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TABLE 1 ACRONYMS TABLE 
Acronym Definition 

AEP Authentication Enforcement Point 
API Application Programming Interface  
BO Backend Orchestrator 
CD Continuous Development 
CI Continuous Integration 
CPU Central Processing Unit 
CRUD Create, Remove, Update, Delete 
DVCS Distributed Version Control System  
EMF Eclipse Modelling Framework 
GUI Graphical User Interface 
GW Gateway 
HTTP Hypertext Transfer Protocol 
IaaS Infrastructure as a Service  
IIoT Industrial Internet of Things 
IoT Internet of Things 
JSON JavaScript Object Notation 
JSON-LD JSON for Linking Data 
OVS  Open vSwitch 
OVSDB Open vSwitch Database Management Protocol 
PaaS Platform as a Service  
PEP Policy Enforcement Point 
PoC Proof of Concept 
QoS Quality of Service 
REST Representational State Transfer 
SDN Software-Defined Networking 
SEMIoTICS Smart End-to-end Massive IoT Interoperability, Connectivity and Security 
SPDI Security, Privacy, Dependability and Interoperability  
SW Software 
TCP Transmission Control Protocol 
TD Thing Description 
TLS Transport Layer Security protocol 
TTL Time To Live 
UC Use Case 
UML Unified Modelling Language 
URI Uniform Resource Identifier 
URL Uniform Resource Locator 
VM Virtual Machine 
vSwitch Virtual Switch 
W3C World Wide Web Consortium 
WoT Web of Things 
WP Work Package 
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1 INTRODUCTION 
SEMIoTICS aims to deliver an open source, proof-of-concept implementation of the SEMIoTICS framework, 
integrating the core interoperability, monitoring, intelligence, adaptation, and networking capabilities. In this 
context, the implementation of the backend API of SEMIoTICS will cover not only the implementation of the 
necessary algorithms, techniques, and components but also deliver an open API set giving access to them.  

Said backend API will provide communication across the layers and communication with external systems 
and partners. Any kind of connection within the IoT platform will be monitored in order to ensure Security, 
Privacy, Dependability, and Interoperability (SPDI) requirements relevant for each component. Delivery of 3 
prototypes (use cases) of IoT applications will demonstrate the business and technological capabilities of the 
SEMIoTICS framework, in the domains of Wind Energy, Healthcare and Smart Sensing.  

Looking from an implementation perspective, the first implementation cycle (Cycle 1 due M17), the second 
implementation cycle (Cycle 2 due M23) and the final implementation cycle (Cycle 3 due M30) combined 
together provide the implementation of algorithms, techniques and components in WP4 (Tasks 4.1 - 4.5) and 
deliver set of dedicated APIs giving access to them. As it has been stated in the project description of action, 
this API provides IoT components communication across layers and integration with external systems and 
partners.  

Based on the above, Deliverable 4.13 “Implementation of SEMIoTICS Backend API (Cycle 3)”, being the final 
output of T4.6 (Implementation of SEMIoTICS backend API), provides the status of the final implementation 
cycle, describes the implementation approach and establishes which backend architectural components (see 
D2.5) are developed in which SEMIoTICS development cycle. Within this deliverable, the implementation 
status of the final algorithms, techniques, components. (as specified in T4.1 to T4.5 and the respective 
deliverables) and API for accessing them are described. 

In more detail, this document deliverable D4.13 is structured as follows: 
• Section 2 describes the SEMIoTICS implementation approach.  
• Section 3 establishes which backend architectural components (more details available in Deliverable 

2.5 “SEMIoTICS high level architecture (final)”) are developed in which SEMIoTICS development 
cycle. 

• Section 4 covers the development status of Cycle 3 and describes the development of each of the 
components related to cycle 3 in dedicated subsections. 

• Finally, Section 5 validates and Section 6 concludes the work done within this cycle. 
   



780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017 
Deliverable D4.13 Implementation of BackEnd API (Final Cycle) 
Dissemination level: [Confidential]  

 

6 
 

 

1.1 PERT chart of SEMIoTICS 

36 months Leader: SAG

31.12.202001.01.2018

WP1: Project Management

23 months Leader: ST-I

30.11.201901.01.2018

WP2: Requirements and Architecture for 
Smart Sensing and Smart Actuation

24 months Leader: SAG

30.04.202001.05.2018

WP3: Smart objects and networks

25 months Leader: FORTH

30.06.202001.06.2018

WP4: Pattern-driven smart behavior of 
IIoT with End-to-End Security and Privacy

24 months Leader: ENG

31.12.202001.01.2019

WP5: System Integration and Evaluation

36 months Leader: SAG

31.12.202001.01.2018

T1.1: Project coordination 36 months Leader: FORTH

31.12.202001.01.2018

T1.2: Project technical and innovation 
management

36 months Leader: SAG

31.12.202001.01.2018

T1.3: Coordination with EU programme 
level activities

3 months Leader: STS

31.03.201801.01.2018

T2.1: Analysis of emerging business and 
technical IoT value drivers

4 months Leader: SAG

30.04.201801.01.2018

T2.2: Specification of use case scenarios 
& applications and their requirements

4 months Leader: ST-I

30.06.201801.03.2018

T2.3: Specification of infrastructure 
requirements

18 months Leader: BS

31.12.201901.07.2018

T2.4: SEMIoTICS architecture design

22 months Leader: SAG

29.02.202001.05.2018

T3.1: Software defined Aggregation, 
Orchestration and cloud networks

22 months Leader: CTTC

29.02.202001.05.2018

T3.2: IIoT Network Function Virtualization

22 months Leader: SAG

29.02.202001.05.2018

T3.3: Semantics-based bootstrapping & 
interfacing

22 months Leader: STS

29.02.202001.05.2018

T3.4: Network-level semantic 
Interoperability

22 months Leader: IQU

30.04.202001.07.2018

T3.5: Implementation of Field-level 
middleware & networking toolbox

23 months Leader: STS

30.04.202001.06.2018

T4.1:Architectural SPDI patterns

22 months Leader: ENG

30.04.202001.07.2018

T4.2: Monitoring, prediction and 
diagnosis

22 months Leader: ST-I

30.04.202001.07.2018

T4.3: Embedded Intelligence and local 
analytics

22 months Leader: FORTH

30.04.202001.07.2018

T4.4: End-to-End Semantic 
Interoperability

22 months Leader: BS

30.06.202001.09.2018

T4.6: Implementation of SEMIoTICS 
backend API

22 months Leader: UP

30.04.202001.07.2018

T4.5: End-to-End Security and Privacy

5 months Leader: UP

31.10.201901.06.2019

T5.1: KPIs and Evaluation Methodology

15 months Leader: BS

31.08.202001.06.2019

T5.2: Software system integration

20 months Leader: IQU

31.08.202001.01.2019

T5.3: IIoT Infrastructure set-up and 
testing

13 months Leader: SAG

31.12.202001.12.2019

T5.4: Demonstration and validation of 
IWPC- Energy scenario

13 months Leader: ENG

31.12.202001.12.2019

T5.5: Demonstration and validation of 
SARA-Health scenario

13 months Leader: ST-I

31.12.202001.12.2019

T5.6: Demonstration and validation of 
IHES-Generic IoT scenario

36 months Leader: CTTC

31.12.202001.01.2018

T6.1: Impact Creation and Dissemination 31 months Leader: ENG

31.12.202001.06.2018

T6.2: Exploitation of results

24 months Leader: SAG

31.12.202001.01.2019

T6.3: Standardization
36 months Leader: CTTC

31.12.202001.01.2018

WP6: Impact, Dissemination and 
Standardization

 
FIGURE 1 PERT CHART 
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2 IMPLEMENTATION APPROACH 
In SEMIoTICS, Task 4.6 is the main implementation task of WP4, which will deliver the SEMIoT ICS 
components developed in WP4 in incremental release cycles. In the following sections, the software 
development and release processes will be detailed. Implementation has been divided into 3 development 
cycles as per Definition of Action. This has been consciously chosen due to the fact that entire project plan 
has been aligned with such an approach. Moreover, in this section there is detailed description of the 
development and release cycles based on Agile and Continuous Integration/Development (CI/CD) best 
practices which have been proven to be very efficient approach in the IT domain.  

2.1 SEMIoTICS Development and Release Cycles 
In the context of Task 2.4, we have designed the SEMIoTICS architecture and defined the architectural 
components of each layer. Each architectural component is associated with a respective functional module 
(i.e. component) with an owner assigned. These components are implemented with an iterative process, which 
follows the concept of CI. Such an iterative development process is performed in cycles, with each cycle ending 
with a new software release. Each release cycle consists of the following phases, also illustrated in Figure 2, 
and lasts approximately 4 months: 

1. Feature planning: The consortium agrees on the features that will be implemented in the next release. 
This might occur during a feature planning meeting, or during the regular project meetings and calls. It 
defines all required mechanisms and interfaces in a high-level specification document, which also includes 
the test cases which will be adopted during system verification. This phase requires approximately 1 month.  

2. Development: With the requirements document at hand, all required features are implemented by the 
responsible developers coordinated by component owners. Each developer is responsible for ensuring that 
the proposed features are properly implemented in the associated architectural component, as defined in 
Task 2.4, additionally ensuring that all related functionalities including legacy functionalities of the 
component are preserved. Furthermore, appropriate testing will ensure that the developed components and 
feature sets perform as specified. Development requires 2 months. 

3. Integration: After completion of the development phase, changes are integrated into the main SEMIoTICS 
codebase. Automated non-regression and sanity tests are performed to rule-out regressions. This task 
requires 1-2 weeks.  

4. System testing: The testing team deploys the new software release to the testbed and performs all the 
required system tests to validate that it runs as specified, further, this is essential to ensure that and new 
modules and features correctly interoperate with the rest of the system. In case of issues, they report back 
to the responsible developers and depending on the required effort, further, development might occur to fix 
the issue or move the issues for resolution in upcoming releases. This phase requires 2-3 weeks.  

5. System release: Eventually, the developer generates all the release artifacts and documents and tags the 
current version of the software. In addition, a system release review meeting takes place to identify and 
discuss problems encountered during this release cycle.  
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FIGURE 2 SEMIOTICS RELEASE CYCLE 

 

Tentatively, the consortium adopted the following release schedule.  

