in a different order 
from which they were sent). In addition to the above, the QoS-related properties of Dependability and 
Availability, as analyzed in the context of Section 3.3 above are also considered. In all cases, the descriptions 
could include certain values to classify their performance (e.g. latency < 1ms), as well as point to monitoring 
interfaces, if available, that would allow the orchestrator to monitor the real -time value / performance of these 
QoS parameters.  

3.5 Approach to Achieve the Bootstrapping and Semantic Interoperability at the Field 
Layer 

In this section we summarize the SEMIoTICS approach to achieve the bootstrapping and semantic 
interoperability as presented by various parts of Section 3. Let us first do this  for the problem of semantic 
interoperability. Semantic interoperability is concerned with the ability of information systems to exchange 
data with unambiguous, shared meaning. Our goal is to achieve semantic interoperability between brownfield 
and greenfield devices. The problem consists of two parts. One that is concerned with interoperability at the 
communication level (different devices communicate over different protocols) , and another one that is 
concerned with semantics (different devices use different semantics, data- and serialization- formats etc.).  

 Throughout Section 3 we said that SEMIoTICS approach would be built on W3C WoT standard and 
iot.schema.org. In order to solve the communication problem, we will use the WoT Binding Templates (see 
Section 3.1.1.2). Binding Templates, together with Binding Implementations, will enable brownfield devices 
from SEMIoTICS use cases to be interoperable at the communication level with WoT-enabled (greenfield) 
devices. We will implement Binding Implementations for those protocols that we need in our use cases and 
are at the moment not covered by the open-source implementation from W3C WoT community (e.g., S7comm 
protocol that we need in use case 1).  

In order to tackle the challenge of semantic integration, SEMIoTICS will build on W3C standardized Thing 
Description (see Section 3.1.1.1), and iot.schema.org (see Section 3.1.2). Semantic integration is a more 
difficult problem than the integration at the communication level. In order to solve this problem, we have to 
have IoT semantic models that also harmonize semantic models from brownfield systems. For two examples 
how this harmonization or mapping should be accomplished see Figure 13 and Figure 14. However, it is worth 
noting that this process should be standardized. Otherwise no user, who already uses standardized brownfield 
semantics, will use not-standardized IoT semantics. The standardization process is however long and needs 
to be accomplished by standardization organizations (not by an EU project such as SEMIoTICS). That is why 
we decided to build our approach on iot.schema.org (see Section 3.1.2), where we are directly involved in an 
ongoing standardization process of IoT semantic models. Thus, our goal is to extend iot.schema.org with 
semantic specifications as required to cover semantic brownfield integration (as defined by SEMIoTICS use 
cases). This task includes mapping from an existing (brownfield) models or creating new semantic models 
when there is no brownfield semantics available. Once the IoT (harmonized) semantic models are available by 
iot.schema.org we have to make these models easily applicable in different domains and use cases. Semantic 
models are in general hard to use by non-experts. That is why in SEMIoTICS we will create semantic nodes 
(packs) out of certain iot.schema.org semantic models. Semantic packs will serve as chunks of models that 
can be used for semantic mapping and configuration of brownfield devices. For example, for each interaction 
(data point) of a brownfield device, the user can use a semantic pack to configure that interaction with the 
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iot.schema.org IoT semantics. The semantic mapping (configuration) will be manual process. We will provide 
tolling, which easies this task (e.g., a user provides inputs or chooses an offered enumeration value from a 
semantic template). Once the semantic mapping (configuration) is accomplished, the tool will automatically 
generate a W3C-valid Thing Description, together with correct iot.schema.org semantics  (see Section 3.1.2) 
and the valid serialization format inside (see Section 0). In that phase, the semantic interoperability based on 
W3C WoT standard and iot.schema.org will be enabled at the SEMIoTICS field layer. 

