

 780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

SEMIoTICS

Deliverable D3.9
Bootstrapping and Interfacing SEMIoTICS Field

Level Devices (final)

Deliverable release date 29.02.2020

Authors 1. Darko Anicic, (SAG)
2. Mirko Falchetto (ST),
3. Konstantinos Fysarakis (STS),
4. Korbinian Spielvogel, Felix Klement, Henrich C. Pöhls (UP)
5. Philip Wright, Domenico Presenza (ENG)

Responsible person Darko Anicic (Siemens AG)

Reviewed by Kostas Ramantas (IQU), Othonas Soultatos (FORTH)

Approved by PTC Members (Vivek Kulkarni, Nikolaos Petroulakis, Ermin Sakic, Mirko
Falchetto, Domenico Presenza, Verikoukis Christos)
PCC Members (Vivek Kulkarni, Nikolaos Petroulakis, Verikoukis Christos,
Georgios Spanoudakis, Domenico Presenza, Danilo Pau, Joachim
Posegga, Darek Dober, Kostas Ramantas, Ulrich Hansen)

Status of the Document Final

Version 1.0

Dissemination level Public

Ref. Ares(2020)1280324 - 29/02/2020

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D3.9: Bootstrapping and Interfacing SEMIoTICS Field Level Devices (final)
Dissemination level: [Public]

2

Table of Contents

Executive Summary .. 4
1 Introduction .. 5

1.1 Semantic Interoperability in SEMIoTICS ... 5
1.2 Focus and Relations to Other Project Tasks ... 6
1.3 PERT chart of SEMIoTICS.. 7
1.4 Specific Project Requirements Related to This Project Task ... 8

2 SEMIoTICS Use Cases & Requirements – Semantics Perspective ..11
2.1 Use Case 1: Wind Energy ..11
2.2 Use Case 2: SARA-Health ...12
2.3 Use Case 3: IHES Generic-IoT ..15

3 Device Bootstrapping and Semantic Integration in SEMIoTICS ...17
3.1 Building Blocks for Realization of Semantic Integration in SEMIoTICS ...17
3.2 Mapping the Semantics from Brownfield Automation Devices into IoT Semantics 25
3.3 Metadata related to security, privacy, and dependability ..28
3.4 QoS-related metadata ...30
3.5 Approach to Achieve the Bootstrapping and Semantic Interoperability at the Field Layer 30

4 Implementation of Semantics IoT Gateway ...32
4.1 GW Semantic Mediator ..35
4.2 Semantic API & Protocol Binding ...46
4.3 Local Thing Directory ...48
4.4 Semantic Edge Platform ..50
4.5 Implementation Details Related to Use Case 2 ..54

5 Validation..59
5.1 Related Project Objectives and Key Performance Indicators (KPIs) ...59
5.2 Related Project Requirements ...59

6 Conclusion ..63
7 References ...64
8 APPENDIX ...65

8.1 Appendix A ..65
8.2 Appendix B ..65
8.3 Appendix C ..66

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D3.9: Bootstrapping and Interfacing SEMIoTICS Field Level Devices (final)
Dissemination level: [Public]

3

Acronyms Table

Acronym Meaning
IIoT Industrial Internet of Things
CoAP Constrained Application Protocol
DTM Device Type Manager
EDD Electronic Device Description
EDDL EDD Language
FDT Field Device Tool
GSD General Station Description (ger. Gerätestammdaten)
HART Highway Addressable Remote Transducer
HTTP HyperText Transfer Protocol
ICT Information and Communication Technology
IHES Intelligent Heterogeneous Embedded System
IODD Input Output Device Description
IoT Internet of Things
JSON JavaScript Object Notation
MCU Micro Controller Unit
MQTT Message Queuing Telemetry Transport
OPC Open Platform Communications
OPC UA OPC Unified Architecture
PROFIBUS Process Field Bus
PROFINET Portmanteau for Process Field Net
QoS Quality of Service
RPi Raspberry PI
SDN Software-Defined Networking
SEMIoTICS Smart End-to-end Massive IoT Interoperability, Connectivity and Security
SPDI Security, Privacy, Dependability, and Interoperability
TD W3C Web of Things Thing Description
UC Use Case
W3C World Wide Web Consortium
WoT Web of Things

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D3.9: Bootstrapping and Interfacing SEMIoTICS Field Level Devices (final)
Dissemination level: [Public]

4

EXECUTIVE SUMMARY
SEMIoTICS architecture consists of three levels: Field level, Network level, and Backend/Cloud level. This
deliverable provides design and the first draft of the semantic integration of the Field level into the SEMIoTICS
architecture. In particular, this includes semantics that aims to make brownfield devices from existing
automation systems interoperable with newly bootstrapped devices. The new devices are Internet of Things
(IoT) devices. They interact in a way, which is different to standards-conform brownfield devices. IoT devices
can also not be engineered with existing industrial tools. On the other hand, they are cheaper and can make
automation systems more flexible. For example, it should be possible to easily plug a new IoT device and
create a new application that process data from existing brownfield devices, as well as data from the new
device. This possibility would significantly decrease costs of upgrading automation systems and development
of new applications. Moreover, it would be possible to create a new class of IoT applications, which have not
been envisioned at the time of creation of an existing automation system. In order to enable this, we have to
integrate the brownfield system with the IoT Field level. This assumes realization of a common communication
access, as well as an integrated data access. As a prerequisite for this, we have to describe capabilities of
both brownfield and IoT devices with a harmonized semantic model. This will enable application developers to
easily understand underlying infrastructure when developing new applications and will enable tool support
when discovering and engineering devices. Therefore, in this deliverable we are developing an IoT gateway
that fulfils these requirements at the Field level. The integrated device semantics at this level is a key enabler
for bootstrapping and easier integration of devices in an IoT system, as well as a facilitator for creation of new
applications. Apart from this, this work will be the central basis for the connectivity ne twork and the “glue”
between the Backend/Cloud on one hand side, and Field level devices on the other side.

The first version of this work contains a concept of an IoT gateway and technology building blocks for its
realization. This work extends the first version by providing the implementation of the concept and reviewing
gateway’s requirements at the Field level. In particular, we have provided the gateway implementation in
Section 4 (see Section 4.1 Section 4.2 Section 4.3 Section 4.4 Section 4.5, and Appendix 8.1 Appendix 8.2,
Appendix 8.3). The entire document has been reviewed and updated.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D3.9: Bootstrapping and Interfacing SEMIoTICS Field Level Devices (final)
Dissemination level: [Public]

5

1 INTRODUCTION
1.1 Semantic Interoperability in SEMIoTICS

The Internet of Things (IoT) is the network of things that are connected together. They interact and exchange
data over Internet. Things can represent physical or virtual objects. Thus, manipulating IoT things it is possible
to impact the physical world represented by those things. Before IoT emerged as a paradigm shift , the networks
of connected devices had already existed. Hence the question is what is new by IoT.

IoT promises a new class of applications based on things that interact over Internet. The game changer is not
the fact that we connect many things to Internet. Instead, the difference that IoT aims to make is the
interoperability of things, that is, the ability of things to interact in a meaningful way. How can we enable things
to interact, knowing that there are so many diverse things and even more possible ways of their interaction,
different communication protocols, different serialization- or data- formats they exchange, and different
purposes of Things? A new class of IoT applications assumes even interactions of things that never before
have been envisioned to interact together. Thus, the greatest challenge in IoT is to make things interoperable.
One way to achieve this is to describe things, their capabilities, and data they produce or consume in a machine
understandable form. Such a description could be then used to discover things relevant f or an application. It
can also serve to figure out how these things could interact. The description should be formalized, with a clear
semantic meaning, so that both humans and machines can interpret it. In this way we would not have just
Internet of mere things. Instead, IoT would be the Internet of semantically-described things. Semantics for IoT
is the key enabler of applications that operate on physical world objects. It is a prerequisite for achieving the
interoperability of things, and thus for realization of a new class of IoT applications. Figure 1: Enabling real-
world Applications with IoT semantics depicts this vision.

Figure 1: Enabling real-world Applications with IoT semantics

The Industrial Internet of Things (IIoT) refers to the IoT, where things are industrial devices and applications
are bound to various industrial operations. The interoperability in IIoT plays as important role as in IoT. Field
devices in automation systems originate from different manufacturers and have to be integrated in such a way
that a standard access to their data is possible. This aims to reduce the effort for device - engineering,
configuration, management, operation, and versioning, as well as to enable industrial applications to operate
on integrated data. A distinguished difference in IIoT is that semantics for describing things must be
standardized, and a good portion of it already exists. Thus, in the context of IIoT application, before enabling
the things interoperability we have to tackle a challenge of integrating semantics of brownfield industrial
devices with new IoT things.

In this work we use semantic models to provide the meaning to data that is exchanged between things, and
further to describe capabilities of things in a machine interpretable format. Our gateway will serve as a semantic
mediator in the task of integrating semantics of brownfield industrial devices and new IoT things. As the input,
the gateway accepts data from diverse field devices. As the output, it prov ides an API to access semantically-
described data along with descriptions of capabilities of connected devices. The API is based on W3C Web of
Things (WoT) standard, and things are specified in the WoT Thing Description (TD) format. TD is semantically
annotated with iotschema.org. In our approach we will strive to use existing standards to describe things, as

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D3.9: Bootstrapping and Interfacing SEMIoTICS Field Level Devices (final)
Dissemination level: [Public]

6

only the standard semantics provides the necessary base for the interoperability. Thus , we will extend
iotschema.org with standard semantics that is required for SEMIoTICS use cases. These semantic models will
be a cornerstone for different tasks such as discovery of services and devices; bootstrapping and interfacing
of IIoT field devices to enable plug-and-play functionality; creation of IIoT applications with low effort, and
others.

1.2 Focus and Relations to Other Project Tasks

Figure 2 shows three main levels of concern in the SEMIoTICS project, i.e., Field level, Network level, and
Backend/Cloud level.

In the first level, field devices become things in the context of IoT or IIoT. Both brownfield devices and new
devices are brought to a common accessibility layer by Gateway. The accessibility layer assumes a common
communication interface and semantic description of capabilities of field devices, provided in a standard and
harmonized way, see Figure 2. Field-level data and devices, described and enriched with IoT semantic models,
are ready to be used for Edge analytics. Such localized analytics (Embedded Intelligence) deploys machine
learning algorithms to extract the most important features of the data locally. It also transfers valuable results
to the cloud for further, global, processing and updates of the learning model.

The second layer is the networking layer. IIoT applications typically need to satisfy a range of quality of service
(QoS) parameters related to the networking. In order to accomplish this, IIoT applications will need to be
resource and network aware. Only then they will take full advantage of agile networks and underlying network
programmability as provided by Software Defined Networking (SDN). SDN allows network programmability,
which can be used to decouple network control from the forwarding network (aka data) plane and to make the
latter directly programmable by the former. Integrating IIoT and SDN will increase network efficiency , as it will
make it possible for a network to respond to changes or events detected at the IIoT application layer through
network reconfiguration.

The Backend/Cloud layer gathers data from different sources and provides higher-level services (apps).
Semantic meta-data of the gathered data is passed from the Field level to this level, where it can be further
enriched with Cloud-level semantic models (Knowledge Graphs). Semantically described assets in the Cloud
can be used in further processing by apps. In SEMIoTICS apps will be realized as application templates
(Recipes) that are instantiated with particular assets. Recipes are semantically annotated with the same
semantic models as assets. Hence the discovery of relevant Recipes, as well as the matching between Recipes
and applicable assets, will be based on semantic processing.

The focus area and tasks related to the role of semantics in the SEMIoTICS project are positioned by the oval
in Figure 2. In particular, the task T3.3 has the
goal to use the standardized semantic models in
order to enable the interaction between IIoT field
level on one hand side and the SDN Controller
Southbound Interface on the other one. The task
provides the accessibility layer as a common
communication interface and semantic
description of capabilities of field devices.
Further on, this work will make all field-level
resources discoverable on a Gateway-level thing
directory. The same mechanism will be applied
for Cloud-level discoverability. Finally, field-level
semantics will enable bootstrapping of filed
devices in a SEMIoTICS system, thereby
allowing easier integration of brownfield and new
IIoT devices in an integrated ecosystem where
rapid development of IIoT application is possible.

Figure 2: KEY IOT CHALLENGES DRIVING SEMIoTICS

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D3.9: Bootstrapping and Interfacing SEMIoTICS Field Level Devices (final)
Dissemination level: [Public]

7

1.3 PERT chart of SEMIoTICS

36 months Leader: SAG

31.12.202001.01.2018

WP1: Project Management

23 months Leader: ST-I

30.11.201901.01.2018

WP2: Requirements and Architecture for
Smart Sensing and Smart Actuation

24 months Leader: SAG

30.04.202001.05.2018

WP3: Smart objects and networks

25 months Leader: FORTH

30.06.202001.06.2018

WP4: Pattern-driven smart behavior of
IIoT with End-to-End Security and Privacy

24 months Leader: ENG

31.12.202001.01.2019

WP5: System Integration and Evaluation

36 months Leader: SAG

31.12.202001.01.2018

T1.1: Project coordination 36 months Leader: FORTH

31.12.202001.01.2018

T1.2: Project technical and innovation
management

36 months Leader: SAG

31.12.202001.01.2018

T1.3: Coordination with EU programme
level activities

3 months Leader: STS

31.03.201801.01.2018

T2.1: Analysis of emerging business and
technical IoT value drivers

4 months Leader: SAG

30.04.201801.01.2018

T2.2: Specification of use case scenarios
& applications and their requirements

4 months Leader: ST-I

30.06.201801.03.2018

T2.3: Specification of infrastructure
requirements

18 months Leader: BS

31.12.201901.07.2018

T2.4: SEMIoTICS architecture design

22 months Leader: SAG

29.02.202001.05.2018

T3.1: Software defined Aggregation,
Orchestration and cloud networks

22 months Leader: CTTC

29.02.202001.05.2018

T3.2: IIoT Network Function Virtualization

22 months Leader: SAG

29.02.202001.05.2018

T3.3: Semantics-based bootstrapping &
interfacing

22 months Leader: STS

29.02.202001.05.2018

T3.4: Network-level semantic
Interoperability

22 months Leader: IQU

30.04.202001.07.2018

T3.5: Implementation of Field-level
middleware & networking toolbox

23 months Leader: STS

30.04.202001.06.2018

T4.1:Architectural SPDI patterns

22 months Leader: ENG

30.04.202001.07.2018

T4.2: Monitoring, prediction and
diagnosis

22 months Leader: ST-I

30.04.202001.07.2018

T4.3: Embedded Intelligence and local
analytics

22 months Leader: FORTH

30.04.202001.07.2018

T4.4: End-to-End Semantic
Interoperability

22 months Leader: BS

30.06.202001.09.2018

T4.6: Implementation of SEMIoTICS
backend API

22 months Leader: UP

30.04.202001.07.2018

T4.5: End-to-End Security and Privacy

5 months Leader: UP

31.10.201901.06.2019

T5.1: KPIs and Evaluation Methodology

15 months Leader: BS

31.08.202001.06.2019

T5.2: Software system integration

20 months Leader: IQU

31.08.202001.01.2019

T5.3: IIoT Infrastructure set-up and
testing

13 months Leader: SAG

31.12.202001.12.2019

T5.4: Demonstration and validation of
IWPC- Energy scenario

13 months Leader: ENG

31.12.202001.12.2019

T5.5: Demonstration and validation of
SARA-Health scenario

13 months Leader: ST-I

31.12.202001.12.2019

T5.6: Demonstration and validation of
IHES-Generic IoT scenario

36 months Leader: CTTC

31.12.202001.01.2018

T6.1: Impact Creation and Dissemination 31 months Leader: ENG

31.12.202001.06.2018

T6.2: Exploitation of results

24 months Leader: SAG

31.12.202001.01.2019

T6.3: Standardization
36 months Leader: CTTC

31.12.202001.01.2018

WP6: Impact, Dissemination and
Standardization

Please note that the PERT chart is kept on task level for better readability.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D3.9: Bootstrapping and Interfacing SEMIoTICS Field Level Devices (final)
Dissemination level: [Public]

8

1.4 Specific Project Requirements Related to This Project Task
This section contains project requirements that are derived from deliverable D2.3 and are specific to this task.
The requirements are identified by request identifiers (Req-IDs), see tables below. These identifiers will be
used throughout the deliverable to denote parts thereof, which address specific requirements.

Table 1: Specific requirements for this task from the General Platform Requirements
Req-ID Functional Description Req.

level
Status
Referenced In

R.GP.1 Yes

End-to-end connectivity between the
heterogeneous IoT devices (at the field level)
and the heterogeneous IoT Platforms (at the
backend cloud level)

MUST

Section 3.1

Table 2: Specific Field Layer requirements

Req-ID Functional Description Req.
level

Status
Referenced In

R.FD.5 Yes
Field devices SHOULD be able to interact
with SEMIoTICS IIoT/IoT
gateway dedicated components

SHOULD
Section 3.1

R.FD.6 Yes
Field devices MUST interoperate using a
standard communication protocol like REST
APIs, COAP, MQTT.

MUST
Section 3.1

R.FD.7 Yes
Field devices MUST use standardize
interoperable message format (e.g. JSON,
etc.).

MUST
Section 3.1

R.FD.8 Yes Field devices MUST support secure
bootstrapping / registration protocol. MUST Section 3.3

R .FD.12 Yes

Greenfield device is expected to expose its
capability over a W3C Thing Description,
which semantically describes field
resources, and to be computationally
powerful enough to run a node-wot servient
(that exposes the TD).