• M15 marked the start of the development process. 
• On M17 (Cycle 1), the first software release was delivered, including the basic functionality of the 

SEMIoTICS backend implementation. 
• On M23 (Cycle 2), the second software release was delivered, incorporating the pattern -driven smart 

behavior. 
• On M30 (Cycle 3), the third release delivers the SEMIoTICS end-to-end architecture implementation. 

 

2.2 SEMIoTICS development workflow 
SEMIoTICS has adopted the Git Distributed Version Control System (DVCS) for source code and asset 
management, as well as for monitoring the development process. We rely on a hosted solution from GitLab 
which hosts the central SEMIoTICS repo located at https://gitlab.com/semiotics/. We refer to this repo as 
the origin, which is the standard Git terminology and all SEMIoTICS partners have permissions to push and 
pull changes. In addition to this, developers can directly pull changes from other peers to form sub-teams, e.g., 
to collaboratively work on a new feature which will then be pushed to the origin repo. 

 SEMIOTICS GIT BRANCHES  
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FIGURE 3 SEMIOTICS GIT REPOSITORY BRANCHES 
 

The central SEMIoTICS repository holds two main branches, the master branch, and the develop branch. The 
master is generally considered to be the main branch, which reflects the latest stable software release. The 
master branch integrates all delivered development changes for the next release, so it can also be considered 
to be the “integration branch”. When the source code in the develop branch reaches a stable point and is ready 
to be released, all of the changes should be merged back into master and then tagged with a release number. 

In addition to the main branches (i.e., master and develop), feature branches may be used to develop new 
features for the upcoming or a future release. Feature branches generally exist as long as a new feature is in 
development and will eventually be merged back into the develop branch, to ultimately add the new feature to 
an upcoming release, or even discarded in case of an experiment that led to a dead -end. Feature branches 
are also created in the origin repo, so multiple developers can push to the same feature branch. Multiple feature 
branches may exist at a time. 

 CONTINUOUS INTEGRATION PIPELINE 

A CI/CD pipeline is also part of GitLab features, in the form of a web application with an API that stores its 
state in a database. It manages the project builds and provides a Graphical User Interface (GUI) which gives 
an easy to understand overview of the project development process. Most importantly, the CI pipeline is closely 
integrated with the core features of GitLab. The GitLab CI pipeline is part of the SEMIoTICS testing framework 
and includes all required unit tests and integration tests. Tests can be authored by the respective developers 
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or a separate testing team. Only if tests pass, then a new code is committed to the source code repository. 
Furthermore, the system performs nightly builds and in case of build failure notifies the responsible developers 
to fix the issue. The SEMIoTICS Continuous Integration processes include the following, which may be 
accomplished via the GitLab system, or additional tools: 

• A ticketing system to assign tasks and feature requests to partners 
• A task planning system to assign features to future releases 
• Team collaboration tools (e.g., Messaging, File sharing, etc.)  

It should be noted that access to the GitLab project is granted only for Consortium Members as per the 
Consortium Agreement. 
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3 CYCLE PLAN 
The development of the WP4 components has been planned according to development cycles – from 1 to 3 
(final) – as defined above. The plan of the cycles is related to the outputs of the different Tasks and the 
respective components as depicted in the SEMIoTICS Architectural Framework (FIGURE 4). More specifically, 
Task 4.6 provides the implementation of components defined within WP4 as well as the development of the 
backend API. Moreover, partial integration of the respective components that are also related to the outputs of 
the tasks as depicted in Figure 4 below is an important part of efforts within T4.6 however the main effort on 
that is planned within WP5. 

 
FIGURE 4 SEMIOTICS ARCHITECTURAL FRAMEWORK 
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Various components from SDN/NFV orchestration layer and field layer are mostly implemented in WP3, thus 
Table 2 only shows the cycle-assignment of components implemented within WP4 to development cycles. 
Each component is developed in at least two cycles.  
It should be reiterated that this document is part of a sequence (D4.6, D4.7, and D4.13), with the current 
deliverable (D4.13) covering the final cycle. More details about the individual components can be found in 
Section 4. 

TABLE 2 ASSIGNMENT OF COMPONENTS TO CYCLES 
Component Owner Cycle 1 Cycle 2 Cycle 3 

Backend Orchestrator BS Part 1 Part 2 Part 3 
Pattern Orchestrator STS Part 1 Part 2 Part 3 

Pattern Engine STS Part 1 Part 2 Part 3 
Monitoring ENG - Part 1 Part 2 

Backend Semantic Validator FORTH Part 1 Part 2 Part 3 
GUI BS Part 1 Part 2 Part 3 

Backend Security Manager UP - Part 1 Part 2 
Recipe Cooker SAG Part 1 Part 2 Part 3 
Thing Directory SAG Part 1 - Part 2 

Local Embedded Intelligence ST - Part 1 Part 2 
 
Every cycle plan is monitored with the use of the GitLab tool, while the feature backlog definition identified at 
the early stage of the project, is provided within Section 4. As per the Agile methodology, the backlog is 
constantly updated throughout the project. 
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4 FINAL CYCLE COMPONENTS 
As mentioned above, an implementation of the SEMIOTICS framework solution imposes not only the 
implementation of the components but also designing suitable interactions between them. Not only the 
definition of components APIs is required, but also defining which components will be a consumer of which 
component API. 
The landscape definition of the component interactions with API definitions have been initiated in Cycle 1, 
continued in an early stage of Cycle 2 and finalized in Cycle 3 as crucial for further development of the specific 
components.  

4.1 Graphical User Interface (GUI) 
As described in D4.6 and D.4.7, GUI is a component responsible for giving meaningful insights into the platform 
and centralized visualization of the whole framework as well as is a layer of presentation for specific use cases.  
During cycle 1 and cycle 2, there has been extensive analysis run, which outcome is designed. The following 
approaches have been taken and implemented: 

 
• GUI that communicates through the API with an external application. 
• GUI that loads the view itself from the external application.  
• GUI that is dedicated to the given backend application. 

 
Several views have been developed within cycle 3 and few of them have been updated. Also, the architecture 
of GUI has been enriched with several new components. 

 
TABLE 3 GUI BACKLOG 

Feature/task scope Short description Cycle 
assignment  Status 

Initialize GUI application Create a SpringBoot & Angular application Cycle 1 Delivered 

Create a view to perform 
basic actions on Things 

Create all necessary endpoints for GUI. 
Create a graphical user interface. The 
interface should allow to register a thing 
description, delete a thing description, 
display all registered things, display 
things’ details. 

Cycle 1 Delivered 

Provide support for multiple 
environments 

Create maven profiles to facilitate the 
process of the application deployment 

Cycle 1 Delivered 

Prepare GUI for deployment 
on Backend Orchestrator 

Create dockerfile and dockerize the 
application so it can be later deployed on 
Kubernetes 

Cycle 1 Delivered 

Create a database for GUI Create a database that should store 
information about registered things, their 
details including all the properties and 
actions and all the data gathered from 
them. 
Create entities, services, repositories. Add 
a database connection handler. Change 
the already existing implementation of 
methods so they can use database 

Cycle 2 Delivered 

Add dashboard functionality Create PoC that allows a user to perform 
basic CRUD operations on dashboards 
and widgets. 

Cycle 2 Delivered 
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Create a simulator of a thing. Create a mock-up application which 
imitates the behavior of the real IoT 
device 

Cycle 2 Delivered 

Add a mechanism to gather 
historic data from IoT devices 

Create a mechanism to collect data from 
IoT devices and save them in the 
database 

Cycle 2 Delivered 

Create a view that displays 
SPDI Patterns  

Create a service that allows getting the 
SPDI Patterns from Pattern Orchestrator 
and to prepare them to be displayed in 
GUI. 
Create an interface that displays SPDI 
patterns from all of the SEMIoTICS’s 
architecture layers and their details 

Cycle 2 Delivered 

Create a view that displays 
SPDI Recipes 

Create a service that allows getting the 
SPDI Recipes from Pattern Orchestrator 
and to prepare them to be displayed in 
GUI. Create a GUI that displays SPDI 
recipes in the form of graphs. 

Cycle 2 Delivered 

Create a view to interact with 
Things. 

Create a graphical user interface and a 
service that mediates between GUI and 
IoT Devices and allows to: 
get real-time properties values of sensors, 
perform an action on actuators, 

Cycle 2 Delivered 

Implement a fully functional 
user dashboard with widgets 

Implement all the essential functions and 
views 

Cycle 3 Delivered 

Add routing to other 
SEMIoTICS’ components 

Create a bar that allows navigating 
through other SEMIoTICS’ components 

Cycle 3 Delivered 

 
 DEVELOPMENT STATUS 

 
The main two tasks planned for development in Cycle 3 were the implementation of widgets and the placement 
of other components’ URLs in the navbar. Widgets has been provided by integrating GUI with a FIWARE 
KNOWAGE component.  The scope of the task delivered all essential functionalities for widget management 
in GUI. The pictures below depict the view of user’s widgets and the visualisation of the data gathered from 
IoT sensors. The navbar expect for GUI’s subsites contains redirection to other SEMIoTICS co mponents like 
e.g. Recipe Cooker.  
 



780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017 
Deliverable D4.13 Implementation of BackEnd API (Final Cycle) 
Dissemination level: [Confidential]  

 

15 
 

 
FIGURE 5 DASHBOARD 

 
 

 

 
FIGURE 6 GUI 
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During the cycle, some of the project requirements changed and after having acquainted with the opinion of 
other components owners it was decided that a few functionalities which have already been delivered in GUI 
should be an amendment and a few new functionalities should be implemented and added to GUI. Table  4 
shows the tasks which were additionally created during the third cycle. 
 

TABLE 4 LIST OF ADDED AND AMENDMENT FUNCTIONALITIES 
Feature/task scope Short description New functionality / 

Amendment of 
already existing 

Status 

Displaying Things per 
Thing Directory 

A user has an 
availability to specify 
which Thing Directory 
he wants to display 
Things from 

Amendment of already 
existing 

Delivered 

Displaying Monitoring 
High Level Events in 
GUI 

New view with the 
visualisation of high-
level events. 