It is wort of noting that the semantic interoperability as described here is based on light-weight semantic 
models. iot.schema.org is an extension of a well-known schema.org. Thus, we rely on RDF Schema32 as a 
semantic formalism. RDF(S) fully satisfies our need as the role of semantics in the project is to make data from 
brownfield devices integrated and interoperable with data from green field devices, and further on, the role of 
semantics is to enable creation of common application based on such unified data. Moreover, RDF(S)-based 
semantics allows us to use machine reasoners to match requirements from applications with capabilities of 
devices, as well as to validate semantically annotated Thing Descriptions with SHACL Shapes33.    

Let us now reflect our approach to the task of bootstrapping. The goal of this process is to integrate a new 
(brownfield or greenfield) device in the SEMIoTICS platform, and to enable creation of new applications. 
Essentially this task is a process that implements the tasks of integration at the communication- and semantic- 
level (see above). The process is broken into a sequence of steps, see Figure 16. For greenfield devices, 
which have semantically annotated TD, these steps will be automated (plug & play bootstrapping), whereas 
for the brownfield devices the process of mapping/harmonization will still involve a manual work.  However, this 
task will be done once, at the design time. The outcome can be reused for brownfield devices of the same 
type. The sequence of steps from Figure 16 will be implemented in SEMIoTICS IIoT Gateway in deliverable 
D3.9. In that phase, our goal to accomplish the semantic bootstrapping at the SEMIoTICS field layer will be 
achieved.  

Finally, we would like to emphasis the importance of the subject of the task T3.3, i.e., semantic-based 
bootstrapping and interfacing at the field level, in the SEMIoTICS use cases.  

In the wind energy use case (UC1) the goal is to create new, added-value, applications that have not been 
envisioned at the time of creating the automation systems, which controls a wind turbine. For these new 
applications we may need new additional field devices. The challenge is thus to integrate the existing 
(brownfield) systems with newly added (greenfield) devices. Brownfield and greenfield devices communicate 
over different protocols (e.g., S7comm vs. HTTP), they also often use different serialization formats (e.g., XML 
vs. JSON), and they adhere to different semantics (e.g., no semantics or machine not-interpretable semantics 
vs. semantics based on iot.schema.org). Apart from this, in UC 1 it is very important to easily scan network for 
newly plugged devices and register them in plug and play fashion ( i.e., the bootstrapping task is important). 

In the SARA use case (UC2) we must deal with a wide range of device semantics (different kinds of devices 
with different functions), data formats (syntactic representations), measurement unit conventions (for sensor 
readings), and communications protocols (e.g. Wi-Fi, ZigBee, Bluetooth). Various key aspects of SARA 
functionality, moreover, require that data from multiple sources is collated, aggregated and/or analysed in a 
coherent collective fashion. The reliable detection of “fall incidents”, for example, may involve the continuous 
comparative evaluation of data from wearable IMU devices, RR handle-mounted pressure sensors and RA 
video cameras (among others).  

In the third use case (UC3) Local Embedded Analytics on IHES Sensing Units creates unprecedented 
distributed event-driven type of semantically complex data-patterns messages that require to be properly 
handled in order to achieve scalability and semantic interoperability. From this perspective SEMIoTICS 
ecosystem with its pattern driven approach will be the perfect testbed where experiment the local analytics / 
edge computing approach in real life conditions. 

                                                      
32 RDF(S): https://www.w3.org/TR/rdf-schema/  
33 SHACL: https://www.w3.org/TR/shacl/ 

https://www.w3.org/TR/rdf-schema/
https://www.w3.org/TR/shacl/
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The semantic interoperability within the SEMIoTICS framework is a key enabler on which the IHES system will 
leverage. To interface the IHES sensing units in a coherent manner, we are evaluating the adoption of the 
W3C WoT standard to interface the connected the microcontrollers to the framework. Probably a full support 
of the standard will not be feasible, e.g. because the WoT servient is not deployable on a MCU due to its very 
limited resources. Thus, as an alternative, in order to provide to the ecosystem the whole set of functionalities 
provided by the system, we will consider to develop within SEMIoTICS specific dedicated component  that will 
act as a bridge from the low level MQTT messages to the other components in SEMIoTICS, similar in principle 
to what has been planned for the brownfield devices within the UC1 scope. 