MUST

Section 3.1

R.FD.13 Yes

Brownfield device is assumed to consist of a
sensor/actuator and a controller (PLC). The
controller is expected to expose capability of
its sensor/actuator over a native brownfield
protocol (without the need for IIoT Gateway
to interact directly with them).

MUST

Section 4

Table 3: Specific requirements for use case 1

Req-ID Functional Description Req.
level

Status
Referenced In

R.UC1.1 Yes

Automatic establishment of networking
setup MUST be performed to establish
end-to-end connectivity between different
stakeholders

MUST

Section 4

R.UC1.8 Yes

Semantic and robust
bootstrapping/registration of IIoT sensors
and actuators with IIoT gateway MUST be
supported.

MUST

Section 4

R.UC1.9 Yes Semantic interaction between use-case
specific application on IIoT Gateway and MUST Section 4

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D3.9: Bootstrapping and Interfacing SEMIoTICS Field Level Devices (final)
Dissemination level: [Public]

9

legacy turbine control system MUST be
supported.

R.UC1.10 Yes
Sufficient compute environment MUST be
supported on the IIoT Gateway to run use-
case specific applications.

MUST
Section 4

R.UC1.11 No
Device composition and application
creation SHALL be supported through
template approach.

SHALL

R.UC1.12 No
Standardized semantic models for
semantic-based engineering and IIoT
applications MUST be utilized.

MUST
Section 3, Section 4

R.UC1.13 Yes

Middleware functionality MUST be
supported on IIoT gateway, to deal with
termination of IIoT sensors, signal
processing and termination of interfaces to
legacy systems to provide prioritization
and QoS for IIoT applications.

MUST

Section 4

Table 4: Specific requirements for use case 2

Req-ID Functional Description Req.
level

Status
Referenced In

R.UC2.5 Yes

The SEMIoTICS platform should allow the
SARA solution to discover the IoT devices
that are registered in the system. IoT
devices deployed by the SARA solution
are expected to register themselves into
the system using various standard
protocols (e.g. LwM2M, MQTT, Bluetooth
LE, ZigBee, etc.).

SHOULD

Section 4

R.UC2.6 Yes

The SEMIoTICS platform SHOULD allow
the SARA solution to retrieve the
resources exposed by registered devices
via their object model (i.e. a data structure
wherein each element represents a
resource, or a group of resources,
belonging to a device). The SEMIoTICS
platform SHOULD support at least the
OMA LWM2M object model.

SHOULD

Section 3, Section 4

Table 5: Specific requirements for use case 3

Req-ID Functional Description Req.
level

Status
Referenced In

R.UC3.2 Yes

IHES Sensing unit shall be able to
interface and register to the IHES Sensing
gateway with a standard IP based (i.e.
TCP transport) 1 to many M2M
communication protocol to properly
handle node registration and capabilities
negotiation.

MUST

Section 4

R.UC3.9 Yes
IHES Sensing gateway shall support 1 to
many standard IP based (i.e. TCP
transport) M2M communication protocol

MUST
Section 4

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D3.9: Bootstrapping and Interfacing SEMIoTICS Field Level Devices (final)
Dissemination level: [Public]

10

to interface a number N of connecting
IHES Sensing units (e.g. broadcast type).

R.UC3.12 Yes
IHES Sensing gateway shall be capable
to run Linux (e.g. Ubuntu OS) and
standard graphics and browser libraries.

MUST
Section 4

R.UC3.13 Yes

IHES Sensing gateway should be able to
support http and standard protocols for
cloud interfacing (e.g. to make IHES
LocalDB data available).

SHOULD

Section 4

R.UC3.14 Yes

The specific M2M protocol adopted on
UC3 is based on MQTT. A MQTT broker
service will be available to dispatch
messages between the IHES Sensing
gateway and its associated Sensing units.

MUST

Section 4

R.UC3.15 Yes

A use case specific serialized message
protocol is required to coordinate the
gateway and its associated units and
exchange data / events / anomalies
between them. JSON will be the preferred
serialization format adopted.

SHOULD

Section 4

R.UC3.16 Yes

Each registered IHES sensing unit should
send to the sensing gateway a keep alive
signal on a specified period (e.g. few
seconds) to notify the gateway it is
correctly working. The sensing gateway
should detect by this mean any non-
working sensing unit and reconfigure the
system accordingly.

SHOULD

Section 4

R.UC3.17 Yes

IHES Sensing units and IHES sensing
gateway should share a common clock
(i.e. global reference time), precise up to
milliseconds, to properly classify events
and data acquired during the processing.
This global reference time will be
negotiated when a sensing unit node will
join a given gateway. Internally the
system will work scheduling activities
according to this global reference time.

SHOULD

Section 4

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D3.9: Bootstrapping and Interfacing SEMIoTICS Field Level Devices (final)
Dissemination level: [Public]

11

2 SEMIOTICS USE CASES & REQUIREMENTS – SEMANTICS
PERSPECTIVE

The Internet of Things, among other benefits, promises extensible, flexible, and dynamic applications. For
example, an existing automation system could be equipped with additional sensors and actuators in order to
provide a new feature. Data produced and consumed by new devices can be used for new applications. In
certain cases, owners of automation systems are incentivized to share this data with application providers in
order to offer new added-value services or to decrease costs of their systems. This motivates us to work on
industrial automation systems that are easily extensible with new IoT devices. The IoT promises this feature
in a form of plug-and-play functionality. In this section we review SEMIoTICS use cases from a semantic
perspective, i.e., we provide requirements related to device bootstrapping, engineering and networking, where
the use of semantics bring benefits.

2.1 Use Case 1: Wind Energy

Automation systems are fully integrated vertical systems. The full integration brings them efficiency. At the
same time, it bears inflexibility too. Once these systems have been engineered and operational, they cannot
be changed easily. For example, it is not straightforward to plug a new device into a running system and expect
the device to be functional with respect to an already engineered system (as specified by requirement R.UC1.8
in deliverable D2.3). Or it is not effortless to develop an added-value service for an existing automation system
(as specified by requirement R.UC1.11 in deliverable D2.3). Automation systems are complex, diverse, and
engineered for a specific purpose. The change in a running system must not impact the system itself. Second,
the change, if needed, needs to be integrated in the rest of the system so that the new system is operational
for existing and new applications. Today these tasks are typically performed by engineers. They have required
know-how. The main reason why an automated procedure for adding a new device, in sense of plug -and-play
is not possible lies in the fact that the expert’s know-how is not explicitly represented in a machine-interpretable
form. In order to enable creation of new IIoT applications in a dynamic environment we need to explicitly
represent this knowledge, thereby expressing capabilities of field devices in machine-interpretable form.
Moreover, device capabilities must be realized with standardized semantics as required by R.UC1.12 in
deliverable D2.3. Only then it will be possible to extensively use reasoning machines to certain automate
engineering tasks.

The following use case describes problems found in the current vertically integrated automation systems and
sketches the role of semantics in IIoT in order to amend these problems. Figure 3 depicts three parts: an
existing control system in a wind turbine; a new IoT device; and an industrial network, which connects all
components. The existing control system runs and is expected to continue its functionality also after adding a
new IoT device. For example, a Siemens SIMATIC S7 controller controls sensors and actuators, which are
needed for a normal operation of a wind turbine. Values from these sensors and actuators are exposed over
a SIMATIC S7 controller or an OPC-UA server. Our goal is to realize a new application, which requires an
additional temperature sensor. This is often a case, for example, when the position of an existing temperature
sensor is not appropriate for measurements needed for the new application. Therefore, we need to add a new
sensor. Suppose for our application, the new temperature sensor can be an inexpensive IoT device. The
question which arises here is how to integrate an IoT device with an existing automation system (see also
requirement R.UC1.9 from deliverable D2.3). First, the IoT device cannot communicate over standard industrial
protocols. Second, the IoT device cannot be added to the system over existing engineering tools (e.g., Siemens
TIA Portal). Third, it is not effortless to develop a new added value application since the know-how for an
existing and new systems are contained by different experts. Fourth, the application may impose additional
requirements, e.g., quality of service (QoS) constraints related to the underlying network. These requirements
are expressed in Figure 3 as a network constraint rule (NCR) and assumed by requirement R.UC1.1 in
deliverable D2.3.

Based on this example application we will explain the role of semantics for interfacing SEMIoTICS field level
devices. In order to enable an application to process data from brown field automation system and new IoT
devices, we first need to enable a common application protocol. Second, we need to provide a common data

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D3.9: Bootstrapping and Interfacing SEMIoTICS Field Level Devices (final)
Dissemination level: [Public]

12

model. Third, we need to provide a common semantic model, which will describe interaction patterns and
capabilities of devices. The semantic model will also involve contextual information and expert’s know-how,
explicitly represented in a machine-interpretable format. Forth, QoS network-related criteria can be
semantically described and interpreted by Software Defined Network (SDN) controllers prior to the deployment
of the application in order to check whether the communication infrastructure can meet the requirements of an
application. Thus, it is also a goal of our work in SEMIoTICS to provide a semantic model for describing QoS
network-related parameters and SDN/NFV infrastructure so that an automated evaluation of both is possi ble.
Only then, it will be possible for an application developer to efficiently discover field devices (based on
capabilities they provide), and to put them into semantically-correct interactions, also when they demand
different functional and non-functional requirements to be fulfilled. Overall, we see that the plug-and-play
functionality is not easily achievable. Nevertheless, our goal is to enable realization of new IoT applications
that have not been envisioned at the time of engineering an existing automation system.

Further on, semantic models and tools that we will provide as a part of this task can support other use cases
too. For example, semantic validation of produced and consumed device data can be enabled in an automated
manner. The same will be possible for an automatic matchmaking of the device’s capabilities with the
requirements of an application, or replacement of a malfunctioning automation device with a new IoT device,
and so forth.

Figure 3: Semantic-based Engineering & Networking

In the following we summarize the current state of the practice in existing automation systems and specify
goals to be achieved with our semantic-based approach.

2.2 Use Case 2: SARA-Health

The aim of the SARA case study (UC2) is to evaluate how the technologies and methodologies developed in
the SEMIoTICS research project could improve the development of an Information and Communication
Technology (ICT) solution aimed at sustained independence and preserved quality of life for elders with Mild
Cognitive Impairment or mild Alzheimer’s disease, with the overall goal of delaying institutionalization:
supporting both 'aging in place' (individuals remain in the home of choice as long as possible) and 'community

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D3.9: Bootstrapping and Interfacing SEMIoTICS Field Level Devices (final)
Dissemination level: [Public]

13

care' (long-term care for people who are mentally ill, elderly, or disabled provided within the community rather
than in hospitals or institutions).

Figure 4: SARA Key components and protocols

This envisaged solution relies on a network of sensors and actuators. The communications within the network
may be either wired or wireless. The nodes in the network are highly heterogeneous ranging from single
accelerometers, presence sensors (e.g. camera) to sophisticated robotic components (e.g. a rollator frames
improved with sensors and actuators, Pepper - a humanoid robot). The sensors and actuators network also
need to communicate with backend cloud services not only to store data (e.g. measures that are used as
monitoring data by doctors to improve treatment and provide assistance) and run computationally intensive
tasks entailed by the assistive tasks provided by the solution to their users (e.g. patients, caregivers) , see
requirement R.GP.1 in deliverable D2.3. The field devices part of the solution communicates with cloud back-
end services either via wired network or cellular connectivity.

The development of the software component of such a solution presents a number of challenges:

• the development of software aimed to control physical processes (i.e. falls).

• the integration of heterogeneous application protocols brought in the system by the use of off -the-shelf
components (e.g. the humanoid robot).

• the customization of the software with respect to the introduction of new sensors/actuators needed to
address patient-specific care requirements as formulated by doctors/carers.

• the provisioning of self-adaptation mechanisms to enable opportunistic networking with IoT elements
deployed by third parties (e.g. sensors and actuators part of the smart environment).

• At the technological level the solution integrates a wide range of components, including commercial
products, third-party components and research prototypes. Though most of the components of the
solution are readily available, their integration results in a clear technological innovation.

• At the service level the solution leads to added-value personalized solutions and services. This will allow
care services providers (e.g., health organizations, housing organizations, insurance companies) to
include innovative added-value solutions to their services portfolio.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D3.9: Bootstrapping and Interfacing SEMIoTICS Field Level Devices (final)
Dissemination level: [Public]

14

• The implementation of the SARA solution requires to address interoperability issues at various stages
of the development:

• Design time: due to the heterogeneous application protocols (e.g. Bluetooth, ZigBee) brought in the
system by the use of off-the-shelf devices. As an example, consider the situation faced by the developer
of the Weight Balancer controller of the Robotic Rollator. The Weight Balancer is one of the software
modules running on the single board computer on board of the Robotic Rollator. Its function is to control
the motorized hub wheels trying to counteract the forces that might result in a fall of the user of the
rollator. The Weight Balancer takes its decisions based on the measures taken by a series of sensors
(e.g. IMUs, proximity sensors) residing either on the rollator or worn by the user (i.e. belonging to the
BAN - Body Area Network - subsystem). The Weight Balancer, hence, during its initialization phase
have to discover which are the sensors available and suitable for its purposes. However, as shown by
Figure 4, the communication protocol of the sensors on board of the rollator and that of the sensors
within the BAN varies (e.g. CAN Bus vs Bluetooth). As a consequence, the code initializing the Weight
Balancer has to be conceived to deal with two different discovery protocols and object models. The
situation is not satisfactory since, apart from the low manageability of the resulting code, the solution
would be fragile with respect to possible changes in the protocols adopted by the rollator or the BAN.
The use of a semantic layer has a positive impact on the development of a Weight Balancer relying on
it since it would isolate the code of the Weight Balancer from the differences brought by the different
protocols.

• Deploy time: although all the instances of the SARA solution will share a common set of functions, it is
expected that additional features may have to be deployed in specific instances to address patient -
specific care requirements as formulated by doctors/carers (e.g. the need of an oxygen concentrator for
patients affected by respiratory diseases). The deployment of this feature occurs when technologies
(e.g. robotic rollator, BAN) are configured for a specific patient. However, the set of the possible
additional features has to be left open given the high variability of the conditions and needs we may
encounter across different patients. Taking again the rollator as an example, we want to minimize the
effort required to implement a new functionality very specific to a patient: the cost of developing a pa tient
specific functionality should be a fraction of the cost of the design of the entire rollator. As an example,
let us take the situation where on a specific rollator has to be extended with an additional functionality,
say a Gait Analysis module. A Gait Analysis module is a software module that takes low level measures
from the sensors on board of the rollator, aggregates them into higher level measures and forward them
to the SARA backend cloud services (e.g. for storage or furthermore complex analysis). Part of the effort
needed to develop such module for an already engineered rollator would be devoted to discover, which
sensors are available for that purpose, and more importantly, the settings of their operational
parameters (e.g. sampling rate). This part of the effort would be reduced by the availability of a semantic
layer enabling the development of module with reflective capabilities and, hence, having the capacity to
self-configure.

• Run time: the activation of some of the functionalities envisaged for the SARA solution requires the
availability of services/devices external to the solution. As an example, the support to navigation offered
by the Robotic Rollator relies on the availability of a service able to provide a map of the e nvironment.
This service could be offered, for example, by a Building Information Management (BIM) system external
to SARA. The Guidance module is activated only if a map service is available from the surrounding
environment. A desired behavior for the Robotic Rollator is to automatically activate the Guidance
functionality whenever required (implicitly or explicitly) by the user and a map service is available. Also,
in this case, the availability of a semantic layer eases the development of a service discovery function
by hiding the differences between the protocols used by the different map services to advertise their
capabilities.

• On course a development based on the availability of the semantic layer introduced to address the
above-mentioned interoperability issues should not prevent the achievement of other key general
requirements for the solutions:

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D3.9: Bootstrapping and Interfacing SEMIoTICS Field Level Devices (final)
Dissemination level: [Public]

15

• The SARA solution should process sensors data in a real-time fashion to be able to control physical
processes (i.e. falls).

• The solution should support a highly heterogeneous range of sensors/actuators: from single
accelerometers, presence sensors (e.g. camera) to sophisticated rollator frames improved with sensors
and actuators.

2.3 Use Case 3: IHES Generic-IoT
In the following we specify requirements for the case study (UC3): The Intelligent Heterogeneous Embedded
System.

• IoT (SEMIoTICS) system should be based on standardized IoT technologies, e.g., JSON, MQTT and W3C
WoT (see requirement R.UC1.12 in deliverable 2.3).

• IHES generic IoT UC will implement / deploy within SEMIoTICS a distributed local intelligent unsupervised
learning pattern: several intelligent sensing devices are coordinated by a local IHES Sensing Supervisor
in order to enable all system functionalities. In this respect interoperability and clear semantic pattern
messages are a key-focus (see requirement R1.10 in deliverable 2.3).

• IHES system should provide bootstrapping capabilities to IHES sensing nodes to join/detach from a local
computing intelligent cluster managed by IHES supervisor. A semantic pattern to register a new IHES
sensor node to the local IHES supervisor should be defined (see requirement R.UC1.8 in deliverable 2.3).

• Each IHES sensing node will analyze locally sensed data and will detect at single node level any anomaly
(according to a self-learned model) and will be reported to joined IHES supervisor node. Raw sensing data
are transmitted only during node bootstrap and will not be propagate outside local computing cluster
managed by a single supervisor instance running on IoT gateway. IoT gateway deployed IHES supervisor
will be responsible to propagate to upper level SEMIoTICS components all relevant events collected by
underlying connected sensing nodes.

• All raw sensing data and the events triggered by the local analytics deployed in each IHES Sensing node,
will be stored in the IHES Local DB component and should be made available under through REST API.

