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1 INTRODUCTION  
This deliverable is the final output of Task 4.5 – End-to-End Security and Privacy, and as such, its purpose 
is to provide the design of the security mechanisms, enabling the satisfaction of relevant Security and Privacy 
properties, as defined in the context of the projects Security, Privacy, Dependability and Interoperability (SPDI) 
patterns, towards achieving end-to-end security and privacy properties in an IoT system.  
Firstly, this document provides a description of the building blocks that SEMIoTICS uses to ensure security 
and privacy and how separate modules interact with each other to achieve a consistent and adaptable security 
and privacy enforcement throughout the different layers of the SEMIoTICS architecture. Namely, we present 
in this document the identity management, authentication, Software-Defined-Network security, enforcement of 
policy-based authorisation, and SPDI patterns monitoring and enforcement.  
Second, this deliverable evaluates how the provided mechanisms are implemented and how their generic 
interfaces can be tailored to help IoT and IIoT applications deployed in SEMIoTICS to tackle their very-
particular security and privacy-related needs. Namely, we list in Section 5 how the previously gathered 
requirements for the three main application domains and the generic requirements are achieved with the help 
of SEMIoTICS’ privacy and security components. 
Third, this deliverable shows the applicability of the security-relevant mechanisms described in this document 
achieve the requirements of a particular scenario in the health-care domain, based on one of the project’s use 
cases. By this it demonstrates the applicability of SEMIoTICS approaches to an IoT system and the advantages 
of our security and privacy-related solutions in a concrete scenario. 
Finally, the implementation of these components is also nearly completed by now and integration -tests are 
underway, thus the components are expected to be used in the applications from our diver scenarios to meet 
not only the generic, but also help to address the very specific security and privacy requirements of each 
individual use case. 

1.1 Security-and-Privacy-by-Design 
As security and privacy cannot be discussed or evaluated without being grounded in a specific enough 
scenario, this deliverable presents a threat analysis of interactions needed in the applications discussed in a 
detailed-described scenario from use case 2. The application domain of use case 2 is assisted living for the 
elderly. In particular, this use case is arguably the most sensitive use case of the project in terms of privacy. 
Therefore, we have chosen the assisted living scenario to highlight our contributions towards end -to-end 
security and privacy. We provide the most-important details of security and privacy threat analysis for this 
scenario in Section 4. For the use case description, we have used information from SEMIoTICS usage 
scenarios and requirements (deliverable D2.2) and high-level architecture presented in D2.5.  This analysis 
was already presented early in the development of SEMIoTICS. Namely, it was already concluded and 
presented in the earlier version of this document (D4.5). This helped to guide the design, stated in Section 2, 
and the development of the security and privacy components (also found in WP 5 (D5.7, D5.10)) as well as 
the design of SEMIoTICS overall framework and thus was facilitating the privacy-/security-by-design approach. 

1.2 Outline 
This document is structured as follows. We describe the design of mechanisms enabling end-to-end security 
and privacy in Section 2. There we also describe the background behind building blocks, like attribute-based 
encryption and our patterns-approach. Then we continue to use this design and we specifically explain the 
approaches which are behind the design, the implementation and the deployment of  crucial components as 
part of Section 3: 

• the backend Security Manager,  
• the concept for a Security Manager’s shadow copy for increased reliability and speed at the 

field layer, 
• the role of the Software-defined network and especially the SDN controller,  
• SEMIoTICS’ approach to place multiple Policy Enforcement Points across SEMIoTICS ’ 

architecture and the use of Privacy and Security patterns. 
This also highlights how the patterns are playing a central role when it comes to drive the design of the initial 
access control policies and also allow to monitor the compliance of the system’s current policies. It further 
shows that SEMIoTICS has adopted the layered IoT architecture by heart as we envisioned to uphold strong 
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authorisation enforcement without scarifying speed and with an increased reliability in mind to cater for delays 
or short outages of the networked backend services. 
 
Afterwards, we show the interaction across the aforementioned components in the architecture for security 
and privacy used in SEMIoTICS as part of Section 3. In Section 4, we present SEMIoTICS’ incident detection 
and mitigation mechanisms as well as the procedure which comes into effect when an incident is detected. 
Last but not least, we provide a general threat analysis of an example motivating security mechanisms inspired 
in use case 2 focused on assisted living for the elderly in Section 5. For the use case description, we have 
used information from SEMIoTICS usage scenarios and requirements (deliverable D2.2) and the first cycle of 
the high-level architecture presented in D2.5.  
 
We conclude in Section 6 with evaluating our list of requirements gathered in D2.2, D2.3, D2.5. This document 
thus shows how SEMIoTICS security and privacy-related components described herein directly address the 
requirements or help addressing them. For specific use-case requirements the devil is in the details and thus 
we defer the reader to the use case specific deliverables, where possible we re-stated already available results 
for an increased readability, but not all results are obtainable yet as especially the use-case related 
requirements can only be evaluated finally once they have been concluded at the end of the project. 

1.3 Additions and changes compared to the interim version (deliverable D4.5) 
Updated from the previous draft version (D4.5) this final report details herein the full set of SEMIoTICS’ security 
and privacy components and how they fit inside SEMIoTICS ’ architecture given in Section 3. Furthermore, the 
incident detection and response process has been explained in Section 4. 
In addition to minor updates in other places, this document contains the evaluation of the list of requirements 
as previously gathered in Section 6.2.  
Where possible, this final version also provides a direct evaluation, and if not possible, it guides the reader to 
where the evaluation is provided. 
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1.4 PERT chart of SEMIoTICS 
This section quickly introduces an overview on a per-task / WP basis of the interactions between tasks in 
SEMIoTICS, with specifically T4.5 depicted in yellow. The PERT chart is kept on task level for better readability. 
 

36 months Leader: SAG

31.12.202001.01.2018

WP1: Project Management

23 months Leader: ST-I

30.11.201901.01.2018

WP2: Requirements and Architecture for 
Smart Sensing and Smart Actuation

24 months Leader: SAG

30.04.202001.05.2018

WP3: Smart objects and networks

25 months Leader: FORTH

30.06.202001.06.2018

WP4: Pattern-driven smart behavior of 
IIoT with End-to-End Security and Privacy

24 months Leader: ENG

31.12.202001.01.2019

WP5: System Integration and Evaluation

36 months Leader: SAG

31.12.202001.01.2018

T1.1: Project coordination 36 months Leader: FORTH

31.12.202001.01.2018

T1.2: Project technical and innovation 
management

36 months Leader: SAG

31.12.202001.01.2018

T1.3: Coordination with EU programme 
level activities

3 months Leader: STS

31.03.201801.01.2018

T2.1: Analysis of emerging business and 
technical IoT value drivers

4 months Leader: SAG

30.04.201801.01.2018

T2.2: Specification of use case scenarios 
& applications and their requirements

4 months Leader: ST-I

30.06.201801.03.2018

T2.3: Specification of infrastructure 
requirements

18 months Leader: BS

31.12.201901.07.2018

T2.4: SEMIoTICS architecture design

22 months Leader: SAG

29.02.202001.05.2018

T3.1: Software defined Aggregation, 
Orchestration and cloud networks

22 months Leader: CTTC

29.02.202001.05.2018

T3.2: IIoT Network Function Virtualization

22 months Leader: SAG

29.02.202001.05.2018

T3.3: Semantics-based bootstrapping & 
interfacing

22 months Leader: STS

29.02.202001.05.2018

T3.4: Network-level semantic 
Interoperability

22 months Leader: IQU

30.04.202001.07.2018

T3.5: Implementation of Field-level 
middleware & networking toolbox

23 months Leader: STS

30.04.202001.06.2018

T4.1:Architectural SPDI patterns

22 months Leader: ENG

30.04.202001.07.2018

T4.2: Monitoring, prediction and 
diagnosis

22 months Leader: ST-I

30.04.202001.07.2018

T4.3: Embedded Intelligence and local 
analytics

22 months Leader: FORTH

30.04.202001.07.2018

T4.4: End-to-End Semantic 
Interoperability

22 months Leader: BS

30.06.202001.09.2018

T4.6: Implementation of SEMIoTICS 
backend API

22 months Leader: UP

30.04.202001.07.2018

T4.5: End-to-End Security and Privacy

5 months Leader: UP

31.10.201901.06.2019

T5.1: KPIs and Evaluation Methodology

15 months Leader: BS

31.08.202001.06.2019

T5.2: Software system integration

20 months Leader: IQU

31.08.202001.01.2019

T5.3: IIoT Infrastructure set-up and 
testing

13 months Leader: SAG

31.12.202001.12.2019

T5.4: Demonstration and validation of 
IWPC- Energy scenario

13 months Leader: ENG

31.12.202001.12.2019

T5.5: Demonstration and validation of 
SARA-Health scenario

13 months Leader: ST-I

31.12.202001.12.2019

T5.6: Demonstration and validation of 
IHES-Generic IoT scenario

36 months Leader: CTTC

31.12.202001.01.2018

T6.1: Impact Creation and Dissemination 31 months Leader: ENG

31.12.202001.06.2018

T6.2: Exploitation of results

24 months Leader: SAG

31.12.202001.01.2019

T6.3: Standardization
36 months Leader: CTTC

31.12.202001.01.2018

WP6: Impact, Dissemination and 
Standardization
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2 SECURITY DESIGN 
The upcoming sections describe the goals of the SEMIoTICS security and privacy components and illustrate 
their functionality. To this end, we start by describing the goals of the security and privacy mechanisms. Also, 
we describe the functionality provided using some basic notions from a scenario with roles mapped to the 
assisted living use case (UC2) from the project. In particular, we highlight differences between a care giver, 
e.g., a relative taking care of a patient, and a general practitioner, i.e., a medical doctor.  These notions will be 
clearly mapped to the particular security and privacy needs from UC2 in a threat analysis afterwards (D5.10). 

2.1 Goals 
SEMIoTICS tackles multi-tenant scenarios in a variety of levels, i.e., from the networking layer to the 
application layer. Therefore, SEMIoTICS requires the means to: 

• Provide mechanisms to authenticate users and manage their identities . 
• Provide mechanisms to manage identities of other entities, e.g., sensors . 
• Support use case applications to enforce access to privacy-sensitive information within the application. 
• Support use case applications to enforce access to privacy-sensitive information when the data is 

stored in a cloud server, e.g., by using attribute-based encryption and lightweight encryption 
algorithms. 

• Provide end to end secure networking capabilities. 
 

2.2 Security Building Blocks 
To avoid re-implementing existing functionality, the SEMIoTICS Security Manager (see Figure 17) in the 
backend is based on an existing framework providing a subset or the functionality needed for the project. 
SEMIoTICS uses, and further extends, an attribute-based security framework called agile-security1. This 
framework is used to authenticate users, perform identity management and policy evaluations. However, it was 
initially designed for an IoT gateway; therefore, it was adapted during the lifespan of SEMIoTICS to perform 
efficiently in the backend, while keeping some modules needed in the IoT gateway, e.g. , the Policy 
Enforcement Point (PEP), lightweight.  Also, the framework has a user-centric model; more specifically, it 
supports only the evaluation of a security policy when a user accesses an entity, e.g., a device. H owever, 
SEMIoTICS requires the ability to define access policies that do not necessarily involve a user, for example 
when an application accesses a device. As a result, the framework must be adapted, and migrated to the latest 
versions of its runtime framework (Node.JS2). Furthermore, the existing security component has been extended 
to support the attribute-based encryption key management and other mechanisms needed for the 
decentralization of the access control in SEMIoTICS.  
In the following sections, the building blocks needed to realise the security and privacy approach proposed by 
the project are presented. We start by describing the backend Security Manager and its modules. Specifically, 
we focus on authentication, identity management, device authentication metadata storage, and key 
management. In addition, we describe the security needed for the SDN layer, along with other components 
that can be applied at different layers of the architecture, such as the SPDI patterns, the attribute -based 
encryption, the PEP deployment, and lightweight encryption mechanisms relevant in IoT/IIoT scenarios.  
 

2.2.1 AUTHENTICATION 
To support authentication of users, agile-security is an OAuth2 provider. As such, use case applications or 
SEMIoTICS components can rely on authentication services offered by the security manager in the backend. 
In essence, applications requiring authentication services needs to register as an OAuth2 client with agile -
security to be able to redirect users to the authentication endpoint.  The former approach helps when users 
have access to a browser (or a mobile device). Additionally, applications without explicit user interaction, e.g., 

 
1 Agile-security is a previous result from a Horizon 2020 project called AGILE-IoT, which was funded by the 
European Union’s Horizon 2020 research and innovation programme under Grant Agreement No. 688088 . 
2 Node.js is an open-source, cross-platform JavaScript run-time environment, www.nodejc.org 
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batch or cron3-jobs, can authenticate towards the security manager by providing the client credentials they 
have, or by user a username and password tuple for a valid user.   
 
In addition, agile-security supports plug-ins to delegate authentication to external providers, e.g., Google. 
Therefore, in case a use case requires a custom integration with other identity provider or a particular protocol, 
the architecture of this component allows for a simple integration.   
 
2.2.2 ATTRIBUTE-BASED IDENTITY MANAGEMENT 
SEMIoTICS has a strong emphasis on bridging the gap with brownfield devices; therefore, the project requires 
a flexible way to identify entities involved in the platform, e.g., sensors, even though they may use legacy 
authentication or no authentication at all. In this regard, the Security Manager in the backend will provide a 
prototypical implementation which lets a security expert to define entities and their attributes. In some cases, 
the component in charge of handling attributes for entities is called Policy Information Point (PIP), inste ad of 
IDentity Management (IDM) 
 

{ 
            "id": "/user", 
            "type": "object", 
            "properties": { 
                        "user_name": { 
                                    "type": "string" 
                        }, 
                        "auth_type": { 
                                    "type": "string", 
                                    "enum": ["local"] 
                        }, 
                        "password": { 
                                    "type": "string" 
                        }, 
                        "role": { 
                                    "type": "string", 
                                    "enum": ["admin","doctor","technician"] 
                        }, 
                        "health_record": { 
                                    "type": "object", 
                                    "additionalProperties": true 
                        } 
            }, 
            "required": ["user_name", "auth_type","password"] 
} 

FIGURE 1 ENTITY SCHEMA FOR USER - EXAMPLE 
 
The first step to define any entity is to list its attributes, and declare which ones are mandatory, as well as list 
possible values an attribute can take when it is restricted to a particular set of values. To this end, the attribute-
based identity management uses JSON schema: a standard to specify which keys must be present in a JSON 
object, as well as their type. 
 

 
3 https://en.wikipedia.org/wiki/Cron 
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Figure 1 shows an example describing the expected structure for an entity of type “user”. A user must be an 
object, with the properties: user_name, auth_type, password, health_record, and role. Most properties must 
be of type string, except for the health record, which is an object. Furthermore, the authentication type can 
only have one value, i.e., local, while the role attribute can take one of the following values: admin, doctor, or 
technician. Attributes without specific enumeration of values can have any value of the type, e.g., string. In 
addition to strings, JSON schema also allows the definition of arrays, objects, among other types. However, 
the current support only covers strings and objects for now. Withal, these two attribute types allow for the 
definition of arbitrary objects (even with attributes as objects, which are nested). Particularly, a nested object 
in the previous example is the health record, which can contain any additional properties  and values inside.   
 
The identity management we plan to use can support the identification and definition of any entity. For now, 
we have described users, but with additional configurations, this component can also handle identifiers for 
gateways, devices, could servers, databases, etc. Considering that SEMIoTICS has a strong emphasis on 
brownfield devices, we discuss now our plan to collect metadata about authentication capabilities of things 
registered in the project’s Thing Directory. 
 
2.2.3 DEVICE AUTHENTICATION INFORMATION AND IDENTITY MANAGEMENT 
From the point of view of the devices used in SEMIoTICS, the gateway will use standard security features 
when possible. Therefore, the Wind park scenario from UC1 may use security features available for specific 
industrial devices, e.g., SIMATIC S7 controller. Also, in the SARA use case (UC2), the security from protocols 
such as Bluetooth, Zigbee and the LwM2M4 bootstrapping protocol will be used. UC3 will provide authentication 
during the node devices configuration phase, thus preventing un-authorized configurations to be instantiated 
in the UC3 field device level. Moreover the privacy is guaranteed by design in UC3 because sensed data are 
processed locally to each device, and only relevant, specific events are propagated to the higher infrastructure.   
In UC3 the semantic interoperability is ensured thanks to the adoption of standard JSON protocol over MQTT , 
thus opening-up the possibility to interact also with the Web of Things protocol used in other SEMIoTICS use 
cases. The WoT protocol is designed to support interoperability by providing an abstract semantic interface on 
top of widely adopted transport layers such as HTTP Rest APIs, CoAP, MQTT which also supports 
authentication and data encryption. 
 