4 IMPLEMENTATION OF SEMANTICS IOT GATEWAY  

The first version of SEMIoTICS deliverable D3.3 provides a concept for device bootstrapping and semantic 
integration of field level devices. In this next version of this deliverable the concept will be designed. 
Nevertheless, in this section we give information about architectural components of IoT Gateway, which are 
required for the realization of the presented concept. These components are presented in Figure 15: semiotics 
IoT Gateway, and are agreed with other SEMIoTICS project partners in the work on SEMIoTICS architecture, 
see Figure 1 and Section 2.3 in SEMIoTICS deliverable D2.4. In the scope of this deliverable we will consider 
the following components: GW Semantic Mediator, Local Thing Directory, and Semantic API & Protocol 
Binding, see Figure 15: semiotics IoT Gateway.  
 

 
FIGURE 15: SEMIOTICS IOT GATEWAY 

Figure 16 shows a sequence diagram of activities that occur during the bootstrapping process. The goal of this 
process is to integrate a new device in the SEMIoTICS platform by using SEMIoTICS IIoT Gateway. Once this 
process is completed, it will be possible to create new applications based on data from the new device, as well 
as the data from other available devices in the platform. In order to achieve this goal, the gateway  needs to 
make the device data accessible, and it has to provide full semantic description of the device, i.e., semantics 
about device capabilities, its data, communication protocols, contextual  information (e.g., location, domain of 
use) etc.  
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FIGURE 16: SEQUENCE DIAGRAM FOR BOOTSTRAPPING AND INTERFACING SEMIOTICS FIELD 
LEVEL DEVICES 

In the bootstrapping process we distinguish two different classes of device. The first class consists of devices 
that already have a Web-based RESTful interface and are described by W3C Thing Description. The second 
class comprise of all other devices that yet need to be made accessible over a Web-based RESTful interface. 
These devices do not have a semantic description, or it exists, but needs to be mapped to standardized 
semantic IoT models. This is a case, for example, with brownfield devices. They may have various forms of 
device descriptions, including standard-based descriptions (e.g., EDD). However, in order to realize IoT 
applications, it is convenient to map these brownfield descriptions into description based on standardized IoT 
semantic models. They are two reasons for this. First, IoT applications are typically cross-domain applications. 
Brownfield device descriptions focus on certain domain. In order to integrate such devices with devices from 
another domain, we need to have harmonized semantic models that cover multiple domains. Second, 
brownfield device descriptions usually need to be enriched with additional semantics (e.g., to support new 
classes of IoT application). Thus we need richer IoT models and a mapping approach for brown field device 
descriptions. 

Let us consider now a sequence diagram of activities that occur during the bootstrapping of WoT device 34, see 
Figure 16. The user performs the first step during the initialization of a new device. This assumes provision of 
information such as an IP address, device capability, domain of use, location etc. Since the device already has 
a Thing Description (TD), this information is directly put in its TD. The device can then be registered with 
SEMIoTICS IIoT Gateway (with GW Semantic Mediator, which is an internal component of the Gateway).  

                                                      
34 WoT device is a device with a Web-based RESTful interface, which is described by W3C Thing Description. 
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If a brownfield35 device needs to be initialized, then a user in addition to previously mentioned information 
needs to specify metadata related to the communication protocol and the encoding format. This information 
will be important part of a Thing Description and is used by SEMIoTICS IIoT Gateway to realize a protocol 
binding. The protocol binding is a process, which enables a device brownfield protocol (e.g., Modbus) to be 
mapped to an IoT application protocol, e.g., HTTP, CoAP, MQTT etc. The protocol binding is accomplished 
during the registration process of device. If the device has a brownfield device description, in this process, it 
will be mapped into a standardized IoT semantic model. If the Gateway does not have a model, which is used 
to describe a brownfield device, then the model can be downloaded and installed in the Gateway, see Figure 
16. 