• IHES UC Local analytics will be implemented by means of unsupervised learning algorithms further
detailed as part of D4.10.

• IHES supervisor is implemented as a service component into IIoT SEMIoTICS Gateway. End-to-end
semantic interoperability will be ensured at this level of the architecture by the Gateway Semantic Mediator
component (see D2.4 for further details)

• Goal 1: implement an unsupervised learning distributed system at edge level devices by implementing
intelligent self-sensing/self-learning algorithms at STM32 Micro-controller units (MCUs).

• Goal2: allow massive system scalability by spreading system overall complexity at several levels of the
architecture (MCUs, RPi like gateway devices, Backend/Cloud), allow for lower power consumption and
network congestion by processing sensor raw data directly on the sensing unit and/or local supervisor
cluster. These distributed systems are more resilient to the environment and devices disconnection
compared to IoT centric ones in which any kind of analytics is deployed at cloud level.

• Goal 3: Plug & Play a new IHES sensing unit in the IoT IHES Supervisor and make its resources at disposal
for other SEMIoTICS components through a subset of the IoT gateway components (e.g. the GW Semantic
Mediator or the Semantic Edge Platform Components).

2.3.1 Semantic Mapping using JSON interchange format

The IHES Generic IoT UC main goals could be summarized in two main objectives:
• Provide a reference generic framework for local distributed intelligence and analytics as opposed to the

cloud-centric traditional approach (this aspect will be analyzed and better discussed in T4.3). In short,

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D3.9: Bootstrapping and Interfacing SEMIoTICS Field Level Devices (final)
Dissemination level: [Public]

16

these ones are the specific IHES UC (local analytics) components that will be presented in D2.5 referred
in Figure 27 (i.e. “Model Validation”, “AI Online learning” and “Event Detection”): they will be all
implemented at MCU level as a binary firmware on STMicroelectronics STM32 prototype boards.

• Provide a new communication pattern where intelligent nodes cooperates together to form a local /
lightweight computation cluster resilient on one side to the sensed environment and to poor connection
conditions in the other side (i.e. vs the backend / cloud level). For this a new semantic will be needed and
has been presented.

As part of WP2 activities IHES UC has been detailed and analyzed and specific requirements has been
defined by considering mainstream enabling technologies and innovative approaches inspired by the
emerging IoT edge computing paradigm. From the beginning it was evident that in such distributed systems
communication plays relevant roles: in particular communication between “intelligent” devices. Thus, more
complex and heterogeneous semantic patterns have to be defined. At the very beginning we considered the
communication aspect and the associated semantic as different aspects of the whole problem, even if it i s
common sense to say that a communication pattern implies a specific semantic to be considered.
Hence, we focused first on defining the right communication pattern for the IHES use case. Three of them are
available in literature: 1-to1 communication patterns (e.g. a request/response client/server communication is a
typical example of this), 1-to-N communication patterns (i.e. message broadcasting like UDP datagrams), N to N
asynchronous communication patterns (e.g. the publish/subscribe pattern implemented in MQTT). The first pattern
is not suitable for the IHES demonstrator because it implies a 1-to-1 synchronous communication: not the ideal
one when more connected devices are involved. Thus, we had the option to adopt a 1-to-N pattern or a more
generic N-to-N one. Even if 1-to-N will in theory fits the requirements of the demo (in theory a supervisor is
connected with N registered nodes), we opted instead for the N-to-N publish/subscribe pattern over TCP networks.
This is the more general one and will allow us to have more flexibility in order to integrate the solution into
SEMIoTICS or other vertical apps or services. In particular among all the possible technologies implementing a
public/subscribe pattern we opted for the MQTT infrastructure, widely used in IoT connected systems: this
infrastructure relies on asynchronous messages published to a centralized broker service, over a specific topic
(i.e. dashboard), via optionally secured TCP transport stream). These messages could be received from a recipient
that subscribe to the specific topic on a specific broker. Eventually as part of the QoS capabilities a broker could
be asked to retain a message for a given timeframe. This way it is possible to realize an event-driven,
asynchronous reliable transmission to N parties. In a subsequent step, once defines the transfer technology we
focused on the specific semantic (i.e., data formats) conveyed by the message sent over MQTT transport stream,
and the naming convention for the topics. We considered several options there as well: from more compact binary
serialized data (usually non-human readable), such as the google protocol buffers or flat buffers, to more common
textual based (human readable) such has XML or JSON formats. Both have pro and cons: the former usually have
a more compact representation of a given message, but they are not very interoperable and requires an additional
file named “.proto” shared between communicating partners in order to know how to parse the binary message.
Latter ones are less compact (each message is a readable string composed by Ascii or UTF8 characters), but
offers better interoperability, since the syntax is already embedded in the message and there is no need to share
an additional file to parse them. So, for the IHES use case we opted for using JSON format. An example of some
message / event shared between an IHES sensing node and its supervisor is shown in Figure 5, where a
“Bootstrap” and “Change” messages are shown. All messages have a “type” field discriminating the type of
message. They also have a “seqn” (i.e. growing sequence number) to uniquely identify the message sent by an
IHES Sensing Unit in the local cluster and a timestamp “ts” field useful to coherently plot on a consistent shared
timeline the messages received. This timestamp could be for example any kind of monotonic increasing clock. For
the IHES demonstrator we opted to use as timestamp the number of milliseconds from each node boot time.
According to the type of message other additional (extensible) attributes are possible in order to implement all the
requirements for the communication defined in D2.3.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D3.9: Bootstrapping and Interfacing SEMIoTICS Field Level Devices (final)
Dissemination level: [Public]

17

3 DEVICE BOOTSTRAPPING AND SEMANTIC INTEGRATION IN
SEMIOTICS

3.1 Building Blocks for Realization of Semantic Integration in SEMIoTICS

In the following we provide main building blocks, which will be used to address requirements imposed by
previous section.

3.1.1 W3C Web of Things

{
"type": "BOOTSTRAP",

 "ts": 11650,
 "seqn": 0,
 "payload": {
 "id": "00-80-e1-00-00-99",
 "interval": 20000,
 "name": "Node-000099",

"URI": "http://192.168.200.30:80",
 "s_caps": [
 {

"name": “ACCELEROMETER”,
"id": 3,

 "unit": "mG",
 "sample_count": 150,
 "sample_period": [200.000000, 200.000000]
 "ds_caps": [

 {
 "name": “ACC_X”,

"id": 3,

},
{
 "name": “ACC_Y”,

"id": 4,

},
{
 "name": “ACC_Z”,

"id": 5,

}

]

 },
]
 }
}

Figure 5: Example of JSON MQTT Protocol on IHES Generic IoT

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D3.9: Bootstrapping and Interfacing SEMIoTICS Field Level Devices (final)
Dissemination level: [Public]

18

The Web of Things (WoT) is a standardization activity by the World Wide Web Consortium1 (W3C). WoT seeks
to counter the fragmentation of the IoT through standard complementing building blocks (e.g., metadata and
APIs) that enable easy integration across IoT platforms and application domains [1]. Figure 6 shows the three
levels where the WoT building blocks can be applied: the device level, the gateway level (or Edge level), and
the cloud level [2]. There exist interactions between different Things at each of these levels, including Web
browser interactions too. The problem targeted by W3C WoT is a seamless integration of Things at different
levels so that these interactions can be accomplished easier than today (without W3C WoT).

Figure 6: Abstract Architecture of W3C WoT

Figure 7: Conceptional Architecture of the WoT Building Blocks shows WoT building blocks [2]. A Thing is the
abstraction of a physical or virtual entity that needs to be represented in IoT applications. This entity can be a
device, a logical component of a device, a local hardware component, or even a logical entity such as a location
(e.g., room or building) [2]. Thing is represented by a Thing Description.

1 https://www.w3.org/

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D3.9: Bootstrapping and Interfacing SEMIoTICS Field Level Devices (final)
Dissemination level: [Public]

19

Figure 7: Conceptional Architecture of the WoT Building Blocks

3.1.1.1 Thing Description

W3C Thing Description (TD) is a building block in the WoT architecture, see Figure 7: Conceptional
Architecture of the WoT Building Blocks. It is a machine-readable description of a Thing. A TD provides general
metadata of a Thing as well as metadata about the Interactions, data model, communication, and security
mechanisms of a Thing [2]. Thing’s Interactions are specified in a so-called Interaction Model. The model
defines three types of Interactions: Property, Action, and Event.

Properties expose the internal state of a Thing (its data points) that can be directly retrieved via GET method
of the HTTP protocol or optionally modified via HTTP’s POST method. For example, a GET method at the URI
“https://mysensor.example.com/status” will return a string status value for that sensor. Properties can be
observable which means pushing the new state after a change occurs (not an event).

Actions are functions that may manipulate the internal state of the thing in a way that is not possible through
setting Properties. For example, change states that are not exposed as a property, modifying multiple
properties, changing properties over time or with a process that should not be disclosed. Moreover, actions
can be just functions, which do not use the internal state at all, and may simply process input data and return
an output. HTTP’s POST is the default method for invoking actions on a URI resource.

Events provide a mechanism that enables the Thing to asynchronously push messages. These messages are
not stating but rather state transitions (events). Events could be triggered by internal state changes that are
not exposed as Properties. Events must follow a consistent delivery approach to ensure that all occurred
events are delivered. To that end subscriptions are utilized with HTTP’s long polling sub -protocol at, for
example, subscribing https://mysensor.example.com/oh will enable the sensor to provide a steady feed of data.

Form is a type of communication metadata that indicates one or more endpoints at which operation(s) on this
resource are accessible. Using this metadata, various methods (e.g. GET, POST etc.) can be explicitly
specified for properties and/or actions.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D3.9: Bootstrapping and Interfacing SEMIoTICS Field Level Devices (final)
Dissemination level: [Public]

20

Links expose an operation like a regular web link works, as specified by IETF RFC 82882.

Versioning is a metadata that provides information about the current version of the Thing Description instance.
This can be extended to include firmware and hardware versions.

ExpectedResponse is a communication metadata used for response messages (e.g. contentType of the
response).

Figure 8: Thing Description Sample [3] shows an example of Thing Description describing a lamp. The lamp
is accessible over HTTP protocol and is secured over a basic authentication security configuration (using an
unencrypted username and password). This TD is serialized in JSON3 format. The lamp has: Property “status”,
which can be used to check whether it is on or off; Action “ toggle” to turn it on or off; and Event “overheating”
to indicate the lamp is overheated.

2 https://tools.ietf.org/html/rfc8288

3 https://www.json.org/

{
 "id": "urn:dev:wot:com:example:servient:lamp",

 "name": "MyLampThing",
 "description" : "MyLampThing uses JSON-LD 1.1 serialization",
 "securityDefinitions": {
 "basic_sc": {"scheme": "basic", "in":"header"}
 },
 "security": ["basic_sc"],
 "properties": {
 "status" : {
 "type": "string",
 "forms": [{"href": "https://mylamp.example.com/status"}]
 }
 },
 "actions": {
 "toggle" : {
 "forms": [{"href": "https://mylamp.example.com/toggle"}]
 }
 },
 "events":{
 "overheating":{
 "data": {"type": "string"},
 "forms": [{
 "href": "https://mylamp.example.com/oh",
 "subprotocol": "longpoll"
 }]
 }
 }
}

Figure 8: Thing Description Sample [3]

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D3.9: Bootstrapping and Interfacing SEMIoTICS Field Level Devices (final)
Dissemination level: [Public]

21

3.1.1.2 WoT Binding Templates

In order to provide support for multiple protocols, the current version of WoT, specifies p rotocol binding
templates. These templates enable Things, which communicate over different protocols, still to interact
together. The WoT Binding Templates are an informal collection of communication metadata blueprints that
explain how to interact with different IoT Platforms [2]. For example, if an HTTP-enabled Web Thing, providing
data in plain JSON, needs to interact with an CoAP-enabled OCF4 Thing, which serializes data in CBOR5, then
it is needed only to provide corresponding Binding Templates for these two Things in their TDs. Of course, the
prerequisite is that there exist implementations of protocol bindings for the used binding templates, see Figure
9. For example, W3C WoT already provides few Binding Implementations for protocols such as HTTP, CoAP,
MQTT etc. But implementations for specific protocols, such as for example Siemens S7comm6 (as needed in
Use Case 1), do not exist. Thus, we need to implement them.

Figure 9: From Binding Templates to Protocol Bindings [2]

3.1.1.3 WoT Scripting API

The Wot Scripting API provides a programing interface for a Thing as described by its Thing Description. It
provides a convenient and standardized way of accessing Thing’s metadata, Properties, Actions, Events and
so forth. In this way IoT applications can be developed easier. Moreover, these applications are easier to
maintain as, for example, they don’t need to be changed when Things are changed, as far as new Things
provide equivalent data used by the application logic. Furthermore, standardized APIs enable por tability for
application modules, for instance, to move compute-intense logic from a device up to a local gateway, or to
move time-critical logic from the cloud down to a gateway or edge node [2]. The Wot Scripting API is an optional
building block.

3.1.2 iotschema.org

iotschema.org is a community organization for extending schema.org to connected Things. The organization
provides an open, publicly available, repository of semantic definitions for connected Things [4]. It is an

4 Open Connectivity Foundation (OCF): https://openconnectivity.org/
5 http://cbor.io/
6 S7comm: https://wiki.wireshark.org/S7comm

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D3.9: Bootstrapping and Interfacing SEMIoTICS Field Level Devices (final)
Dissemination level: [Public]

22

extension of well-known schema.org to enable descriptions of Things in the physical world and their data.
iotschema.org provides a way for domain experts to easily create semantic definitions that are relevant to their
application domain. iotschema.org reuses existing standardized semantic definitions whenever possible.

W3C Thing Description (TD) abstracts a Thing in terms of Properties, Actions, and Events. When creating a
TD, one needs to specify semantic types of Things Properties, Actions, and Events. For example, it is not
enough to know that “status” is a Property. For an application developer it is valuable to know also that the
Thing has the light capability, a binary switch control etc. Further on, it is required to know that the “status” is
a Property of type SwitchStatus, as defined by iotschema.org. There it is specified that this Property has data
type Boolean. Thus, the application client “knows” not only the URL of the Property (from its TD), but it also
“knows” what the Property is about and what data to expect when invoking the URI. Moreover, the type
SwitchStatus has a unique Web identifier. Hence it is possible to discover all Things from a Thing registry that
have the light capability or the SwitchStatus Property. Semantics, provided by iotschema.org, greatly help
when developing IoT applications. In particular, it enables an application development based on so called
Recipes. Recipes are application templates, created based on semantic descriptions from iotschema.org. They
can be used to automate application development by matching real Thing’s Interaction Pa tterns, which are
annotated with iotschema.org semantics, and Recipe requirements.

Figure 10: iotschema.org - Thing capability model

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D3.9: Bootstrapping and Interfacing SEMIoTICS Field Level Devices (final)
Dissemination level: [Public]

23

The complete iotschema.org can be accessed online7 and browsed online8. Semantic specifications for smart
objects, contributed by SEMIoTICS, are also online, see for example semantic description for a camera (used
in use case 1)9. Semantic specifications for brownfield devices will be mapped to the semantic model of
iotschema.org and will be published in the next version of this deliverable (D3.9).

7 https://github.com/iot-schema-collab/iotschema
8 http://iotschema.org/docs/full.html
9 http://iotschema.org/Camera

{
 "@context": ["http://www.w3.org/ns/td",
 {"iot": "http://iotschema.org/"}],
 "@type" : [
 "Thing", "iot:LightControl", "iot:BinarySwitchControl"
],
 "id": "urn:dev:wot:com:example:servient:lamp",
 "name": "MyLampThing",
 "description" : "MyLampThing uses JSON-LD 1.1 serialization",
 "securityDefinitions": {
 "basic_sc": {"scheme": "basic", "in":"header"}
 },
 "security": ["basic_sc"],
 "properties": {
 "status" : {
 "@type" : "iot:SwitchStatus",
 "type": "string",
 "forms": [{
 "href": https://mylamp.example.com/status,
 "mediaType": "application/json"}]
 }
 },
 "actions": {
 "toggle" : {
 "@type" : "iot:ToggleAction",
 "forms": [{
 "href": https://mylamp.example.com/toggle,
 "mediaType": "application/json"}]
 }
 },
 "events":{
 "overheating":{
 "@type" : "iot:TemperatureAlarm",
 "data": {"type": "string"},
 "forms": [{
 "href": "https://mylamp.example.com/oh",
 "subprotocol": "longpoll"
 }]
 }
 }
}

Figure 11: Thing Description annotated with iotschema.org

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D3.9: Bootstrapping and Interfacing SEMIoTICS Field Level Devices (final)
Dissemination level: [Public]

24

3.1.3 JSON-LD

JSON for Linking Data (JSON-LD) [5] is a serialization format for JSON (a widely adopted serialization and
messaging format on the Web). JSON-LD enables JSON data to be interlinked and structured based on
semantic models. Thus, it brings the Linked Data paradigm to JSON. There exist implementations and tools
for processing and querying JSON-LD data.

3.1.4 Semantic Integration in SEMIoTICS

In the previous section we have described main building blocks that we will use as technology blocks in
realization of semantic integration in SEMIoTICS. These building blocks are to the large extent based on
standards and are widely adopted in IoT communities.

Thing Description will be used to semantically describe field device resources, their interfaces, security meta-
data, and so forth. For some of brownfield devices there exist already various kinds of device descriptions.
Therefore, to reuse existing semantics we will need to provide a semantic mapping from brownfield semantic
models into IoT semantic models, as expected by W3C TD and iotschema.org.