New functionality Delivered 

Refreshing SPDI 
Patterns 

SPDI Pattern should be 
constantly refreshed 
and the user should be 
notified whenever the 
status of pattern 
changes 

New functionality 
 

Delivered 
 

Implementation of oath 
2.0  

The access to GUI 
should be given only to 
users authorized in 
Security Manager  

New functionality 
 

Delivered 
 

Improvement of 
graphical user interface  

Refactor of visualisation  Amendment of already 
existing 
 

Delivered 
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FIGURE 7 NEW SPDI PATTERN VIEW 

 

 
FIGURE 8 NEW MONITORING EVENT VIEW 
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FIGURE 9 UPDATED THING LIST VIEW 

 
 

 
FIGURE 10 UPDATED THING DETAILS VIEW 
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FIGURE 11 UPDATED THING PROPERTIES AND ACTIONS VIEW 

 
 

 COMPONENT API INTERACTIONS DESCRIPTION 
GUI is a module that overlays some components of the SEMIoTICS projects. Its main purpose is to support the 
visualization of individual components and the presentation of collected data in one IoT platform. According to the 
project assumptions, GUI integrates with Thing Directory, Local Thing Directories, IoT Gateway, Pattern 
Orchestrator, Monitoring, FIWARE Knowage, Security Manager and Recipe Cooker. Due to that fact, the description 
of each API created for integration with these components is provided in the table below. The technical aspect of 
each API is presented in the screenshots with the Swagger documentation. 
 

TABLE 5 GUI API’S 
API Status API access type  Additional comments 
GET 
td/authorize/knowage 

Deployed Internal Access only through GUI component. Special 
sessionKey required. 

GET td/cockpits Deployed Internal Access only through GUI after login. API is 
inaccessible outside Kubernetes network. 

POST td/cockpits Deployed Internal Access only through GUI after login. API is 
inaccessible outside Kubernetes network. 

DELETE td/cockpits Deployed Internal Access only through GUI after login. API is 
inaccessible outside Kubernetes network. 

GET 
td/spdi/getGraphData 

Deployed Internal Access only through GUI after login. API is 
inaccessible outside Kubernetes network. 

GET 
td/spdi/getRecipeList 

Deployed Internal Access only through GUI after login. API is 
inaccessible outside Kubernetes network. 

GET 
td/spdi/getSpdiMonito
ringData 

Deployed Internal Access only through GUI after login. API is 
inaccessible outside Kubernetes network. 

GET 
td/spdi/getSpdiTable
Data 

Deployed Internal Access only through GUI after login. API is 
inaccessible outside Kubernetes network. 

GET 
td/thingMonitoring 
getMonitoredValues 

Deployed Internal Access only through GUI after login. API is 
inaccessible outside Kubernetes network. 
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POST 
td/thingMonitoring 
saveProperties 

Deployed Internal Access only through GUI after login. API is 
inaccessible outside Kubernetes network. 

POST 
td/thingMonitoring/ex
ecuteAction 

Deployed Internal Access only through GUI after login. API is 
inaccessible outside Kubernetes network. 

GET 
td/{directoryId}/things 

Deployed Internal Access only through GUI after login. API is 
inaccessible outside Kubernetes network. 

POST 
td/{directoryId}/things 

Deployed Internal Access only through GUI after login. API is 
inaccessible outside Kubernetes network. 

DELETE 
td/{directoryId}/things 

Deployed Internal Access only through GUI after login. API is 
inaccessible outside Kubernetes network. 

GET 
td/{directoryId}/things
/{thingId} 

Deployed Internal Access only through GUI after login. API is 
inaccessible outside Kubernetes network. 

GET td/filterAllThings Deployed Internal Access only through GUI after login. API is 
inaccessible outside Kubernetes network. 

GET 
td/getDeletedThing 

Deployed Internal Access only through GUI after login. API is 
inaccessible outside Kubernetes network. 

GET td/iot-
gateway/devices 

Deployed Internal Access only through GUI after login. API is 
inaccessible outside Kubernetes network. 

GET td/iot-
gateway/ip-
addresses 

Deployed Internal Access only through GUI after login. API is 
inaccessible outside Kubernetes network. 

POST td/iot-
gateway/register 

Deployed Internal Access only through GUI after login. API is 
inaccessible outside Kubernetes network. 

GET 
td/monitoring/contrib
uting-events 

Deployed Internal Access only through GUI after login. API is 
inaccessible outside Kubernetes network. 

GET 
td/monitoring/high-
level-events 

Deployed Internal Access only through GUI after login. API is 
inaccessible outside Kubernetes network. 

POST 
td/monitoring/high-
level-events 

Deployed Internal Access only through GUI after login. API is 
inaccessible outside Kubernetes network. 

Login In 
progress 

External 
 

 
 

4.1.2.1 APIS FOR FIWARE KNOWAGE INTEGRATION 
Integration GUI with Knowage was created to visualize collected data from sensors and devices on highly extensive 
and efficient dashboards. To use all main functionalities provided by FIWARE Knowage, the above-mentioned APIs 
were developed. User can list all available cockpits (HTTP GET ‘td/cockpits’ ), create or edit dashboards (HTTP 
POST ‘td/cockpits’) and delete existing cockpits(HTTP DELETE ‘td/cockpits’). To enable communication with 
Knowage, GUI authorizes in Knowage and receives a special token. 
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FIGURE 12 APIS FOR INTEGRATION WITH KNOWAGE 

 
 
4.1.2.2 APIS FOR PATTERN ORCHESTRATOR INTEGRATION 
This integration aims to support Pattern Orchestrator in monitoring the current state of SPDI patterns from all recipes 
and location SPDI patterns in an individual layer e.g. backend, network, gateway. Additionally, GUI can present 
existing recipes in the interactive graph form as a combination of nodes, links, and layers. APIs developed in the 
GUI allows user to view SPDI patterns in real-time in two forms, in view with tiles (HTTP GET 
‘td/spdi/getSpdiMonitoringData’) or in table view (HTTP GET ‘td/spdi/getSpdiTableData’) . User can also see all 
existing recipes (HTTP GET ‘td/spdi/getRecipeList’) or watch recipe in graph form (HTTP GET 
‘td/spdi/getGraphData’). 
 

 
FIGURE 13 APIS FOR INTEGRATION WITH PATTERN ORCHESTRATOR 

 
 
4.1.2.3 APIS FOR THING DIRECTORY AND IOT GATEWAY INTEGRATION 
 

Integration with Thing Directory, Local Thing Directories, and IoT Gateway provides the largest number of 
endpoints. This kind of integration was created to visualize devices registered in Global Thing Directory or Local 
Thing Directories, register, and delete new ones. Additionality allows users to interact with devices and watch their 
properties. The development of APIs for IoT Gateway allows finding new devices and register them directly through 
this component. User can use one of the existing endpoints: 
 
 

• HTTP GET ‘td/thing-directories’ to list all available Local Thing Directories and one Global Thing Directory, 
• HTTP POST ‘td/thingMonitoring/executeAction’ to run one of selected action from device, 
• HTTP GET ‘td/thingMonitoring/getMonitoredValues’ to get current values of thing’s properties, 
• HTTP POST td thingMonitoring/saveProperties’ to start collecting data for selected property of 
• device, 
• HTTP GET ‘td/{directoryId}/things’ to get all thing for selected Thing Directory, 
• HTTP POST ‘td/{directoryId}/things’ to register a new thing in selected Thing Directory, 
• HTTP DELETE ‘td/{directoryId}/things’ to delete thing for selected Thing Directory, 
• HTTP GET ‘td/{directoryId}/things/{thingId}’ to get details of selected thing, 
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• HTTP GET ‘td/filterAllThings’ to filter Thing Directory using SPARQL syntax query, 
• HTTP GET ‘td/getDeletedThing’ to get details of deleted thing for given ip, 
• HTTP GET ‘td/iot-gateway/devices’ to scan IoT Gateway in the range of ip addresses to find new 

o devices, 
• HTTP GET ‘td/iot-gateway/ ip-addresses’ to scan IoT Gateway in the range of ip addresses to find ip 

o addresses of devices, 
• HTTP POST ‘td/iot-gateway/register’ to register a new device in Global Thing Directory using IoT 

o Gateway. 
 

 
FIGURE 14 APIS FOR INTEGRATION WITH TDS AND IOT GATEWAY 

 
4.1.2.4 APIS FOR MONITORING INTEGRATION 
 
Integration between GUI and Monitoring component was created to provide visualization for predictive monitoring 
of events that might occur in the whole SEMIoTICS platform. It allows users to view high-level-events and 
contributing-events, and preparing queries with the definition of high-level-event. User can use one of the existing 
endpoints: 

• HTTP GET ‘td/monitoring/contributing-events’ to get all contributing events for selected high-level-event, 
• HTTP GET ‘td/monitoring/high-level-events’ to get all high-level-events that had occurred , 
• HTTP POST ‘td/monitoring/high-level-events’ to register query with definition of high-level-event. 
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FIGURE 15 APIS FOR INTEGRATION WITH MONITORING 

 
 COMPONENT DEVELOPMENT SUMMARY AFTER ALL CYCLES 

 
After all 3 cycles, GUI is a fully working component integrated with other SEMIoTICS components as 
presented in Deliverable 5.2. A detailed description of development progress can be found in D4.6 for cycle 
1 and in D4.7 for cycle 2. According to the initial assumption, GUI should meet 3 basic requirements:  

• communication through the API with an external application, 
• loading the view itself from the external application, 
• redirecting to the given backend application. 

 
All of the abovementioned requirements were implemented in the next steps. In cycle 2 communication was 
established through the API with external applications that include: 

• communication with Thing Directory to show and interact with all registered devices, 
• communication with Pattern Orchestrator to visualize real-time SPDI patterns.  

Communication with Monitoring API to visualize high-level-events was implemented in cycle 3. In this cycle it 
was also added loading the view from an external application which was Knowage- one of the FIWARE 
Generic Enabler for complex data visualization. Additionally , in GUI was implemented redirection to Recipe 
Cooker that is one of SEMIoTICS backend applications. The redirection to SDN/NFV development view, that 
is a dedicated GUI for SPDI patterns is still in progress. The full sidebar with navigation to all SEMIoTICS 
views and APIs are presented below. 

 
FIGURE 16 FULL SIDEBAR WITH NAVIGATION TO ALL COMPONENTS 
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During all 3 cycles, the basic assumptions were expanded and additional functionalities were added to adjust 
to the project requirements. All changes were easily applicable thanks to generic component architecture. 
The most significant improvements that were developed: 

• support for all Local Thing Directories, not only for one Global Thing Directory,  
• scanning and registering new devices through IoT Gateway, 
• presenting recipe combined with SPDI patterns as an interactive graph. 

The Picture below depicts GUI in the final version with the full  navigation to external components.  
 