For the sake of simplicity, Figure 16 shows the bootstrapping process only from a semantic perspective. 
However, in parallel the process of authentication of a device also must take place. For this purpose, the device 
will identify itself to the security manager in the gateway. The authentication process will be described in detail 
in D4.5. If authentication was successful, the security manager then generates session keys for communication 
between device and semantic mediator. The semantic mediator may provide the Thing Description to the Local 
Thing Directory if and only if it received the respective session keys; if the Semantic Mediator does not receive 
the session keys, that means that the authentication failed, and the device may not be used. 

Once the registration is completed, a user may configure a device and provide additional semantic annotations. 
These annotations are typically contextual information such as location of a device, its specific capability or 
configuration. The final version of a Thing Description is then created (or updated)  and stored in the Local 
Thing Directory. This directory runs on the gateway and can be queried for all semantic information related to 
attached devices. The gateway exposes capabilities of these devices over a standardized Web API and runs 
on a W3C WoT servient (see Section 3.1.1.3). This API is used for realizing IoT applications at the Edge level. 
It also registers all locally available TDs by the Thing Directory in the Cloud. In this way all semantic information 
about field level devices is also available in the backend. This information will be used by Recipe Cooker to 
create IoT application at the Cloud level.  

For the final stage of Figure 16, it has to be noted that this figure shows only the semantic perspective. Not 
every user or application may be permitted to connect to a Thing. Security policies and SPDI patterns will be 
able to specify limitations on which applications and users may use a Thing. For this purpose, the security 
manager will evaluate such access requests and deny them if necessary.  

It is worth of noting that certain activities in the sequence diagram are accomp lished over Software Defined 
Network (SDN), see Figure 16.    

Figure 17 shows the current set-up for the implementation of the industrial use case, see Section 2.1. With 
respect to the three levels in SEMIoTICS (Field, Network, and Backend/Cloud, see Figure 12), in this set-up 
we consider only the Field level, as that is the level where SEMIoTICS IoT Gateway resides.  

                                                      
35 Brownfield refers to the implementation of new systems to resolve certain problem while accounting for 
established systems. 
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FIGURE 17: CURRENT IMPLEMENTATION SETUP FOR INDUSTRIAL USE CASE (FIELD LEVEL) 

Figure 17 shows two groups of devices, required for the implementation of the Wind Energy scenario. These 
are devices from an existing wind turbine (Brownfield Devices), and new IoT devices that may be added to the 
system as an extension. Values from sensors and actuators are exposed over a SIMATIC S7 controller or an 
OPC-UA server. Sensors and actuators, from an IoT device, may be exposed over a CoAP, MQTTT or HTTP 
server. For example, we may consider a Raspberry Pi (RPi) device or similar one to provide access to these 
sensors and actuators, and its data. The role of an IoT Gateway is to expose functionality of field devices over 
a uniform interface with a clear semantics, i.e., machine interpretable descriptions of field devices. For that 
purpose, we will use the W3C Web of Things with its Thing Description and iot.schema.org. Thus , there will 
be a W3C WoT servient that runs on SEMIoTICS IoT Gateway. Siemens Nanobox36 can be used as the 
hardware to run the IoT Gateway. Apart from this (southbound) functionality, IIoT Gateway will also be used 
for transfer of data to MindSphere. That (northbound) functionality can be implemented with MindConnect 
LIB37. The semantics created in the Field level and exposed over a Thing Description will be also used for 
creating MindSphere asset model. In this way we will have a transparent IoT semantics, not only at the Field 
level, but also across complete SEMIoTICS platform. 

5 VALIDATION 
This section summarizes project’s objectives, KPIs, and requirements (relevant for this task), and validates 
achievements against them. 

5.1 Related Project Objectives and Key Performance Indicators (KPIs) 

The overall deliverable constitutes the initial contribution towards  fulfilling the project’s objectives as shown in 
Table 6, and project’s KPIs as presented in Table 7.   

TABLE 6: TASK’S OBJECTIVES 

T3.3 Objectives D3.3 Chapters 

• Objective 2: Development of semantic interoperability mechanisms for smart 
objects, networks and IoT platforms 

2 

• Objective 6: Development of a reference prototype of the SEMIoTICS open 
architecture, demonstrated and evaluated in both IIoT (renewable energy) and 
IoT (healthcare), as well as in a horizontal use case bridging the two landscapes 
(smart sensing), and delivery of the respective open API. 