We leverage the opportunity provided by the semantic approach to collect security metadata associated to 
authentication capabilities of devices registered in the Thing Directory. This allows the use cases in 
SEMIoTICS, if desired, to evaluate security policies to ensure that only properly authenticated things interact 
with applications deployed in the architecture. Users contain authentication information reflecting the kind of 
authentication used for a particular user. In addition to the kind of authentication stored for users, SEMIoTICS 
can support the registration of security metadata related to the semantic description of devices. For this 
purpose, SEMIoTICS defines the Thing Directory component in our first cycle of the high-level architecture 
deliverable D2.4.  In this regard, the Web of Things standard includes information about well-established 
security mechanisms to authenticate things [1].   
 
Currently, the editor’s draft for the Web of Things specification contains the following subclasses of the 
SecurityScheme class of metadata: 
 

• PublicSecurityScheme: Public key asymmetric key security.  
• PoPSecurityScheme: Proof-of-Possession (PoP) token authentication following particular token 

formats, such as JWT (JSON Web Tokens). 
• APIKeySecurityScheme: Implies that the way in which the token is  built is opaque to the protocol. 
• DigestSecurityScheme: Similar to HTTP basic authentication, but has been extended to avoid man -in-

the-middle attacks. 
• BasicSecurityScheme: uses HTTP basic authentication 
• PSKSecurityScheme: Pre-shared key authentication security 

 
4 http://openmobilealliance.org/RELEASE/LightweightM2M/V1_1-20180612-C/OMA-TS-
LightweightM2M_Core-V1_1-20180612-C.pdf 
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• OAuth2SecurityScheme: Supports all the authorization flows for OAuth2 (implicit, password, client, 
code) 

• BearerSecurityScheme: following the bearer format for the token, even though the protocol does not 
use OAuth2. 

• CertSecurityScheme: uses certificate-based asymmetric keys with X 509 V3 certificates. 
• NoSecurityScheme: indicates there is no authentication required 
 

Considering the WoT support in the project, as already described in D3.3 “Bootstrapping and interfacing 
SEMIoTICS field level devices (first draft), we will leverage the semantic description of devices to register their 
identities as well as the security information related to their authentication mechanisms in the backend Security 
Manager.  Technically speaking, this could be achieved in two ways: registering the subclass name, or storing 
the whole metadata required for authentication.  
 
The specificity of the information stored in our Identity Management module within the backend Security 
Manager depends on the abstraction level required to define security policies on things  in an understandable 
and useful manner.  For instance, if we were to register the whole metadata, a thing requiring OAuth2 would 
contain the attributes: authorizationUrl, tokenUrl, refreshUrl, scopes, and flow. On the contrary, if we decide 
for a more concise representation, the metadata stored in the Security Manager could just specify that the kind 
of authentication used for this thing has the class “OAuth2SecurityScheme” explained earlier. Figure 2 shows 
the attributes of a device in SEMIoTICS based on both approaches. Currently, we are inclined towards a simple 
representation on the right for two reasons. 
 
On the one hand, the simple representation is more intuitive, as it allows for the definition of a security policy 
based on a single monolithic attribute, i.e., authenticationInformation in Figure 2. On top, we avoid replicating 
information across the Thing Directory and the Security manager, which can lead to potential consistency 
issues. 
 

Detailed Security Metadata Basic Security Metadata 
{ 
      “id": …", 
      "type": "device", 
       "authenticationInformation": { 
           “authorizationUrl”: “https://auth.server/auth”, 
           “tokenUrl”: “https://auth.server/token”, 
           “refreshUrl”: “https://auth.server/ref”, 
           “flow”: “code” 
       }, 
       … 
} 
 

{ 
      “id": …", 
      "type": "device", 
       "authenticationInformation": “OAuth2Security”, 
       … 
} 
 

FIGURE 2 COMPARISON OF DETAILED AUTHENTICATION INFORMATION 
 
2.2.4 ATTRIBUTE-BASED POLICY FRAMEWORK 
Aside from defining which attributes belong to which type of entities, as well as possible restrictions on values 
they could take, i.e., with the enums presented for the entity's attribute values in Figure 2, the security 
framework must ensure that access to such attributes is controlled. The latter is of utmost importance to ensure 
that attributes are reliable information to make security decisions upon. This concept is commonly called 
attribute assurance.  
 
In order to achieve attribute assurance, a system must define an attribute authority for each attribute. 
Essentially, the user allowed to set an attribute value is the attribute’s authority . For example, if any user can 
write to another user’s role attribute, and the role is used to make security -relevant decisions, users can easily 
bypass the security mechanism by upgrading their attribute themselves. We implement attribute authorities by 
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loading a pre-defined configuration in the security manager, which contains read and write policies for 
attributes for each entity. 
 
2.2.4.1 SECURITY POLICIES 
To provide attribute assurance by ensuring that only particular users are able to certain attributes for different 
entities, the identity management must enforce write policies on attributes . Now, we describe the format for 
the policies. Later on, we describe how defining policies on entities could also help applications using the 
SEMIoTICS architecture to implement security validations with the help of the PEP.  
 
2.2.4.1.1 ATTRIBUTE POLICIES 
The security policies are defined on Usage Locks as part of UPFROnt: a policy framework5. Usage Locks are 
an extension of the Parametrized Locks [2]. Essentially, locks have a list of blocks, as shown in Figure 3.  Each 
block is associated with a read, or write, action. When a policy is evaluated for an action, e.g., read, it is enough 
when one of the read blocks allows it. Thus, assuming that a grey block has evaluated to false, and a white 
block allows the action, the following policy evaluation would allow a read action, but not a write action.  In 
other words, the blocks are evaluated with an OR logical operation. 
 
 

 
FIGURE 3 POLICY BLOCKS [3] 

 
 
Each block contains multiple locks. Each lock has a reference to the attributes of entities interacting in the 
action.  Figure 4 shows two read blocks within a policy, where each has three locks. Contrarily to the evaluation 
of blocks within a policy, locks within a block are evaluated with an AND logical operation. This means that 
blocks are only evaluated to true, when all the locks allow the operation. Following this reasoning, the block 
on the left-hand side of Figure 4 allows the operation, while the read block on the right would denies it. 
Nonetheless, as blocks of the same type are evaluated with an OR, the read action would be allowed in the 
case of Figure 4, as there is at least one block evaluated to true.  
 

 
FIGURE 4 LOCK MECHANISM INSIDE A BLOCK [3] 

 
The security policies are defined on Usage Locks, which are an extension of the Parametrized Locks [2], are 
still under development as part of UPFROnt: a policy framework.  
 
At the moment, the Security Manager inherits the following locks provided by agile-security, although additional 
locks will be developed during SEMIoTICS, e.g., to support a more generic entity -to-entity security model: 

• Attribute equals (attrEq): compare an attribute with a particular value 
• Has type (hasType): compare whether an entity has a particular type, such as user or sensor. 
• isOwner (isOwner): evaluates whether a user owns an entity 

 
5 https://github.com/SEDARI/UPFROnt 
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Figure 5 shows the implementation of a policy to protect the role attribute. To map policies to entity attributes, 
a separate object is created in the Policy Administration Point (PAP) for each entity. The PAP uses this 
structure to map read and write policies to each attribute; for instance, the role attribute has a counterpart in 
the object policy for the same user called role too.  
Essentially, the policy from Figure 5 contains two blocks, one for the read and one for the write action.  The 
read block without any locks allows any entity to read the role. On the contrary, the write lock only allows 
entities of type user, who have role equal to admin. In other words, this policy ensures that users cannot 
elevate their privileges by updating their role, unless they are already admins.  
 

{ 
           op: "read" 
}, { 
           op: "write", 
           locks: [{ 
                       lock: "hasType", 
                       args: ["/user"] 
           }, { 
                       lock: "attrEq", 
                       args: ["role", "admin"] 
           }] 
} 

FIGURE 5 USER ROLE POLICY 
 
Figure 6 shows a policy with two read and one write block. The first block ensures that entities of type users 
with role “doctor” can read the health record. The second read block allows the owner, who must also be a 
user, to read his health record, i.e., the patient can read his own data. As the read blocks are evaluated with 
an OR, it is enough that the user attempting to read the data is a doctor or that it is a patient himself. However, 
as locks are evaluated with an AND, it is not enough that an entity of type user reads the record, bec ause he 
needs to fulfil all locks within a block. Formally speaking, the policies can be mapped to a logic formula in DNF 
(Disjunctive Normal Form).  
 

{ 
           op: "read", 
           locks: [{ 
                       lock: "hasType", 
                       args: ["/user"] 
           }, { 
                       lock:: "attrEq", 
                       args: [ 
                                 "role", 
                                 "doctor" 
                       ] 
           }] 
}, { 
           op: "read", 
           locks: [{ 
                       lock: "hasType", 
                       args: ["/user"] 
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           }, { 
                       lock: "isOwner", 
           }] 
}, { 
           op: "write", 
           locks: [{ 
                       lock: "hasType", 
                       args: ["/user"] 
           }, { 
                       lock: "isOwner", 
           }] 
} 
 

FIGURE 6 HEALTH RECORD POLICY 
 

2.2.4.1.2 ENTITY-RELATED POLICIES 
In addition to the read and write policies enforced by the identity management used by SEMIoTICS, use cases 
may require custom enforcement of security policies within their applications. To this end, read and write 
policies can be defined over entity fields that are not necessarily attributes.  
 
To tackle this, the same policy evaluation presented for attributes can be used to evaluate policies for arbitrary 
actions defined by the use case owner. Mainly, entities have a field in the policy structure that defines policies 
for actions that can be performed on them. Instead of creating a policy under an attribute name, e.g., role, 
every entity has a policy object field called “actions”. In this way, the object policies, in the PAP, holds additional 
policies associated with actions that can be performed on an entity. 
 
For instance, if a use case application needs to ensure that the device owner, e.g., the patient, can see the 
status of a device, but only users with the role “technician” can change it. The application could configure the 
security framework to create the policy shown in Figure 7 under “actions.status” for every new device.  
 

{ 
           op: "read", 
           locks: [{ 
                       lock: "hasType", 
                       args: ["/user"] 
           }, { 
                       lock: "isOwner", 
           }] 
}, { 
           op: "write", 
           locks: [{ 
                       lock: "hasType", 
                       args: ["/user"] 
           }, { 
                       lock: "hasAttr", 
                       args: [“role”,“technician”] 
           }] 
} 

FIGURE 7 POLICY FOR ACTION TO UPDATE STATUS ON A DEVICE –EXAMPLE 
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2.2.5 ATTRIBUTE-BASED ENCRYPTION 

This section describes the possible approaches to attribute-based encryption available today. An 
overview is first provided, and then two ways to enforce security policies are explained, i.e., key policy 
and ciphertext policy. 
 
 
2.2.5.1 OVERVIEW 

Outsourcing data to cloud environments provides ease of access, provisioning, and cost benefits. On the other 
hand, the data could be more vulnerable to disclosure. This incomplete control over the data could be offset 
through encryption [4]. Specifically, traditional symmetric and asymmetric key encryption cryptographic 
techniques could be used in order to manipulate the encryption. However, these encryption methods offer the 
privacy, but not the access control. To avoid this problem, the Attribute Based Encryption (ABE) is proposed 
[5]. 

The ABE is a relatively recent approach that reconsiders the concept of public -key cryptography. For instance, 
in common public-key cryptography, a message is encrypted for a specific receiver using the receiver’s public-
key. Identity-based cryptography and in particular identity-based encryption (IBE) modified the established 
structure of public-key cryptography by changing the public-key in an arbitrary string, the email address of the 
receiver. The ABE goes one-step further and determines the identity not as an individual but as a set of 
attributes (user roles). Due to that, the encryption of the messages is achieved by using the subsets of 
attributes –key policy ABE (KP- ABE) – or the policies, which are defined over a set of attributes –ciphertext 
policy ABE (CP- ABE). In comparison with the IBE, the ABE has meaningful benefit, because it offers flexible 
one-to-many encryption instead of one-to-one; it is considered as a promising method to manipulate the issue 
of secure and fine-grained data sharing and decentralized access control [6]. In the following subsections, the 
two primary forms of ABE will be dealt with in more detail.  

 
2.2.5.2 KEY POLICY ABE (KP- ABE) 

KP-ABE, a type of ABE schema, is a cryptosystem for fine-grained sharing of encrypted data [7]. In this method, 
the ciphertext is defined over the set of attributes and user key is embedded with policy i.e. access structure. 
A policy for each user is selected by the authority in order to determine which ciphertexts he/she can decrypt. 
A threshold policy system would be one in which the authority speci fies an attribute set for the user, and the 
user is allowed to decrypt whenever the overlap between this set and the set associated with a particular 
ciphertext is above a threshold [8]. Figure 8 demonstrates this procedure by a detailed example, in which the 
data is encrypted using attributes (A, B, C, D) and the user key is embedded with policy: (A AND D) OR C. 
The user can decrypt the message when his/her credentials satisfy the specific access structure.  
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FIGURE 8 KEY POLICY ATTRIBUTE BASED ENCRYPTION –EXAMPLE 

 
2.2.5.3 CIPHERTEXT POLICY ABE (CP-ABE) 

In CP-ABE, any user is labelled with a set of attributes and can obtain a private key according to these 
attributes. The ciphertext is generated under a given access policy. One private key can be used to decipher 
a specific ciphertext only if the attributes related to this private key satisfy the policy embedded into the 
ciphertext [9]. A corresponding example is presented in Figure 9. It is evident that the access policy and the 
attributes are attached to secret keys and ciphertexts of the user in a reverse order in KP-ABE. 
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FIGURE 9: CIPHERTEXT POLICY ATTRIBUTE BASED ENCRYPTION – EXAMPLE 

 

Apparently, the encryptor in the KP-ABE is unable to decide who should/ not should have access in the data. 
As a result, the CP-ABE is more suitable for approaches which aim to achieve flexible access control over 
sharing data (such as in the environment of cloud computing). 

Therefore, in broad terms, KP-ABE gives control over who can decrypt data to the key generator, while CP-
ABE ensures that the encryptor (data owner) retains control over who can decrypt her data. In the  security 
analysis, we will discuss possibilities to apply ABE encryption within SEMIoTICS. 
 
2.2.6 KEY MANAGEMENT 
In this section, we describe how we can combine the attribute-based identity and policy management presented 
in Sections 2.2.2 and 2.2.4 with attribute-based encryption presented in Section 2.2.5 for enhanced privacy 
towards external parties. Particularly, we will now propose two possible mappings for KP-ABE and CP-ABE 
and entities and policies handled by the security framework. 
 
2.2.6.1 KEY POLICY ABE (KP- ABE) 
As every entity has a counterpart object in the Policy Administration Point (PAP), the object can be further 
extended to include a field called “policies.abe-key” to define a policy applicable for the entity’s private key 
with particular restrictions.  
Essentially, as long as the policy only includes locks validating equality of attributes, i.e., attrEq lock, the 
security framework can transform the policy defined therein into a tree to generate a key for the entity.  
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Specifically, the DNF represented by the blocks (combined by an OR) shown in Figure 3, and the locks 
(combined by an AND) shown in Figure 4 for the policy defined for an entity into a tree of OR and AND attribute 
validations, such as the one shown in Figure 8 for KP-ABE. However, in the case of the private key generation 
for KP-ABE, the security framework would only consider read blocks as relevant . This is a result of the fact 
that KP-ABE encodes a policy in the private key for the recipient on the data, therefore only the read policy is 
important. For the sake of clarity, Figure 10 shows an example of how the “abe-key” policy for an entity would 
be mapped to a tree with OR and AND nodes for the creation of the equivalent KP-ABE key. 
 
 

Policy for the ABE key of an entity Tree Included in the Asymmetric key 
{ 
 op: "read", 
 locks: { 
  lock: "hasAttr", 
  args: [“role”,“doctor”] 
 }] 
}, { 
 op: "read", 
 locks:{  

lock: "hasAttr", 
  args: [“role”,“caregiver”] 

}, { 
  lock: "hasAttr", 
  args: [“identifier”,“49997fa0”] 
 }] 
} 

 

 

FIGURE 10 KEY MANAGEMENT MAPPING BETWEEN ATTRIBUTES AND KP-ABE KEYS 
 
2.2.6.2 CIPHERTEXT POLICY ABE (CP-ABE) 
Considering that CP-ABE generates keys based on a user’s attributes, instead of a policy, the security manager 
can use the attributes of a user to generate his private key. This process is straightforward, as the only 
information needed is the set of attributes with their respective values. Therefore, this mapping will be naturally 
performed by using the list of attributes for a particular entity to generate its key.  
 