 
FIGURE 17 FINAL GUI VIEW 

The most significant aspect during development and integration components was to provide safe and secure 
communication. To achieve this aim a special component AEP and Policy Enforcer Point (PEP) were 
developed. Each time the GUI component sends a request to another component it is signed by AEP and a 
special application token is added. Before the request is received by an external component, PEP gets an 
application token and validates it in Security Manager. If GUI has permission to communicate with the 
application, PEP sends a request to this app and returns a response to GUI as presented below. 
  

 
FIGURE 18 DIAGRAM WITH SECURED COMMUNICATION PROVIDED BY AEP AND PEP 

 
Using AEP and PEP components in SEMIoTICS architecture protects against access to  data of 
unauthorized users or applications. 
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 SEMIOTICS REQUIREMENTS IMPLEMENTATION MAPPED TO GUI 
GUI component should meet Semiotics requirements and KPIs as described in D5.1. According to these 
requirements customized solutions were implemented during the development process. A description of KPIs 
with the detailed substantiation is presented in the table below. 
 

KPI id Description Status of 
development 

Substantiation 

R.P.1 • The collection of raw 
data MUST be 
minimized. 

• Done • GUI application uses and storages only 
necessary data collected from all devices 
to the SEMIoTICS platform. GUI contains 
internal components ThingWorker and 
ThingOrchestrator dedicated to collecting 
data. Thing Orchestrator is a component 
responsible for creating and distribute jobs 
between Thing Workers and also for 
deleting assigned jobs to Thing Workers. 
Job is created when a user of the GUI 
starts collecting measurements. Thing 
Worker is responsible for collecting data 
for specific properties of devices with a set 
by user frequency. Thus, not all properties 
of devices are collected but only selected. 
Thing Worker stops saving measurements 
form devices when the job is deleted or 
when devices are off. In GUI there is no 
redundant and unnecessary data. 

• R.P.2 • The data volume that is 
collected or requested 
by an IoT application 
MUST be minimized 
(e.g. minimize sampling 
rate, amount of data, 
recording duration, 
different parameters). 

• Done • GUI application uses and storages only 
necessary data for communication with 
related components of the SEMIoTICS 
platform. Data that is used in the GUI 
application but stored in databases of 
individual components is only requested 
and immediately visualized. Examples of 
such interactions are communication with 
the Thing Directory and Pattern 
Orchestrator components, where received 
data is mapped and transformed to show 
it in a form that the user can understand. 
Therefore, there are no tables repetitions 
and no data redundancy. GUI also sends 
requests with different parameters for 
individual requests to reduce the amount 
of data transferred. For data that is used 
only in GuiHub dedicated PostgreSQL 
database was created. A relational data 
model is the most suitable solution and 
ensures that the database is lightweight 
because it contains only a few tables. The 
tables in this database are tailored to the 
needs of the application and data models 
used. GUI database collects and stores 
only selected measurements from devices 
registered to the SEMIoTICS platform. 

• R.P.3 • Storage of data MUST 
be minimized. 

• Done • GUI database stores mostly thing's 
metadata such as properties, actions, the 
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data essential for the worker orchestrator, 
and finally the values gathered from 
sensors. This is the minimum data that is 
required to accomplish the given tasks. 

• R.P.4. • A short data retention 
period MUST be 
enforced, and 
maintaining data for 
longer than necessary 
avoided. 

• Done • The user can specify the retention period 
of the measurement gathered by IoT 
devices. Data from IoT devices is 
collected by default by 1 month and can 
be customized by user to 3 months. When 
a data collection expires, the 
measurements are not saved in the 
database. 

• R.P.9 • Repeated querying for 
specific data by 
applications, services, 
or users that are not 
intent to act in this 
manner SHALL be 
blocked. 

• In progress • In this stage of development of 
SEMIoTICS, we do not provide this 
functionality. We have not data to 
determine the minimal intervals of 
repeated queries for specific data. This is 
an area that can be improved after 
collecting the requirements from users. 
Currently, database performance is the 
only limitation in the frequency of data 
access. 
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4.2 Backend Orchestrator 
Backend orchestrator is a component responsible for integrating all backend services and exposing APIs. 
Kubernetes (https://kubernetes.io) has been chosen as a component responsible for orchestration of the 
SEMIoTICS backend. Kubernetes is an open source project that enables declarative framework orchestration 
that has become a standard and is available to install on most of the platforms. Additionally, this technology is 
in line with proposed micro services architecture (described widely in D2.5).  
Most important Kubernetes features are1: 

- Kubernetes provides a container-centric management environment, 
- Kubernetes orchestrates computing, networking, and storage infrastructure on behalf of user workloads,  
- Kubernetes provides much of the simplicity of Platform as a Service (PaaS) with the flexibility of 

Infrastructure as a Service (IaaS), and enables portability across infrastructure providers. 
 
The development of the Backend Orchestrator component has been continued within Cycle 3. 
 
Within Table 6 updated backlog of the tasks planned for the component is visible with the given status of the 
implementation. Further sections provide more details of the implementation .  
 
The technologies which have been chosen to be used for backend orchestration are the following:  
- Kubernetes – technology used as backend orchestrator to orchestrate backend applications 
- Ansible 2.5 – technology used as a tool to automatize installation of Kubernetes and its dependencies 
- Docker – technology used for containerization of applications written in different languages  

TABLE 6 BACKEND ORCHESTRATOR BACKLOG 

Feature/task scope Short description Cycle 
assignment  Status 

Comparison and choosing 
the technology for Backend 
Orchestrator 

Comparison of OpenStack, Kubernetes, 
and OpenShift. 

Cycle 1 Delivered 

Installation of Kubernetes on 
a cloud server for fast testing 
the chosen technology 

Creating an instance of Kubernetes 
Cluster on AWS. Testing process to 
determine the size of resources for the 
physical cluster. 

Cycle 1 Delivered 

Creating a docker images 
repository 

Creating a repository for Docker images 
on the GitLab. 

Cycle 1 Delivered 

First installation of Backend 
Orchestrator on BLS cluster 

Creating the ansible script for installing 
required tools on a cluster. Testing one 
node Kubernetes architecture 

Cycle 1 Delivered 

Changing the internal 
architecture of Backend 
Orchestrator 

Creating at least two nodes. There have to 
be a master node and a slave. 

Cycle 1 Delivered 

Implement a proxy mechanism 
in PEP 

Implement a proxy mechanism to intercept 
HTTP traffic going to the main application 
and authorize the request in Security 
Manager 

Cycle 1&2 Delivered 

Add a proxy application to 
authenticate requests 

Add mitmproxy application as an 
Authentication Enforcement Point which 
adds the client’s token to an HTTP request 

Cycle 1&2 Delivered 

Preparation of PEP for 
deployment on Backend 
Orchestrator 

Create dockerfile and dockerize the 
application so it can be later deployed on 
Kubernetes 

Cycle 1&2 Delivered 

 
1 https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/  
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Set of access rules for 
consortium partners to 
Backend Orchestrator 

Configure the namespaces and roles on 
Kubernetes. Creating the script that 
assigns permission per roles and 
namespaces. 

Cycle 2&3 Delivered 

Develop the scheme of 
deploying the component 

Creating the script of deployment, service 
and config map for example component.   

Cycle 2 Delivered 

Deploying GUI and Thing 
Simulator on Kubernetes 
cluster 

Developing the structure of deployment 
files for GUI  and Thing Simulator 

Cycle 2 Delivered 

Automate the repeatable 
process of deploying the 
components. 

Installation Jenkins on the machine. 
Creating the access rules for Jenkins to 
the BO. 
  

Cycle 2  Delivered 

Enabling communication 
between components 
deployed on Backend 
Orchestrator and to external 
applications 

Develop the scripts  that allow to expos 
the component to externals networks 

Cycle 2  Delivered 

Performing the test of 
communication between 
components 

Testing internal and external 
communication between deployed 
components 

Cycle 2 Delivered 

Develop the way of storage 
and updating the credentials 
for externals applications  

Set of rules about storage and user 
credentials for GitLabRepository. 

Cycle 2 Delivered 

Manual deployment of Thing 
Directory  

Create dockerfile and dockerize the 
application so it can be later deployed on 
Kubernetes. Deployment component   

Cycle 2 Delivered 

Creating and configuration of 
the tool for the administrator 
of Backend Orchestrator 

Configure a dashboard that shows the 
state of the cluster. Creating the 
notification when the dangerous state of a 
cluster. 

Cycle 2 Delivered 

Creating deployment files for 
AOL components 

Create deployment .yml files for GUI, 
Security Manager, Think Directory, Think 
Simulator and Think Worker, which allows 
deployment on Kubernetes. 

Cycle 2 Delivered 

Create automatized jobs for 
deploying components.  

Create CI/CD pipeline that allows 
deploying the following components GUI, 
Security Manager, Think Directory, Think 
Simulator and Think Worker on 
Kubernetes after manual initialization. 

Cycle 2 Delivered 

Creating deployment files for 
AOL components 

Create deployment .yml files for Pattern 
Engine, Recipe Cooker, Backend 
Semantic Validator, Pattern 
Orchestrator which allows deployment on 
Kubernetes.  

Cycle 3 Delivered 

Create automatized jobs for 
deploying components. 

Create CI/CD pipeline that allows 
deploying the following components: 
Pattern Engine, Recipe Cooker, Backend 
Semantic Validator, Pattern 
Orchestrator on Kubernetes after manual 
initialization. 

Cycle 3 Delivered 
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 DEVELOPMENT STATUS 
The development outcome of cycle 3 were deployment files for all the component that have not  been deployed 
during the previous cycles e.g. Pattern Engine,  Backend Semantic Validator, Recipe Cooker, Pattern 
Orchestrator. Each of those deployment has dedicated pipeline in Jenkins to facilitate the process of 
deployment. Every pipeline fetches the code of an application, builds the docker image and eventually, 
deploys it on the Kubernetes cluster. 
 
apiVersion: apps/v1 
kind: Deployment 
metadata: 
 name: backend-semantic-validator 
 namespace: semiotics 
 labels: 
   app: bsv 
spec: 
 replicas: 1 
 selector: 
   matchLabels: 
     app: bsv 
 template: 
   metadata: 
     labels: 
       app: bsv 
   spec: 
     containers: 
       - name: bsv 
         image: registry.gitlab.com/semiotics/backend/semantic-mediator:latest          resources: 
           requests: 
             memory: "230Mi" 
             cpu: "100m" 
           limits: 
             memory: "460Mi" 
             cpu: "200m" 
         imagePullPolicy: Always 
         ports: 
           - containerPort: 8086 
     imagePullSecrets: 
       - name: blue-k8s 
--- 
kind: Service 
apiVersion: v1 
metadata: 
 name: bsv-svc 
 namespace: semiotics 
spec: 
 ports: 
   - nodePort: 31006 
     port: 8086 
     targetPort: 8086 
 selector: 
   app: bsv 
 sessionAffinity: None 
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FIGURE 19 AN EXAMPLE OF JENKINS PIPELINE 

 
 

 COMPONENT API INTERACTIONS DESCRIPTION 
 

Backend Orchestrator is based entirely on Kubernetes. To successfully accomplish the functionalities of the 
component, already existing APIs have been adjusted and configured in Kubernetes accordingly to the 
project’s needs and use cases. Because of aforementioned reasons, none of APIs have been developed 
throughout any cycle. The table below shows Kubernetes API which have been used for the development of 
Backend Orchestrator. 
 