3 

 
 

TABLE 7: TASK’S KPI TABLE 

Objective (with short description) KPI-ID Description 

                                                      
36 https://goo.gl/C2YyJY  
37 https://goo.gl/HhkZqX  

https://goo.gl/C2YyJY
https://goo.gl/HhkZqX
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2 Semantic interoperability KPI-2.1 Delivery of semantic descriptions 
for all the 6 types of smart objects 
which are necessary for the usage 
scenarios 

6 Development of a Reference 
Prototype 

KPI-6.1 Reduce manual interventions 
required for bootstrapping of smart 
object in each use case domain by 
at least 80% 

 
Deliverable D3.1 provides the concept of the field-level device bootstrapping and registration. The 
implementation of this concept will be provided in deliverable D3.9. However, in this deliverable we have 
already identified components of SEMIoTICS architecture that will be part of the implementation of the IoT 
Gateway (see Section 4), choose technology building blocks to implement these components (see Section 
3.1), provided the sequence diagram that will be used in the implementation (see Section 4), and provided the 
use-case device set-up that will be used in the demonstration of the gateway (see Section 4).  

5.2 Related Project Requirements 

Let us revise requirements from Section 1.4 with respect to the provided work and work that will follow in the 
next version of this deliverable (i.e., D3.9). 

Section 3.1 addresses the requirement R.GP.1 (end-to-end connectivity between the heterogeneous IoT 
devices (at the field level) and the heterogeneous IoT Platforms (at the backend cloud level)), see Table 3: 
Specific requirements for Use case 1 In this sense, the gateway has the role to ensure connectivity between 
the heterogeneous IoT devices (at the field level) and itself. From that point on, the connectivity will be ensured 
via the Networking- and Cloud/Backend layers. The gateway will ensure connectivity between the 
heterogeneous IoT devices, and that is why we base the work in Task 3.3 on the building blocks as introduced 
in this section, i.e., W3C Web of Things (WoT) Thing Description, WoT Binding Templates, WoT Scripting API, 
and iot.schema.org semantic models. The first implementation of this concept will be delivered in D3.9.  

Requirement R.FD.5: Field devices SHOULD be able to interact with SEMIoTICS IIoT/IoT gateway   dedicated 
components SHOULD be supported. This is a requirement for field devices. But the SEMIoTICS IIoT/IoT 
Gateway will from the south-bound interface implement required Protocol Bindings in order to enable 
interaction between field devices and the gateway. This will be completed in delivered in D3.9.  

========== 

Requirement R.FD.6: Field devices MUST interoperate using a standard communication protocol like Rest 
APIs, COAP, MQTT. The technology blocks (Section 3.1) are based on RESTful paradigm and the current 
implementation support COAP and MQTT protocols.   

Requirement R.FD.7: Field devices MUST use standardize interoperable message format (e.g. JSON,  etc.). 
The technology blocks (Section 3.1) are based on JSON and the current implementation supports this 
serialization format.  

Requirement R.FD.8: Field devices MUST support secure bootstrapping / registration protocol.  In deliverable 
D3.9 we will use the security-related meta-data when implementation the bootstrapping in the gateway.  

Requirement R.FD.12: Greenfield device is expected to expose its capability over a W3C Thing Description, 
which semantically describes field resources, and to be computationally powerful enough to run a node -wot 
servient (that exposes the TD). This requirement will be considered in the first version of the gateway 
implementation. 