The mechanism of Binding Templates we will use in SEMIoTICS in order to provide bindings for various
brownfield protocols (e.g., S7comm, Profibus10, Modbus11 etc.) into common Web application layer (e.g., HTTP,
CoAP etc.).

In SEMIoTICS we can use the WoT Scripting API to expose Things (field devices) that have been integrated
over Binding Templates and described with Thing Descriptions. In this way we can provide a uniform
standardized access to Thing’s and their data, which can greatly reduce development effort for IoT applications
at the Edge and in the Cloud.

Thing Descriptions are serialized to JSON-LD as it offers a good trade-off between machine-understandable
semantics and usability for Web developers.

10 https://www.profibus.com/
11 https://en.wikipedia.org/wiki/Modbus

Software Defined Networks
Network Functions

Virtualization

IIoT IoT

Ne
tw

or
k

Ba
ck

en
d/

Cl
ou

d

Gateway

Fi
el

d

D
yn

am
ic

ity

En
d

-to
-e

nd
 S

ec
ur

ity
 &

 P
riv

ac
y

H
et

er
og

en
ei

ty

Sc
al

ab
ili

ty

Public Cloud
Industrial

Private Cloud

 Embedded
Intelligence

Knowledge
Repository

Figure 12: W3C WoT in SEMIoTICS

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D3.9: Bootstrapping and Interfacing SEMIoTICS Field Level Devices (final)
Dissemination level: [Public]

25

3.2 Mapping the Semantics from Brownfield Automation Devices into IoT Semantics
3.2.1 Industrial Domain

In Section 2.1 we stated the goal of semantic integration, which is to enable realization of new IoT applications
that have not been envisioned at the time of engineering an existing automation system. To this goal, we have
discussed a common semantic access layer between brownfield devices and new IoT devices. In order to
integrate both kinds of devices we need to map and integrate semantics from existing brownfield device s into
IoT or IIoT application semantics. Only then it will be possible to discover required Things when developing an
application, and to put them into semantically-correct interactions.

Figure 13 depicts the concept for the integration of brownfield automation systems into the industrial IoT
domain by considering semantic aspects of systems. We distinguish a few layers of concern divid ed into two
blocks, i.e., existing automation systems and IIoT-based automation systems. The existing semantics from
brownfield automation systems is largely contained in various forms of device descriptions (see Field Device
Semantics in Figure 12). Field Device Semantics is standardized throughout different standards such as
Electronic Device Description12 (EDD) and its EDD Language13 (EDDL), GSD14, FDT/DTM15, IO Device
Description16 (IODD)etc. AutomationML17 is also to be mentioned here as a standardized data format based
on XML for the storage and exchange of plant engineering information.

Another level of semantics is introduced by data models from various Field Communication protocols, see
Figure 13. In the industrial domain, common protocols are for exampleHART18, PROFIBUS19, Modbus, and
many others.

In the second block we have IIoT-based automation systems and their semantics. Different IoT ecosystems
are based on different IIoT information models. For example, OPC UA20 is an established standard in this area.
Its model enables information integration, where vendors and organizations can model their complex data and
take advantage of the service-oriented architecture. W3C WoT Thing Description is another prominent
candidate in this layer, see Section 3.1.1.1 for more information. Apart from the standard-based models, there
exist IoT information models from ecosystems, which are provided by large industrial players. One such
example is Siemens’ MindSphere21 IoT asset model. Finally, IIoT information models need to be extended with
application-level, domain-specific semantics (see Figure 13). At this level there are various candidates, and
two prominent ones are: iotschema.org (see Section 3.1.2) and OPC UA Companions22.

12 http://www.eddl.org/
13 https://webstore.iec.ch/publication/23481
14 https://www.profibus.com/products/gsd-files/
15 https://fdtgroup.org/
16 http://www.io-link.com/
17 https://www.automationml.org/o.red.c/home.html
18 https://www.fieldcommgroup.org/technologies/hart
19 https://www.profibus.com
20 https://opcfoundation.org
21 https://siemens.mindsphere.io/en
22 https://opcfoundation.org/forum/opc-ua-companion-standards/

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D3.9: Bootstrapping and Interfacing SEMIoTICS Field Level Devices (final)
Dissemination level: [Public]

26

Semantic Mappings is a layer that we introduce in the SEMIoTICS project with the aim to map and integrate
brownfield semantics with IIoT semantics (see Figure 13). In this layer we have to harmonize semantics from
a particular brownfield semantic standard with the IIoT standardized semantics, e.g., iotschema.org (including
both the semantics and serialization format). Once we have a harmonized model, we will offer this model in
chunks that cover a specific domain. The SEMIoTICS IoT Gateway will be able to install these chunks
(semantic nodes or packs), and thus to enable an engineer to accomplish the brownfield integration.

3.2.2 Healthcare Domain

A Figure 14 depicts the key semantics relevant for the SARA UC. At the field level SARA solution results from
the integration of four subsystems: Body Area Network, Robotic Rollator, Robotic Assistant, Home Automation.

Within each subsystem the communication among the devices is enabled by a specific protocol: the devices
belonging to the Body Area Network communicate using the Bluetooth protocol, the devices on board of the
Robotic Rollator exchange information using the Controller Area Network Protocol (CAN-BUS), the devices
part of the Robotic Assistant uses a proprietary protocol, Home automation devices relies on ZigBee.

The communication between these four subsystems is enabled by the existence of four devices acting as
communication bridges between the devices belonging to different subsystems:

• a smartphone enables the communication between the Bluetooth devices belonging to the BAN and
the SARA backend services relying on cellular connectivity

• the controller of the Robotic Rollator can communicate both with the hub of the BAN (i.e. a
smartphone) via Bluetooth, with the devices on board of the rollator via CAN-BUS, with the Robotic
Assistant and the Home gateway via WiFi.

• the Robotic Assistant communicates with the Robotic Rollator and the Home gateway via WiFi
• the Home gateway enables the communication with the ZigBee devices belonging to the Home

Automation subsystem, with the Robotic Rollator and the Robotic Assistant via WiFi and with SARA
backend services using landline connection.

IIoT Information Models

Model Mappings Semantic Mappings

Application-level Domain Semantics

EDD, GSD, FDT/DTM, IODD, AutomationML

Field Communication S7comm, HART, PROFIBUS/PROFINET, Modbus…

Field Device Semantics

Existing Automation Systems

OPC UA IM, W3C WoT TD, MindSphere asset model (Edge)

iotschema.org , OPC UA Companions

Figure 13: Mapping the existing Brownfield semantics Into the IIoT semantics

IIoT Automation Systems

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D3.9: Bootstrapping and Interfacing SEMIoTICS Field Level Devices (final)
Dissemination level: [Public]

27

However, as already introduced by the previous sections, the existence of communication gateways does not
guarantee per se the possibility for the SARA application (or any other IoT application) to access in a uniform
way the device belonging to different subsystems (e.g. the possibility for a Gait Analysis function to read in a
uniform way both the IMUs on the smartphone and the IMUs on the robotic rollator): there will be the need to
develop Semantic Mappings to enable this.

The Semantic Mappings developed in the context of SEMIoTICS cannot ignore the existing semantics which
appear relevant of the SARA UC: HL7 FHIRE23, LOINC24, SNOMED CT25, SAREF26, UniversAAL27,
SmartBAN28, CORA29, AuR30, CLoE-IoT31.

Figure 14: Mapping the existing semantics to the IIoT semantics-SARA Health Scenario

3.2.3 IHES Generic IoT

The IHES Generic IoT UC will be implemented as a demo implementing use case scenarios identified in D2.2
of SEMIoTICS project. The demonstrator will focus on distributed intelligent systems. As of today, this
envisioned approach is not yet very common in IoT systems where a more centralized cloud-centric approach
is preferred. This implies that currently there are no specific ontologies or semantic patterns available to code
the interactions of those intelligent devices. In this respect SEMIoTICS will be the perfect testbed to introduce
these new communication patterns. The only limitations will be related to the actual midd leware available for
the simple MCU sensing units that should be adapted to the new semantics. A 1-to-N reliable protocol should
be available to allow these devices to smoothly cooperate together. Sadly, current cloud-oriented middleware
(e.g. Microsoft Cloud Azure or Amazon AWS) could not be used since they are designed specifically for the
cloud-centric approach. Thus, their semantic, patterns, enabling reference frameworks, could not be used: a
new reference design and a completely new semantic will be thus defined in SEMIoTICS for these specific
IHES UC devices & intelligent nodes. An IHES system will be a local / lightweight deployment of data analytics
and local processing able to interoperate at semantic level with existing legacy components by e.g., exploiting

23 http://www.hl7.org/fhir/summary.html
24 https://loinc.org/get-started/what-loinc-is/
25 https://www.snomed.org/about
26 http://www.etsi.org/technologies-clusters/technologies/smart-appliances
27 https://www.universaal.info/
28 http://www.etsi.org/technologies-clusters/technologies/smart-body-area-networks
29 https://standards.ieee.org/develop/project/1872.2.html
30 http://www.ieee-ras.org/industry-government/standards/autonomous-robotics-group
31 http://cloud.esl.eng.it/cloe-iot/#/main

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D3.9: Bootstrapping and Interfacing SEMIoTICS Field Level Devices (final)
Dissemination level: [Public]

28

a newly defined interaction pattern, and network-related metadata for a Thing (to be exposed by providing a
WoT Thing Description document).

Such kind of network-related metadata involves information on device registration on SEMIoTICS, that IHES
nodes will convey over standard MQTT bridge, such as:

• name: the name of the device on the network;
• MAC: the physical network address of the device;
• location: where the device is located;
• type: to indicate the type of the device and sensors implemented;
• function: a brief description of the device’s functions (e.g. capabilities exported by devices and accessing

entry points);
• interfaces: list of the device’s interfaces, their location (endpoint), their type (e.g. MQTT), and if they are

secured or not.

Utilizing this data directly from the thing description will enable seamless interoperability between devices in
the field, including devices from different domains. In addition to the above, and with regards to exposing the
thing via its description, metadata found in the common representation of for the Web of Things can be utilized.

3.3 Metadata related to security, privacy, and dependability
While security metadata does not have a semantic relevance per se, there are two important links:
Firstly, when a new device is connected to SEMIoTICS, two processes will start. Identification and
authentication will ensure that the newly connected device is benign (or otherwise will be rejected). Different
modes of identification and authentication will be described in detail in D4.5. However, authentication only
ensures a logical connection, not a semantic one. Therefore, semantic bootstrapping is required, and needs
to be compatible with the more security-oriented authentication process.
Secondly, during the authentication and semantic bootstrapping various metadata will be collected and stored
together. The following security metadata will be stored:

• Mode of authentication: Several modes of authentication are supported by SEMIoTICS, providing
different levels of security. Examples include password-based authentication, two-factor authentication,
and smart card-based authentication, and no authentication. The mode of authentication affects the
trustworthiness of the data delivered by the respective device. Thus, this information is relevant, e.g., for
patterns: A pattern can require that particularly sensitive data may only be communicated via devices
using strong authentication mechanisms.

• Identity provider: The security manager in the backend supports several identity providers, both internal
and external. For each device authentication, the identity provider will be stored. This information is
relevant in the scenario that at some point in time an identity provider is identified as having been
compromised: In this case all connections authenticated using the compromised identity provider must be
terminated.

• Time of authentication: Security metadata will include the time at which a new device has been
authenticated. This information may become useful for example during investigations into an attack at a
later time.

• (Network) Location: The security metadata also contains information about to which SEMIoTICS device
a new device was connected, e.g. to which gateway a new sensor was connected.

Metadata for SPDI patterns are specifications regarding each one of the properties; some of which need to be
monitored to enable the functionality of the pattern engine. The pattern engine has to effectively support the
SPDI properties; to that end monitoring of certain metadata must be facilitated. It should be noted that the
semantic metadata presented herein can be exposed through the descriptions of the different components that
will be used to instantiate IoT orchestration Recipes.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D3.9: Bootstrapping and Interfacing SEMIoTICS Field Level Devices (final)
Dissemination level: [Public]

29

For the purpose of security, an example of metadata that could be observed is how many login efforts were
attempted; using this information the patterns could activate certain security measures to
detect/prevent/mitigate an attack. For privacy, monitoring of data encryption/decryption could be a reasonable
hint to indicate that a malicious entity leaks data. Additionally, monitoring the encryption metadata to check if
encryption is applied on data at rest and in transit as described by the patterns is essential. In regard to
dependability, the patterns could monitor the reliability values of a component and cross check them with the
DependCert list to examine if it operates according normally. In terms of interoperability, worth monitoring are
metadata such as, protocols, data formats, semantic and programming interfaces that drive the initialization of
the communication. Moreover, monitoring what kind of certification the communicating components have could
improve the efficiency of establishing the connection, in terms of time and computational power.

In this context, some metadata information that can be useful in the context SPDI pattern monitoring and
verification are listed below.

For Security, some security metadata such as tokens, domains, authentication and accountability interfaces
have already been mentioned in this section, but additional information related to SPDI properties may need
to be included. Some examples are listed below, while the decision, which subset will be included in each case
and the exact content within the fields, will depend on the exact setup and patterns monitored for the given
use case.

Confidentiality metadata may include information such as if encryption is applied (on data at rest and data in
transit), what type of encryption should be used and the size of keys for the chosen cipher suite. SecCert can
also be used to list the collection of certificates that the specific component bears.

Moreover, to guarantee Integrity in all states of data, metadata that indicate relevant information must be
facilitated, this involves toggles that i) data integrity checks in transit using specific secure protocols (e.g. TLS)
ii) data at rest integrity checks, such as hardware (e.g. TPM) or software (e.g. filesystem level) ones iii) and
data in processing if integrity checks are included at the function level.

Further, to guarantee Availability, metadata that displays the degree to which a device/service operates and
is accessible at any given time (e.g. uptime). This data may include information on network components, such
as SDN controllers and nodes, alternate paths, signal strength, noise etc. As in all cases, the exact measures
and thresholds of availability have to be defined on a per case basis.

Privacy metadata can be utilized to ensure data is handled in a private manner according to data protection
laws. Some potential instances for this type of metadata are: DataSensitivity that indicates if data handled by
this device is sensitive (e.g. health relate data) and if additional measures are used (true/false) to protect it
(e.g. pseudoanonymization, anonymization), with an additional hasConsent field with a Boolean value
confirming if the data subject has given his/her consent; DataUsage, that provides information on when the
data was acquired, for how long it will be kept, if there are there any duplicates, if it is marked for safe deletion
etc.; Finally, PrivCert metadata facilitates a compilation of certifications that the component subsequently
handling the data may hold.

Dependability metadata can be used to guarantee devices and services run in a way they are supposed to.
This type of metadata involve reliability values, such as delay, packet losses etc. (for hardware these values
are usually provided by the manufacturer); FaultResponse, that marks information regarding if and what
operations are used to ensure that the component continues normal operation despite software or hardware
faults (e.g. replicated paths for forwarding traffic in parallel); finally, DependCerts, that contains a list of
certifications that a device/application holds, if any.

Interoperability metadata can be used to specify information with regards to establishing seamless
connectivity between, for example, two devices. This includes, configurations, protocols, data formats,
information models, ontologies, common semantic and programming interfaces etc.; finally, InteropCerts,
which accommodates a list of standards and certifications that a device/application integrates related to its

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D3.9: Bootstrapping and Interfacing SEMIoTICS Field Level Devices (final)
Dissemination level: [Public]

30

interoperability (e.g. two devices might build upon the same standard, which makes them interoperable by
default).

In addition to the above, extra fields to hold information against various types of attacks may also be used.
These could include AuthenticationRequests, providing information on successful/unsuccessful login
attempts; AuthorisationRequests, that hold information on successful/unsuccessful authorization checks to
get access to a protected endpoint or invoke a protected operation; InteractionRequests, that contains data
used to limit, and track requests on open interfaces (e.g. to mitigate DDoS attempts on exposes interfaces);
or ResourceUsage, that provides information on use of network and computer resources (e.g. to deal with
resource exhaustion attacks). In cases of sensitive data or data of critical importance from a security
perspective, DataAccess can be defined to track access level of the data, who & when accessed it, effectively
providing means for auditability and accountability.

Details on the concept of security metadata for semantic bootstrapping will be elaborated in Deliverable 4.12.

3.4 QoS-related metadata

In SEMIoTICS the monitoring of QoS related parameters will be driven by Architectural Patterns (see Task 4.1,
Deliverable D4.1), much like the SPDI properties mentioned in Section 3.3 above. In this context, QoS
requirements of the various IoT orchestrations supported by SEMIoTICS are defined in Recipes and then
encoded as patterns for monitoring and enforcement.

To achieve such QoS-aware orchestrations, the devices should, ideally, expose through their Thing Description
typical QoS-related information such as the Goodput (i.e. application-level throughput), Packet loss
(percentage of packets lost to packets sent), Errors (detected packets corrupted), Latency (i.e. network delay),
Packet delay variation (i.e. packet jitter), and Out-of-order delivery (delivery of data packets in a different order
from which they were sent). In addition to the above, the QoS-related properties of Dependability and
Availability, as analyzed in the context of Section 3.3 above are also considered. In all cases, the descriptions
could include certain values to classify their performance (e.g. latency < 1ms), as well as point to monitoring
interfaces, if available, that would allow the orchestrator to monitor the real -time value / performance of these
QoS parameters.

3.5 Approach to Achieve the Bootstrapping and Semantic Interoperability at the Field Layer

In this section we summarize the SEMIoTICS approach to achieve the bootstrapping and semantic
interoperability as presented by various parts of Section 3. Let us first do this for the problem of semantic
interoperability. Semantic interoperability is concerned with the ability of information systems to exchange
data with unambiguous, shared meaning. Our goal is to achieve semantic interoperability betw een brownfield
and greenfield devices. The problem consists of two parts. One that is concerned with interoperability at the
communication level (different devices communicate over different protocols), and another one that is
concerned with semantics (different devices use different semantics, data- and serialization- formats etc.).