2.2.6.3 ATTRIBUTE REVOCATION 
We will evaluate the feasibility of extending the proposed approaches with an attribute revocation schema. A 
recent manual documenting a popular ABE library mentions two state-of-the-art possibilities [10]. One possible 
solution is to add an attribute value associated with a “version” of the key  associated with the user’s attribute. 
Another option is to add a time attribute to the cypher text and validate that the user has an attribute within a 
particular window of time.  
 
By regenerating keys after a certain period of time, the entity generating keys can ensure that a malicious 
entity can only use the key until the next cycle of key regeneration. With this approach, systems decrypting 
information can ensure that keys used are current. However, this generates significant overhead depending 
on the lifespan of each “version” of a key. For this reason, the project will analyse the specific requirements 
for the use cases and decide a reasonable trade-off between the security provided by key revocation and the 
overhead imposed on the system.  
 
2.2.7 SDN SECURITY 
Security in SDN is of paramount importance due to their increasing role in the implementation of IoT network 
involving integrated ICT and physical components and devices. Therefore, a careful investigation of the new 
security risks that are not relevant to legacy systems must be examined. In addition to the SDN security 
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techniques and in consideration of the criticality of industrial networks, the following principles outline design 
considerations towards a secure and dependable SDN implementation [11]: 

• Dynamic device association will ensure network function continuity and minimize downtime and data 
loss. Network elements should be able to dynamically associate to a backup controller should the 
primary controller get compromised or become inaccessible.  

• Replication is an essential function for achieving dependability of a system or an entire infrastructure. 
Replicated instances of the controller as well as application replication will ensure failure tolerance and 
minimize downtime whether the threat is an attack or a physical disaster.  

• Self-healing mechanisms whether proactive or reactive in combination with proper maintenance can 
provide diversity in the recovery process, thus ensuring enhanced protection towards attacks exploiting 
targeted vulnerabilities.  

• Diversity of controller types (e.g. different OS, hardware) can improve dependability as it is unlikely 
that a variety of software and hardware combinations will have the same vulnerabilities.  

 
The advancements of SDN regarding security are crucial due to the increasing role in SEMIoTICS supporting 
the IoT-enabled networks and in the critical industrial-grade infrastructures. Based on this, SEMIoTICS deploys 
different SDN-enabled mechanisms for enhancing security in the SDN-related scenarios. That includes the 
development of the three different modules inside the SDN controller able to handle different type of events  
and procedures.  
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FIGURE 11 SECURITY-RELATED COMPONENTS IN THE SDN CONTROLLER 

 
The respective described security modules in the SEMIoTICS architecture are presented in Figure 11 and 
detailed below: 
 

• Pattern Engine in the SDN Controller is able to ensure SPDI operations of the SEMIoTICS network 
layer at design and runtime based on a rule engine, which is able to express SPDI patterns as 
production rules. Enables the capability to insert, modify, execute and retract patterns at design or at 
runtime in the SDN controller. Enabling reasoning, driven by production rules, appeared to be an 
efficient way to represent SEMIoTICS patterns. More specifically, since Drools rule engine is based on 
Maven, it can support the integration of all required dependencies with the ODL controller, as well as 
the integration of the entities that interact with the controller to run Drools at design and at runtime. 

• Security Manager in the SDN Controller is responsible for providing authentication and accounting to 
the entities that interact with the controller. The main role of the Security Manager is the support for 
authentication and accounting services for administration of tenants and assignment of applications 
with respective tokens used for fast authentication during runtime. Security Manager should 
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accomplish the authentication and accounting services to the rest of the SDN Controller as well as the 
users and applications that interact with the controller. Moreover, it exposes interfaces for the 
administration of local SDN Controller accounts, in order to achieve authentication.  Security Manager 
provides authentication capabilities based on credentials stored by exposing a method that has local 
credentials as input and which outputs an authentication token. It also exposes a token validation 
method that can be used by other controller components to verify that the provided token is valid, and 
that the bearer of the token is the one who he claims to be. The supported procedures by the Security 
Manager for the login phase and the authentication phase are presented in Figure 12 and Figure 13. 

 

 
FIGURE 12 LOGIN PHASE WITH THE SECURITY MANAGER 
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FIGURE 13 AUTHENTICATION PHASE WITH THE SECURITY MANAGER 

 
• SFC Manager is responsible to add forwarding rules to network infrastructure. By those additions the 

traffic can be redirected through the defined components of those service chains.  The respective 
security service network functions that compose those chains are handled by the NFV management 
and network orchestration (MANO). In the SEMIoTICS cases, service instances in service chains may 
include Firewall, IDS, DPI, and HoneyPot as described below: 

• A firewall is a network security system that monitors and controls incoming and outgoing 
network traffic based on predetermined security rules. A firewall typically establishes a barrier 
between a trusted internal network and untrusted external network, such as the Internet . 
Firewalls are often categorized as either network firewalls or host-based firewalls. Network 
firewalls filter traffic between two or more networks and run on network hardware. Host -based 
firewalls run on host computers and control network traffic in and out of those machines.  

• In Deep Packet Inspection (DPI) packet payloads are matched against a set of predefined 
patterns. DPI imposes a significant performance overhead, but nevertheless, in one form or 
another, is part of many network (hardware or software) appliances and middle boxes. As 
Bremler-Barr et al. [12] have demonstrated, extracting the DPI functionality and providing it as 
a common service function to various applications (combining and matching DPI patterns from 
different sources) can result in significant performance gains. In SEMIoTICS proof-of-concept 
DPI implementation, nDPI [13] can be employed to implement the DPI function, monitor 
incoming traffic, and assign it to the (sub-)set of security service functions intended for the 
corresponding traffic type. 



780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017 
Deliverable D4.12 SEMIoTICS Security and Privacy Mechanisms (final) 
Dissemination level: [Public]  

 

24 
 

• Network-based honeypots have been widely used to detect attacks and malware. A honeypot 
is a decoy deployment that can fool attackers into thinking they are hitting a real network 
whereas in the same time it is used to collect information about the attacker and attack method. 
A HoneyNet is a set of functions, emulating a production network deployment, able to attract 
and detect attacks, acting as a decoy or dummy target.  

• Generic Intrusion Detection System (IDS) / Intrusion Prevention System (IPS) is a service able 
to monitor traffic or system activities for suspicious activities or attack violations, also able to 
prevent malicious attacks if needed (in the case of IPS). 

 
Services may be the physical appliances or virtual machines running in network function virtualization 
infrastructures. They may be composed of one or multiple instances. The SFC Manager is responsible for 
administrating the services chain and mapping the operator’s/tenant’s/application’s requirements into se rvice 
chains. An expression of the interaction between the SDN controller and the NFV MANO is depicted in Figure 
14. 

 
FIGURE 14: SERVICE FUNCTION CHAINING SEQUENCE 

 
A more detailed description of the respective modules is given in D2.5, D3.7, D3.8, D3.10 and D4.8. 
 
2.2.8 MACHINE LEARNING-BASED SECURITY 
IoT aims at interconnecting thousands or millions of smart objects/devices in a seamless way by sensing, 
processing and analysing huge amount of data obtained from heterogeneous IoT devices. This rapid 
development of IoT-oriented infrastructures comes at the cost of increased security threats through various 
types of IoT network attacks. As a result, machine learning techniques can be applied in order to detect and 
even to prevent this kind of attacks. Next, we briefly overview possible machine learning methods that could 
be exploited within the context of IoT attack detection. The approaches described herein are covered in more 
depth in D4.9. Therefore, we recommend the reader to go to sections 4.2, 4.3, 4.4 in D4.9 for technical details. 
 
Sparse representation can be used as a diagnosis mechanism for instant IoT botnet attack detection and     the 
minimization of their impacts by immediate isolation of compromised IoT devices located at the edge of the 
IoT infrastructure. Due to limited computational capabilities which govern the edge IoT devices,  it is of 
paramount importance to provide an algorithmic procedure which uses an amount as small as possible of 
training and testing data to implement an accurate IoT botnet attack detector. A sparse representation-based 
novel diagnosis technique is proposed under the SEMIoTICS framework [14], where the fundamental 
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assumption is that there is no prior knowledge of malicious IoT network traffic data during the training 
procedure. The novelty is twofold. Firstly, a reconstruction error thresholding rule based on sparse 
representation is employed for IoT botnet attack detection assuming that  only a very limited amount of both 
training and testing data is used to deal with low computational constraints as well as with fast reaction. 
Secondly, a greedy sparse recovery algorithm, dubbed as orthogonal matching pursuit, is adopted since it 
involves tuning of only two hyper-parameters, i.e. the thresholding constant and the sparse representation 
level. 
 
In many tasks, prediction is dependent on past samples such that, in addition to classifying individual samples,  
we also need to analyse the sequences of inputs. In such applications, a feed-forward neural network is not 
applicable since it assumes no dependency between input and output layers. Recurrent neural networks 
(RNNs) have been developed to address this issue in sequential (e.g., speech or text) or time-series problems 
(sensor’s data) with various lengths. RNN is a deep learning architecture of an artificial neural network where 
connections between units form a directed circle. Thus, it can be seen as multiple copies of the same network 
each passing a message to a successor, giving RNN the ability to connect previous information to the current 
task. The input to an RNN consists of both the current sample and the previous observed sample. This type of 
neural network architecture has been already introduced within various intrusion detection paradigms.  
 
Generative adversarial networks (GANs) consist of two neural networks, namely the generative and 
discriminative networks, which work together to produce synthetic and high-quality data. The former network 
(dubbed as the generator) is in charge of generating new data after it learns the data distribution from a training 
dataset. The latter network (termed as the discriminator) performs discrimination between real data (coming 
from training data) and fake input data (coming from the generator). The generative network is optimized to 
produce input data that is deceiving for the discriminator  (i.e., data that the discriminator cannot easily 
distinguish whether it is fake or real). In other words, the generative  network is competing with an adversary 
discriminative network. This type of algorithm can also be considered as a potential algorithmic procedure 
towards attack detection. 
 
2.2.9 POLICY ENFORCEMENT  
Enforcing policy in multicomponent architecture usually is not the easiest task in the modern IT world especially 
including the open source or legacy components. In such cases, adaptation of these components for new 
security requirements can be impossible or require a great amount of work multiplied by the number of 
components. Sidecar pattern can help in such situations [15]. 
 

The main idea behind the pattern is to deploy an additional component/application together with the primary 
application. The “sidecar” pattern shown in Figure 15 can provide additional supporting features for the primary 
app without making changes in its code. The primary application and the “sidecar” should share the lifecycle, 
it means every time we deploy or remove the primary application, the same should happen to the ‘sidecar’. 
The lifecycle sharing requirement makes some deployment and packaging formats more suitable for sidecar 
pattern than others.  One of the well-suited formats for ‘sidecar’ are containers, which will be used in our 
backend. Using a ‘sidecar’ proxy component introduces security-by-design to the application, by configuring 
primary application APIs to be only accessible from localhost so no other components will be able to access 
the primary application without communication through sidecar proxy.   
 

In SEMIoTICS, we create a PEP as a separate application and prepare it in a way so it can be deployed as a 
standalone app next to the primary application but also as a second container in a pod for backend 
orchestrator. The development of the app started in Cycle 1 and should be finished in Cycle 2. In Cycle 1 the 
focus was to prepare simple polices for securing HTTP API access for end user or application. For each API 
call received by PEP, it will communicate with Security Manager to authorize and authenticate the call.  
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FIGURE 15 COMMUNICATION FLOW USING PEP 

 
 
2.2.10 LEIGHTWEIGHT CRYPTOGRAPHIC MECHANISMS 
Ensuring security in IoT applications that interconnect with a spectrum of smart devices and sensors with 
varying and low level computational and energy capabilities requires the deployment of lightweight security 
solutions for these objects. 
 
The mechanisms deployed in the previous subsections, such as the use Attribute-based Encryption and the 
deployment of the pattern and authorization components at the field layer, in specific, cater for the intricacies 
of said resource-constrained objects. Nevertheless, some additional lightweight cryptographic  primitives may 
be needed in some scenarios (e.g., to securely store local data on an IoT sensor). In this context, Lightweight 
cryptography (LWC) investigates the design and integration of cryptographic primitives and algorithms into 
resource-constrained devices, coming with very low resource requirements and mainly providing confidentiality 
and data integrity [16] [17]. 
 
Block ciphers, the main symmetric key cryptosystems, perform well in this field. Prominent solutions include 
the industry-standard AES, which can be extremely lightweight, or other standardized block ciphers such as 
PRESENT and CLEFIA, which are also suitable for lightweight cryptography [18]. Nevertheless, stream ciphers 
are also relevant in ubiquitous computing applications, as they can be used to secure the communication in 
applications where the plaintext length is either unknown or continuous, like network streams. In this case, 
AES-CTR, Enocoro, Salsa20, HC, Acorn, and WG-8 are the recommended safe solutions to be used [19] 
 
 

2.2.11 SECURITY AND PRIVACY PATTERNS 
SEMIoTICS adopts a pattern-driven approach, whereby machine interpretable patterns encode horizontal and 
vertical ways of composing parts of end-to-end IoT applications that can evidently guarantee SPDI properties. 
In more detail, architectural patterns in SEMIoTICS support: the composition structure of the IoT applications 
and platform components; the end-to-end SPDI properties guaranteed by the pattern; the smart 
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object/component/activity level SPDI properties required for the end-to-end SPDI properties to hold; conditions 
about pattern components that need to be monitored at runtime to ensure; end-to-end SPDI properties; and 
ways of adapting and/or replacing individual IoT application smart objects/components that instantiate the 
pattern if it becomes necessary at runtime (e.g., when some components stop satisfying the security 
properties).  
 
While this pattern-driven approach is presented in detail within deliverable D4.8 (“SEMIoTICS SPDI Patterns 
(final)”), along with a first set of SPDI patterns, some key aspects are briefly re-iterated here for completeness. 
 
2.2.11.1 SPDI PATTERNS DEFINITION 
Out of the set of SPDI properties covered within SEMIoTICS, in the context of Task 4.5 the focus is mostly on 
Security (broken down to Confidentiality, Integrity and Availability) and Privacy. Dependability is, in some 
cases, linked with Availability (i.e. part of security), but in the context of SEMIoTICS it mainly refers to reliability, 
fault tolerance and safety aspects. 
 
In all cases, the definition of the pattern language itself is driven by the IoT Orchestrations model presented in 
D4.1. Based on that, the SEMIoTICS pattern language is derived, which is used to define the IoT components 
and their orchestrations, along with their desired SPDI properties. Per the SEMIoTICS IoT Orchestration model 
mentioned above, Placeholders of different types (including IoT components and their orchestrations) may 
also be characterised by their SPDI properties. Additionally a property of a placeholder can be required or 
confirmed. A required property is a property that a placeholder must hold in order to be included (co nsidered 
for) the orchestration. For example, if the required property of an orchestration defining a secure logging 
process is Confidentiality, then all placeholder activities involved in the orchestration and the links between 
them may be required to have the Confidentiality property. On the other hand, a confirmed property is a 
property that is verified at runtime, through a specific means. Said means of verification can include monitoring, 
testing, a certificate or a specific pattern rule. This means that the existence of a monitoring service or a testing 
tool allows the verification of the SPDI property of a placeholder activity. Such a monitoring service could, for 
example, justify that a service or a device is available at specific time windows if the  desirable property is a 
specific target for availability. Another way of verifying SPDI properties could be a repository with certificates 
that are able to justify that a certain placeholder satisfies a certain property. In case of a pattern the Mean of 
verification is the pattern itself; in all the other cases we need an interface to a corresponding monitoring tool, 
testing service or certificate repository through which the verification can take place.  
 
At deployment phase, instantiated versions of the abovementioned system model are transformed into Drools6 
rules and facts, to allow for machine-processable pattern verification and automated system adaptation. Drools 
business production rules, and the associated rule engine, apply and extend the Rete algorithm [20], which is 
an efficient pattern-matching algorithm known to scale well for large numbers of rules and data sets of facts, 
thus allowing for an efficient implementation of the pattern-based reasoning process. 
 
Moreover, to assist in the definition of the orchestrations and the desired properties, this pattern approach is 
also integrated with Recipes [21] [22]. The user defines her desired IoT orchestrations and properties through 
Recipes, using the provided high level abstractions, and these are then transformed into SEMIoTICS patterns, 
which, in turn, get transformed into Drools rules and facts. Reasoning on the SPDI properties included in the 
defined orchestrations happens through the deployment of pattern engines on all layers of the architecture, as 
is detailed in the next subsection. 
2.2.11.2 PATTERN COMPONENTS 
As mentioned, pattern-related components are present in all layers of the SEMIoTICS framework  (see Figure 
16). These allow the verification of SPDI properties and triggering of adaptations throughout the IoT 
deployment, also enabling the semi-autonomous operation (e.g., SPDI related reasoning and adaptation at the 
network or field layer, even if the backend is not available/offline) . 
  