Requirement R.FD.13: Brownfield device is assumed to consist of a sensor/actuator and a controller (PLC). 
The controller is expected to expose capability of its sensor/actuator over a native brownfield protocol (without 
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the need for IIoT Gateway to interact directly with them). This requirement will be considered in the first version 
of the gateway implementation. Figure 17 in Section 4 already depicts a native brownfield protocol 
communication between field sensors/actuators and a controller.  
Requirement R.UC1.1 (automatic establishment of networking setup MUST be performed to establish end-to-
end connectivity between different stakeholders) is a requirement related to the requirement R.GP.1 (see 
Section 1.4). Both of them deal with the establishment of end-to-end connectivity between different 
stakeholders, including field devices too. However, R.UC1.1 is about automatic establishment of networking 
setup between. But again, since building blocks provided in this section, not only provide common semantics 
for different stakeholders to understand each other, they also provide a common interface (API) for different 
stakeholders. Common semantics and communication interface will enable a high degree of automation in the 
process of establishment of networking setup, known as plug and play. In this deliverable we provide the 
concept for plug and play, and in the first implementation of this concept will be delivered in D3.9.  

Requirement R.UC1.8: Semantic and robust bootstrapping/registration of IIoT sensors and actuators with IIoT 
gateway MUST be supported (see Table 3: Specific requirements for Use case 1 is a requirement that is the 
topic of this deliverable as whole. We distinguish the process of semantic bootstrapping/registration of 
brownfield- and greenfield devices. In this deliverable the concept for the bootstrapping process has been 
provided. The implementation of the concept for greenfield- and brownfield devices will be done in deliverable 
D3.9.  

Requirement R.UC1.9: Semantic interaction between use-case specific application on IIoT Gateway and 
legacy turbine control system MUST be supported. In this deliverable we provide a standardized interface for 
interactions (based on W3C Web of Things), and semantically describe it with W3C Thing Description and 
iot.schema.org. In deliverable D3.9 we will introduce a component of SEMIoTICS IoT Gateway, which will 
enable semantic-based between use-case specific application on IIoT Gateway and legacy turbine control 
system. 

Requirement R.UC1.10: Sufficient compute environment MUST be supported on the IIoT Gateway to run use-
case specific applications. The IIoT Gateway will be running on Siemens SIMATIC IPC227E (Nanobox PC) 
industrial computer. This hardware features 1x Display-Port Graphic 2x 10/100/1000 MBit/s Ethernet RJ45 1x 
USB3.0, 3x USB2.0 CFAST-Slot DC 24V Industry-STROMVERS Celeron N2807 (2C/2T) 4 GB RAM, 80 GB 
SSD. As such this is a very powerful environment with enough compute power to run use-case specific 
applications.  

Requirement R.UC1.11: Device composition and application creation SHALL be supported through template 
approach. Task 3.3 is concerned with provision of semantic-based interfaces of devices. The Recipe Cooker 
component in the Cloud/Backend layer will support template-based creation of applications. Thanks to the 
semantic concept provided in this deliverable, it will be possible for machine reasoners to match requirements 
from application templates with capabilities of devices. 

Requirement R.UC1.12: Standardized semantic models for semantic-based engineering and IIoT applications 
MUST be utilized. In this deliverable we have proposed and used W3C Web of Things Thing Description (TD) 
as a standardized format for describing IoT things. TD is enriched with iot.schema.org – a W3C semantic model 
that builds on standardized semantics.  

Requirement R.UC1.13: Middleware functionality MUST be supported on IIoT gateway, to deal with termination 
of IIoT sensors, signal processing and termination of interfaces to legacy systems to provide pr ioritization and 
QoS for IIoT applications. This requirement will be provided in deliverable D3.9, once we provide the basic 
functionality of the IIoT Gateway. Task 3.3 will focus on termination of IIoT sensors, signal processing and 
termination of interfaces to legacy systems. 

Requirement R.UC2.5: The SEMIoTICS platform should allow the SARA solution to discover the IoT devices 
that are registered in the system. IoT devices deployed by the SARA solution are expected to register 
themselves into the system using various standard protocols (e.g. LwM2M, MQTT, Bluetooth LE, ZigBee, etc.).  
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In order to fulfill this requirement the IoT Gateway features components Local Thing Directory, and Semantic 
API & Protocol Bindings, see Figure 15   

Requirement R.UC2.6: The SEMIoTICS platform SHOULD allow the SARA solution to retrieve the resources 
exposed by registered devices via their object model (i.e. a data structure wherein each element represents a 
resource, or a group of resources, belonging to a device). The SEMIoTICS platform SHOULD support at least 
the OMA LWM2M object model. Semantically described resources can be retrieved from Local Thing Directory 
in JSON-LD format (see Section 0). For a structured description of an example device and its resources, see 
Figure 11.  