Throughout Section 3 we said that SEMIoTICS approach would be built on W3C WoT standard and
iotschema.org. In order to solve the communication problem, we will use the WoT Binding Templates (see
Section 3.1.1.2). Binding Templates, together with Binding Implementations, will enable brownfield devices
from SEMIoTICS use cases to be interoperable at the communication level with WoT-enabled (greenfield)
devices. We will implement Binding Implementations for those protocols that we need in our use cases and
are at the moment not covered by the open-source implementation from W3C WoT community (e.g., S7comm
protocol that we need in use case 1).

In order to tackle the challenge of semantic integration, SEMIoTICS will build on W3C standardized Thing
Description (see Section 3.1.1.1), and iotschema.org (see Section 3.1.2). Semantic integration is a more
difficult problem than the integration at the communication level. In order to solve this challenge, we have to
have IoT semantic models that also harmonize semantic models from brownfield systems. For two examples
how this harmonization or mapping should be accomplished see Figure 13 and Figure 14. However, it is worth

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D3.9: Bootstrapping and Interfacing SEMIoTICS Field Level Devices (final)
Dissemination level: [Public]

31

noting that this process should be standardized. Otherwise no user, who already uses standardized brownfield
semantics, will use not-standardized IoT semantics. The standardization process is however long and needs
to be accomplished by standardization organizations (not by an EU project such as SEMIoTICS). That is why
we decided to build our approach on iotschema.org (see Section 3.1.2), where we are directly involved in an
ongoing standardization process of IoT semantic models. Thus, our goal is to extend iotschema.org with
semantic specifications as required to cover semantic brownfield integration (as defined by SEMIoTICS use
cases). This task includes mapping from an existing (brownfield) models or creating new semantic models
when there is no brownfield semantics available. Once the IoT (harmonized) semantic models are available by
iotschema.org we have to make these models easily applicable in different domains and use cases. Semantic
models are in general hard to use by non-experts. That is why in SEMIoTICS we will create semantic nodes
(packs) out of certain iotschema.org semantic models. Semantic packs will serve as chunks of models that can
be used for semantic mapping and configuration of brownfield devices. For example, for each interaction (data
point) of a brownfield device, the user can use a semantic pack to configure that interaction with the
iotschema.org IoT semantics. The semantic mapping (configuration) will be manual process. We will provide
tolling, which easies this task (e.g., a user provides inputs or chooses an offered enumeration value from a
semantic template). Once the semantic mapping (configuration) is accomplished, the tool will automatically
generate a W3C-valid Thing Description, together with correct iotschema.org semantics (see Section 3.1.2)
and the valid serialization format inside (see Section 3.1.3). In that phase, the semantic interoperability based
on W3C WoT standard and iotschema.org will be enabled at the SEMIoTICS field layer.

It is wort of noting that the semantic interoperability as described here is based on light -weight semantic
models. iotschema.org is an extension of a well-known schema.org. Thus, we rely on RDF Schema32 as a
semantic formalism. RDF(S) fully satisfies our need as the role of semantics in the project is to make data from
brownfield devices integrated and interoperable with data from green field devices, and further on, the role of
semantics is to enable creation of common application layer based on such unified data. Moreover, RDF(S)-
based semantics allows us to use machine reasoners to match requirements from applications with capabilities
of devices, as well as to validate semantically annotated Thing Descriptions with SHACL Shapes33.

Let us now reflect our approach to the task of bootstrapping. The goal of this process is to integrate a new
(brownfield or greenfield) device in the SEMIoTICS platform, and to enable creation of new applications.
Essentially this task is a process that implements the tasks of integration at the communication- and semantic-
level (see above). The process is broken into a sequence of steps, see Figure 16. For greenfield devices,
which are described with a TD, these steps will be automated (plug & play bootstrapping), whereas for the
brownfield devices the process of mapping/harmonization will still involve a manual work. However, this task
will be done once, at the design time. The outcome can be reused for brownfield devices of the same type.
The sequence of steps from Figure 16 are implemented in SEMIoTICS IIoT Gateway, see Section 4. With this
regard, our goal to accomplish the semantic bootstrapping at the SEMIoTICS field layer is achieved.

Finally, we would like to emphasis the importance of the subject of the task T3.3, i.e., semantic-based
bootstrapping and interfacing at the field level in the SEMIoTICS use cases.

In the wind energy use case (UC1) the goal is to create new, added-value, applications that have not been
envisioned at the time of creating the automation systems, which contro ls a wind turbine. For these new
applications we may need new additional field devices. The challenge is thus to integrate the existing
(brownfield) systems with newly added (greenfield) devices. Brownfield and greenfield devices communicate
over different protocols (e.g., S7comm vs. HTTP), they also often use different serialization formats (e.g., XML
vs. JSON), and they adhere to different semantics (e.g., no semantics or machine not-interpretable semantics
vs. semantics based on iotschema.org). Apart from this, in UC 1 it is very important to easily scan network for
newly plugged devices and register them in plug and play fashion.

In the SARA use case (UC2) we must deal with a wide range of device semantics (different kinds of devices
with different functions), data formats (syntactic representations), measurement unit conventions (for sensor

32 RDF(S): https://www.w3.org/TR/rdf-schema/
33 SHACL: https://www.w3.org/TR/shacl/

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D3.9: Bootstrapping and Interfacing SEMIoTICS Field Level Devices (final)
Dissemination level: [Public]

32

readings), and communications protocols (e.g. WiFi, ZigBee, Bluetooth). Various key aspects of SARA
functionality, moreover, require that data from multiple sources is collated, aggregated and/or analysed in a
coherent collective fashion. The reliable detection of “fall incidents”, for example, may involve the continuous
comparative evaluation of data from wearable IMU devices, RR handle-mounted pressure sensors and RA
video cameras (among others).

In the third use case (UC3) Local Embedded Analytics on IHES Sensing Units creates unprecedented
distributed event-driven type of semantically complex data-patterns messages that require to be properly
handled in order to achieve scalability and semantic interoperability. From this perspective SEMIoTICS
ecosystem with its pattern driven approach will be the perfect testbed where experiment the local analytics /
edge computing approach in real life conditions.

The semantic interoperability within the SEMIoTICS framework is a key enabler on which the IHES system is
leveraged. To interface the IHES sensing units in a coherent manner, we have evaluated the adoption of the
W3C WoT standard to interface the connected the microcontrollers to the framework. A full support of the
standard is not feasible, e.g. the WoT servient is not deployable on a MCU due to its very limi ted resources.
Thus, as an alternative, in order to provide to the ecosystem the whole set of functionalities provided by the
system, we have considered to develop within SEMIoTICS specific dedicated component that will act as a
bridge from the low level MQTT messages to the other components in SEMIoTICS, similar in principle to what
has been planned for the brownfield devices within the UC1 scope.

4 IMPLEMENTATION OF SEMANTICS IOT GATEWAY
The first version of SEMIoTICS deliverable D3.3 provides a concept for device bootstrapping and semantic
integration of field level devices. In this (next) version of the deliverable the concept has been implemented.
This section we start by reviewing information about architectural components of IoT Gateway, which are
required for the realization of the presented concept. These components are presented in Figure 15:
SEMIoTICS IoT Gateway, and are agreed with other SEMIoTICS project partners in the work on SEMIoTICS
architecture, see Figure 1 and Section 2.3 in SEMIoTICS deliverable D2.4. In the scope of this deliverable we
will consider the following components: GW Semantic Mediator, Local Thing Directory, and Semantic API &
Protocol Binding, see Figure 15: SEMIoTICS IoT Gateway.

Figure 15: SEMIoTICS IoT Gateway

Figure 16 shows an updated sequence diagram of activities that occur during the bootstrapping process. The
goal of this process is to integrate a new device in the SEMIoTICS platform by using SEMIoTICS IIoT Gateway.
Once this process is completed, it will be possible to create new applications based on data from the n ew
device, as well as the data from other available devices in the platform. In order to achieve this goal, the
gateway needs to make the device data accessible, and it has to provide full semantic description of the
device, i.e., semantics about device capabilities, its data, communication protocols, contextual information
(e.g., location, domain of use) etc.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D3.9: Bootstrapping and Interfacing SEMIoTICS Field Level Devices (final)
Dissemination level: [Public]

33

Figure 16: Sequence diagram for Bootstrapping and interfacing SEMIoTICS field level devices

In the bootstrapping process we distinguish two different classes of device. The first class consists of devices
that already have a Web-based RESTful interface and are described by W3C Thing Description (WoT devices).
The second class comprise of all other devices that yet need to be made accessible over a Web-based RESTful
interface (brownfield devices). These devices do not have a semantic description, or certain semantic meta-
data exists, but needs to be mapped to standardized semantic IoT models. This is a case, for example, with
brownfield devices. They may have various forms of device descriptions, including standard-based
descriptions (e.g., EDD). However, in order to realize IoT applications, it is convenient to map these brownfield
descriptions into description based on standardized IoT semantic models. They are two reasons for this. First,
IoT applications are typically cross-domain applications. Brownfield device descriptions focus on certain
domain. In order to integrate such devices with devices from another domain, we need to have harmonized
semantic models that cover multiple domains. Second, brownfield device descriptions usually need to be
enriched with additional semantics (e.g., to support new classes of IoT application). Thus, we need richer IoT
models and a mapping approach for brownfield device descriptions.

Let us consider now a sequence diagram of activities that occur during the bootstrapping of WoT device, see
Figure 16. The user performs the first step during the initialization of a new device. This assumes provision of
information such as an IP address, device capability, domain of use, location etc. Since the device already has
a Thing Description (TD), this information is directly put in its TD. The device can then be registere d with
SEMIoTICS IIoT Gateway (with GW Semantic Mediator, which is an internal component of the Gateway).

If a brownfield34 device needs to be initialized, then a user in addition to previously mentioned information
needs to specify metadata related to the communication protocol and the encoding format. This information
will be important part of a Thing Description and is used by SEMIoTICS IIoT Gateway to realize a protocol
binding. The protocol binding is a process, which enables a device brownfield protocol (e.g., Modbus) to be

34 Brownfield refers to the implementation of new systems to resolve certain problem while accounting for
established systems.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D3.9: Bootstrapping and Interfacing SEMIoTICS Field Level Devices (final)
Dissemination level: [Public]

34

mapped to an IoT application protocol, e.g., HTTP, CoAP, MQTT etc. If the device has a brownfield
configuration meta-data, in this process, it will be mapped into a standardized Thing Description of the device
(see :GW Semantic Mediator in Figure 16). The brownfield configuration meta-data needs also to include
communication meta-data (e.g., which protocol the device communicates over). The information will be used
by the Mediator for the protocol binding.

For the sake of simplicity, Figure 16 shows the bootstrapping process only from a semantic perspective (as
this is the focus of task T3.3). However, in parallel the process of authentication of a device also must take
place. For this purpose, the device will identify itself to the security manager in the gateway. The authentication
process will be described in detail in D4.5. If authentication was successful, the security manager then
generates session keys for communication between device and semantic mediator. The semantic mediator
may provide the Thing Description to the Local Thing Directory if and only if it received the respective session
keys; if the Semantic Mediator does not receive the session keys, that means that the authentication failed
and the device may not be used.

Once the registration is completed, a user may configure a device and provide additional semantic annotations
(see the interaction semantically enrich TD in Figure 16). These annotations are typically contextual
information such as location of a device, its specific capability or configuration. This task completes the
realization of semantically enriched Thing Description. The device can then be registered with SEMIoTICS IIoT
Gateway (with GW Semantic Mediator). The mediator will create a Device Node for each interaction pattern of
the device. Device Node is a programmable component that enables interaction with the device. The Mediator
automatically generates Device Nodes, based solely on information from devices’ TDs. Generated Device
Nodes can then be installed in :Semantic Edge Platform. The mediator exposes capabilities of these devices
over a standardized Web API and runs on a W3C WoT servient (see Section 3.1.1.3). A W3C WoT servient in
Figure 16 is represented with SEMIoTICS component called :Semantic API & Protocol Binding. This API is
used for realizing IoT applications at the Edge level too. After exposure of a device over a WoT servient, the
device can be used in Edge and Cloud-based applications via interactions provided by its Device Nodes.
Device Nodes represent a means for an application to programmatically access device’s functionality via
:Semantic Edge Platform. Each interaction from :Semantic Edge Platform will create a call to the WoT servient,
which will forward the call to a Thing (device), see Figure 16. Note however that such interactions are done
over a unified and standardized WoT API, no matter whether we initiate an interaction for a WoT device or
brownfield device. In case of an interaction with a brownfield device, the forwarded call is performed over an
implementation of a protocol binding. In the context of this deliverable we implemented such a protocol binding
for S7comm protocol. With this implementation at hand, a greenfield device can communicate with Siemen s
S7 controller (used in use case 1) over a W3C WoT servient.

The final version of a Thing Description, created (or updated) in the procedure described above, is stored in
:Thing Directory and :Local Thing Directory. :Local Thing Directory runs on the gateway and can be queried
for all semantic information related to attached devices. The Gateway also registers all locally available TDs
by :Thing Directory in the Cloud. In this way all semantic information about field level devices is also available
in the backend. This information will be used by Recipe Cooker to create IoT application at the Cloud level.

For the final stage of Figure 16, it has to be noted that this figure shows only the semantic perspective. Not
every user or application may be permitted to connect to a Thing. Security policies and SPDI patterns will be
able to specify limitations on which applications and users may use a Thing. For this purpose, the Security
Manager will evaluate such access requests and deny them if necessary.

It is also worth of noting that certain activities in the sequence diagram are accomplished over Software Defined
Network (SDN), see Figure 16.

In comparison to the sequence diagram for bootstrapping and interfacing of field devices in deliverable D3.3,
here we have added a component called Semantic Edge Platform (SME), see Section 3.5.8 in deliverable
D2.5. SME eases the interaction with SEMIoTICS IoT Gateway (graphic user interface for network scanning
and user input, e.g., IP address range etc.), including the interaction with Local Thing Directory too.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D3.9: Bootstrapping and Interfacing SEMIoTICS Field Level Devices (final)
Dissemination level: [Public]

35

Figure 17 shows the current set-up for the implementation of the industrial use case, see Section 2.1. With
respect to the three levels in SEMIoTICS (Field, Network, and Backend/Cloud, see Figure 12), in this set-up
we consider only the Field level, as that is the level where SEMIoTICS IoT Gateway resides.

Figure 17: Current implementation setup for industrial use case (field level)

Figure 17 shows two groups of devices, required for the implementation of the Wind Energy scenario. These
are devices from an existing wind turbine (Brownfield Devices), and new IoT devices that may be added to the
system as an extension (i.e., a camera, microphone and accelerometer). Values from wind turbine sensors
and actuators are exposed over a SIMATIC S7 controller or an OPC-UA server. Sensors and actuators, from
an IoT device, may be exposed over a CoAP, MQTTT or HTTP server. For example, we may consider a
Raspberry Pi (RPi) device or similar one to provide access to these sensors and actuators, and its data. The
role of an IoT Gateway is to expose functionality of field devices over a uniform interface with a clear semantics,
i.e., machine interpretable descriptions of field devices. For that purpose, we use the W3C Web of Things with
its Thing Description and iotschema.org. Thus, there is a W3C WoT servient that runs on SEMIoTICS IoT
Gateway. Siemens Nanobox35 has been used as the hardware to run the IoT Gateway. Apart from this
(southbound) functionality, IIoT Gateway will also be used for transfer of data to MindSphere. That
(northbound) functionality will be implemented with MindConnect LIB36 in deliverable D5.7. The semantics
created in the Field level and exposed over a Thing Description will be also used for creating MindSphere
asset model. In this way we will have a transparent IoT semantics, not only at the Field level, but also across
complete SEMIoTICS platform.

In the following, we will provide information about the implementation of each component of SEMIoTICS IoT
Gateway, marked in Figure 15.

4.1 GW Semantic Mediator
4.1.1 WoT (Greenfield) Devices

35 https://goo.gl/C2YyJY
36 https://goo.gl/HhkZqX

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D3.9: Bootstrapping and Interfacing SEMIoTICS Field Level Devices (final)
Dissemination level: [Public]

36

The goal of semantic integration (see SEMIoTICS deliverable D3.3) is to enable realization of new IoT
applications that have not been envisioned at the time of engineering of an existing automation system. In the
current implementation (for greenfield devices) the mediator does need to do much as the device already has
(semantically annotated) Thing Description. Thus, its function is just to make a device programmatically
accessible in accordance with the meta-data from Thing Description. It means that for each interaction pattern
from the TD, GW Semantic Mediator will create a Device Node of the device. Device Node is a programmable
component that enables interaction with the device. For example, if a TD of a device contains inclinometer
property and an action for IP camera, then the mediator may generate two nodes: one for reading the current
inclination data, and another one for streaming the video from the camera. So generated Device Nodes can
be installed in Semantic Edge Platform and used in Edge and Cloud-based applications. Table 6 shows our
script that generates and installs such Device Nodes.