 
6 https://docs.jboss.org/drools/release/7.15.0.Final/drools-docs/html_single/index.html 
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FIGURE 16. PATTERN MODULES WITHIN THE SEMIOTICS ARCHITECTURE 

 
In more detail, the pattern-related components include: 
 

- (Backend) Pattern Orchestrator: Module featuring an underlying semantic reasoner able to 
understand instantiated Recipes, as received from the Recipe Cooker module and transform them into 
composition structures (orchestrations) to be used by architectural patterns to guarantee the required 
properties. The Pattern Orchestrator is then responsible to pass said patterns to the corresponding 
Pattern Engines (as defined in the Backend, Network and Field layers), selecting for each of them the 
subset of these that refer to components under their control (e.g. passing Network-specific patterns to 
the Pattern Engines present in the SDN controller). 

- Backend Pattern Engine: Features the pattern engine for the SEMIoTICS backend, along with 
associated subcomponents (knowledge base, reasoning engine). It enables the capability to insert, 
modify, execute and retract patterns at design or at runtime in the backend; these  interactions will 
happen through the interfacing with the Pattern Orchestrator (see above), as well as other additional 
interfaces are introduced to allow for more flexible deployment and adjustments when needed. The 
Pattern Engines is also able to reason on the SPDI properties of aspects pertaining to the operation of 
the SEMIoTICS backend. Moreover, at runtime the backend Pattern Engine may receive fact updates 
from the individual Pattern Engines present at the lower layers (Network & Field), allowing it  to have 
an up-to-date view of the SPDI state of said layers and the corresponding components.  

- Network Pattern Engine: Integrated in the SDN controller to enable the capability to insert, modify, 
execute and retract network-level patterns at design or at runtime. It is supported by the integration of 
all required dependencies within the network controller, as well as the interfaces allowing entities that 
interact with the controller to be managed based on SPDI patterns at design and at runtime. It features 
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different subcomponents as required by the rule engine, such as the knowledge base, the core engine 
and the compiler. 

- Field Layer Pattern Engine: Typically deployed on the IoT/IIoT gateway, able to host design patterns 
as provided by the Pattern Orchestrator. Since the compute capabilities of the gateway can be limited, 
the module is a lightweight version of the Backend Pattern Engine. Patterns are preinstalled in the 
module but can also be enriched during runtime by the Pattern Orchestrator . These patterns are able 
to guarantee SPDI properties locally based multiple factors. Some of them include the data retrieved 
and processed by the monitoring module, the thing directory in the IoT gateway , and the interaction 
with other components in the field layer.  

For more details on these components, we defer the reader to the corresponding implementation deliverables 
(D3.11 and D4.6, D4.7 as well as D4.13). 
 
2.2.11.2.1 PATTERN INTERACTIONS WITH SECURITY AND PRIVACY MECHANISMS 
The concepts highlighted above, and most importantly specifically the need for automated verification of 
security and privacy properties as well as the triggering of required adaptations, necessitate the interaction of 
pattern components with the security and privacy mechanisms that may be deployed within the IoT 
environment.  
 
In the case of property verification, important means of verification include, as mentioned, monitoring and 
testing; in some cases, this may entail monitoring the operation of specific security mechanisms (e.g., 
monitoring if requests go through access control mechanisms, if encryption is enforced) or their testing (e.g., 
capturing traffic to test that encryption mechanisms are operational).  
 
Moreover, pattern-driven adaptations can also involve triggering changes in the operation and/or configuration 
of security mechanisms. Examples of these may include changes in the access control policies or triggering 
of encryption enforcements when certain property changes are needed (e.g., to increase security, reverting it 
to the desired state).  
 
Some examples of the above are detailed in the subsections below, while the reader may refer to D4.8 
where the final set of SEMIoTICS patterns, sketching the supported interactions with security 
mechanisms, are detailed. 
 
 
2.2.11.2.2  INTERACTION SCENARIO – INTEGRITY 
As an example, let us consider an integrity pattern which refers to the maintenance and assurance of the 
accuracy and consistency of data. Following the formal process detailed in D4.1  and D4.8, we can define a 
generic pattern for integrity at data at rest as the following:  
 

Hash(Dx(i))=Hash(Dx(i-1)) 
 

A high-level interpretation of the above is that whenever we check data at rest, those data must not be changed. 
More formally, this reflects that the cryptographic hash, i.e., Hash function, applied on the data at a given time 
I, i.e., Dx(i), matches the value observed for the data previously, i.e., for time i-1.  
 
This property is very important in various parts of a SEMIoTICS deployment, and one key area is the 
preservation of the integrity of the stored authorization policies, in the policy repository. Undoubtedly,  a 
malicious user who tampers with the stored policies is able to invalidate all security provisions that the policy 
framework is supposed to provide. Therefore, it is important to be able to verify the integrity of said policies. 
This could be achieved, for example, through a mechanism that checks the integr ity of the policies using 
hashing mechanisms which, at predefined intervals, checks the hash of the active set of policies with the hash 
value of the initial set of policies defined at deployment. In line with the pattern defined above, and assuming 
that an agent is deployed or the policy repository code is decorated to perform this hash check, the result of 
this could be monitored by the corresponding pattern engine (backend pattern engine, if we assume the policy 
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repository is deployed at the backend) in order to verify that the desired integrity property of the stored policies 
holds.  
 
Therefore, in the above scenario, the pattern components monitor the operation and interact with either a 
specific security agent or the policy framework itself, depending on the exact deployment, giving the system 
owner an up-to-date view of the security status of the system (integrity of authorization policies, more 
specifically, in this case). Potential adaptation in case of integrity violation could involve trigger a rel oading of 
the policies from a safe copy; e.g., retrieving a copy stored offline (requiring human intervention), or in an 
automated manner by replacing the policy repository with another instance of the component that is not 
compromised (e.g., spawning a new container with said component, in case of a virtualized backend 
infrastructure, as the one adopted in the SEMIoTICS backend).  
 
2.2.11.3 INTERACTION SCENARIO – PRIVACY 
There are some cases where the SPDI properties can transition to an initially undesired state due to special 
conditions that could emerge as the system operates and the context changes.  
 
To give an example, let us consider a scenario inspired by the second use case of the project UC2, focusing 
around the ambient assisted living environment. It is expected that one of the key Privacy requirements will be 
to ensure that the patients’ location remains protected, since location is private-sensitive information, but it 
could potentially be accessed from the user’s mobile phone that is used to relay information at the backend. 
 
Therefore, to alleviate such concerns, adequate protection mechanisms have to be put in place to guarantee 
such information cannot be leaked. One approach would be to prohibit such action (i.e. retrieval of patient’s 
location) from caregivers and other involved actors, through the policy/authorization framework. In any case, 
these mechanisms will have to be interfaced/monitored by the Pattern reasoning engine, to ensur e that we 
have a real-time verification that these privacy properties hold, leveraging the corresponding pattern rules.  
 
Nevertheless, we can foresee extreme cases where the location must be retrieved: c onsider the case that a 
patient fall is detected; in such a case, it is imperative to retrieve the person’s exact location, to allow for prompt 
intervention of caregivers or emergency services. Therefore, the policy framework should cater for the change 
in the permissions, e.g., by including such context parameter in the policies, thus allowing in such cases the 
caregivers to retrieve the patient’s exact location. In such a case, even though this is a desired change, the 
case remains that the desired privacy property is no longer satisfied, since the patient ’s location is exposed to 
caregivers / emergency services. By monitoring the operation of the policy framework, such change in the 
privacy property will be visible at the backend, allowing SEMIoTICS operators to the change in real -time and 
also verify if this is indeed a needed/programmed violation of the Privacy property or a malicious or unexpected 
system behaviour. 
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3 ARCHITECTURE OF THE SEMIOTICS SECURITY 
COMPONENTS 

 
This section details the high-level overview given in D4.5 and describes security components that all together 
comprise SEMIoTICS’ security architecture, amongst them are components concerned with the central 
management of identities in the Security Manager. The Security Manager, as well as the other components, 
have been grouped – for ease of viewing – by their position within SEMIoTICS’ 3-tier architecture (backend, 
network, field). An overview is given in the following section, followed by individual sections that take a closer 
look on how the different components are embedded and used to achieve the required security and privacy 
functionality of SEMIoTICS. The description also briefly explains their very specific placement in each layer of 
the architecture or how they are added to the applications for a use-case.  

3.1 Architectural Overview 
In this section, we cover from a high level the component interactions between the components required to 
fulfil the end–to-end security and privacy objectives of SEMIoTICS.  
 

 
FIGURE 17 SECURITY COMPONENTS DESIGN AND ARCHITECTURE 
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Figure 17 shows how the pattern engines at different levels interact with the Policy Administration Point (PAP) 
to enforce specific SPDI patterns. For example, a system can have multiple states depending on privacy needs. 
In this scenario, the system would execute under normal conditions, but whenever a specific event is detected 
(an elderly fell down at his home), the pattern engine may interact with the Security Manager at the backend 
to relax privacy policies temporarily. This would give temporary access to information that is otherwise 
inaccessible to another user.  
 
Furthermore, the SDN controller can also leverage the Policy Decision Point (PDP) in the backend to delegate 
needed security-relevant decisions, e.g., concerning role-based access control decisions. Also, we add 
functionality to the backend Security Manager to map attributes or policies to keys used for ABE encryption as 
the key management process. Furthermore, the ABE encryption can be performed in a distributed manner 
relying on the keys generated by the backend Security Manager, in order to protect privacy-sensitive user data 
across the architecture. 
 
The SEMIoTICS security architecture, shown in Figure 17, remains flexible enough to support a wide range of 
use cases. Particularly, Use Cases which require a single, centralized, PDP can use the security manager in 
the backend and deploy multiple PEPs where needed, e.g., in the IoT gateway. However, thanks to the 
attribute-based encryption approach, the ABE encryption also enables security at rest and in transit for use 
cases with connectivity restrictions, or where data is stored in external clouds. Even for these cases the 
Security Manager and especially the ABE encryption ensures access control through encryption, with a central 
identity management in a more decentralized and loosely interconnected deployment.  

 

3.2 Security Components in the Backend  
The main security components of the Backend are the Security Manager which consists of the policy decision 
point, the policy administration point, the attribute-based identity management as well as the corresponding 
attribute-based encryption key management. The second component in the backend despite the SM is the 
Pattern Engine that provides safety for the SM.  
 
3.2.1 SECURITY MANAGER IN THE BACKEND  
3.2.1.1 POLICY DECISION POINT (PDP) 
The policy decision point is responsible for authorization of system units that request corresponding decisions.  
It is part of a policy-based access control system RBAC, which decides whether a user's request should be 
approved or not based on the available information (attributes) and the applicable security policies.  If an entity 
in the SEMIoTICS contexts wants to request access to any instance that is related with the Security Manager 
it first informs the PEP which forwards this information to the PDP.  There the request will be evaluated on the 
base of the stored user attributes. The response is then sent back to the policy enforcement point, where it 
gets retransferred to the desired user origin.  
 

In our PDP we have the following functions to check the policies: 
 

• CanReadPolicyField 
• CanWriteToPolicyField 
• CanWriteToAllAttributes 
• CanReadArray 
• CanRead 
• CanDelete 
• CanUpdate 
• CanReadEntityPolicies 
• CanSetEntityPolicy 
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• CanWriteToPolicy 
• CanDeletePolicy 
• CanReadEntityAttribute 
• CanWriteToAttribute 
• CanDeleteAttribute 
 

3.2.1.2 POLICY ADMINISTRATION POINT (PAP) 
The policy administration point in the Security Manager is the interface and tool that enables the creation and 
the editing of the SEMIoTICS digital policies, or rules. The single policies can be defined by the provided 
REST-API or through the management UI that the Security Manager provides. 
 
  Figure 18 shows a basic interplay of all single components that are needed e.g. when Alice wants to view 

Bobs current location. 

 
FIGURE 18 INTERPLAY OF PEP, PDP AND PAP 

3.2.1.3 ATTRIBUTE-BASED IDENTITY MANAGEMENT 
In large scale deployments SEMIoTICS foresees already one or more instances of the security manager in the 
backend, where its identity-related functions enable the security manager to act as an oauth7 authentication 
provider for different realms within the same or even across organisations . Each “user”, who got an identity 
within the identity management system provided by SEMIoTICS Security Manager could be a 
device/component or a human user. Each can have an entity-ID and can be given different attributes to enable 
different policy decisions and different decryption-capabilities. 
 
Traditionally, authentication is a proof of identity in the form of a password or identity document. In most cases, 
however, the precise identification of persons utilizing unique identification numbers and names is complete 
overkill. In most cases, a single attribute is often sufficient to know a person or to authorize a specific 
transaction. In the context of SEMIoTICs, once an entity gets registered in the system, the Security Manager 
assigns him/her/it several attributes, that describe this specific entity. Such attributes can e.g. be attributes 
that describe the role of the entity such as ‘doctor’, ‘admin’, ‘device’, but also attributes that describe certain 
characteristics of the entity such as ‘age=18’, ‘gender=male’, ‘microphone’, ‘camera’ etc. Afterwards, and 
before being able to use a service (e.g. access data, run a command), the entity has to be authenticated at 
the Security Manager (which also takes the role of an oauth authentication provider), by providing his/her/its 
credentials. The Security Manager then responds with a so called “token”, which functions as a cryptographic 
container, that hides the attributes. Thus, when the service that requests the authentication of an entity in order 
to check if he/she/it is authorised, it will only see a token. The service checking the token cannot derive 
information about other attribute values it contains. However, an entity can use this token to prove the validity 
and authenticity of his/her/its attributes towards the service. This way, the entity can authenticate him-/her-

 
7 oauth is an industry standard for authorizations allowing for federated identity management  
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/itself without an identification (role-based access control or proof of membership). This increases the privacy 
and at the same time eases access control management.  
 
To sum up, the concept of attribute-based identity management in SEMIoTICS enables and enhances several 
security aspects: 
 

1. Unlinkability; The attributes cannot be linked to an entity, as they are hidden within the token 
(=cryptographic container) 

2. Basis for advanced security mechanisms; Attributes of an entity can be used for Attribute Based 
Encryption / Decryption (see next Section). Only entities with matching attributes can successfully 
decrypt the data. Encryption can happen loosely-coupled because at the time of encryption only the 
attributes of the potential entity that is able to decrypt them later are required, not the exact entity, e.g. 
one can encrypt data to be readable only by those who hold the attribute `role=doctor’. 

3. Simplification of Policy Management; Instead of creating multiple policies for several users, one can 
create a policy for an attribute or a set of attributes. As multiple users may share the same attribute 
(e.g. ‘role=doctor’), the policy can affect several users at the same time. 

 
Further, the SEMIoTICS framework also allows a flexible deployment of one or maybe more security manager 
components, each spanning what we have termed a security domain in the figures  below. 
Additionally, please note that there are at least the following two reasons why one would have more than one 
security manager component: 

• Reason 1: there are different security domains and the don’t work together, which results in 
users/devices that are part of two domains having to have two IDs, one in each domain 

• Reason 2: there are several security managers that are catering together for one domain, this is the 
case if we have deployed one or more SM at the edge. 

 
The Figure below shows the simplest deployments scenario, with several users/devices and different realms 
and the different Security Managers. Then, if you would have to cater for more than one security domain, you 
would simply be “cloning” the Security Manager and if you would want to enable cross-realm interaction, then 
users/device are in need of having several tokens/credentials for each domain as device “B” that is in both 
realm 1 and 2 as shown in Figure 19 Security Manager deployment overview. 
 

 
FIGURE 19 SECURITY MANAGER DEPLOYMENT OVERVIEW 

 
3.2.1.4 ATTRIBUTE-BASED KEY MANAGEMENT 
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The attribute based key management component provides an API that can be used by the applications to 
encrypt data that they want to securely store in the Security Manager’s database, using Attribute -Based 
encryption. It currently offers two state-of-the-art schemes, namely KP-ABE and CP-ABE. The advantage of 
ABE is that the entity that encrypts the data, does not have to know the public key of the entity that should 
receive the data, at the time of encryption. Furthermore, data can be encrypted for multiple entities, which can 
be highly useful for the SEMIoTICS use-cases (especially use-case 2).  
 

The complete documentation of the provided ABE API can be found in Deliverable D5.3.  
 
3.2.1.4.1 REQUIRED FUNCTIONALITIES 
This section describes the required four required functions that every ABE implementation must implement in 
order to provide full and secure functionality. 

3.2.1.4.1.1 Setup 
The setup function initializes the chosen Attribute-Based Encryption Scheme (CP-ABE or KP-ABE). It requires 
no input and outputs the master key (MK), which must be kept secret within the Security Manager, and the 
encryption key (EK), which is publicly known. 