TABLE 7 KUBERNETES API DETAILS 
API Status API 

access 
type  

Additional comments 

K8s 
HPA 

• Discarded • Internal Access only for components of Kubernetes network. 
The Horizontal Pod Autoscaler automatically scales the number of 
pods in a replication controller, deployment, replica set or stateful set 
based on observed CPU utilization 

K8s 
CronJob
s 

• Discarded • Internal • Currently no use case is foreseen for this service. If any need will be 
identified, it can be set up.  

K8s 
Ingress 

• Deployed • Internal • Access only for components of Kubernetes network. Ingress exposes 
HTTP and HTTPS routes from outside the cluster to services within 
the cluster 

K8s 
PVCs 

• Deployed • Internal Access only for components of Kubernetes network. 
a request for storage by a user. 

K8s PVs • Deployed • Internal Access only for components of Kubernetes network. 
a piece of storage in the cluster. used to store data in a way that it 
persists beyond the lifetime of a pod 

K8s 
Secrets 

• Deployed • Internal Access only for components of Kubernetes network. 
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an object that contains a small amount of sensitive data such as a 
password, a token, or a key. 

K8s 
Jobs 

• Deployed • Internal • Access only for components of Kubernetes network. a Job is a 
controller object that represents a finite task. 

K8s 
Deploym
ents 

• Deployed • Internal • Access only for components of Kubernetes network. An object for 
management a set of identical pods. 

K8s 
Services 

• Deployed • Internal • Access only for components of Kubernetes network. defines a logical 
set of Pods and a policy by which to access them 

K8s 
Pods 

• Deployed • Internal • Access only for components of Kubernetes network. is a group of one 
or more containers , with shared storage/network, and a specification 
for how to run the containers. 

K8s 
Variable
s 

• Deployed • Internal • Access only for components of Kubernetes network. An Object which 
stores a non-confidential data as key-value pairs. 

 
 

 COMPONENT DEVELOPMENT SUMMARY AFTER ALL CYCLES 
 
During development cycles, the best tool for orchestration has been chosen, tested, and used in the working 
environment. During the first cycle, three possible orchestrators have been investigated: OpenStack, 
OpenShift, and Kubernetes. The best option for the SEMIoTICS proved to be Kubernetes. Its capabilities most 
suit microservices architecture of the SEMIoTICS platform. Tests have been performed on bare metal as well 
on the cloud provider cluster. There was initial implementation performed and administra tion rules developed. 
The architecture of a working cluster has been established and configured. The repository for Docker images 
has been established and tested with two components.    
 
In the second cycle, the priority was the automatization of component deployment. Jenkins has been chosen 
to create an automatic process of deployment which consists of a compilation of pushed code to GitLab 
repository, creation of Docker image, and deployment on a Kubernetes cluster.  In the testing process, the 
deployment files for each component have been written and test used. Security policies have been also 
implemented, the roles on Kubernetes have been assigned to each user based on best practices used in 
CI/CD solutions. Role configuration used in Backend Orchestrator ensures that each user has limited access 
to a cluster which might sometimes bring difficulties but prevents many actions that may disturb the proper 
operation of orchestrator. The connectivity aspects have been tested and implemented with appropriate 
policies and workflows in internal networking. Configuration of externals connectivity has been done and 
tested. The secure process of storage and usage of technical user credentials  has been created and used for 
connectivity with external applications. Tools for administrating the cluster have been configured and tested. 
Administration tools allow to remotely connect to the Backend Orchestrator, monitor its state, and make 
necessary adjustments. Some of the components get their automated deployment pipelines. 
 
The third cycle has been used for further testing of functionalities developed in previous cycles. More pipelines 
have been created and monitor their functionality. The exposed API of Kubernetes has been tested and 
incorporated in the monitoring process. In this period, we have intensively use Backend Orchestrator for 
deployment and hosting SEMIoTICS platform components.        
 

 SEMIOTICS REQUIREMENTS IMPLEMENTATION MAPPED TO BACKEND ORCHESTRATOR 
 
Requirements for the Backend Orchestrator have been formulated in Deliverable D2.3 and core functionalities 
have been formulated in section 3.1.1 of deliverable D2.4.  
 
Details of Backend Orchestrator implementation are described in section 4.2 of deliverables D4.6, D4.7, and 
D4.13.   
 



780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017 
Deliverable D4.13 Implementation of BackEnd API (Final Cycle) 
Dissemination level: [Confidential]  

 

32 
 

The table below shows the requirements of the Backend Orchestrator, a short description of fulfillin g it and 
status of delivery. 
 

Requirement Status Description of implementation 

Secure 
communication 
among the various 
Backend Cloud 
components (e.g., 
use of dedicated 
management 
network, appropriate 
Firewall rules) 

Delivered 

Backend Orchestrator has a built-in network policy object. It is a 
specification of how groups of pods are allowed to communicate with 
each other and other network endpoints. By default, all pods in a 
Kubernetes cluster can communicate freely with each other without any 
issues therefore by applying network restrictions we can isolate the 
services running in pods from each other. Network policies have been 
applied to all of the backend components to prevent any security leaks 
and to maintain the traffic that is required by architecture of the 
SEMIoTICS. 

End-to-end 
connectivity between 
the heterogeneous 
IoT devices (at the 
field level) and the 
heterogeneous IoT 
Platforms (at the 
backend cloud level) 

Delivered 

Every application managed by Backend Orchestrator has its instance of 
service object.  
A service exposes a running application in a pod as a network service 
and because of that, the APIs of applications are exposed to any external 
HTTP call. 
As long as IoT devices have built-in mechanism to create HTTP requests, 
the end-to-end connectivity is provided. 

Scalable 
infrastructure due to 
the fast-paced growth 
of IoT devices 

Delivered 

Backend Orchestrator(BO) in SEMIoTICS project is a Kubernetes 
instance that provides easy scalability and high availability. 
The unit of deployment in BO is a "pod" which contains one application or 
one SEMIoTICS component. Kubernetes gives a wide range of options 
for managing and scaling pods setting simple parameters like 
"ReplicaSet" in the deployment file. When one application of the 
SEMIoTICS platform is overloaded, BO can create the next instance of 
an application to balance the load between them. A similar situation 
occurs when one of the components will be inactive or breaks down, then 
BO deletes the wrong application and creates a new one. 
The fast-paced growth of IoT devices connected to SEMIoTICS platform 
does not affect the BO operation because the number of applications at 
any time is adapted to the number of devices using them. 

  

4.3 Pattern Orchestrator 
The Pattern Orchestrator is a module responsible for automated configuration, coordination, and 
management of different patterns and their deployment. 
 
In further detail, the Pattern Orchestrator is able to:  
1. Receive instantiated recipes from Recipe Cooker via defined API  
2. Extract SPDI & QoS properties/requirements from instantiated recipes and convert to patterns  
3. Convert patterns to Drools  
4. Classify and distribute patterns (as Drools) to the different pattern engines in three layers (Backend, 

Network, Field) 
 
 
Cycle 3 includes:  

• Extension of the Pattern Orchestrator - Pattern Engines interfacing with more REST services  
• Integration with SEMIoTICS GUI 
• New classes for the instantiation of Drools facts  
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TABLE 8 PATTERN ORCHESTRATOR BACKLOG 
Feature/task scope Short description Cycle assignment Status 

API definition between 
Recipe Cooker and 
Pattern Orchestrator 

Recipe Cooker needs to submit an 
instantiated recipe to the Pattern 
Orchestrator and expects a response 
that indicates whether the recipe 
definition is feasible to execute. For 
that reason, an API needs to be 
defined. 

Cycle 1 Delivered 

Transformation of an 
instantiated recipe to 
patterns 

Pattern Orchestrator must understand 
the instantiated Recipes it receives, as 
defined by the Recipe Cooker and 
transform them into patterns. 

Cycle 1 Delivered 

Communication with the 
three Pattern Engines 

Interfacing with Pattern Engines on all 
layers (Backend, Network, and Field) 
needs to be implemented and tested. 

Cycle 1 Delivered 

Store patterns (as 
Drools) in the backend 
pattern repository 

The patterns created by Pattern 
Orchestrator need to be communicated 
to the Backend Pattern Engine for 
storing in the local repository. 

Cycle 2 Delivered 

Classify and distribute 
patterns (as Drools) to 
the different pattern 
engines 

Pattern Orchestrator must be able to 
decide for each of the Drools 
Rules/Facts (patterns), which is the 
appropriate Pattern Engine to deliver 
it. 

Cycle 2 & 3 Delivered 

IoT service orchestration 
adaptation 

In case an SPDI or QoS property is no 
longer guaranteed, adaptation actions 
must be taken, changing a number of 
orchestration components. In that way, 
the Pattern Engines can guarantee 
that the SPDI/QoS property in question 
is henceforward satisfied. 

Cycle 3 Delivered 

 
Regarding the distribution of patterns to different pattern engines, the decision mechanism of the Pattern 
Orchestrator, although it delivered in its current state, updates may be made. This is due to the fact that new 
patterns (rules, facts) are created constantly and will continue to be created until the end of the project. 
Therefore, the decision mechanism is constantly updated in order to include the newly created patterns.  
 

 DEVELOPMENT STATUS 
According to Table 8 the first feature that was added to Pattern Orchestrator during cycle 3 is the classification 
and distribution of the Recipe components as Drools facts to the three different Pattern Engines.  
 