Table 6: Creating Device Nodes
1. npm install
2. rm -rf ~/.node-red/package-lock.json
3. rm -rf GeneratedNodes/*
4. for file in IPshapes/* ; do
5. node NodeGen.js --file=$file
6. sleep 2
7. done
8. mkdir -p ~/.node-red/SchemaNodes
9. for d in GeneratedNodes ; do
10. cp -R $d ~/.node-red/SchemaNodes/
11. done
12. npm install --prefix ~/.node-red ~/.node-red/SchemaNodes/GeneratedNodes/*
13. npm install
14. rm -rf ~/.node-red/package-lock.json
15. rm -rf GeneratedNodes/*
16. for file in IPshapes/* ; do
17. node NodeGen.js --file=$file
18. sleep 2
19. done
20. mkdir -p ~/.node-red/SchemaNodes
21. for d in GeneratedNodes ; do
22. cp -R $d ~/.node-red/SchemaNodes/
23. done
24. npm install --prefix ~/.node-red ~/.node-red/SchemaNodes/GeneratedNodes/*

4.1.2 brownfield Devices
In order to integrate brownfield devices, GW Semantic Mediator needs first to generate a Thing Description
(TD) for them. TD can then be used by a WoT Servient (the Semantic API & Protocol Binding component) to
expose devices and enable interactions with them. Hence, the first challenge we needed to solve is to create
a TD for a brownfield device.

Brownfield devices may be very different as they originate from very different domains. In the context of use
case 1 we consider a wind turbine and a Siemens controller, which controls the turbine. Figure 18 shows
Siemens engineering station, TIA Portal37, with all existing information about the wind power automation
system. This includes program blocks, communication details, information how devices are connected to each
other etc. These artifacts are what in reality exist, and they are our starting point for the brownfield integration.

37 https://new.siemens.com/global/en/products/automation/industry-software/automation-software/tia-portal.html

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D3.9: Bootstrapping and Interfacing SEMIoTICS Field Level Devices (final)
Dissemination level: [Public]

37

Figure 18: Siemens engineering station - TIA Portal
Our goal is to extract information from TIA Portal that is relevant for exposing brownfield devices for interactions
with other (greenfield) devices. In particular, in the right-hand side of Figure 18 we see few variables that we
want to make available for interactions with other devices, e.g., Power, PowerDemand, Run, WindSpeed etc.
Meta-information about our brownfield devices, including information about these variables, their data types,
IP address of the controller and others, we can obtain from AutomationML files that describe our field devices
and the complete automation system. As shown in Figure 19, the role of SEMIoTICS Mediator is to map
relevant meta-data from these files into a TD model38.

Figure 19: GW Semantic Mediator: mapping existing field meta-data into wot TD

Figure 20 depicts how hardware and address space are organized in Siemens PLCs. We see that modules
(CPU, power supply, input output units etc.) are mounted on a rail, called the rack. Racks are numerated
(Figure 20 shows the rack 0). The number of racks depends on complexity of an automation system. Each
module in the rack has a number too. Mounting order of the modules, starting from the left-hand side, is: 1.
Power Supply (PS) module; 2. CPU; 3. Interface Module (IM). Different Signal Modules (SMs) are placed from
position 4, and onwards. We see that a slot number is assigned to each mounted module. In order to read or
write values to a PLC we need to know the rack and slot number of its position on a rail, as well as an IP
address of it.

38 Mediator has further roles too, i.e., to create Device Nodes, installs them in Semantic Edge Platform, saves
created TDs in TD Directories etc.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D3.9: Bootstrapping and Interfacing SEMIoTICS Field Level Devices (final)
Dissemination level: [Public]

38

Figure 20: ADDRESSING OF MODULES in Siemens PLC39

Figure 21 shows excerpt from an AutomationML File that we exported from TIA Portal for our SEMIoTICS
project. It is worth noting that the relevant information for PLC2 are: Rack 0; Slot 2; IP address: 192.168.0.2
(see Figure 18, and values marked in yellow in Figure 21).

<InternalElement ID="9b97a633-fb65-46d6-8d35-64f19088699b" Name="Rack_0">
 <Attribute Name="TypeName" AttributeDataType="xs:string">
 <Value>Rail</Value>
 </Attribute>
 <Attribute Name="PositionNumber" AttributeDataType="xs:int">
 <Value>0</Value>
 </Attribute>
 <Attribute Name="BuiltIn" AttributeDataType="xs:boolean">
 <Value>false</Value>
 </Attribute>
 <Attribute Name="TypeIdentifier" AttributeDataType="xs:string">
 <Value>System:Rack.ET200S</Value>
 </Attribute>
 <InternalElement ID="25fcb9a7-3090-4fff-aba5-f8abfdcd5b78" Name="PLC_2">
 <Attribute Name="TypeName" AttributeDataType="xs:string">
 <Value>IM 151-8 PN/DP CPU</Value>
 </Attribute>
 <Attribute Name="DeviceItemType" AttributeDataType="xs:string">
 <Value>CPU</Value>
 </Attribute>
 <Attribute Name="PositionNumber" AttributeDataType="xs:int">
 <Value>2</Value>
 </Attribute>
 <Attribute Name="BuiltIn" AttributeDataType="xs:boolean">
 <Value>false</Value>

39 http://plcprogrammablelogiccontroller.blogspot.com/2011/09/addressing-of-modules-in-siemens-
plc.html?_sm_au_=iVVJfk2TD1P05SBBt2tQvK032Hv7C

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D3.9: Bootstrapping and Interfacing SEMIoTICS Field Level Devices (final)
Dissemination level: [Public]

39

 </Attribute>
 <Attribute Name="TypeIdentifier" AttributeDataType="xs:string">
 <Value>OrderNumber:6ES7 151-8AB01-0AB0</Value>
 </Attribute>
 <Attribute Name="FirmwareVersion" AttributeDataType="xs:string">
 <Value>V3.2</Value>
 </Attribute>
 <InternalElement ID="78c6d195-14aa-436a-9da1-149539a1f24c" Name="Default tag table">
 <SupportedRoleClass RefRoleClassPath="AutomationProjectConfigurationRoleClassLib/Ta
gTable" />
 </InternalElement>
 <InternalElement ID="9f90c0e8-7ea6-4ba4-aac7-
db4471ae3326" Name="PROFINET interface_1">
 <Attribute Name="Label" AttributeDataType="xs:string">
 <Value>X1</Value>
 </Attribute>
 <Attribute Name="PositionNumber" AttributeDataType="xs:int">
 <Value>1</Value>
 </Attribute>
 <Attribute Name="BuiltIn" AttributeDataType="xs:boolean">
 <Value>true</Value>
 </Attribute>
 <InternalElement ID="f1032f4a-2811-4cf4-88c9-34af59e6d09c" Name="IE1">
 <Attribute Name="Type" AttributeDataType="xs:string">
 <Value>Ethernet</Value>
 </Attribute>
 <Attribute Name="NetworkAddress" AttributeDataType="xs:string">
 <Value>192.168.0.2</Value>

Some of these values are predefined from manufacture of a device. For default values of racks and slots that
are bound to certain types of Siemens PLCs, see Appendix 8.1.

Apart from the values for racks and slots, let us now consider the actual variables from Figure 18 too. We can
extract essential meta-data (tags) for reading and changing variables in the wind turbine, see Figure 22. For
example, if we want to start or stop the turbine, then we just need to write a Boolean value to the variable Run.
This value should be written with the address offset 0.0. The next variable in the control program is
PowerDemand, see Figure 22. It is a double integer (DInt), which takes 4 bytes. For the complete list of data
types and their sizes, see Appendix 8.2. If PowerDemand needs to be changed, it can be written from the
address offset 2.0 (since the first 2 bytes have been reserved by the variable Run40). Similarly, if we want to
read the status of the turbine, then we need to read Status variables, see Figure 22. Again, it is important to
know from which location in the memory stack we start reading data (i.e., the address offset) and how many
bytes we have to read for each particular data type. In order to check whether the turbine is running, we can
read the variable Running, i.e., to read a Boolean value starting from 20th byte. Figure 23 provides content of

40 Note that a Boolean variable in Siemens Step 7 data type system takes only one bit. But in PLC programs
usually more space is reserved.

Figure 21: excerpt from an AutomationML File obtained from TIA Portal

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D3.9: Bootstrapping and Interfacing SEMIoTICS Field Level Devices (final)
Dissemination level: [Public]

40

the payload of a complete data block from the wind turbine controller41. One can see what the current value of
each variable is. On the right-hand side of the figure you see also the interpretation of data. For example, the
variable Run has value “01 00”, which means “RUN” the turbine (as opposed to value “00 00” – “STOP” the
turbine). As already mentioned, the variable occupies 2 bytes and the address offset is 0.

Figure 22: Specification of data tag list available TIA Portal

Figure 23: content of the Payload of Wind Turbine Controller’s data block

Meta-data, related to the variables, can also be obtained from TIA Portal Openness42, see Figure 24. For
example, there we see that the structure Status starts from 20th byte, i.e., 160th bit (see the offset value marked
in yellow, in Figure 24). Further, we see what variables are available (e.g., Running and Power), as well as
their data types etc.

<Member Name="Status" Datatype="Struct" Remanence="Retain">
 <AttributeList>
 <IntegerAttribute Name="Offset" Informative="true" SystemDefined="true">160</IntegerAttribute>
 <BooleanAttribute Name="ExternalAccessible" SystemDefined="true">true</BooleanAttribute>

41 Provided by an open source project: http://snap7.sourceforge.net/
42 https://support.industry.siemens.com/cs/document/108716692/tia-portal-openness%3A-introduction-and-demo-
application?dti=0&lc=en-RU

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D3.9: Bootstrapping and Interfacing SEMIoTICS Field Level Devices (final)
Dissemination level: [Public]

41

 <BooleanAttribute Name="ExternalVisible" SystemDefined="true">true</BooleanAttribute>
 <BooleanAttribute Name="ExternalWritable" SystemDefined="true">true</BooleanAttribute>
 <BooleanAttribute Name="UserVisible" Informative="true" SystemDefined="true">true</BooleanA
ttribute>
 <BooleanAttribute Name="UserReadOnly" Informative="true" SystemDefined="true">false</Boole
anAttribute>
 <BooleanAttribute Name="UserDeletable" Informative="true" SystemDefined="true">true</Boolea
nAttribute>
 <BooleanAttribute Name="SetPoint" SystemDefined="true">false</BooleanAttribute>
 </AttributeList>
 <Member Name="Running" Datatype="Bool">
 <AttributeList>
 <IntegerAttribute Name="Offset" Informative="true" SystemDefined="true">0</IntegerAttribute>
 <BooleanAttribute Name="ExternalAccessible" SystemDefined="true">true</BooleanAttribute>
 <BooleanAttribute Name="ExternalVisible" SystemDefined="true">true</BooleanAttribute>
 <BooleanAttribute Name="ExternalWritable" SystemDefined="true">true</BooleanAttribute>
 <BooleanAttribute Name="UserVisible" Informative="true" SystemDefined="true">true</Boolean
Attribute>
 <BooleanAttribute Name="UserReadOnly" Informative="true" SystemDefined="true">false</Bool
eanAttribute>
 <BooleanAttribute Name="UserDeletable" Informative="true" SystemDefined="true">true</Boole
anAttribute>
 <BooleanAttribute Name="SetPoint" SystemDefined="true">false</BooleanAttribute>
 </AttributeList>
 </Member>
 <Member Name="Power" Datatype="DInt">
 <AttributeList>
 <IntegerAttribute Name="Offset" Informative="true" SystemDefined="true">16</IntegerAttribute>
 <BooleanAttribute Name="ExternalAccessible" SystemDefined="true">true</BooleanAttribute>
 <BooleanAttribute Name="ExternalVisible" SystemDefined="true">true</BooleanAttribute>
 <BooleanAttribute Name="ExternalWritable" SystemDefined="true">true</BooleanAttribute>
 <BooleanAttribute Name="UserVisible" Informative="true" SystemDefined="true">true</Boolean
Attribute>
 <BooleanAttribute Name="UserReadOnly" Informative="true" SystemDefined="true">false</Bool
eanAttribute>
 <BooleanAttribute Name="UserDeletable" Informative="true" SystemDefined="true">true</Boole
anAttribute>
 <BooleanAttribute Name="SetPoint" SystemDefined="true">false</BooleanAttribute>
 </AttributeList>

So far, we have described what and how the mediator should use the existing meta-data during the integration
process of brownfield device to the IoT domain. In order to automate this process, the mediator needs to
access the meta-data in machine processable format. These are typically XML files that can be obtained from
engineering stations such as TIA Portal. This is manual work. Once completed, the mediator can use this meta-

Figure 24: excerpt File obtained from TIA Portal Openness

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D3.9: Bootstrapping and Interfacing SEMIoTICS Field Level Devices (final)
Dissemination level: [Public]

42

data to automatically extract required information and use it for creation of a Thing Description and Device
Nodes.

Figure 25 shows an excerpt of Thing Description, which is generated by the mediator for the wind turbine (in
use case 1).

"properties": {

 "WindSpeedValue": {
 "description" : "Shows Wind Speed",

 "type": "double",

 "forms": [{

 "href": "s7comm://192.168.0.2/0/0/5000/DB3,DINT26"
 }]

 },

 "changeWindSpeed": {

 "description" : "changes Wind Speed",
 "type": "double",

 "writeOnly" : true,

 "forms": [{

 "href": "s7comm://192.168.0.2/0/0/5000/DB3,DINT6/800"
 }]

 },

 "RunWindTurbine": {

 "description" : "turn on",
 "type": "boolean",

 "writeOnly" : true,

 "forms": [{

 "href": "s7comm://192.168.0.2/0/0/5000/DB3,X0.0/true"
 }]

 }
 }

As already said, GW Semantic Mediator also generates Device Nodes as a convenient means to interact with
either greenfield or brownfield device. These nodes can be installed in Semantic Edge Platform and used for
creating applications. Figure 26 shows a code excerpt that can be used for reading the WindSpeed variable
from the wind turbine. Note that a Device Node for the WindSpeed can be automatically generated from the
Thing Description, which is shown Figure 25 (IP address, rack, slot etc.). Second, we also need to address
correctly the variable (see 'DB3, DINT26' in Figure 26). Since WindSpeed is a double integer, which is to be
read from data block 3, from offset 26, we have to encode this information as 'DB3, DINT26'. The full list of
mapping for our implementation, which is based on open source project node-red-contrib-s743, can be found
in Appendix 8.3.

var nodes7 = require('nodes7');

var conn = new nodes7;

43 https://github.com/netsmarttech/node-red-contrib-s7

Figure 25: excerpt Thing Description for wind turbine

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D3.9: Bootstrapping and Interfacing SEMIoTICS Field Level Devices (final)
Dissemination level: [Public]

43

var doneReading = false;

var doneWriting = false;

var variables = { WindSpeed: 'DB3, DINT26' // WindSpeed value as double integer

(32-bit) at byte 26 of DB 03

};

conn.initiateConnection({port: 24, host: '192.168.0.2', rack: 0, slot: 2},

connected);

function connected(err) {
 if (typeof(err) !== "undefined") {

 // We have an error. Maybe the PLC is not reachable.

 console.log(err);

 process.exit();
 }

 conn.setTranslationCB(function(tag) {return variables[tag];}); // This

sets the "translation" to allow us to work with object names

 conn.addItems(['WindSpeed']);
 conn.readAllItems(valuesReady);

}

function valuesReady(anythingBad, values) {
 if (anythingBad) { console.log("SOMETHING WENT WRONG READING VALUES!!!!");

}

 console.log(values);

 doneReading = true;
 if (doneWriting) { process.exit(); }

}

function valuesWritten(anythingBad) {
 if (anythingBad) { console.log("SOMETHING WENT WRONG WRITING VALUES!!!!");

}

 console.log("Done writing.");

 doneWriting = true;
 if (doneReading) { process.exit(); }
}

Finally, the mediator can generate Device Nodes for each interaction possibilities with a brownfield device. For
the example TD shown in Figure 25, the following Device Nodes are generated (see the orange nodes in Figure
27).

Figure 26: excerpt Code to read WindSpeed value in a Device Node

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D3.9: Bootstrapping and Interfacing SEMIoTICS Field Level Devices (final)
Dissemination level: [Public]

44

Figure 27: Device Nodes, automatically generated from Thing Description

4.1.3 Semantic Configuration Nodes

Thing Description that is generated by the mediator is not semantically annotated with terms from a domain
model, e.g., iotschema.org. In order to enable a user to enrich the Thing Description we provide Semantic
Nodes. These nodes are automatically generated from iotschema.org and are optionally used by the user of
SEMIoTICS Gateway.

Figure 28 shows a Semantic Node for a temperature sensor (see the petrol-colored node). On the right-hand
side of the figure one can see a list of semantic properties defined by iotschema.org for a temperature sensor
(TemperatureSensing Capabilitiy44).

Semantic Nodes are available in Semantic Edge Platform for the purpose of creating semantically annotated
Thing Description for both a brownfield and greenfield device. They enable a user (without expertise in
semantic technologies) to configure semantic properties of a device, i.e., to choose offered values from the
semantic model via a graphic component. Once a user has semantically configured a brownfie ld device over
the Semantic Nodes, the mediator will automatically generate an enriched Thing Description. From that
moment on, it will be possible to discover a device over its TD and Local Thing Directory , based also on the
enriched semantic meta-data.