 
The resulting function looks as follows: 
 

(𝑴𝑲, 𝑬𝑲)  =  𝑺𝒆𝒕𝒖𝒑() 
 

3.2.1.4.1.2 Key generation 
The key generation function generates a decryption key 𝐷𝐾𝑒 (private key) for an entity e. This entity is either 
described by a set of attributes (CP-ABE Scheme) or limited by a policy (KP-ABE Scheme). As input, the 
function takes the master key 𝑀𝐾 as well as the information 𝛾𝑒 of the entity e (set of attributes (CP-ABE) or the 
assigned policy (KP-ABE) of the entity). The resulting decryption 𝐷𝐾𝑒 embeds the entity’s information 𝛾𝑒. This 
key generation can only be executed by the owner of the master key 𝑀𝐾, which, in the context of the 
SEMIoTICS framework, is the Security Manager. 

 
The resulting function looks as follows: 

 
𝑫𝑲𝒆  =  𝑲𝒆𝒚𝑮𝒆𝒏(𝑴𝑲, 𝜸𝒆) 

 

3.2.1.4.1.3 Encryption 
The encryption function is used to encrypt (privacy sensitive) data. This requires the access control data of the 
file (in the form of a policy in the case of CP-ABE or in the form of a set of attributes in the case of KP-ABE) 
𝜏 and the encryption key EK as input.  The output is the encrypted data (ciphertext) C, in which the access 
control information 𝜏 is embedded. 
 

The resulting function looks as follows: 
 

𝑪 =  𝑬𝒏𝒄𝒓𝒚𝒑𝒕(𝑴, 𝝉, 𝑬𝑲) 
 

3.2.1.4.1.4 Decryption 
Decryption is successful only if the attribute set 𝛾𝑒, which is embedded in the private key 𝐷𝐾𝑒 of an entity e, 
satisfies the policy 𝜏, which is embedded in the ciphertext C (CP-ABE) or if the policy 𝛾𝑒, which is embedded 
in 𝐷𝐾𝑒 allows to access the set of attributes 𝜏, which is embedded in the ciphertext C (KP-ABE). 

 
The resulting function looks as follows: 
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𝑴 =  𝑫𝒆𝒄𝒓𝒚𝒑𝒕(𝑪, 𝑫𝑲𝒆) 
 

3.2.1.4.2 KEY REVOCATION 
As already described in Section 2.2.6.3, there are currently two state-of-the-art possibilities for attribute-based 
key revocation. 

 
i. Attribute Version List: 
The security manager maintains a list which contains all active and currently used attributes/policies for the 
keys. Each attribute/policy is thereby marked with a version number. Whenever an entity is compromised, the 
security manager revokes the key (and all associated attributed for this key) by increasing the version number 
of the affected attributes/policies. Afterwards, the Security Manager has to distribute new keys to all registered 
entities, that have at least one of those affected attributes/polic ies within their keys. Furthermore, all currently 
stored (privacy sensitive) data has to be re-encrypted with the new active attributes which are stored in the 
list. 

 
E.g. using the CP-ABE scheme, there are two entities (A and B), which both have the attribute “Doctor_v1” 
embedded in their DK. Both entities can access the privacy sensitive data S, which contains the patient’s 
current location, as this data can only be decrypted by entities with the attribute “Doctor_v1”. After a while, it 
is detected that entity B has been compromised I.e. an intruder is now able to use B’s DK to access the patient’s 
location S. Therefore, the Security Manager revokes the key of B as well as all the associated attributes (which 
is “Doctor_v1”). The Security Manager then updates the version of the affected attributes (“Doctor_v1” gets 
updated to “Doctor_v2”), and distributes the new DKs to all entities that had the attribute “Doctor_v1” 
embedded in their DK i.e. entity A. Afterwards, all encrypted, stored data gets re-encrypted with the new 
version of the attribute (“Doctor_v2”). Now only A is able to decrypt it, as B has not received the new version 
of the attribute. 

  
ii. Time attribute within the ciphertext: 
The security manager embeds an additional time attribute within the ciphertext, so that the data can only be 
decrypted within a fixed time-window. Afterwards, when an entity requests a key, the used time attribute also 
gets embedded within the entity’s key, so that it can access the data within the defined time-window as long 
as it is allowed to decrypt the data. When this time-window expires, the security manager can decide to either 
re-encrypt the data with a new time limit and distribute new keys to all registered entities, so that they can 
decrypt the data again or simply “drop” the maintenance of the data, so that nobody can access it any more. 
This is particularly useful if a certain data value should only be available for e.g. max 1 week. 

 
However, both approaches generate significant overhead (distributing the new keys, updating the encryption 
of the data etc.). We will further analyse the feasibility of these concepts within the Use-Case deliverables 
(especially in Use-Case 2).  
3.2.2 BACKEND PATTERN ENGINE 
As already presented in D4.6, D5.2 and in this document in Section 2.2.11.2, the Pattern Engine is a component 
that is not strictly focused only on security rather it entangles security aspects. It is responsible for reasoning 
on the Security, Privacy, Dependability, and Interoperability (SPDI) properties. The said reasoning is 
accomplished with the help of patterns that are represented as Drools rules. These rules are inserted, modified, 
executed or retracted at design as well as at runtime. These interactions are conducted with the help of Pattern 
Orchestrator and are encrypted with the use of SSL certificates that are preinstalled in the components. 
Regarding the Security Patterns, are exhaustively presented in D4.8. 
 

3.2.2.1 PATTERN ENFORCEMENT  
The patterns that are used by the Pattern Engine can be distinguished to two types. The first one is the 
verification type which allows the Pattern Engine to verify whether an SPDI property is valid or not. The second 
one is the adaptation type which gives the capability to the Pattern Engine to be able to take appropriate 
actions, whenever possible, in order to restore the validity of an SPDI property.  
When a security property is not satisfied we notice three scenarios. In the first scenario, there is a component 
that does not satisfy the security property however by applying configuration changes to the said component, 
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it is possible for the security property to be satisfied. In this case the Pattern Engine will push the necessary 
configurations changes therefore enforcing the required security property.  
Similarly, in the second scenario we assume that there is a component that does not satisfy the security 
property. This time there are no configuration changes that can be made to that component in order to have 
the security property satisfied. The Pattern Engine will then attempt to replace the said component by activating 
another component that can satisfy the security property and is available in the domain of operation. When 
this is not possible, we arrive at the third scenario, where the Pattern Engine sends an alert to the Computer 
Emergency Response Team (CERT). The role of the CERT is explained in section 4.2.  
An example of the first scenario is in UC1, where there is an MQTT Broker that may not use TLS/SSL to 
interact with its subscribers. The Broker is capable of using TLS/SSL when some configuration changes are 
applied, therefore the Pattern Engine can enforce the security by  pushing these configurations to the Broker. 
3.2.3 PATTERN ORCHESTRATOR 
The Pattern Orchestrator component is responsible for the automated configuration, coordination, and 
management of different patterns and their deployment. More specifically, it: 

• Receives instantiated recipes, also featuring the included SPDI & QoS requirements, from the Recipe 
Cooker via a well-defined API 

• Extracts SPDI & QoS properties/requirements from instantiated recipes and maps them to specific 
SEMIoTICS patterns 

• Converts patterns to Drools 
• Classifies and distribute patterns (as Drools) to the different pattern engines in three layers (Backend, 

Network, Field) 
• Collects the pattern status from said pattern engines at the various layers  
• Maintains a link with the SEMIoTICS GUI to provide an up-to-date view of the status of the patterns in 

the context of a specific orchestration to the system (SEMIoTICS) operators  
 

As such, the importance of the Pattern Orchestrator from a Security perspective is centred around is role as a 
key component in relaying the application security and privacy -related requirements to the underlying 
components, as well as its role as an aggregator of the current security and privacy (among other properties) 
status of the deployed IoT orchestrations implementing said applications. 
 

3.2.4 USE CASE APPLICATION  
3.2.4.1 POLICY ENFORCEMENT POINT (PEP) 
In order to secure access to the components' resources, the APIs of components deployed on Backend 
Orchestrator are protected by Policy Enforcement Point. PEP provides security in two ways. Firstly, it uses the 
in-built Kubernetes mechanism known as pod networking - PEP as a sidecar along with the primary application 
are deployed as separate containers inside a single pod. They both share the same network allowing them t o 
communicate through localhost. The main application is only accessible from within pod, because it does not 
expose its port outside the cluster, only PEP does that, meaning that in order to get the resource of the main 
application all HTTP traffic must go through PEP. Secondly, the HTTP request must bear a valid authorization 
token and the client which makes an HTTP call has to be authorized to do so. To evaluate client authorization, 
PEP uses the Security Manager's Policy Decision Point. After the evalua tion of the client’s policy, HTTP call 
is either allowed to reach the main application or it is rejected due to the insufficient permission. Policy 
Enforcement Point provides functionality to configure the way of mapping the request body which is sent to 
Policy Decision Point based on the properties of an intercepted request. That allow tightening or loosing 
security rules for the specified API endpoints. 
 
{ 
    "actions": [ 
        { 
        "entityId" : "application123!@!local", 
        "entityType": "app", 
        "method": "write", 
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        "field": "update" 
        } 
    ] 
} 

FIGURE 20 AN EXAMPLE OF THE EVALUATION POLICY REQUEST BODY 
 
 
 

3.2.4.2 AUTHENTICATION ENFORCEMENT POINT (AEP) 
Having communication between components secured in a microservices architecture is difficult and might be 
very time consuming to implement due to duplicating security-related code in each component. Since Policy 
Enforcement Point requires an authorization token in the header of HTTP request and moreover, to avoid 
duplicating security-related code, there was a need to provide a tool to ensure that the authorization token is 
present. Authentication Enforcement Point is created out of mitmproxy tool.  
Authentication Enforcement Point it is a stand-alone application which proxies HTTP requests coming out of 
the container with the main application. The proxy alters the communication between two parties which believe 
that they are directly communicating with each other. The proxy intercepts all the traffic coming out of the 
container with the main application in order to add an authorization token to the HTTP requests header. By 
doing so we are able to authenticate HTTP requests without making any changes in the sou rce code of the 
application. 
 
To apply a valid token, AEP uses Security Manager's OAuth 2.0 Clients Credentials Grant flow ( Figure 21). 
Every component is registered in Security Manager with its client-id and client secret. Using these values, 
Security Manager can generate a unique token for the component, which is added to the HTTP request header 
in order to not be rejected by Policy Enforcement Point.  
 
 

 
 
3.2.4.3 SECURITY MANAGER INTEGRATION WITH AEP AND PEP  
To have a better understanding of how the security between components has been implemented, the figure 
below (Figure 22) shows an entire example of how AEP and PEP work along with the Security Manager. At 
first, the Primary Application requests data from the Resource Application. To do that, an HTTP request is sent 
to the Policy Enforcement Point of Resource Application, because only the PEP exposes its port the outer 
cluster (1). The request then is intercepted by Authentication Enforcement Point. AEP is configured based on 
which application is using a proxy, meaning that Primary Application's client-id and client secret are accessible. 
AEP authenticates the Primary Application with the Security Manager using its client -id and client secret 

FIGURE 21 OAUTH 2.0 CLIENT CREDENTIALS FLOW 
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(/oauth2/token endpoint) (2). Security Manager sends a response with an access token to AEP (3). At this 
point, AEP adds the token to the original HTTP request header and forwards the request to its original 
destination (4). 
As soon as the request reaches the Policy Enforcement Point, it is verified whether the application whe nce it 
came from has sufficient privileges to get access to the resource. The request is compared to the configuration 
kept in PEP to create a new, policy verification request to Security Manager. The policy verification request is 
sent to the Security Manager’s Policy Decision Point (/api/v1/pdp/batch endpoint) (5). Security Manager 
evaluates the given request and responses with a boolean (6). At this moment, if the Security Manager’s 
response is negative, the response of the original request will be 403 Forbidden (9), else if the Primary 
Application has got sufficient privileges to get the access to the requested data, the original request is 
forwarded to the Resource Application (7). Finally, the API of Resource Application responds with requested 
data (8, 9). 
 
 

 
FIGURE 22 COMMUNICATION FLOW BETWEEN COMPONENTS 

 
 
 

3.2.4.4 ATTRIBUTE-BASED ENCRYPTION/DECRYPTION MODULE 
The Attribute-based Encryption and decryption module uses the provided ABE-API of the Security Manager. 
This API allows the Use-Case application to securely store (privacy sensitive) data encrypted under ABE (with 
a pre-defined set of attributes or a policy) within the Security Manager’s database. Furthermore, the API can 
also be used to decrypt stored data, whenever an entity wants to access (privacy sensitive) data.  
However, the entity can only decrypt the data successfully, if and only if the embedded entity information within 
the DK satisfies the requirements of the encryption information that is embedded within the ciphertext.  

3.3 Security Components in the Network Layer 
3.3.1 SECURITY MANAGER IN THE SDN 
The Security Manager (SM), as presented also in D3.7, offers support for authentication and accounting 
services. The said services are realized to the rest of the SDN Controller as well as the users and applications 
that interact with the controller. Regarding authentication, the SM exposes interfaces for the administration of 
local SDN Controller accounts. Additionally the SM is able to generate authentication tokens based on local 
credentials thus providing authentication capabilities. Applications can present their credentials to SM and if 
proven valid they are issued authentication tokens. Any interaction with the SSC will  include the presentation 
of said token to the SM for validation in order for the interaction to be allowed or not.  
 

Authentication and authorization mechanisms protect the interfaces of the SSC. Interfaces relevant for 
SEMIoTICS, including the Security Manager, VTN Manager and Pattern Engine northbound interfaces, are 
protected by HTTPS digest authentication, thus supporting the R.S.7 requirement. To protect and isolate 
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access to particular internal APIs of the controller, Security Manager enables role -based definition of 
authorities granted access to the service, thus fulfilling the requirement R.S.2.  
3.3.2 NETWORK (SDN) PATTERN ENGINE 
The Pattern Engine in the SEMIoTICS SDN Controller (SSC), as already presented in D3.7, is able to detect 
invalid rule configurations by means of component observations by subscribing to network topology events. 
The Pattern Engine additionally exposes a bidirectional interface towards backend. On each status change of 
an active pattern instance, the remote Pattern Engine is notified, so that additional reconfiguration steps can 
be partaken there. Due to the nature of the Pattern Rules, the interaction of PE with other components inside 
the SSC is not limited to specific components, but can also be extended to others. The ability to add new rules 
during runtime provides flexibility to interact with existing or future components of the SSC whether they are 
security related or not. 
 
3.3.2.1 PATTERN ENFORCEMENT 
Similar to Section 3.3.2.1 patterns, are distinguished to two types in the Pattern Engine at the SDN, verification 
and adaptation. Regarding the adaptation type, those rules tackle with service Function Chaining (SFC). SFC 
patterns are developed to achieve the requirement for end to end guarantees by the traffic forwarding through 
different security service functions. The patterns enforce the following requirements:  

• Verify service function chains on chain requests 
• Instantiate service function chains, if the required functions have been already instantiated.  
• Verify functions to insert them in the request chain 
• Instantiate not defined service functions, to satisfy service function chain requests.  
 

The procedure of instantiation and the identification of the respective SFCs and the VNFs, this can be based 
on the actual interaction between the components of the SEMIoTICS architecture. Pattern Orchestrator 
forwards a specific chain request to the Pattern Engine for forwarding the traffic between entities through a 
specific chain of functions. Pattern Engine forwards this request to the SFC manager which is located in the 
SDN controller responding to the Pattern Engine whether the chain exists or not. If the chain exists, then a 
respond of the chain satisfaction is returned to the Pattern Orchestrator. If the chain does not exist, then a 
requested is forwarded from the MANO requesting whether the service functions exist or not. If functions exist 
in the VIM, then the chain can be instantiated in the SFC Manager and a respond of the chain satisfaction is 
returned to the Pattern Orchestrator. If functions do not exist in the VIM then, a function instantiation request 
is forwarded to the NFV Orchestrator, which is responsible to instantiate them in  the VIM. Then, the chain can 
be instantiated in the SFC Manager and a respond of the chain satisfaction is returned to the Pattern 
Orchestrator. 
 