An instantiated Recipe, which serves as input to the Pattern Orchestrator, constitutes by a number of Recipe 
components of different types such as:  

• Placeholders in the form of Host, IoTSensor, IoTActuator, IoTGateway, SoftwareComponent, 
SoftwareService, NetworkComponent,  

• Orchestrations in the form of Sequences, Merges, Splits, Choices 
• Properties of all the above  
• Interfaces and Operations of the Placeholders 

 
The classification of the Recipe components is done based on their type.  
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Placeholders: Each of the Recipe components is recognized, based on an ANTLR parser, and is sent to the 
appropriate Pattern Engine, to be added as Drools facts in their working memory. The type of each Recipe 
components determines the layer of the Pattern Engine it is sent to.  For example, IoTSensors, IoTActuators 
and IoTGateways are sent to the Pattern Engine at the Field layer. NetworkComponents, on the other  hand, 
are sent to the Pattern Engine at the network layer. SoftwareComponents and SoftwareServices are sent to 
the Pattern Engine at the Backend layer.  
 
Orchestrations: The layer decision for the different types of placeholders is pretty straightforward.  However, 
it is not clear for Orchestrations to which layer they belong. In order to define the layer of an Orchestrati on we 
have to take under consideration the layers of the involved placeholders.  
 
Let’s take a Sequence as an example case. A sequence consists of two Placeholders, the output of the first 
becomes input of the second. If the layer of the first placeholder matches the layer of the second, the layer of 
their Sequence is set to that very same layer. Nevertheless, if the layers of the two Place holders does not 
match, the layer of their Sequences falls to one of the three cross layer cases named, Backend -Network, 
Backend-Field, Field-Network. What we have just described is depicted as code snippet below. 
 
    // Set the Layer of all Sequences based to the layers of their placeholders 
    private static void setSequencesLayer() { 
        for (Sequence sequence : sequencestosend) { 
            String plaId = sequence.getPlaceholdera(); 
            String plaType = getPlaceholderType(plaId); 
            String plaLayer = getPlaceholderLayer(plaId, plaType); 
 
            String plbId = sequence.getPlaceholderb(); 
            String plbType = getPlaceholderType(plbId); 
            String plbLayer = getPlaceholderLayer(plbId, plbType); 
 
            if (plaLayer.equals(plbLayer)) { 
                sequence.setLayer(plaLayer); 
            } 
            else { 
                if ((plaLayer.toLowerCase().equals("backend") && plbLayer.toLowerCase().equals("network"
)) || (plbLayer.toLowerCase().equals("backend") && plaLayer.toLowerCase().equals("network"))) { 
                    sequence.setLayer("CROSSLAYERBN"); 
                } 
                if ((plaLayer.toLowerCase().equals("backend") && plbLayer.toLowerCase().equals("gateway"
)) || (plbLayer.toLowerCase().equals("backend") && plaLayer.toLowerCase().equals("gateway"))) { 
                    sequence.setLayer("CROSSLAYERGB"); 
                } 
                if ((plaLayer.toLowerCase().equals("network") && plbLayer.toLowerCase().equals("gateway"
)) || (plbLayer.toLowerCase().equals("network") && plaLayer.toLowerCase().equals("gateway"))) { 
                    sequence.setLayer("CROSSLAYERNG"); 
                } 
            } 
 
        } 
    } 

 
The setSequencesLayer() method run through all the sequences of a Recipe and, first of all, gets the layers of 
the two involved Placeholders in the plaLayer and plbLayer variables. Then if these variables are equal, the 
layer of the current Sequence is set to the same layer (if  statement). If they are not, the Sequence layer is set 
to one of the three cross layer cases (else statement). 
 
Properties: Properties describe a characteristic of a Recipe component. As a result, each Property has a 
subject that it is referred to. This subject defines the layer of the Property itse lf. As we can see in the code 
snippet below, the definePropertyLayer() method takes as parameters a subject and a layer and runs through 
all the Recipe properties. The parameter subject is actually a Recipe component and the parameter layer is its 
layer. If the property iteration spots a Property with subject the said Recipe component, the Property layer is 
set to the Recipe component’s layer. 
 



780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017 
Deliverable D4.13 Implementation of BackEnd API (Final Cycle) 
Dissemination level: [Confidential]  

 

35 
 

    // Set the Layer of all Properties that are subject to a specific placeholder based on the layer of 
the placeholder 
    private static void definePropertyLayer(String subject, String layer) { 
        for (Property property: propertiestosend) { 
            if (property.getSubject().equals(subject)) { 
                property.setLayer(layer); 
            } 
        } 
    } 

 
    
Interfaces and Operations: The same way we define the layer of a property, an interface or operation layer 
is defined. Interfaces and Operations have also subjects that are referred to Recipe components. The methods 
defineInterfaceLayer() and defineOperationLayer() are equivalent to the definePropertyLayer() we described 
above.  
 
    // Set the Layer of all Interfaces that are subject to a specific placeholder based on the layer of 
the placeholder 
    private static void defineInterfaceLayer(String subject, String layer) { 
        for (Interface interface: interfacestosend) { 
            if (interface.getSubject().equals(subject)) { 
                interface.setLayer(layer); 
            } 
        } 
    } 
 
    // Set the Layer of all Operations that are subject to a specific placeholder based on the layer of 
the placeholder 
    private static void defineOperationLayer(String subject, String layer) { 
        for (Operation operation: operationstosend) { 
            if (operation.getSubject().equals(subject)) { 
                operation.setLayer(layer); 
            } 
        } 
    } 

 
Another feature that was added to Pattern Orchestrator during cycle 3 is its ability to communicate with the 
Recipe Cooker to send the potentially altered flow in case adaptation actions are needed. Adaptation actions 
may take place in case an SPDI or QoS Property, referred to the whole Recipe or to a part of it, does not hold. 
The said adaptation action ends up to a new, updated Recipe, that is communicated back to the Recipe Cooker 
in order to be deployed again. The updated version of the Recipe may have additional components or 
substituted components.  
 
Recipe Cooker is based on Node-Red. The latter exposes an API that allows the update of a given flow. The 
flow is represented as a tab within the Node-Red editor and all its nodes are stopped before the new flow 
configuration is started. A PUT request is required at the following URL: 
http://“nodeRedIP”:“nodeRedPort”/flow/“RecipeID”. In the body of the request, the updated flow is inserted in 
JSON format. The expected response is the ID of the updated flow. All the above are depicted in  Figure 20 , 
where an update-flow request is shown.  
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FIGURE 20 UPDATEFLOW REQUEST TO NODE-RED 

 
 
 
Let’s assume that the flow depicted in FIGURE 21 is sent to Pattern Orchestrator in order the Property 
Encryption to be verified against the sequence of the two nodes PatternOrchestratorGUI and InfluxDatabase. 
Since no encryption takes place between these two nodes, the verification Drools rules that will be t riggered 
in the corresponding Pattern Engine will respond that the Encryption Property is not satisfied. In that case, 
the Pattern Engine will send a request to the modifyRecipe API of the Pattern Orchestrator with the SPDI/QoS 
Property that is not satisfied. In that way, all the needed information such as the Recipe ID and the subject of 
the Property become available.  

 

 
FIGURE 21 ORIGINAL FLOW WITH UNENCRYPTED COMMUNICATION 
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As soon as, the Pattern Orchestrator receives the said request, sends its own request to Node -Red asking 
for the flow in JSON format. After that, an extra node is added in the flow, changing its JSON representation. 
The new, changed JSON file is sent to Node-Red using the update-flow API. In order to satisfy the Encryption 
Property , an EncryptionNode is added which is able to encrypt the transferred message using one of the 
most well-known encryption algorithms and a provided secret key.  

  

 
FIGURE 22 UPDATED FLOW WITH ENCRYPTED COMMUNICATION 

 
The code snippet below depicts what is added by Pattern Orchestrator to the JSON representation of the flow. 
These lines describe the EncryptionNode. As we can see, its id, name and type are defined. The z attribute 
represents the flow to which this new node is added. Moreover, we see that the encryption algorithm and the 
secret key are defined. Finally, the wires attribute includes the ids of the nodes that  use the output of the node 
in question as their input. In our case, it includes the id of the InfluxDatabase node.  
 

{ 
            "id": "6757fce7.108a94", 
            "type": "encrypt", 
            "z": "99783291.272d2", 
            "name": "EncryptionNode", 
            "algorithm": "AES", 
            "key": "semiotics", 
            "x": 720, 
            "y": 260, 
            "wires": [ 
                [ 
                    "eae7b2ac.b98fc" 
                ] 
            ] 
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        } 
 

 COMPONENT API INTERACTIONS DESCRIPTION 
The developed APIs within Pattern Orchestrator can be seen in Table 9 below. We present each of them using 
Swagger API documentation. We show what are the parameters of a request to these APIs, and how the 
response body should look like.  
 

TABLE 9: LIST OF API DEVELOPED WITHIN PATTERN ORCHESTRATOR 
API Status API access type  Additional comments 

gui Deployed internal • Used by the GUI hub of SEMIoTICS 
insertRecipe Deployed internal • Used by the Recipe Cooker 
removeRecipe Deployed internal • Used by the Recipe Cooker 
modifyRecipe Deployed internal • Used by the Pattern Engines 
 

 

 
FIGURE 23 INSERTRECIPE API USING SWAGGER 
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FIGURE 24  GUI API USING SWAGGER 
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FIGURE 25 REMOVERECIPE API USING SWAGGE 

 
FIGURE 26  MODIFYRECIPE API USING SWAGGER 
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 COMPONENT DEVELOPMENT SUMMARY AFTER ALL CYCLES 
During cycle 1 the system model was defined using the Eclipse Modeling framework (EMF). A UML diagram 
was created using the EMF graphical editor and based on that, an EBNF grammar was created. The expected 
input of the Pattern Orchestrator is a flow expressed with the system model. Moreover, using the Eclipse 
ANTLR4 plugin, the said grammar produced a parser and a listener allowing for syntactic verification of flows 
expressed with the system model. A more detailed description can be found in D4.6.  
 
During cycle 2, Rest web services were built for Pattern Orchestrator using the Spring Framework. In that 
way, other SEMIoTICS components, such as Recipe Cooker and SEMIoTICS GUI, are able to make REST 
requests to the Pattern Orchestrator API using REST clients. Recipe Cooker uses the InsertRecipe API to  
communicate an instantiated Recipe to the Pattern Orchestrator, while GUI uses the patternStatus API to get 
information of the Recipe patterns in order to visualize their status. The description of those APIs can be 
found in D4.7. A REST client was also created in order the Pattern Orchestrator to be able to send requests 
to the REST APIs of the three Pattern Engines in the backend, network and field layers.  
 