Requirement R.UC3.2: IoT Sensing unit shall be able to interface and register to the IoT Sensing gateway with 
a standard IP based (i.e. TCP transport) one to many M2M communication protocol to properly handle node 
registration and capabilities negotiation. In deliverable D3.9 will provide the first implementation of the IoT 
Gateway where a standard IP device will be enabled to be registered and to be interfaced with one to many 
M2M communication protocol such as for example MQTT. 

Requirement R.UC3.9: IoT Sensing gateway shall support one to many standard IP based (i.e. TCP transport) 
M2M communication protocol to interface a number N of connecting Sensing units (e.g. broadcast type).  This 
requirement will be fulfilled from the Task 3.3 point of view with the implementation mentioned in requirement 
R.UC3.2. 

Requirement R.UC3.12: IoT Sensing gateway shall be capable to run Linux (e.g. Ubuntu OS) and standard 
graphics and browser libraries. This requirement will be fulfilled with the implementation of requirement 
R.UC1.10 as Siemens SIMATIC IPC227E (Nanobox PC) runs Linux (Ubuntu OS). 

Requirement R.UC3.13: IoT Sensing gateway should be able to support HTTP and standard protocols for cloud 
interfacing. Deliverable D3.9 will provide the gateway with support of HTTP and standard protocols for cloud 
interfacing such as MQTT. 

Requirement R.UC3.14: The specific M2M protocol adopted on UC3 is based on MQTT. A MQTT broker 
service will be available to dispatch messages between the coordinating Sensing gateway and its associated 
Sensing units. As said, the deliverable D3.9 will provide the gateway with support of MQTT. 

Requirement R.UC3.15: A use case specific serialized message protocol is required to coordinate the gateway 
and its associated units and exchange data / events / anomalies between them. JSON will be the preferred 
serialization format adopted. Deliverable D3.9 will provide the gateway, which is capable of exchanging data 
in JSON format. 

Requirement R.UC3.16: Each registered sensing unit should send to the sensing gateway a keep alive signal 
on a specified period (e.g. few seconds) to notify the gateway it is correctly working. The sensing gateway 
should detect by this mean any non-working sensing unit and reconfigure the system accordingly.  This 
requirement should be supported in deliverable D3.9 if we implement all other mandatory requirements by the 
gateway and we still have available resources. 
 
Requirement R.UC3.17: Sensing units and sensing gateway should share a common clock (i.e. global 
reference time), precise up to milliseconds, to properly classify events and data acquired during the 
processing. This global reference time will be negotiated when a sensing unit node will join a given gateway. 
Internally the system will work scheduling activities according to this global reference time.  This requirement 
should be supported in deliverable D3.9 if we implement all other mandatory requirements by the gateway 
and we still have available resources. 

6 SUMMARY  
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In this deliverable we have provided the first draft of the semantic integration of the Field level into the 
SEMIoTICS architecture. In particular this includes semantics that aims to make brownfield devices form 
existing automation systems interoperable with newly bootstrapped IoT devices. In order to achieve this goal, 
we first provided a use case that motivates the role of semantic integration in SEMIoTICS project and identified 
goals to be achieved. Second, we reviewed existing technology blocks, including IoT standards, thereby 
defining a technology basis that will be used in the implementation of semantic Field level integration. Third, 
we provided a concept in a form of a semantic layer cake on how to integrate existing brownfield automation 
standards into new IoT semantic models. Finally, we have given the status of the current implementation of 
the work.  

In the second version of this work we will work on the implementation of SEMIoTICS IoT Gateway as specified 
by the concept of this deliverable. The gateway will fulfil requirements at the Field level as specified in this 
deliverable. It will provide the integrated device semantics at this level and will enable bootstrapping and 
creation of new Edge applications.  
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