3.3.2.2 INTERFACE SECURITY 
Since the SDN pattern engine exposes a northbound interface (for specifying SPDI/QoS properties and to 
support other interactions with the backend, as mentioned above and presented in detail in D3.10) an important 
consideration were the security aspects of the exposed interface. 
The SDN Pattern Engine adopts the security mechanisms available in  the ODL controller, and by extension 
the SSC, which features basic authentication capabilities (via username and password). Through this feature, 
all modules used by the SDN controller are subject to this authentication. Case in point, the Pattern 
Orchestrator is forced to provide credentials in order to be able to communicate with the SDN Pattern Engine.  
Additionally, security is hardened on a per-case basis, considering the intrinsic requirements (e.g., complexity 
of interactions) foreseen in each scenario. Said intrinsic requirements are addressed by adding encryption to 
the communication (E2E, where needed) by using SSL/TLS in the REST endpoints.  
Moreover, advanced Authentication, Authorisation and Accounting (AAA) features are implemented with the 
help of the Security Manager who is responsible for providing tokens that enforce the said features. Leveraging 
these mechanisms, the communication between Pattern Orchestrator and pattern -driven NBI is hardened by 
the use of an authentication token. In all interactions, the Pattern Orchestrator will first request a token from 
the Security Manager that will later use to contact the pattern-driven NBI. If the token is verified to be able to 
grant access to the pattern-driven NBI then the communication proceeds successfully. This process prevents 
unauthorized use of the pattern-driven NBI. 
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3.4 Security Components in the IoT Gateway & IoT Devices (Field Layer) 
3.4.1 SECURITY MANAGER ON THE GATEWAY 
In addition to using the Security Manager on the Backend, as outlined in Section 3.2.1, the entire SM is also 
used on the gateway at the field level. It can be regarded as a fully working local replica of the SM in the 
Backend as well as the Policy Enforcement Point (PEP) to include redundant components. This is done 
because of reliability reasons and to ensure safety in case that the IoT Gateway is not able to establish a direct 
connection to the Backend. 
 
3.4.1.1  POLICY ENFORCEMENT POINT (PEP) 
In order to provide a redundant endpoint to accept incoming requests for an application provided by the field 
layer, the Security Manager’s PEP can be deployed as a standalone replica on the Gateway. There the PEP 
is responsible for bundling and forwarding all requests to the SM component. Without this PEP replica on the 
Gateway a “offline” operation of the Gateway couldn’t be ensured. 
 

3.4.1.2 POLICY DECISION POINT & POLICY ADMINISTRATION POINT LOCAL-SHADOW REPLICA 
From a deployment scenario the idea was to have enable local policy decis ions to be taken for  

• increased efficiency (lower latency, less communication outside of the gateway), and 
• increased data-protection (less communication outside of the gateway), and 
• increased availability (local shadow replica remains reachable if the network connection is too slow or 

not available). 
 

This means that a subset of the functionality of the Security Manager will also be replicated and distributed 
onto local gateways. Of course, in large scale deployments there can be more than one gateway that is 
managed by a Security Manager and as we have discussed previously there can also be more than one 
Security Manager.  
In the following Figure you will find visualizations of the possible scenarios showing the deployment.  
 

 
FIGURE 23 VISUALIZATIONS OF POSSIBLE DEPLOYMENT SCENARIOS 

 
Note, the replicated Security Manager will provide the functionalities of only PEP and PAP locally. The local 
version is under normal conditions trying to obtains the policy decision directly from the Security Manager in 
the Backend (for PDP functionality) or update the policy directly on the database of the Security Manager in 
the Backend (for PAP functionality). However, when those direct requests are not possible the replicated 
shadow will provide the functionality locally, and synchronise back with the backend once possible. This local 
fallback allows the policy enforcement to still function with a local view on the policy. Additionally, the policy 
decision point could be configured to deny access if  the last contact to its backend is too long ago. 
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The details of the implementation and the roll-out during the deployment of both Security Managers in the 
backend as well as their shadows in the local edge on the IoT gateway are discussed in the implemen tation 
specific deliverable D5.5. 
 
 

3.4.2 FIELD PATTERN ENGINE (LOCAL INTELLIGENCE ON THE IOT GATEWAY) 
As already explained in Section 2.2.11.2, the Pattern Engine is a component that is not strictly focused only 
on security rather it entangles security aspects. In accordance to that, the Pattern Engine on the gateway is a 
light version of the Pattern Engine that exists on the Backend due to the limitations on memory and processing 
capabilities. In same manner, it is responsible for reasoning on the Security, Privacy, Dependability, and 
Interoperability (SPDI) properties at the field layer. The said reasoning is again accomplished with the help of 
patterns that are represented as Drools rules. These rules are inserted, modified, executed or retracted at 
design as well as at runtime. Just as in the Backend so, in the field, the interacti ons are conducted with the 
help of Pattern Orchestrator and are encrypted with the use of SSL certificates that are preinstalled in the 
components. Finally, any fact that is added or deleted to the Pattern Engine on the gateway is also modified 
accordingly at the Pattern Engine at the Backend. 
 

3.4.2.1 PATTERN ENFORCEMENT 
Similar to Section 3.2.2.1 patterns are distinguished to two types in the Pattern Engine at the field layer, 
verification and adaptation. The same three scenarios described in Section 3.2.2.1 also apply here. 
An example of the described scenarios is in UC1, where a sensor such as the inclinometer at the field layer 
may not use encryption to interact with the Broker. If the said sensor is capable to support encryption, the 
Pattern Engine at the field layer, will push the necessary configuration changes therefore enforcing the required 
security property. Alternatively, if the specific inclinometer does not support encryption, the Pattern engine will 
attempt to locate another inclinometer that exists in the installation and supports encryption. The information 
regarding the available components of the local installation can be retrieved from another SEMIoTICS 
component, the Local Thing Directory. Finally, if no replacement component can be found, an  alert to CERT is 
sent in order to take appropriate actions.  
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4 INCIDENT DETECTION AND RESPONSE IN SEMIOTICS 

4.1 Security Network Mechanisms for Monitoring and Incident Detection 
To monitor the security incidents, a collection of tools and procedures are required to detect incidents when 
they happen or are near happening is required. As described previously, security in SEMIoTICS is 
strengthened by combining the various Security Functions, employing the flexibility of SDN/NFV–enabled to 
enhance service Function Chaining as described also in D3.8. More specifically, to offer continuous monitoring 
of incoming traffic, and detecting and adapting to different types of attacks. The varie ty of previously described 
security network functions such as Firewalls (FW), Intrusion Detection Systems (IDS), Deep Packet Inspection 
Systems (DPI), Honeypots (HP) and HoneyNets, can create a number of function chains, to forward traffic 
based on the type of traffic or running application. 
 

4.1.1 DATA FEED BY HONEYPOTS 
Honeypots appear to be efficient security mechanism to detect attacks and malware. In addition, a HoneyNet 
can be deployed, consisting of Honeypots emulating more than one network elements, as well as Honeypots 
emulating the operational systems. With this mechanism, malicious traffic can be isolated in the honeypot, 
allowing us to track the attacker, identify her purpose and keep her occupied. Simple Honeypot s8 and passive 
Honeypots (Early Warning Intrusion Detection Systems, EWIS, in specific9) are also capable to be part of the 
HoneyNet, acting as a Network Telescope on the production part of the industrial network, to monitor all activity 

 
8 http://www.honeyd.org 
9 Chatziadam, Panos, Ioannis G. Askoxylakis, and Alexandros Fragkiadakis. "A Network Telescope for Early 
Warning Intrusion Detection." International Conference on Human Aspects of Information Security, Privacy, 
and Trust. Springer International Publishing, 2014. 
 

FIGURE 24 POSSIBLE SCENARIOS FOR EWIS SENSOR DEPLOYMENT 
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in normally unused parts of the network. The honeypot sensor network (EWIS) is a self -developed system 
operated by FORTH. The honeypot sensor monitors darknet traffic and reporting back patterns that can 
potential indicate a network anomaly which in accordance with the data derived from the IDS devices can point 
to a "brewing" network incident. 

 
 

The concept behind EWIS is to establish a system that would be cost effective to implement, easy to deploy 
and provide sufficient data to create an Early Warning System that could potentially detect large scale events 
on a global scale. As EWIS operates on un-used address spaces, all traffic reaching it can be classified as 
malicious thus avoiding unnecessary filtering of legitimate traffic. As security is a major concern, the sensors 
are built on a secured OS platform, run the bare minimum of services and are protected by a firewall. The fact 
that EWIS’s sensors utilize a passive approach to data collection is also a favourable point by an organization 
that certainly doesn’t need any devices within their infrastructure to be talking back to a potential attacker. 
From a network topology point of view, the sensors can be positioned outside the organization’s network on 
the Demilitarized Zone (DMZ) or even the public section of the network just outside the organization’s 
firewall(Figure 24). Isolating the sensor from the organization’s Intranet and at the same time fully exposing it 
to the outside world is the best way for deployment. When the sensor is compromised, there would be no 
posed threat to the internal network of the host organization. In such an unlikely case, we can simply replace 
the sensor. 
 
EWIS can be installed either as a virtual or physical server with specified hardware and bandwidth 
requirements and hardened OS on a Linux (Ubuntu 14.04 in our case). These requirements of virtual honeypot 
in a virtual infrastructure (i.e. Openstack) can be requested during its instantiation. EWIS honeypot requires a 
fast network connectivity to support the passive traffic monitoring and forwarding and mirroring Traffic. 
Therefore, the 100Mbit Internet access and 1Gbit access within the domain should be provisioned by the SDN 
Controller as well as the physical connectivity. These systems could be dummy controllers that will attract 
attackers and record their moves as well as identify other misbehaving control plane elements from the 
information received by other controllers. These systems will not participate as functional components of the 
network infrastructure. Prior to deployment, each sensor is assigned a dark network space that could span 
from a few IPs to entire subnets. When traffic arrives for a specific IP address the router broadcasts an ARP 
request in order to discover the host. When the sensor replies to the ARP request as the  owner of the 
corresponding IP address, the router directs all traffic to the sensor. The sensor’s monitoring daemon captures 
the received traffic and records it to the database. This in-house developed daemon uses the pcap library to 
capture information such as the source and destination IP addresses, the source and destination ports, the 
flow payload size, the protocol type (number), the TCP flag (in case the flow is of TCP type) and the associated 
timestamp. 
 

4.1.2 DATA FEED BY INTRUSION DETECTION SYSTEM (IDS) 
Data feed from the IPS/IDS monitoring device: IDS in SEMIoTICS include continuous network monitoring and 
intrusion detection for identification of attacks and run-time network adaptation for attack response and 
mitigation mechanisms. More specifically, IDS instances of Snort are deployed, with scripts to ensure that the 
most up-to-date rules are constantly active. A database for event monitoring is present, while provisions are 
made to allow for future extensions to transmit relevant information to a secur ity backend (e.g. for more 
sophisticated pattern matching). 
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4.2 Incident detection and mitigation with a Computer Emergency Response Team 
(CERT) 

A Computer Emergency Response Team (CERT) can provide services relating to information security 
incidents. In SEMIoTICS, the knowledge regarding the role of CERT is transferred by FORTHcert 10, FORTHcert 
is the Incident Response Team of the FORTH. FORTHcert operates under the Institute of Computer Science 
and provides services relating to information security incidents. Its mission is to perform security incident 
coordination services for its members, to disseminate information regarding information security issues, to 
provide a national point of contact to international security community and to promote education and training. 
A CERT is responsible to enable information sharing capabilities and tool support between other security teams 
to manage incoming events and incidents. The trust between the CERT/CSIRT community 11 is guaranteed by 
the accreditation and certification of CERT Team by authorities such as TERENA12/FIRST13. Α remote 
management service can enable the system administrator to change the system manually and update the 
reaction plans based on the latest security guidelines. 
 
A CERT team can be authorized to take operational actions regarding vulnerabilities and mitigation of 
incidents. Such actions may include but are not limited to blocking access to the network. More specifically, 
the security team operates or uses these tools or has access to the results generated by them. Mitigation 
strategies include decision making (prevention, remedial), change roles of user privileges and correct of system 
problems. For prevention of incidents, a collection of tools aimed at preventing incidents from happening in the 
constituency. CERT security team operates or uses these tools or has access to the results generated by 
them. Especially, in SEMIoTICS, to provide system and network prevention, it is required the use of system 
preventive software backed up frequent network vulnerability security scans as a proactive method for 
preventing security breach incidents. More specifically, CERT teams can retrieve data and alarms from the 
previously described mechanisms. 
 

4.2.1 INCIDENT MITIGATION: PREVENTION AND ADAPTATION 
Mitigation strategies include decision making (prevention, remedial), change roles of user privileges and 
correct of system problems. For prevention of incidents, a collection of tools aimed at preventing incidents from 
happening in the constituency. SEMIoTICS security team operates or uses these tools or has access to the 
results generated by them. To provide system and network prevention in SEMIoTICS architecture, it is required 
the use of system preventive software backed up frequent network vulnerability security scans as a proactive 
method for preventing security breach incidents. 
 

4.2.2 TRACE-BACK AND AUDIT MECHANISMS 
The formulation of an anomaly detection hypothesis will have as a result the impact analysis of cause and 
effect. To provide trace-back and audit, a collection of tools aimed at resolving incidents after they have 
happened. The security team should operate or use these tools or has access to the results generated by 
them. Especially, for industrial environment such as a wind park, it is required a 24x7 call reporting of incidents 
problems. Incidents can be reported via telephone or email to the security experts and administrators. All 
reported incidents should be logged and tracked for resolution. Incidents should be assigned a priorit y level 
and receive technical and management attention according to the priority level assigned. Incidents are 
addressed as per the incident priority table below and the target resolution times. Although staff could carry 
cellular phones, during non-business hours, they may not be available to assist with problem resolution within 
a guaranteed timeframe. 
 

 
10 http://forthcert.gr 
11 https://www.enisa.europa.eu/activities/cert/support/guide2/introduction/what -is-csirt 
12 www.terena.org 
13 www.first.org 
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4.2.3 ADOPTION OF MECHANISMS FOR CONDUCTING TRACE-BACKS AND AUDITS 
In the adoption of a mechanism for conducting trace backs and audits, it is important that we keep a log of all 
the steps that we have taken to resolve an incident. When an incident alert arrives, all the information needed 
about the incident from the reporter should be recorded. Afterwards, a classification of incident priority 
according the emergency/severity. In case that there is lot of alerts coming, we need to set priorities according 
to the emergency of the incident so that it is handled in the right order. All incidents should be recorded into a 
ticketing system by filling out the fields needed (description on incident/whether resolution is reached) including 
the IP address, set incident priority (set a priority description), and the date incident took place. Any updates 
to the incident, or any progress to resolve it, the team members need to update the ticket with the relevant 
information. 
 
All the processes should be recorded following the three-step approach: (i) Record all corresponders and all 
progress (ii) review what happened by writing a report and (iii) learning lessons for constituency. The 
availability and application of an incident classification scheme is used to record incidents. Incident 
classifications usually contain at least “types” of incidents or incident categories. However, they may also 
include “severity” of incident. In order to ensure that we respond to incidents in a structured manner it is 
essential that incidents are classified and prioritized. How an incident is classified depends on various factors 
of which the most common/significant ones such as the nature of the incident and the criticality of the systems 
impacted. Furthermore, the number of systems impacted by the incident and the impact of the incident can 
have on the organization from a legal or public relations point of view and of legal and regulatory requirements 
 

The existing ticketing system provides type and priority fields for incident classification. The type field is used 
to classify the incident into a major category of problems. The list of problem categories provides the following 
options: defacement, DoS, infringement, phishing, spam, system hacked, virus. The type field contains the 
most usual descriptions for the issues we face. If an additional classification or distinction of the incident is 
required, it should be inserted in the description body of the relevant ticket. The priority field will be used to 
assign a “weight” or priority to the incident. The assigned priority corresponds to the criticality of the incident 
as judged by the factors mentioned above. Currently the list of priorities provides the following options such 
as critical, major, minor, trivial. 
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5  THREAT ANALYSIS OF AN IOT APPLICATION 
In this section, we provide a security analysis for a scenario based on the assisted living use case (UC2). In 
particular, this use case is arguably the most sensitive use case of the project in terms of privacy. Therefore, 
we have chosen the assisted living scenario to highlight our contributions towards end-to-end security and 
privacy. 
 
We consider that providing a scenario that exemplifies some threats based on UC2 on a high level, and in a 
specific privacy-oriented narrative, has more value added than performing threat analysis for all the use cases 
for multiple reasons. For one, this approach helps the project to define a path to integrate the security features 
in the task coherently in a concise manner. At the same time, this deliverable helps the reader to understand 
the threats that our security and privacy frameworks aim to tackle with a “simple” scenario de scription. Last 
but not least, a complete risk analysis for all use cases is beyond the scope of the research activities performed 
in this project, as our goal is to do research activities and evaluate our approaches during the project, instead 
of focusing on specific threats on a per-scenario basis. 

5.1 Methodology  
We based our analysis on the Security Development Lifecycle. Thus, we follow the threat and attacker 
definitions provided by Howard and Lipner [23]. Particularly, a threat is defined as an attacker’s objective, 
whereas an attacker or an adversary is also called a threat agent.  
 