44 http://iotschema.org/TemperatureSensing

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D3.9: Bootstrapping and Interfacing SEMIoTICS Field Level Devices (final)
Dissemination level: [Public]

45

Figure 28: Semantic Node for Temperature Sensor from iotschema.org

4.1.4 Adaptation nodes

When Semantic Nodes are used (see Section 4.1.3) several aspects should be taken into consideration for the
integration of existing devices with iotschema.org semantics. The input/output data schema of a device should
be adopted to be compliant with iotschema.org specification. This means that value type, encoding format, unit
of measurement of data of an existing device should be adopted as prescribed by a corresponding iotschema
semantic model. For example, if a temperature thing gives an integer value as output, but iotschema Semantic
Node for temperature prescribes that the temperature data should be float , then the output of the temperature
sensor should be converted from integer to float. The conversion may be motivated with the need to integrate
the device’s semantics with iotschema.org temperature definition. But sometimes we want to make this
conversion just for a specific purpose of an application. No matter what the motivation for the conversion is,
we offer Adaptation Nodes for such purposes. In particular, we offer a mediation API to adopt a data format
from diverse IoT ecosystem or diverse serialization format to iotschema.org data format. The mediation API is
also offered as a set of nodes in Semantic Edge Platform. For example, we provide nodes to convert a data
from integer to float or from float to double. We provide nodes to convert data in string format to JSON or vice
versa. We provide nodes to convert data from one unit of measurement to another one. A user should use one
or more adaptation nodes to integrate an existing device’s data with iotschema.org specification as shown in
Figure 29. For this purpose, a user may use a Device Node, which is generated by the mediator (see the light
green node for Temperature in Figure 29), and creates a flow by wiring it with one or more Adaptation Nodes.
She may then connect the Adaptation Nodes with an iotschema node (Semantic Node). She then configures
the iotschema node according to the specification of the device. The Semantic Node gives two outputs. The
first output provides RDF description, which is configured according to the user’s specification. The second
output is the run-time value given as output by the device (if that device gives output). The semantic description
of a device thus created can be stored in Thing Description Directory for discovery. As described in previous
sections the output of a configured iotschema nodes can be used for multiple purposes such as for the
generation and annotation of W3C WoT TD, for creating semantically interoperable WoT applications or for
validating data being exchanged between devices. In this way, using this approach, semantic integration of
heterogeneous devices can be easily achieved even by non-semantic experts, e.g. device vendors, IoT
platform providers, IoT application developers, Web developers, and so on.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D3.9: Bootstrapping and Interfacing SEMIoTICS Field Level Devices (final)
Dissemination level: [Public]

46

Figure 29: Data-level mediation: iotschema.org ADAPTERS nodes

4.2 Semantic API & Protocol Binding

Semantic API & Protocol Binding is a component responsible for binding different protocol and exposing
common semantic API located at the Generic IoT Gateway layer. This functionality is needed in order to
integrate brownfield devices into a common IoT access layer. Technology-wise, the functionality is based on
W3C Web of Things (WoT) API45.

In the following we give API that is implemented and tested in SEMIoTICS IoT Gateway (GW). We will start by
presenting the implementation for greenfield devices, followed by the implementation for brownfield devices.

SEMIoTICS greenfield device (e.g., Raspberry Pi with attached an IP camera) implements the following
interface for starting the camera in a WoT servient, see Table 7. Note that a method for starting a camera is
semantically annotated with iotschema.org mark-up for a camera46.

Table 7: WoT Servient – greenfield device Interface
let thing = WoT.produce({

title: "SEMIoTICS Thing",

description: "Camera",

"@context": ["https://www.w3.org/2019/wot/td/v1", {"iot":
"http://iotschema.org/" }],

 "@type": "iot:StartRecording",

 "iot:capability": "iot:Camera",

 actions: {
 startCamera: {

 description: "Start recording the video.)"

 }

45 https://www.w3.org/TR/wot-scripting-api/
46 http://iotschema.org/Camera

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D3.9: Bootstrapping and Interfacing SEMIoTICS Field Level Devices (final)
Dissemination level: [Public]

47

 }

});

thing.setActionHandler(

 "startCamera",

 (params, options) => {

 // Code that implements an Action, e.g., "startCamera".
 // Removed for the sake of simplicity.

 });

The greenfield device does not require the protocol binding. A client, which needs to access a newly plugged
(greenfield) device can access Thing Description (TD) of the plugged device. In this way the client can discover
device’s functionality. This can be achieved by providing the IP address of the device in the method fetch, as
shown in Table 8.

Table 8: Fetching a Thing Description
WoTHelpers.fetch("http://semiotics.things.org:8080/ipcamera").then(async (td)

=> {
 let thing = await WoT.consume(td);

}).catch((err) => { console.error("Fetch error:", err); });

By examining the fetched TD a client, for example, finds an action called startCamera. The client can use then
the API to invoke the action, see Table 9.

Table 9: Interacting with a Thing (a camera)
// start the camera

await thing.invokeAction("startCamera");

Brownfield devices can be exposed over W3C WoT API only if there is a protocol binding available for them.
Brownfield devices in use case 1 communicate over S7comm protocol. Since the binding for this protocol
does not exist in the open source implementation of W3C WoT, we have implemented it. Our implementation,
as already said, extends the project node-red-contrib-s747. It enables a WoT servient to handle read and write
operations on resources from a Thing Description, e.g., to read the variable WindSpeed or to turn off the wind
turbine by setting the variable Run to false, see Section 4.1.2.

Our implementation of protocol binding assumes the following URL format for S7 resources in Thing
Description, see Table 10.

Table 10: URL format for S7comm protocol
s7comm://<host> [:<port>]/<rack>/<slot>/<timeout>/<variable>[/<writevalue>]

Apart from the IP address (host and port), there must be specified information about rack and slot, too. For an
explanation about their meaning, see Section 4.1.2. Further, the timeout corresponds to the TCP timeout. Notation
for the variable follows a scheme provided in Appendix 8.3. Finally, variables that should be set with a new value,
use the field writevalue. Figure 30 shows our method for reading a resource from a brownfield device over a W3C
WoT servient.

 public readResource(form: S7Form): Promise<Content> {

47 https://github.com/netsmarttech/node-red-contrib-s7

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D3.9: Bootstrapping and Interfacing SEMIoTICS Field Level Devices (final)
Dissemination level: [Public]

48

 let target = parseS7Uri(form['href']);

 return new Promise<Content>((resolve, reject) => {

 this.client.addItems([target.variable]);
 if (!this.client.connectCBIssued) {

 this.client.initiateConnection({ port: target.port, host: target

.address,

rack: target.rack, slot: target.slot, timeout: target.timeout }, connected);

 }

 else {

 console.log("Already connected");
 this.client.readAllItems(valuesReady);

 this.client.removeItems([target.variable]);

 }

 let myclient = this.client;
 function connected(err: any) {

 if (typeof (err) !== "undefined") {

 console.log(err);

 return;
 }

 myclient.readAllItems(valuesReady);

 }

 function valuesReady(anythingBad: any, values: object) {
 if (anythingBad) { console.log("SOMETHING WENT WRONG READING VAL

UES!!!!"); }

 let myvalues = JSON.stringify(values);
 resolve({ type: "text/plain", body: Buffer.from(myvalues) });

 myclient.removeItems([target.variable]);

 }

 });
 }

4.3 Local Thing Directory
The purpose of Local Thing Directory is to store semantic description of Things locally in the SEMIoTICS IoT
Gateway. During the device registration process, the gateway (mediator) stores a TD in the Local Thing
Directory. For the implementation of this component we use the open source implementation from W3C 48.
Figure 31 shows the API available from our local deployment of Thing Directory in the gateway. There we can
see essential CRUD operations on TDs (create/register, read, update, and delete). Moreover, th ere is a
possibility to look up TDs via semantic search.

48 https://github.com/thingweb/thingweb-directory

Figure 30: Protocol Binding – Reading a Resource

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D3.9: Bootstrapping and Interfacing SEMIoTICS Field Level Devices (final)
Dissemination level: [Public]

49

Figure 31: OVERVIEW OF THING DIRECTORY API

Let us show part of this API in more detail. Figure 32 depicts the API related to the Thing Description
registration. After fetching a TD, the gateway uses this method to store a TD in Local Thing Directory.

Figure 32: API FOR REGISTRATION OF THING DESCRIPTION

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D3.9: Bootstrapping and Interfacing SEMIoTICS Field Level Devices (final)
Dissemination level: [Public]

50

An existing TD can be discovered from Local Thing Directory via a SPARQL query, see Figure 33.

Figure 33: API FOR discovery OF THING DESCRIPTION

4.4 Semantic Edge Platform

Semantic Edge Platform (SME) provides a convenient interface for different components and functionalities of
IoT Gateway, which are accessible over API but not necessarily have a user interface. Thus, for example SME
enables a user to configure SEMIoTICS IoT Gateway, choose a network interface, define an IP address range
when scanning a network for new devices, and initiate the device bootstrapping process. Figure 34 shows API
of IoT Gateway, which is accessible over Semantic Edge Platform.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D3.9: Bootstrapping and Interfacing SEMIoTICS Field Level Devices (final)
Dissemination level: [Public]

51

Figure 34: API of IoT Gateway exposed over Semantic Edge Platform

Figure 35 presents the method that is used for scanning a network, where new devices are to be bootstrapped.

Figure 35: API of IoT Gateway to start Bootstrapping

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D3.9: Bootstrapping and Interfacing SEMIoTICS Field Level Devices (final)
Dissemination level: [Public]

52

Figure 37 shows the API, which enables a user to terminate the network scanning. For large networks this
process may take a long time. Sometimes a user knows, which devices are supposed to appear during the
scan. Thus, as soon as new devices appear, the process may be halted.

Figure 36: API of IoT Gateway to stop scanning the network

Figure 37 depicts the API for registering a new device. The method interacts with other gateway’s component,
i.e., it fetches device’s Thing Description, stores it in TD Directory, invokes the GW Semantic Mediator to
create a Device Node for the device, and finally installs the node in SME, thereby making it programmatically
accessible in SME over WoT API.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D3.9: Bootstrapping and Interfacing SEMIoTICS Field Level Devices (final)
Dissemination level: [Public]

53

Figure 37: API of IoT Gateway to register a new WoT device

In order to test the implementation of the overall IoT Gateway we have performed few tests. Figure 38 shows
three Device Nodes, which represent the functionality of data points from Figure 18 that is integrated in the
gateway and available over W3C WoT API. If we (or an application) interact with these nodes, then brownfield
device will change accordingly. For example, if one changes the wind speed, the actual value by the turbine
will change as well (see Figure 38).

Figure 38: Testing the Change of WindSpeed value of Wind Turbine in Use Case 1

Figure 39 depicts a test application for both greenfield and brownfield device. Once the bootstrapping and
integration process has been completed, we can start developing new applications. For example, we can

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D3.9: Bootstrapping and Interfacing SEMIoTICS Field Level Devices (final)
Dissemination level: [Public]

54

process the audio signal from a newly plugged microphone. If a noise detection function discovers
malfunctional behavior, then we can stop the wind turbine. Figure 39 shows such an application, realized in
Semantic Edge Platform. This application can be represented as a recipe and instantiated and configured for
different wind turbine. Once the IoT gateway provides a uniform and semantically descri bed access to
greenfield and brownfield devices, it becomes possible to rapidly develop new applications.

Figure 39: Test Application - safe shutdown of Wind Turbine

4.5 Implementation Details Related to Use Case 2

In the previous sections we have described the implementation of various components of SEMIoTICS Gateway by
always referring to devices from use case 1. This section contains the description of a subset of sensors on board
used in use case 2, i.e., the SARA Robotic Rollator (RR).

The descriptions of sensors are:

4.5.1 Ultrasonic range sensor
4.5.1.1 Properties

Name Description Input Output

ObstacleSensors
Distance from the
object closest to the
left sensor

- obstacleL

ObstacleSensors
Distance from the
object closest to center
sensor

- obstacleC

ObstacleSensors
Distance from the
object closest to the
right sensor

- obstacleR

4.5.1.2 Actions

None.

4.5.1.3 Data types

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D3.9: Bootstrapping and Interfacing SEMIoTICS Field Level Devices (final)
Dissemination level: [Public]

55

Name Definition Min Value Max Value Unit Code

obstacleL Number 0 3 Meters

obstacleC Number 0 3 Meters

obstacleR Number 0 3 Meters

4.5.2 Gyroscope
4.5.2.1 Properties

Name Description Input Output

Angular speed - AngularSpeed

SetResolution - DegPerSecRange

4.5.2.2 Actions

Name Description Input Output

SetResolution Set the resolution
property DegPerSecRange -

4.5.2.3 Data types

Name Definition Min Value Max Value Unit Code

AngularSpeed -2000 2000

DegPerSecRange

One of those:
0) ±250 [deg x sec]
1) ±500 [deg x sec]
2) ±2000 [deg x sec]

0 2 Number

4.5.3 Accelerometer
4.5.3.1 Properties

Name Description Input Output

Acceleration Acceleration measured
by the sensor - Acceleration

Resolution - AccelerationValueRang
e

4.5.3.2 Actions

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D3.9: Bootstrapping and Interfacing SEMIoTICS Field Level Devices (final)
Dissemination level: [Public]

56

Name Description Input Output

SetResolution Set the resolution of
the sensor AccelerationValueRange -

4.5.3.3 Data types

Name Definition Min Value Max Value Unit Code

Acceleration -16 16 Number

AccelerationValu
eRange

One of those:
0) ±2g
1) ±4g
2) ±8g
3) ±16g

0 3 Number

4.5.4 Hub motor
4.5.4.1 Properties

Name Description Input Output

GetPower Power of the motor - GetP

SetPower Value given to control the motorized
wheels SetP -

4.5.4.2 Actions

Name Description Input Output

Motors Power of the motor in
Watt to AnalogValue SetP -

4.5.4.3 Data types

Name Definition Min
Value Max Value Unit Code

AnalogValue Analog pin values to control
the motorized wheels 0 255 Number

4.5.5 Encoder
4.5.5.1 Properties

Name Description Input Output

Encoder Speed measured on the
wheels - TickCount

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D3.9: Bootstrapping and Interfacing SEMIoTICS Field Level Devices (final)
Dissemination level: [Public]

57

4.5.5.2 Actions

None.

4.5.5.3 Data types

Name Definition Min Value Max Value Unit Code

TickCount Position of the
wheel 0 360 Number

4.5.6 Force sensor
4.5.6.1 Properties

Name Description Input Output

Force
Force measured by the
load sensor on the
handles

- Force

4.5.6.2 Actions

None.

4.5.6.3 Data types

Name Definition Min Value Max Value Unit Code

Force -25 25 KgF

4.5.7 Compass
4.5.7.1 Properties

Name Description Input Output

Magnetic flux density Magnetic flux density
measured by the sensor - Magnetic flux density

Resolution - MagnValueRange

4.5.7.2 Actions

Name Description Input Output

SetResolution Set the resolution of
the sensor MagnValueRange -

4.5.7.3 Data types

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D3.9: Bootstrapping and Interfacing SEMIoTICS Field Level Devices (final)
Dissemination level: [Public]

58

Name Definition Min Value Max Value Unit Code

GausRange -8.1 8.1 Gaus

MagnValueRange
One of those:
0) ±1.3 [gaus]
1) ±8.1 [gaus]

0 1 Number

All the sensors previously described communicate to the system SARA using the CoAP protocol; thus, we
needed the IoT semantic model necessary to convert the sensors into a WoT node, as described in this chapter
(protocol binding from CoAP to WoT/HTTP has been used). Following an example of this model, we managed
to make data from the left ultrasonic range sensor of the RR (“obstacleL”) available over a W3C WoT servient:

{

 "@context ": "https://www.w3.org/2019/td/v1",

 "id": "urn:wotrrsara",

 "title": "WoT_RR_SARA",

 "description": "RR_SARA",

 "security": ["psk_sec"],

 "securityDefinitions": {

 "psk_sec": {"scheme": "psk"}

 },

 "properties": {

 "obstacleL": {

 "description": "obstacleL",

 "type": "number",

 "forms": [

 {

 "href": "coap://sara.example.it:5683/obstacleL"

 }

]

 }

 }

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D3.9: Bootstrapping and Interfacing SEMIoTICS Field Level Devices (final)
Dissemination level: [Public]

59

}

5 VALIDATION
This section summarizes project’s objectives, KPIs, and requirements (relevant for this task), and validates
achievements against them.

5.1 Related Project Objectives and Key Performance Indicators (KPIs)
The overall deliverable constitutes the contribution towards fulfilling the project’s objectives as shown in Table
11, and project’s KPIs as presented in Table 12.

Table 11: Task’s objectives
T3.3 Objectives D3.3 Chapters

• Objective 2: Development of semantic interoperability mechanisms for smart
objects, networks and IoT platforms 2

• Objective 6: Development of a reference prototype of the SEMIoTICS open
architecture, demonstrated and evaluated in both IIoT (renewable energy) and
IoT (healthcare), as well as in a horizontal use case bridging the two landscapes
(smart sensing), and delivery of the respective open API.

3

Table 12: Tasks KPI Table
Objective (with short description) KPI-ID Description
2 Semantic interoperability KPI-2.1 Delivery of semantic descriptions

for all the 6 types of smart objects
which are necessary for the usage
scenarios

6 Development of a Reference
Prototype

KPI-6.1 Reduce manual interventions
required for bootstrapping of smart
object in each use case domain by
at least 80%

Deliverable D3.1 provides the concept of the field-level device bootstrapping and registration. The
implementation of this concept has been presented in this deliverable, i.e., D3.9. In D3.3 deliverable we have
already identified components of SEMIoTICS architecture that will be part of the implementation of the IoT
Gateway (see Section 4), choose technology building blocks to implement these components (see Section
3.1), provided the sequence diagram that will be used in the implementation (see Section 4), and provided the
use-case device set-up that will be used in the demonstration of the gateway (see Section 4). The four
components (GW Semantic Mediator, Semantic API & Protocol Binding, Local Thing Directory, and Semantic
Edge Platform) have been implemented in this deliverable.

5.2 Related Project Requirements
Let us revise requirements from Section 1.4 with respect to the provided work and work that has followed in
this deliverable.