During cycle 3, additional code to the Pattern Orchestrator, allowed the later to be able to classify the different 
Recipe components and to decide, based on their classification, to which Pattern Engine to communicate 
them. The description on how this is done can be found on section 4.3.1 above. Moreover, one additional 
REST API was created for the communication of the information needed for an adaptation action to take 
place. Pattern Engines send requests to this new API. Respectively, new REST client was created for the 
communication between the Pattern Orchestrator and the Recipe Cooker. This communication is depicted in 
details in section 4.3.1. 
 
 

 SEMIOTICS REQUIREMENTS IMPLEMENTATION MAPPED TO PATTERN ORCHESTRATOR 
SEMIoTICS Requirement Pattern language 

considerations Reference Req. ID Description 

R.BC.18 
The backend layer must feature SPDI 
pattern reasoning embedded intelligence 
capabilities 

This is a core set of 
requirements for the 
SPDI capabilities that 
must be covered within 
the pattern-driven 
approach developed 
within T4.1. Individual 
Pattern reasoning 
components should be 
developed and deployed 
at all layers, while the 
backend should feature 
global reasoning 
capabilities. All reasoning 
engines should aggregate 
(through interfacing with 
monitoring) relevant 
information needed for 
said reasoning. 

The system model 
and associated 
pattern language 
developed are 
tailored to the 
multi-layer 
approach of 
SEMIoTICS, also 
anticipating intra- 
and cross- layer 
reasoning. 
Furthermore, 
Pattern reasoning 
components 
(referred to as 
Pattern Engines) 
are embedded at 
all layers; see 
subsection 3.7.2.2 
of D4.8. 
The real-time 
reasoning will be 
achieved in 
conjunction with 

R.BC.19 The backend layer should feature pattern-
driven cross-layer orchestration capabilities 

R.BC.20 

The backend layer must aggregate intra-
layer as well as inter-layer SPDI status 
information to enable local and global 
intelligence reasoning and adaptation 

R.NL.12 
The network layer must feature SPDI 
pattern reasoning local embedded 
intelligence capabilities 

R.NL.13 
The network layer must aggregate intra-
layer monitored information to enable local 
intelligence reasoning and adaptation 

R.FD.14 
The field layer must feature SPDI pattern 
reasoning local embedded intelligence 
capabilities 
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R.FD.15 
The field layer must aggregate intra-layer 
monitored information to enable local 
intelligence reasoning and adaptation 

the monitoring 
framework 
(developed in the 
context of T4.2, 
and documented 
in D4.2), which 
can be used for 
providing Pattern 
Rules with the 
appropriate input 
for reasoning. 

R.GP.1 

End-to-end connectivity between the 
heterogeneous IoT devices (at the field 
level) and the heterogeneous IoT Platforms 
(at the backend cloud level) 

While an indirect set of 
requirements, the various 
cross platform and cross 
layer interactions 
(including E2E between 
field and backend) with 
heterogeneous 
components will need to 
be supported and their 
SPDI properties 
monitored accordingly. 

As can be seen in 
subsections 3.2 
(Language Model) 
and 3.3 
(Language 
Constructs) of 
D4.8, instances of 
Java class Link 
allow Pattern 
Engines to 
monitor and verify 
connectivity 
among IoT service 
orchestration 
components. This 
also encompasses 
the pattern-driven 
interoperability 
mechanisms 
developed in the 
context T3.4 (and 
which are further 
described in 
D3.4), which 
leverage the 
language and 
pattern definitions. 
Through the 
above and the 
integration of 
pattern-based 
capabilities at the 
network level 
(SDN pattern 
engine), 
connectivity and 
QoS parameters 
can also be 
monitored. 

R.UC1.1 

Automatic establishment of networking 
setup MUST be performed to establish end-
to-end connectivity between different 
stakeholders 

R.UC2.3 

The SEMIoTICS platform SHOULD guarantee 
proper connectivity between the various 
components of the SARA distributed 
application. The SARA solution is a distributed 
application not only because it uses different 
cloud services (e.g. AREAS Cloud services, 
AI services) from different remote 
computational nodes, but also because the 
SARA application logic itself is distributed 
across various edge nodes (SARA Hubs). 

R.GP.3 
High adaptation capability to accommodate 
different QoS connectivity needs (e.g. low 
latency, reliable communication) 

Other than the aspects of 
availability and 
dependability (and 

As can be seen in 
subsections 3.3 
(Language Model) 
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R.GP.4 
Detection of events requiring a QoS change 
and triggering network reconfiguration 
needed by SPDI pattern 

associated concepts; e.g. 
fault tolerance) that are 
already integral in the 
SPDI properties, other 
QoS-related parameters 
(e.g. latency) can also be 
accommodated by the 
pattern language 
adopted. Moreover, the 
pattern language must be 
able to leverage 
appropriate monitors and 
interface with the 
necessary mechanisms to 
act as an enabler for 
configuring the network 
and triggering network 
updates / 
reconfigurations, as 
needed (e.g. for fault 
tolerance or QoS). 

and 3.4 
(Language 
Constructs) of 
D4.8, Java class 
Property owns an 
attribute Category, 
allowing Pattern 
Engines to 
monitor QoS 
properties of the 
components of an 
IoT service 
orchestration. 
Moreover, the 
properties 
associated with 
the Link class 
directly affect the 
requirements 
relayed to the 
network layer 
(with the 
associated 
properties 
reasoned by the 
Pattern Engine 
embedded at the 
SDN controller; 
see subsection 
3.7.2.2 of D4.8). 

R.GP.7 
SDN controller giving feedback for a future 
generation of SPDI patterns to avoid using 
the same pattern in case of failure 

R.UC1.5 

Fail-over and highly available network 
management SHALL be performed in the 
face of either controller or data-plane 
failures. 

R.UC1.3 

There MUST be enabled the definition of 
network QoS on application-level and 
automated translation into SDN controller 
configurations. 

R.UC1.4 

Network resource isolation MUST be 
performed for guaranteed Service properties 
– i.e. reliability, delay and bandwidth 
constraints. 

R.UC2.15 

The SEMIoTICS platform SHOULD provide 
low latency connectivity between the SARA 
hubs and cloud services (i.e. AREAS cloud 
services and AI services) to allow offloading of 
near real-time computation intensive tasks to 
the cloud. 
Therefore, SARA hubs need to send with 
minimal delay: 
• raw range data (e.g. from Lidar sensors) 

to identify proximal objects/objects, 
• real-time audio stream for speech 

analysis, 
and real-time raw video stream (object/people 
recognition, gesture recognition, posture 
analysis). 

R.GSP.1 The Intrusion Detection System (IDS) MUST 
capture and process suspicious traffic. 

Concerns regarding any 
sensitive data that is 
generated, processed, 
stored and exchanged at 
all layers must be 
considered, enforcing and 
monitoring the 
corresponding security 
mechanisms, especially 
when different trust 
domains are involved. 
Proper authentication and 
authorisation services are 
a necessity when trying to 
safeguard the security 
and privacy of data and 
services. These aspects 

Security-related 
properties (such 
as Confidentiality) 
are at the core of 
the properties 
covered in the 
SEMIoTICS 
system model 
(subsection 3.3 of 
D4.8) and 
associated 
language 
(subsection 3.4 of 
D4.8). Moreover, 
a first version of 
security-related 
pattern rules can 
be seen in 

R.NL.11 

Secure communication with the various 
Backend Cloud components (e.g., use of 
dedicated management network, 
appropriate Firewall rules), as well as the 
communication between VIM, SDN 
Controller, and MANO, with data paths 
acting as computing nodes for VNF spinoff. 

R.S.7 
The negotiation interface of the SDN 
Controller SHALL be secure against 
network-based attacks 
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R.S.1 
The confidentiality of all network 
communication MUST be protected using 
state-of-the-art mechanisms. 

must be defined in the 
pattern language, 
monitored and enforced, 
considering the different 
types of devices (e.g. 
sensors, network 
controllers, backend 
servers), actors (e.g. 
humans, 
machines/applications) 
and interaction types 
(e.g. maintenance or 
medical staff, simple 
users). These, along with 
cryptographic 
mechanisms, will need to 
be used to establish trust 
within and across 
domains. 
Moreover, privacy 
considerations will have 
to be included (e.g. 
protection of private data 
at rest and in transit, data 
anonymization and 
minimisation, data 
retention; see section 
2.2.1 above). 
In addition to the above, 
patterns can also be 
leveraged to monitor and 
enforce the presence of 
security mechanisms in 
different IoT 
orchestrations. 
 
 
 

subsection 4.1 of 
D4.8, while a first 
set of Privacy 
Patterns can be 
seen in 
subsection 4.1.5 
of D4.8. 
Moreover, using 
the pattern 
language, 
different 
verification types 
can be declared 
for each of the 
properties (see 
subsection 3.3 of 
D4.8); this can be 
exploited to define 
interfaces with the 
various security 
mechanisms 
which will allow 
the verification of 
the different SPDI 
properties 
associated with 
them (e.g., 
monitoring 
encryption 
mechanisms that 
provide the 
property of 
Confidentiality). 
This will be 
achieved in 
conjunction with 
the monitoring 
framework 
(developed in the 
context of T4.2, 
and documented 
in D4.2), which 
can be used for 
providing Pattern 
Rules with the 
appropriate input 
for reasoning on 
relevant security 
and privacy -
related aspects, 
such as secure 
deletion of 
unnecessary data, 
limitation of 

R.S.6 

Sensors SHALL be able to encrypt the data 
they generate, i.e. their CPU and memory 
SHALL be sufficient to perform these 
cryptographic operations. 

R.S.2 

Authentication and authorisation of the 
stakeholders MUST be enforced by the 
Network controller, e.g. through access and 
role-based lists for different levels of 
function granularities (overlay, customized 
access to service, QoS manipulation, etc.) 
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sampling via a 
variant of the 
mechanisms used 
to ensure QoS 
parameters, etc. 

R.S.3 
Sensors SHALL be identifiable (e.g. by a 
TPM module/smartcard) and authenticated 
by the gateway. 