Our risk analysis follows the relevant methodology from the Security Development Lifecycle proposed by 
Microsoft; mainly, we produce data flow diagrams based on the application. The elements in the data flow 
diagrams can be: an external entity, a data flow, a data store, or a process. Different elements in the data flow 
diagrams (also sometimes called assets) can face particular attacks depending on their type; that is to say, a 
process can be attacked differently than an external entity, e.g., a user.  
 
Since the architecture of SEMIoTICS and the use cases are continuously under development, i.e., we have 
only the first cycle of architecture definition; we perform a security threat analysis based on the external entities, 
the data flows and the data stores, and processes. 
 
To navigate through potential threats systematically, we apply the STRIDE (Spoofing, Tampering, Repudiation, 
Information disclosure, Denial of service, Elevation of Privilege) methodology to identify relevant threats to the 
system. 
  
The STRIDE approach is an acronym was created to identify common six classes of threats. For clarity , we 
take excerpts of the definitions provided by Howard and Lipner  [23]: 

• Spoofing Identity: Spoofing threats allow an attacker to pose as something or somebody else (…) 
• Tampering: Tampering threats involve malicious modification of data or code(…)  
• Repudiation: An attacker makes a repudiation threat by denying to have performed an action that 

other parties can neither confirm nor contradict (…) 
• Information Disclosure: Information disclosure threats involve the exposure of information to 

individuals who are not supposed to have access to it (…)  
• Denial of Service: Denial of Service (DoS) attacks deny or degrade service to valid users – for 

example, by making a Web server temporarily unavailable or unusable (…)  
• Elevation of Privilege: Elevation of Privilege (EoP) threats often occur when a user gains increased 

capability, often as an anonymous user who takes advantage of a coding but to gain admin or root 
capability (…) 

 
Following these six classes, we identify existing threats against particular elements  (data flows, data stores 
and external entities) of our data flow models; for example, data flows face different threats than external 
entities. Thus, with the help of this methodology we map relevant elements found in our data flow  analysis to 
relevant threats. Last but not least, we relate possible countermeasures provided within SEMIoTICS to specific 
threats depending on each layer of the architecture shown in Figure 17.  
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We do not provide a rigorous risk analysis for various reasons. First of all, a detailed risk analysis needs to be 
performed in an environment when all the processes, software, and every specific technical aspect  has been 
clarified, e.g., exact software versions for libraries.  Second, even if we had this information (which is only 
available towards the end of the project), these results would be only applicable to a single us age scenario. In 
turn, this hinders the value of this document to transmit a clear message regarding the kind of threats we can 
address with SEMIoTICS. Instead, as previously mentioned, we consider that a basic scenario including 
sensitive information allows us to showcase the usefulness of our approaches.  

5.2 Use Case Description  
We use UC2, i.e., the “Socially Assistive Robotic solution for ambient assisted l iving” described in the 
SEMIoTICS usage scenarios and requirement deliverable D2.2.  
 
5.2.1 OVERVIEW OF THE STORYLINE 
UC2 provides support for an elderly patient with a mild cognitive impairment. One aspect of the use case is to 
provide mechanisms to engage the patient in multiple activities to keep him active. Additionally, there are other 
elements in the patient’s home to help him move around his environment. The latter is of utmost importance 
for elderly patients.  
As a natural consequence, the use case also requires features to detect situations when the patient is in 
distress; for example, if the patient faints, feels sick or falls to the ground. In such situations, the system 
generates an alarm to a care giver, e.g., a family member, and provides mechanisms to have joint 
‘telepresence’ communication to ensure that the patient is fine. Furthermore, the system also provides the 
means for a care giver to request a ‘telepresence’ session with a general practitioner, i.e., medical staff, to 
ensure that the patient is healthy. 
 
5.2.2 COMPONENTS AND ACTORS 
The use case uses the following components: 

• Body Area Network (BAN): comprising a wearable Inertial Measurement Unit (IMU) and mobile 
smartphone running a dedicated BAN app  

• Robotic Rollator (RR): a semi-autonomous motorised wheeled walking frame for physical support in 
moving around; 

• Robotic Assistant (RA): in this case Softbank’s Pepper, a mid-sized humanoid robot 
 

The actors are the following: 
• Care Recipient (Patient): Person age > 60 or 65 with a slight but noticeable and measurable decline 

in cognitive abilities, including memory and thinking skills 
• General Practitioner (GP): A medical professional 
• Caregiver (CG): Any relative, partner, friend or neighbour who has a significant personal relationship 

with, and provides a broad range of assistance for, an older person or an adult with a chronic or 
disabling condition. 
 

We start the use case analysis with our security assumptions, followed by the data flow diagrams. Then , we 
analyse the STRIDE threats. Our descriptions are based on the work by Howard and Lipner [23].  
 

5.3 Security Assumptions 
Τhe security assumptions on top of which the following threat analysis rely upon are presented below: 

• We assume that state-of-the-art cryptography mechanisms are well implemented and therefore cannot 
be broken by an attacker, i.e., to gain unauthorized access to the data. 

• We assume that firewall rules are properly implemented and cannot be bypassed by an attacker  
• We assume that an attacker cannot gain unauthorized access to the operating system, or any of the 

Security Managers or other components developed by SEMIoTICS.  
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5.4 Data Flow Diagrams 
Each data flow diagram contains the following kind components (assets), according to the Security 
Development Lifecycle: 

• A Complex process: depicted by a double circle, shows a logical abstraction to represent a process 
with multiple operations and interactions. 

• A Process: depicted by a regular circle shows an element that performs a single task, Processes reflect 
software components in many cases. 

• External entity: depicted by a square shows something or someone driving the application which is 
beyond the control of the application being developed, e.g., a user.  

• Data Store: Shown by the rhomboid reflects persistent elements such as files or databases.  
• Data Flow: Arrows showing that data moves between processes or entities. 
• Privilege Boundary: dotted line showing where information flows between lower and higher privilege. 

In general, these boundaries help to identify locations where additional checks for the information 
flowing are needed. 

 
Also, we initially depict some use cases through complex processes, in order to drill down into details and de -
compose complex processes in atomic processes afterwards. 
 
Regarding our security methodology, we follow the STRIDE methodology based on the data flow diagrams 
and their different elements. Essentially, this means that we consider different kinds of threats depending on 
the element type. This is a consequence of using the Security Development lifecycle. Now, we list the threats 
against each kind of element (also called asset sometimes), which is provided by [23]. 
 

• External entity: subject to Spoofing and Repudiation (SR) 
• Data flow: subject to Tampering, Information Disclosure, and Denial o f Service (TID) 
• Data store: subject to Tampering, Information Disclosure, and Denial of Service. Also if the data store 

is a log, it can be subject to Repudiation (TID+R).  
• Process: Spoofing, Tampering, Information disclosure, Denial of Service, Elevation or Privilege 

(STRIDE). 
 
 
As previously described, we start with a set of complex processes to provide an overview of the use case and 
start the threat analysis. 
 
The diagram sown in Figure 25 depicts the complex processes involved in the use case. Particularly, it shows 
how when a patient walks in his environment, e.g., his apartment, the monitors his behaviour, and 
simultaneously analyses data to detect possible distress situations. If there is a situation where the patient 
may be at risk, the care giver is notified. Once the care giver receives an alert, he could decide to start a 
remote ‘telepresence’ session with the patient. Also, the care giver could request a remote ‘telepresence’ 
session with a general practitioner. 
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FIGURE 25 COMPLEX PROCESSES FOR UC2 

 
 
Although the diagram of complex processes shows an overview of the security- and privacy-relevant actions 
in the use case, they are too course-grained for a threat analysis. Therefore, we decompose them in smaller 
processes to provide a more detailed view of the components involved and their data flows.  
 
Figure 26 shows each complex process in a more fine-grained fashion to facilitate the analysis. 
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FIGURE 26 DATA FLOW DIAGRAMS FOR UC2 

 
 
5.4.1 PATIENT MONITORING 
This step happens constantly as the patient uses the RR. Particularly, the RR constantly uploads information 
obtained from the patient’s BAN to ensure availability of the data to the proper parties in the cloud.  
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5.4.2 DETECT DISTRESS 
Simultaneously with the patient monitoring, the rollator captures video and Body Area Network (BAN) data 
from the patient to detect situations when the patient may be in danger, such as irregular reading coming from 
the body sensors or detecting a fall (which is a big risk, especially for elderly patients) . Based on this data, the 
RR detects that the patient is weak and generates an alert to the SARA cloud. Here, there is a first privilege 
boundary appears, between the home of the patient and the SARA cloud. Afterwards, there is a second 
boundary between the SARA cloud and the mobile application executed on the care giver’s phone. 
  
5.4.3 CARE GIVER (CG) REMOTE SESSION 
In a situation when the care giver is concerned by the patient, he can initiate the ‘telepresence’ session with 
the patient. To this end, the CG can use his phone to start a video conference with the Robot Assistant (RA) 
to interact with the patient. In this scenario, both ends of the communication have ‘read and write’ access to 
multimedia information; essentially, this means that they can observe the environment , i.e., camera and 
microphone but also modify it with the screen and speakers. In this scenario, the main trust boundary appears 
between the mobile phone application of the care giver and the RA in the environment of the patient.  
 
5.4.4 GENERAL PRACTITIONER (GP) REMOTE SESSION 
This scenario involves three actors and starts from the right-hand side of the figure. The CG can request a 
session between the GP and the patient; here we find the first privilege boundary. Then, when the CG sends 
a request to the SARA cloud, the cloud notifies the terminal where the GP is connected to the SARA cloud. 
This is another privilege boundary. Once the GP is notified the SARA cloud provides access to the patient’s 
records as well as existing BAN data reflecting his health status. Once the GP is ready to start the 
‘telepresence’ session, he starts the connection between his terminal and the RA, where we find the last 
privilege boundary. In the session both, the GP’s terminal and the RA require access to microphone, video, 
speaker and screen of both devices.  

5.5 Assets and Threats 
This section lists the assets based on their kind to assert based on their type. Also, within each element, we 
present threats against it. We have selected threats that are relevant to data stores, data flows and external 
entities with high impact, which can be mitigated by the approaches proposed in this document. For 
conciseness, we have grouped rows in the table when multiple data stores, flows or entities share the same 
threat. 
 
5.5.1 DATA STORES 

Data Store Kind of 
threat 

Description Countermeasure 
 

SARA 
(Patient’s 
records) 
 
SARA 
(Patient’s 
BAN) 

Information 
Disclosure 

A GP could read 
information from a 
patient he is not 
treating 

We add a PEP in the SARA cloud to ensure that a 
GP only access information for a patient when he is 
treating him or her. For this, an attribute could be 
added to the patient indicating which doctor is 
treating him.  

SARA 
(Patient’s 
records) 
 
SARA 
(Patient’s 
BAN) 

Information 
Disclosure 

An attacker 
compromising the 
SARA cloud could 
read information of 
any patient from the 
patient’s record data 
base 

Although this attack requires a highly skilled 
attacker, it can have high impact.  
 
A possible mitigation would be to employ attribute-
based encryption to ensure that patient’s records 
and BAN data is encrypted requiring a user with a 
private key with the attribute role equals to “GP” or 
“General Practitioner” 
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RR (BAN 
Data),  
RR (Video 
and Audio) 
RA (Video 
and Audio) 
GP Terminal 
(Video 
Audio) 

Tampering An attacker could try 
to tamper with the 
information stored 
the different 
components storing 
it.  

To counter this threat the RR, RA, GP and SARA 
shall have proper access control mechanisms to 
access databases holding sensitive information. In 
case these mechanisms are not provided by default, 
a PEP enforcement point could be deployed, e.g., 
using the side car proxy, to ensure that components 
providing critical information validate security 
policies before sending information. 

RR (BAN 
Data),  
RR (Video 
and Audio) 
RA (Video 
and Audio) 
GP Terminal 
(Video 
Audio) 

Information 
Disclosure 

A GP could open a 
remote 
“telepresence” 
session, or attempt to 
get privacy sensitive 
information such as 
the patient’s exact 
location from the 
BAN data, which 
poses a privacy risk. 

The policy framework can enforce strict policies, 
restricting access to video and audio streams 
monitoring the patient as well as other privacy-
sensitive information, e.g., the patient’s location, in 
normal system state.  
 
However, if a fall is detected the context changes, 
and the CGs/GPs will be able to retrieve the location 
for safety purposes. To enforce this change of state 
and dynamic update of security policies the security 
and privacy patterns can be used. Also, they can be 
used to monitor the state of the system and raise 
alerts for human intervention if needed. 

 
 
5.5.2 DATA FLOWS 

Data Flow  
Source/Dest 

Kind of 
threat 

Description Countermeasure 
 

SARA/ CG 
APP Send 
Alert 

DoS DoS for the 
message could 
harm the patient if 
he does not get 
proper medical 
attention. 

Send messages through two channels (Cellphone 
and Wifi). SEMIoTICS is currently exploring the 
possibility to use (Virtual Network Functions) VNFs 
for this purpose. 

RR/SARA 
Upload BAN 

Information 
Disclosure 

If an attacker 
manipulates the 
RR, it could store 
the BAN data 
under another 
user 

The application could implement policies to ensure 
that the RR is authenticated as an OAuth2 client. 
Also, when the client writes to a patient, it can 
ensure that the owner of that RR is indeed the 
patient who owns the heath record too. 
 

CG App/ 
SARA 
Schedule GP 

Information 
Disclosure 

An attacker could 
impersonate the 
CG App to 
generate a 
request to 
schedule a GP. 
This would let a 
GP violate the 
user’s privacy if 
he starts a call to 
gain access to the 
patient’s video 
stream.  

To counter this threat, the application can register 
CG App as an OAuth2 client in the backend. 
Furthermore, if the GP application instance is 
associated with the patient, an attacker cannot 
authenticate on behalf of the CG app without 
compromising the phone of the caregiver. 



780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017 
Deliverable D4.12 SEMIoTICS Security and Privacy Mechanisms (final) 
Dissemination level: [Public]  

 

54 
 

SARA/ CG 
APP Send 
Alert 

Tampering An attacker could 
attack the 
underlying SDN 
network to 
redirect the traffic 
to malicious 
destinations by 
adding flow rules 
to SDN switches  

SDN switches and controllers’ communication 
could be encrypted to avoid third-party 
manipulation of network data flow. Also 
authentication should be used to avoid any kind of 
tempering using the NBI interfaces of the SDN 
controllers 

 
 
5.5.3 EXTERNAL ENTITIES 

Entity Kind of 
threat 

Description Countermeasure 
 

General 
Practicioner 
(GP) 

Spoofing An attacker could 
impersonate a GP 
during a session 

Even though this threat is unlikely, as it needs 
physical access to the GP terminal, it can have high 
impact. To prevent the threat, the application could 
protect the SARA cloud service by relying on the 
authentication services provided by the Security 
Manager. 

 
5.5.4 PROCESSES 

Entity Kind of 
threat 

Description Countermeasure 
 

RR, RA, 
SARA, GP 
Terminal 

Tampering In the case of a 
vulnerability, an 
attacker could 
install malicious 
software in the 
rollator, the 
robotic assistant 
or any other data 
source to perform 
a more complex 
attack, e.g., install 
a botnet client in 
the devices to 
launch a DoS 
attack against 
third parties. 

On the one hand, the machine-learning approaches 
presented before could be used to detect malicious 
behaviour, e.g., the botnet.  
 
Additionally, the SDN functionality could be used to 
redirect malicious traffic to a honeypot and analyse 
the attacker’s behaviour. In this way, threat 
intelligence could be collected to prevent similar 
attacks in the future. 
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6 REQUIREMENTS AND KPIS 

6.1 Overview  
The project collected and categorised a number of requirements in Deliverable D2.2, D2.3 and D2.4. In section 
5.2 we discuss those requirements that are security- and privacy-related and mention how or where they are 
addressed. The final evaluation of the KPI K.4.6 (i.e. the KPI that is related to Task 4.5 as provided in D5.1) 
has been achieved, as more than 3 new components have been developed. As this deliverable has shown 
they together achieve a real-time and reliable management of privacy and security across all layers. The KPI 
is discussed in detail in section 5.3 
 

6.2  Security and Privacy-related requirements  
This section lists the requirements that SEMIoTICS elicited following the extensive security and privacy 
analysis of IoT applications done in T.4.5 and taking into account the requirements gathered in the project. 
The full list can be found in D2.2, with the focus being strictly on security and privacy, in Task 4.5 we will only 
discuss those that directly relate to security and privacy in the following. 
 

IoT Security and Privacy Requirements  
Evaluation 

 

 
Reference 

 

 
Status14 

Req. ID Description 

R.S.1 The confidentiality of all network 
communication MUST be 
protected using state-of-the-art 
mechanisms. 
 