Requirement R.GP.1: (end-to-end connectivity between the heterogeneous IoT devices (at the field level) and
the heterogeneous IoT Platforms (at the backend cloud level)), see Table 3: Specific requirements for use
case 1

Essentially, this requirement is concerned with all layers of SEMIoTICS architecture, including the field layer
and thus IoT Gateway too. In this sense, the gateway has the role to ensure connectivity between the
heterogeneous IoT devices (at the field level) and itself. From that point on, the connectivity is ensured via the
Networking- and Cloud/Backend layers. The gateway ensures connectivity between the heterogeneous IoT

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D3.9: Bootstrapping and Interfacing SEMIoTICS Field Level Devices (final)
Dissemination level: [Public]

60

devices and itself. Further, the gateway communicates via SDN to Global Thing Directory and Cloud platforms.
The end-to-end connectivity via SDN has been achieved and reported in deliverable D5.3.

Requirement R.FD.5: Field devices SHOULD be able to interact with SEMIoTICS IIoT/IoT gateway dedicated
components SHOULD be supported.

This is a requirement for field devices. But the SEMIoTICS IIoT/IoT Gateway implements required Protocol
Bindings (from the south-bound interface) in order to enable interaction between field devices and the gateway,
see Section 4.1.2 and Section 4.2.

Requirement R.FD.6: Field devices MUST interoperate using a standard communication protocol like REST
APIs, COAP, MQTT.

The technology blocks (Section 3.1) are based on RESTful paradigm and the current implementation support
COAP and MQTT protocols.

Requirement R.FD.7: Field devices MUST use standardize interoperable message format (e.g. JSON, etc.).

The technology blocks (Section 3.1) are based on JSON and the current implementation supports this
serialization format.

Requirement R.FD.8: Field devices MUST support secure bootstrapping / registration protocol. In deliverable
D3.9 we will use the security-related meta-data when implementation the bootstrapping in the gateway.

The gateway uses secure communication when security token is provided. We rely on the standard
implementation as provided by W3C WoT49.

Requirement R.FD.12: Greenfield device is expected to expose its capability over a W3C Thing Description,
which semantically describes field resources, and to be computationally powerful enough to run a node-wot
servient (that exposes the TD).

This requirement has been addressed in the implementation of the gateway. For example, our devices: camera,
microphone, and inclinometer are implemented on a Raspberry Pi, which runs a W3C WoT servient and
exposes TD of these devices.

Requirement R.FD.13: Brownfield device is assumed to consist of a sensor/actuator and a controller (PLC).
The controller is expected to expose capability of its sensor/actuator over a native brownfield protocol (without
the need for IIoT Gateway to interact directly with them).

This requirement has been fulfilled in this version of the gateway implementation.

Requirement R.UC1.1: (automatic establishment of networking setup MUST be performed to establish end-
to-end connectivity between different stakeholders).

This is a requirement related to the requirement R.GP.1. Both of them deal with the establishment of end-to-
end connectivity between different stakeholders, including field devices too. Semantic-based approach and
communication interface enable a high degree of automation in the process of establishment of networking
setup. We implemented the bootstrapping mechanism that enables plug and play.

Requirement R.UC1.8: Semantic and robust bootstrapping/registration of IIoT sensors and actuators with IIoT
gateway MUST be supported.

49 https://www.w3.org/TR/wot-thing-description/#sec-security-vocabulary-definition

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D3.9: Bootstrapping and Interfacing SEMIoTICS Field Level Devices (final)
Dissemination level: [Public]

61

This is a requirement that is the topic of this deliverable as whole. We distinguish the process of semantic
bootstrapping/registration of brownfield- and greenfield devices. In this deliverable a concept for the
bootstrapping process has been implemented, see Section 4.

Requirement R.UC1.9: Semantic interaction between use-case specific application on IIoT Gateway and
legacy turbine control system MUST be supported.

In deliverable D3.3 we provided a standardized interface for interactions (based on W3C Web of Things), and
semantically describe it with W3C Thing Description and iotschema.org. In this deliverable we implemented
SEMIoTICS IoT Gateway, which enables semantic-based interaction between use-case specific application
and legacy turbine control system.

Requirement R.UC1.10: Sufficient compute environment MUST be supported on the IIoT Gateway to run use-
case specific applications.

The IIoT Gateway is running on Siemens SIMATIC IPC227E (Nanobox PC) industrial computer. This hardware
features 1x Display-Port Grafik 2x 10/100/1000 MBit/s Ethernet RJ45 1x USB3.0, 3x USB2.0 CFAST-Slot DC
24V Industry-STROMVERS Celeron N2807 (2C/2T) 4 GB RAM, 80 GB SSD. As such this is a very powerful
environment with enough compute power to run use-case specific applications.

Requirement R.UC1.11: Device composition and application creation SHALL be supported through template
approach.

Task 3.3 is concerned with provision of semantic-based interfaces of devices. The Recipe Cooker component
in the Cloud/Backend layer will support template-based creation of applications. Thanks to the semantic
concept provided in this deliverable, it will be possible to orchestrate applications and devices based on
application templates.

Requirement R.UC1.12: Standardized semantic models for semantic-based engineering and IIoT applications
MUST be utilized.

In this deliverable we have proposed and used W3C Web of Things Thing Description (TD) as a standardized
format for describing IoT things. TD is enriched with iotschema.org – a W3C semantic model that builds on
standardized semantics.

Requirement R.UC1.13: Middleware functionality MUST be supported on IIoT gateway, to deal with
termination of IIoT sensors, signal processing and termination of interfaces to legacy systems to provide
prioritization and QoS for IIoT applications.

The IIoT Gateway is capable to either terminate connection to IIoT sensors or legacy systems.

Requirement R.UC2.5: The SEMIoTICS platform should allow the SARA solution to discover the IoT devices
that are registered in the system. IoT devices deployed by the SARA solution are expected to register
themselves into the system using various standard protocols (e.g. LwM2M, MQTT, Bluetooth LE, ZigBee, etc.).

In order to fulfill this requirement, the IoT Gateway features components Local Thing Directory, and Semantic
API & Protocol Bindings, see Figure 15.

Requirement R.UC2.6: The SEMIoTICS platform SHOULD allow the SARA solution to retrieve the resources
exposed by registered devices via their object model (i.e. a data structure wherein each element represents a
resource, or a group of resources, belonging to a device). The SEMIoTICS platform SHOULD support at least
the OMA LWM2M object model.

Semantically described resources can be retrieved from Local Thing Directory in JSON-LD format (see Section
3.1.3). For a structured description of an example device and its resources, see Figure 11.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D3.9: Bootstrapping and Interfacing SEMIoTICS Field Level Devices (final)
Dissemination level: [Public]

62

Requirement R.UC3.2 - Requirement R.UC3.9: IHES Sensing unit shall be able to interface and register to
the IHES Sensing gateway with a standard IP based (i.e. TCP transport) one to many M2M communication
protocol to properly handle node registration and capabilities negotiation and IHES Sensing gateway shall
support one to many standard IP based (i.e. TCP transport) M2M communication protocol to interface a number
N of connecting Sensing units (e.g. broadcast type). An example of the (JSON) registration message from the
IHES Sensing Unit to the IHES Sensing Gateway can be found in Figure 5.

Requirement R.UC3.12: IHES Sensing gateway shall be capable to run Linux (e.g. Raspbian OS) and
standard graphics and browser libraries.

This requirement has been fulfilled with the deployment on an IoT gateway that runs on Linux and is deployed
on Raspberry Pi 3.

Requirement R.UC3.13: IHES Sensing gateway should be able to support HTTP and standard protocols for
cloud interfacing (e.g. to make IHES Local DB data available).

IHES Gateway supports HTTP trough the IHES LocalDB API and MQTT + WebSocket protocol thanks to the
MQTT Broker.

Requirement R.UC3.14 - Requirement R.UC3.15: The specific M2M protocol adopted on UC3 is based on
MQTT.

A MQTT broker service is available to dispatch messages between the IHES Sensing Gateway and its
associated sensing units. A use case specific serialized message protocol is required to coordinate the
gateway and its associated units and exchange data / events / anomalies between them. JSON is the preferred
serialization format adopted. Some examples of the defined message protocol (in JSON format) dispatched
through MQTT between IHES Sensing units and Sensing Gateway, can be found in Figure 5. This message
protocol defined in task 3.3 will be deployed and validate as part of task 5.6 (Integration and validation of UC3
demonstrator).

Requirement R.UC3.16: Each registered IHES sensing unit should send to the IHES sensing gateway a keep
alive signal at a specified time interval (e.g. 20 seconds) to notify the IHES gateway it is correctly working. The
sensing gateway should detect by this mean any non-working sensing unit and reconfigure the system
accordingly.

This feature will enable the specific UC3 dependability patterns and will be delivered as part of task 5.6
(Integration and validation of UC3 demonstrator).

Requirement R.UC3.17: Sensing units and IHES sensing gateway should share a common clock (i.e. global
reference time), precise up to milliseconds, to properly classify events and data acquired during the processing.

This global reference time will be negotiated when a sensing unit node will join a given gateway. Internally the
system will work scheduling activities according to this common global reference time. A common clock is
required also to implement the local vs. global scenario declared in D2.2.

All R.UC3.X technical requirements will be demonstrated as part of the task 5.6, focused on implementing and
validating using SEMIoTICS frameworks the UC3 demo scenario.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D3.9: Bootstrapping and Interfacing SEMIoTICS Field Level Devices (final)
Dissemination level: [Public]

63

6 CONCLUSION
In the first version of this deliverable we have provided a draft of the semantic integration of the Field level into
the SEMIoTICS architecture. In particular, this included semantics that aims to make brownfield devices form
existing automation systems interoperable with newly bootstrapped IoT devices. In order to achieve this goal,
we first provided a use case that motivates the role of semantic integration in SEMIoTICS project and identified
goals to be achieved. Second, we reviewed existing technology blocks, including IoT standards, thereby
defining a technology basis that will be used in the implementation of semantic Field level integration. Third,
we provided a concept in a form of a semantic layer cake on how to integrate existing brownfield automation
standards into new IoT semantic models. Finally, we have given the status of the current implementation of
the work.

In the actual version of this work, we worked on the implementation of SEMIoTICS IoT Gateway as specified
by the concept of the first deliverable. The gateway fulfils requirements at the Field level as specified in this
deliverable. It provides the integrated device semantics at this level and enables bootstrapping and creation
of new Edge applications. In particular, we automated to the large extend the process of bootstrapping of a
device in SEMIoTICS platform. For greenfield device this process is completely performed in plug and play
manner. On the other hand, for brownfield devices, a user still has to perform minimal manual work. This work
includes provision of device-specific meta-data, which commonly can be exported from existing engineering
stations (e.g., TIA Portal). A user may also optionally enrich a device description (Thing Description) with
semantic vocabulary such as iotschema.org. After this step, the bootstrapping process for brownfield devices
proceeds automatically.

The presented concept and implementation for a semantic gateway enables a quick integration of newly
plugged devices with existing (automation) systems. This opens up a wide range of poss ibilities for creating
new applications with the hardware that has not existed at the time of engineering an initial (automation)
system. All integrated devices have been described with semantic (machine-interpretable) and standardized
descriptions and made discoverable via semantic search. Our solution does not require expertise in semantic
technologies. Itis designed to be easily used by engineering and IoT application developers via interactions
over the Node-RED platform.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D3.9: Bootstrapping and Interfacing SEMIoTICS Field Level Devices (final)
Dissemination level: [Public]

64

7 REFERENCES
1. W3C, “Web of Things Working Group Charter”: https://www.w3.org/2016/12/wot-wg-2016.html
2. W3C, “Web of Things (WoT) Architecture”, W3C Editor's Draft 21 January 2019,

https://w3c.github.io/wot-architecture/
3. W3C, “Web of Things (WoT) Thing Description”, W3C Editor's Draft 02 February 2019,

https://w3c.github.io/wot-thing-description/
4. iotschema.org, “Intro Materials”, https://github.com/iot-schema-collab/intro-

materials/blob/master/iotschema-intro.md
5. W3C, “JSON-LD 1.1: A JSON-based Serialization for Linked Data”, W3C Working Draft 14 December

2018, https://www.w3.org/TR/json-ld11/
6. G. Hatzivasilis, I. Askoxylakis, and G. Alexandris, “The Interoperability of Things :,” no. September,

2018.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D3.9: Bootstrapping and Interfacing SEMIoTICS Field Level Devices (final)
Dissemination level: [Public]

65

8 APPENDIX
8.1 Appendix A
Default values for indexing the unit: Rack (0..7) and Slot (1..31) that are to be found in the hardware
configuration of a TIA Portal project (for a physical component).

CPU Type Rack Slot Comment

S7 300 CPU 0 2 Always

S7 400 CPU Not fixed Follow the hardware
configuration.

WinAC CPU Not fixed Follow the hardware
configuration.

S7 1200 CPU 0 1
S7 1500 CPU 0 1

WinAC IE 0 0 Or follow Hardware
configuration.

Figure 40: Deafault values for Rack and Slot in Siemens S7

8.2 Appendix B
Data types used in S7comm with corresponding sizes in bits.

Type and Description Size in Bits Format Options

BOOL (Bit) 1 Boolean text

BYTE (Byte) 8 Hexadecimal number

WORD (Word) 16 Binary number

Hexadecimal number

BCD

Decimal number unsigned

DWORD (Double word) 32 Binary number

Hexadecimal number

Decimal number unsigned

INT (Integer) 16 Decimal number signed

DINT (Double integer) 32 Decimal number signed

REAL (Floating-point number) 32 IEEE Floating-point number

S5TIME (SIMATIC time) 16 S7 time in steps of 10ms (default)

TIME (IEC time) 32 IEC time in steps of 1 ms, integer signed

DATE (IEC date) 16 IEC date in steps of 1 day

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D3.9: Bootstrapping and Interfacing SEMIoTICS Field Level Devices (final)
Dissemination level: [Public]

66

TIME _OF_DAY (Time) 32 Time in steps of 1 ms

CHAR (Character) 8 ASCII characters

Figure 41: Step 7 Elementary Data Types

8.3 Appendix C
Addressing schema for variables as expected in SEMIoTICS Mediator and the implementation of Protocol
Binding.

Address Step7
equivalent JS Data type Description

DB5,X0.1 DB5.DBX0.1 Boolean Bit 1 of byte 0 of DB 5

DB23,B1 or DB23,BYTE1 DB23.DBB1 Number Byte 1 (0-255) of DB 23

DB100,C2 or DB100,CHAR2 DB100.DBB2 String Byte 2 of DB 100 as a Char

DB42,I3 or DB42,INT3 DB42.DBW3 Number Signed 16-bit number at byte
3 of DB 42

DB57,WORD4 DB57.DBW4 Number Unsigned 16-bit number at
byte 4 of DB 57

DB13,DI5 or DB13,DINT5 DB13.DBD5 Number Signed 32-bit number at byte
5 of DB 13

DB19,DW6 or DB19,DWORD6 DB19.DBD6 Number Unsigned 32-bit number at
byte 6 of DB 19

DB21,R7 or DB21,REAL7 DB21.DBD7 Number Floating point 32-bit number
at byte 7 of DB 21

DB2,S7.10* - String String of length 10 starting at
byte 7 of DB 2

I1.0 or E1.0 I1.0 or E1.0 Boolean Bit 0 of byte 1 of input area

Q2.1 or A2.1 Q2.1 or A2.1 Boolean Bit 1 of byte 2 of output area

M3.2 QM3.2 Boolean Bit 2 of byte 3 of memory
area

IB4 or EB4 IB4 or EB4 Number Byte 4 (0 -255) of input area

QB5 or AB5 QB5 or AB5 Number Byte 5 (0 -255) of output area

MB6 MB6 Number Byte 6 (0 -255) of memory
area

IC7 or EC7 IB7 or EB7 String Byte 7 of input area as a
Char

QC8 or AC8 QB8 or AB8 String Byte 8 of output area as a
Char

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D3.9: Bootstrapping and Interfacing SEMIoTICS Field Level Devices (final)
Dissemination level: [Public]

67

Address Step7
equivalent JS Data type Description

MC9 MB9 String Byte 9 of memory area as a
Char

II10 or EI10 IW10 or EW10 Number Signed 16-bit number at byte
10 of input area

QI12 or AI12 QW12 or AW12 Number Signed 16-bit number at byte
12 of output area

MI14 MW14 Number Signed 16-bit number at byte
14 of memory area

IW16 or EW16 IW16 or EW16 Number Unsigned 16-bit number at
byte 16 of input area

QW18 or AW18 QW18 or AW18 Number Unsigned 16-bit number at
byte 18 of output area

MW20 MW20 Number Unsigned 16-bit number at
byte 20 of memory area

IDI22 or EDI22 ID22 or ED22 Number Signed 32-bit number at byte
22 of input area

QDI24 or ADI24 QD24 or AD24 Number Signed 32-bit number at byte
24 of output area

MDI26 MD26 Number Signed 32-bit number at byte
26 of memory area

ID28 or ED28 ID28 or ED28 Number Unsigned 32-bit number at
byte 28 of input area

QD30 or AD30 QD30 or AD30 Number Unsigned 32-bit number at
byte 30 of output area

MD32 MD32 Number Unsigned 32-bit number at
byte 32 of memory area

IR34 or ER34 IR34 or ER34 Number Floating point 32-bit number
at byte 34 of input area

QR36 or AR36 QR36 or AR36 Number Floating point 32-bit number
at byte 36 of output area

MR38 MR38 Number Floating point 32-bit number
at byte 38 of memory area