SDN connection 
with ovs 
switches by 
enabling SSL, 
+ 
Communication 
between Pattern 
Orchestrator 
and Pattern 
Engines with 
SSL 
 

Section 3.2.2, 
Section 3.4.2, 
D3.7 
 

 
 
achieved 

R.S.2 
 
 

Authentication and authorization 
of the stakeholders MUST be 
enforced by the Network 
controller, e.g. through access 
and role-based lists for different 
levels of function granularities 
(overlay, customized access to 
service, QoS manipulation, etc.) 
 

The SDN 
Security 
Manager can 
provide 
authorization to 
the users 
entering the 
controller 

Section 3.3.1, 
D3.2 
 

 
achieved 

R.S.3 
 
 

Sensors SHALL be identifiable 
(e.g. by a TPM module/smartcard) 
and authenticated by the 
gateway. 
 

/ Will be 
discussed in  
D5.5 

 
deferred 

R.S.4 All components from gateway, via 
SDN Controller, to cloud platforms 

Cross-layer 
deployment of 

 Section 3.2, 
D3.7  

 
achieved 

 
14 Not Achieved, Achieved, Deferred 
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and their users MUST 
authenticate mutually. 

 

Security 
Managers 
 

R.S.5 Before sensitive data is being 
transmitted, the respective 
components SHALL be 
authenticated as defined by 
requirements R.S.3 and R.S.4 

TLS-based 
client 
authentication 
on sensors or 
gateway + 
at the Backend 
(eg MQTT 
Brokers) 
 

 Section 3.2.2 
 
  
  

 

 
achieved 

R.S.6 
 
 

Sensors SHALL be able to 
encrypt the data they generate, 
i.e. their CPU and memory SHALL 
be sufficient to perform these 
cryptographic operations. 
 

Gateway 
encryption 
 

 Section 3.4.2 
 

 
achieved 

R.S.7 
 

The negotiation interface of the 
SDN Controller SHALL be secure 
against network-based attacks 
 
 

SDN Security 
Manager can 
provide such 
capability 
 

Section 3.3.1 
 

 
achieved 

R.S.8 
 

The honeypot SHALL be a 
dedicated or virtual server. 
 
 

The honeypot is 
instantiated as 
virtual service 
network function 
in Proxmox and 
OpenStack as a 
part of SFC 
 

 Section 2.2.7, 
 Section 4.1.1,  
D3.8, D5.5 

 
achieved 

R.S.9 
 
 

The honeypot SHALL run a Linux 
based, hardened operating 
system. 
 

The EWIS 
honeypot is 
installed on 
Ubuntu OS 
 

Section 2.2.7, 
Section 4.1.1,  
D3.8, D5.5 

 

 
achieved 

R.S.10 
 
 

The honeypot SHALL have 
hardware with sufficient 
computational capabilities (based 
on traffic). 
 
 

The required 
honeypot 
computational 
capabilities are 
defined during 
its instantiation 
 

Section 2.2.7, 
Section 4.1.1,  
D3.8, D5.5 

 

 
achieved 

R.S.11 
 

 

The honeypot MUST have 
adequate bandwidth capacity to 
provide sufficient traffic for 
logging. 
 

The required 
honeypot 
network 
capabilities are 
defined during 
its instantiation 
 

Section 2.2.7, 
Section 4.1.1,  
D3.8, D5.5 

 
achieved 

R.S.12 
 

The honeypot MUST have 
networking capabilities for 

The required 
honeypot 

Section 2.2.7, 
Section 4.1.1,  

 
achieved 
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 redirecting traffic and mirroring 
ports 

 

network 
capabilities are 
defined during 
its instantiation 
 

D3.8, D5.5 
 

R.S.13 
 
 
 

The honeypot SHALL be able to 
execute software for capturing the 
suspicious traffic for further 
processing. 
 

The required 
honeypot 
resource 
capabilities are 
defined during 
its instantiation 
 

Section 2.2.7, 
Section 4.1.1,  
D3.8, D5.5 

 
achieved 

R.S.14 
 
 
 

The honeypot SHALL provide a 
data repository and backend 
processing. 
 
 

The required 
honeypot 
storage 
capabilities are 
defined during 
its instantiation 
 

Section 2.2.7, 
Section 4.1.1,  
D3.8, D5.5 

 
achieved 

R.S.15 
 
 
 

The honeypot MUST run on a 
flexible SDN infrastructure 
(probably open source). 
 
 

The honeypot is 
chained with 
additional 
service 
functions and 
managed by the 
SDN controller 
 

Section 2.2.7, 
Section 4.1.1,  
D3.8, D5.5 

 
achieved 

R.S.16 
 
 
 

The honeypot system MUST act 
as a dummy SDN component 
(controller or switch). 
 
 

The honeynet 
extend the 
capability of 
honeypot to 
include dummy 
components 
 

 Section 2.2.7, 
Section 4.1.1,  
D3.8, D5.5 

 
achieved 

R.S.17 
 
 

There MUST be an interface 
between the network controller 
and the network administrators for 
the designation of the 
applications’ permissions. 
 

SDN Security 
Manager 
 
   
 

 Section 3.2, 
D3.7 

 
achieved 

R.S.18 
 
 

All network functions SHALL be 
mapped to application 
permissions. 

Network 
Functions 
should be 
stithce in chains 
where the 
required access 
control lists can 
give 
permissions to 
specific 
applications 
 

Section 2.2.7, 
D3.7, D3.8 

 
 
 

 
achieved 
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R.S.19 
 
 

Policy conflicts among the 
controller applications SHALL be 
identified and resolved. 
 

SDN Security 
Manager in the 
network layer 
can handle this 
 

Section 3.2, 
 D3.7 
 

 
achieved 

R.S.20 
 

 

Cloud platforms MUST be 
protected by a firewall against 
network-based attacks. 
 

/ Will be 
discussed in 
D5.5 

 
deferred  

R.P.1 
 
 

The collection of raw data MUST 
be minimized. 
 

/ Will be 
discussed in 
D5.5 

 
deferred 

R.P.2 
 
 

The data volume that is collected 
or requested by an IoT application 
MUST be minimized (e.g. 
minimize sampling rate, amount 
of data, recording duration, 
different parameters). 
 

/ Will be 
discussed in 
D5.5 
 

 
deferred 
 

R.P.3 
 

 

Storage of data MUST be 
minimized. 
 

/ Will be 
discussed in 
D5.5 
 

 
deferred 
 

R.P.4 
 

A short data retention period 
MUST be enforced and 
maintaining data for longer than 
necessary avoided. 
 

/ Will be 
discussed in 
D5.5 
 

 
deferred 
 

R.P.5 
 

As much data as possible MUST 
be processed at the edge in order 
to hide data sources and not 
reveal user related information to 
adversaries (e.g. user’s location). 
 

With the help of 
local analytics 
this can be 
facilitated 

Will be 
discussed in 
D5.5 
 

 
deferred 
 

R.P.6 
 

 

Data MUST be anonymized 
wherever possible by removing 
the personally identifiable 
information in order to decrease 
the risk of unintended disclosure. 
 

/ Will be 
discussed in 
D5.5 
 

 
deferred 
 

R.P.7 
 
 

Data granularity MUST be 
reduced wherever possible, e.g. 
disseminate a location-related 
information (i.e. area) and not the 
exact address 
 

/ Will be 
discussed in 
D5.5 
 

 
deferred 
 

R.P.8 
 

 

Data MUST be stored in 
encrypted form. 
 

 ABE as 
described in 
Section 3.2.1.4 
or other 
encryption can 
be of aid 
 

Will be 
discussed in 
D5.5 
 

 
deferred 
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R.P.9 
 

 

Repeated querying for specific 
data by applications, services, or 
users that are not intent to act in 
this manner SHALL be blocked. 
 

The Policy 
Enforcement 
Points (PEP) will 
be seeing all 
requests and 
can thus detect 
and mitigate 
such attempts 
 

Will be 
discussed in 
D5.5 
 

 
deferred 
 

R.P.10 
 

Wherever possible, information 
over groups of attributes or 
groups of individuals SHALL be 
aggregated 
 

/ Will be 
discussed in 
D5.5 
 

 
deferred 
 

R.P.11 
 
 

The data principal SHALL be 
sufficiently informed regarding 
which data are collected, 
processed, and disseminated, 
and for what purposes 
 

/ Will be 
discussed in 
D5.5 
 

 
deferred 
 

R.P.12 
 

 

During all communication and 
processing phases logging MUST 
be performed to enable the 
examination that the system is 
operating as promised 
 

/ Will be 
discussed in 
D5.5 
 

 
deferred 
 

R.P.13 
 

The user SHALL be able to control 
the privacy mechanisms (i.e. 
redemption period, data 
granularity and dissemination, 
and anonymization technique) 
 

/ Will be 
discussed in 
D5.5 
 
 

deferred 

R.GSP.1 
 

The Intrusion Detection System 
(IDS) MUST capture and process 
suspicious traffic. 
 

The IDS can be 
installed to 
satisfy the 
requirement for 
Service 
Function 
Chaining 
 

Section 2.2.7, 
 
Section 4.1.2, 
 
And 
 
D3.8 
 

 
achieved 

R.GSP.2 
 

Accredited and certified Computer 
Emergency Report Team (CERT) 
MAY get informed about an 
occurring cyber incident (e.g. 
DoS). 
 

The CERT team 
can support 
incident 
detection and 
response in 
SEMIoTICS 
industrial 
environment 
such as in UC2. 
 

Section 4.2, 
D2.2 
 

 
achieved 

R.GSP.3 
 

IoT gateway SHALL be able to 
estimate abnormal detection 
based on (un)-supervised model. 

dedicated local 
analytics 
component at 

Will be 
discussed in 
D5.6  

deferred 
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 gateway level : 
IHES 
Supervisor 
component 
takes care of 
this together 
with 
dependability 
pattern 
designed in 
UC3 to detect 
faulty devices 
 

R.UC1.8 
 

Semantic and robust 
bootstrapping/registration of IIoT 
sensors and actuators with IIoT 
gateway MUST be supported. 
 

/ Will be 
discussed in 
D5.4 

deferred 

R.UC1.12 
 

Standardized semantic models for 
semantic-based engineering and 
IIoT applications MUST be 
utilized. 
 

/ Will be 
discussed in 
D5.4 
 

deferred 

6.3 Evaluation of Security and Privacy-related KPI 4.6 
SEMIoTICS has developed many components that enable the framework to increase the security and privacy 
of IIoT applications as described in this deliverable. Among those are the components related to pattern-based 
enforcement (Pattern Orchestrator and Pattern-Engine), the identity-based attribute based encryption (ABE-KM 
and Encryption-Decryption Modules), as well as those for the Intrusion-Detection-System (Honey-Pots in the 
Network layer) and finally the identity-based management of authorisations enabled by the interplay of the security 
manager’s components (PEP, AEP, PDP, PAP and IDM). The following table provides an overview of the more 
than 10 components.  
  

Number  Component  Area of Application  Position within the 
Architecture  

Cross-
Layer interaction  

  
1  Pattern Orchestrator  Pattern-based enforcement   

and   
Monitoring  

Backend  yes  
2  Pattern-Engine   Backend  yes  
3  Network  yes  
4  Identity Management  

Policy-based enforcement  
of access control and rights 

management 
(authorisation) based 

on Identity-
based authentication  

Backend  Yes, indirectly13  
5  Policy Decision Point  Backend  yes  

  6  Field   
7  Policy Enforcement 

Point  
Application  yes  8  Field  

9  Authentication 
Enforcement Point  Application  no  

10  Attribute-based-
Encryption (ABE) Key 

Management  Enforcement of confidentiality 
at rest and in transit beyond 
the SEMIoTICS framework  

Backend  

yes  11  Attribute-based-
Encryption and 

Decryption  

Application  
12  Field  



780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017 
Deliverable D4.12 SEMIoTICS Security and Privacy Mechanisms (final) 
Dissemination level: [Public]  

 

61 
 

13  Honeypot  Security enforcement   
and   

monitoring  
of SDN  

Network  no  14  Security Manager in 
Network Layer  

TABLE 1 OVERVIEW OF COMPONENTS 
  

In total these are fourteen novel mechanisms that SEMIoTICS not only designed, implemented, tested and 
deployed across the different layers but also orchestrated them to make them interplay smoothly to achieve an 
overall security and privacy boost for IoT and IIoT deployments. All individual components can be tailored to adapt 
to different scenarios and specific application-driven demands. Together they achieve SEMIoTICS highly 
configurable and adaptable attribute- and pattern-based security and privacy enforcement.     
  
KPI ID  Description  Evaluation  Reference  Status  
KPI-4.6  
  
  

Development of a minimum 
of 3 new security 
mechanisms/controls 
enabling the secure 
management of smart 
devices and sensors over 
programmable industrial 
networks  

Security Manager in 
Backend-, Network- 
and Field layer and 
their essential internal 
components   

This Deliverable  
   
and   
  
Status of 
the Implementation as 
presented in 
Deliverables D4.6, D4.7, and 
D4.13  

  
achieved  
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7 CONCLUSION 
This deliverable has presented an overview of the various mechanisms improving security and privacy that were 
developed within the SEMIoTICS project and how they all combined and interwoven into the SEMIoTICS 
architectural framework achieve a constantly and how they help to achieve security and privacy requirements at 
key points throughout the SEMIoTICS architecture.   
  
This deliverable shows that the KPI related to the objective of developing new security mechanisms has been 
achieved by the many components newly designed, adapted and fitted for the SEMIoTICS’ overall security and 
privacy framework. Thus, the KPI-4.6 has been achieved. This contributes largely to SEMIoTICS’ Objective 4: 
Development of core mechanisms for multi-layered embedded intelligence, IoT application adaptation, learning and 
evolution, and end-to-end security, privacy, accountability and user control. 
 
With the mechanisms that we have developed (see Table ) and described in this deliverable, SEMIoTICS has 
the tools ready to support horizontal (cross IoT platform) and vertical adaptation of security and privacy 
requirements of industrial IoT applications. All of which is driven by SPDI patterns, which control via attribute-
based policies the access to services, devices and data. The new mechanisms we developed provide end-to-
end authentication and are context-aware through updatable policies, e.g. if a pre-defined situation, like a 
medical emergency is detected by local embedded intelligence, tight and GDPR-conformant restrictions will 
get dynamically lifted for the time of the emergency only. With logging and the monitoring infrastructure 
SEMIoTICS checks compliance at runtime to ensure that the user controls the allowed actions (data 
production, data access, data processing including transfer and data storage) and checks that they are always 
subject to appropriate user authorization rights.  
 
This deliverable also highlights the real-time management of cross-layer security and privacy of SEMIoTICS, 
namely that all components interplay across different layers or focus specifically on security and privacy problems 
specific to the layer in IoT deployments. This achieves security overall. Particularly, we have described how 
identities are managed by our Identity Management component, the authentication capabilities offered to end users, 
the support for policies based on authentication metadata provided by semantic components in the project, and our 
generic attribute-based security framework for policy decisions. In addition to this, the deliverable presented 
how SEMIoTICS plans to support attribute-based encryption for enhanced privacy, how keys will be managed and 
consistently mapped to our generic attribute-based solution for policy evaluations. Moreover, we presented the 
support for security applied at the SDN layer and the SPDI patterns deployed in SEMIoTICS.   
  
In addition to the above, we used a scenario inspired on one of SEMIoTICS’ use cases to highlight our design 
choices and components developed within this task. An attribute-based approach in the security manager was 
chosen because it has been shown that attribute-based access control can support previously used mechanisms, 
such as role-based access control [24]. This allows SEMIoTICS to support role-based access control decisions, 
e.g., at the SDN controller level, while keeping increased flexibility for more complex scenarios requiring validation 
of particular attributes. An example of the latter is present in the description of the motivating IoT application when 
calls should be generated by a caregiver of a particular patient. Particularly, this cannot be achieved by a simple 
role-based access control decision because there is no system-wide role to allow a user to start telepresence calls 
with a particular patient. Instead, the application must validate that a caregiver is indeed associated with a given 
patient. Thus, this property can be best asserted, avoiding the so-called role explosion, by mapping attributes of a 
caregiver to a patient, e.g., by referencing the patient in the caregiver representation stored in the identity 
management.  
  
Updated from the previous draft version (D4.5) this final report evaluated positively 20 of 38 requirements. The 
remaining 18 are use case specific and their evaluation has been deferred to later deliverables.   The list of 
requirements was previously gathered and consolidated in D2.2, D2.3 and D2.4. This document thus shows 
how SEMIoTICS’ security and privacy-related components can be flexibly tailored to achieve generic as well as 
more specific requirements directly or aid to address them.   
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Finally, the implementation of these components is also nearly completed by now and integration-tests are 
underway, thus the components are expected to be used in the applications from our divers scenarios to meet not 
only the generic, but also help to address the very specific security and privacy requirements of each individual use 
case. For 18 use-case-specific requirements an evaluation will be done in WP5 deliverables before the final 
prototype is ready at the end of the project.  
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