These Security and 
Privacy requirements are 
indirectly related to the 
pattern approach 
presented herein. 
Nevertheless, the 
SEMIoTICS patterns 
need to be able to 
accommodate all these 
requirements, monitoring 
the status of the 
corresponding 
components 
implementing these 
security and privacy 
requirements, and 
triggering adaptations if 
needed. 

All key security 
and privacy 
properties are 
covered within the 
SEMIoTICS 
patterns (see 
Section 4 of 
D4.8). 
Furthermore, the 
language 
expressiveness 
allows the 
definition of the 
appropriate 
conditions (facts) 
to be verified in 
order to provide 
real-time 
verification of the 
properties 
sketched by these 
requirements (see 
subsections 3.4 
and 3.9 of D4.8). 

R.S.4 
All components from gateway, via SDN 
Controller, to cloud platforms and their 
users MUST authenticate mutually. 

R.S.5 

Before sensitive data is being transmitted, 
the respective components SHALL be 
authenticated as defined by requirements 
R.S.3 and R.S.4 

R.S.17 

There MUST be an interface between the 
network controller and the network 
administrators for the designation of the 
applications’ permissions. 

R.S.18 All network functions SHALL be mapped to 
application permissions 

R.GSP.4 Platforms, e.g. cloud platform and sensor, 
SHALL be trusted. 

R.GSP.9 The SARA system SHALL provide robust 
mechanisms to protect Patient-related data. 

R.GSP.10 

The SARA system MUST fully comply with 
all relevant Italian laws governing the 
privacy, security and storage of sensitive 
Patient health-related data. 

R.P.1 The collection of raw data MUST be 
minimized. 

Coverage of privacy 
requirements within the 
SEMIoTICS patterns is 
needed. 

As documented in 
subsection 4.2 of 
D4.8, the 
SEMIoTICS 
patterns (and by 
extension the 
pattern-driven 
reasoning 
capabilities of 
SEMIoTICS at all 
layers) include all 
key privacy 
properties. 

R.P.3 Storage of data MUST be minimized. 

R.P.4 
A short data retention period MUST be 
enforced and maintaining data for longer 
than necessary avoided. 

R.P.6 

Data MUST be anonymized wherever 
possible by removing the personally 
identifiable information in order to decrease 
the risk of unintended disclosure. 

R.P.8 Data MUST be stored in encrypted form. 

R.P.9 

Repeated querying for specific data by 
applications, services, or users that are not 
intent to act in this manner SHALL be 
blocked. 
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R.UC1.6 
Decisions made by unreliable, i.e. faulty or 
malicious SDN controllers, SHALL be 
identified and excluded. 

Events received from 
monitoring critical 
aspects of the systems’ 
and subsystems’ 
operation, as highlighted 
by the pattern language, 
will need to be 
aggregated and 
evaluated by the pattern 
engine. These will need 
to encompass SPDI and 
other parameters (e.g. 
QoS related), as well as 
anomalies, indicators of 
malicious actions, 
malfunction, resource 
depletion, failures etc., 
across the different layers 
and (physical & logical) 
components of the 
SEMIoTICS deployment. 
Pattern-driven 
interoperability 
mechanisms will ensure 
that these connections 
can be established, 
further explored in D3.4. 
In cases of privacy-
sensitive monitoring data 
(e.g. location of the 
device), the necessary 
privacy provisions will 
need to be enforced. 

As can be seen in 
section 3.2 
(Language Model) 
and 3.3 
(Language 
Constructs), the 
pattern language 
that has been 
created can 
declare Properties 
whose verification 
type is Monitoring. 
That allows for 
capturing the 
monitoring critical 
aspects and 
enabling the 
reasoning on 
parameters 
related to 
properties such as 
reliability. 
As above, the 
necessary inputs 
will be aggregated 
from the 
monitoring 
framework of 
SEMIoTICS 
(T4.2/D4.2). 

R.GSP.7 

The cloud platform SHALL be able to 
monitor the execution of an app, in 
particular its interactions with other apps, 
the network interface, and APIs. 

R.UC3.7 
MCU IoT Sensing unit shall be able to send 
change detection and signal local changes / 
anomalies to IoT Sensing gateway. 

This set of requirements 
indirectly affects the 
development of the 

Availability and 
Dependability 
patterns 
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R.UC3.16 

Each registered sensing unit should send to 
the sensing gateway a keep alive signal on 
a specified period (e.g. few seconds) to 
notify the gateway it is correctly working. 
The sensing gateway should detect by this 
mean any non-working sensing unit and 
reconfigure the system accordingly. 

SEMIoTICS pattern 
solution. The Availability 
and Dependability 
aspects integrated into 
the pattern approach 
need to support these UC 
requirements. 

developed within 
SEMIoTICS are 
able to 
accommodate the 
monitoring defined 
in these 
requirements (see 
subsections 4.1.3 
and 4.3 of D4.8). 
These features 
will be further 
explored and 
demonstrated in 
the context of the 
UC3 scenarios, as 
detailed in 
subsection 7.3. 

R.UC3.18 

Sensing units may be equipped with 
dedicated FW to detect relevant sensors 
malfunctioning and report that to the 
gateway 

R.P.12 

During all communication and processing 
phases logging MUST be performed to 
enable the examination that the system is 
operating as promised 

Logging is an integral 
part of security, enabling 
auditing functions and 
providing accountability. 
Moreover, regulatory 
drivers also necessitate it 
(e.g. transparency 
through logging is 
essential under GDPR). 
This must be considered 
in the definition of the 
pattern language, the 
associated engine and its 
monitors, enabling the 
provision of reliable and 
trustworthy logging 
mechanisms both for the 
various actors as well as 
the events and reasoning 
of the pattern engine 
itself. 

All pattern engine 
components (see 
subsection 3.7.2.2 
of D4.8) feature 
integrated logging 
mechanisms that 
allow for auditing 
on all pattern-
driven reasoning 
and adaptation 
actions triggered. 
In other parts of 
the SEMIoTICS 
framework and 
protected 
infrastructure, the 
deployment and 
monitoring of the 
proper operation 
of the logging 
functions can be 
introduced as with 
any other 
mechanism (see 
subgroups of 
requirements 
above). 

 
 

4.4 Pattern Engine (backend) 
As described in D4.6 and D4.7, the Backend Pattern Engine is a module featuring an underlying semantic 
reasoner processing Drools rules and facts. It also supports the capability to insert, modify, execute and retract 
patterns at design time (via Pattern Orchestrator) or at runtime in the SEMIoTICS backend. Using Drools rule 
engine, along with monitoring capabilities present at the backend layer, the Pattern Engine is able to reason 
on the SPDI and QoS properties of aspects pertaining to the operation of the SEMIoTICS backend. 
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During runtime, the Backend Pattern Engine Module is able to receive fact updates from the Pattern engines 
of lower layers (Network & Field), in order to have an up-to-date view of the SPDI state of all the layers and 
the corresponding components.  

Cycle 3 development includes:  

• Refinement of classes implemented in Cycle 2 for the instantiation of Drools facts. 
• Add encryption to the endpoints. 
• Update of Backend Pattern Engine status based on information from the SDN/NFV layer and Field layer 
• Adaptation to maintain desired properties. 

Please refer to Table 10 for more details. 

 
TABLE 10 PATTERN ENGINE BACKLOG 

Feature/task scope Short description Cycle 
assignment 

Status 

API Definition Pattern Engines in all layers need a 
common API for the interactions between 
them, therefore the first step is to define 
the API. 

Cycle 1 Delivered 

Drools pattern rules 
instantiation 

Patterns in the form of Drools Rules must 
be created and instantiated inside the 
Drools Engine of the Backend Pattern 
Engine. 

Cycle 1 Delivered  

Drools pattern rules storage 
in a standalone repository 

A standalone repository is needed for the 
Drools pattern rules in order to maintain 
them in the case of restarting the engine. 

Cycle 1 Delivered 

Communication of network 
and field updates to Backend 
Pattern Engine 

The Backend Pattern Engine must have a 
global view of the SPDI properties, 
therefore, Pattern Engines in the field and 
network layer must propagate their 
updates to Backend Pattern Engine 

Cycle 2 Delivered 

Successful testing of flow 
from Recipe Cooker 

The Recipe Cooker is the point of start for 
an IoT service orchestration to be 
deployed with SPDI properties assigned to 
it. The IoT service orchestration must be 
communicated to the relevant Pattern 
Engines through the Pattern Orchestrator 
(please see the comment below). 

Cycle 2 & 3 Delivered 

Refinement of classes from 
Cycle 2 

The classes used for the instantiation of 
Drools facts, needed to be adapted to fit 
the needs of Use Cases. 

Cycle 3 Delivered 

Add encryption to the REST 
endpoints 

In order to increase the level of security all 
the REST endpoints are encrypted. 

Cycle 3 Delivered 

Update of Backend Pattern 
Engine status based on 
information from the 
SDN/NFV layer and Field 
layer 

Update of Backend Pattern Engine on 
status based on instantiated paths with 
different properties, and adaptation of 
network to maintain desired properties 
and used SFC chains. 

Cycle 3 Delivered 

Adaptation to maintain 
desired properties 

When the desired property is no longer 
satisfied, the Backend Pattern Engine 
must take adaptation actions accordingly. 

Cycle 3 Delivered 

 DEVELOPMENT STATUS 
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Regarding the Backend Pattern Engine the environment that was adapted during Cycle 2 after replacing gRPC 
and Protocol buffers with the corresponding REST approach, was capable to fulfill all the needs with oth er 
SEMIoTICS components and therefore there was no need to make additional changes on that front.  

In addition, the REST web services that were built on Cycle 2 are now secured with encryption with the use 
of SSL. The necessary certificates are also included in the other Pattern Engines in order to communicate 
with the Pattern Engine at the Backend. The Spring Framework was also configured to redirect all http 
traffic to https as depicted in Figure 27. 

 
FIGURE 27 REDIRECTION OF HTTP TRAFFIC TO HTTPS 

In order for the Pattern Engine at the Backend to have an up to date information about all the components 
involved in all layers, two steps were taken. The first step was in cooperation with the Pattern Orchestrat or 
and the second was in cooperation with the Pattern Engines at the other layers. Pattern Orchestrator decides 
which facts should arrive to which Pattern Engine. The Pattern Engine at the Backend, in addition to the facts 
that are specific for the backend layer, will also receive all the facts from the Pattern Orchestrator that are 
sent to the other layers. This process is accomplished with the use of the addFact API.  

Due to the fact that the Pattern Engine at the Backend is not in position to verify on it s own, the SPDI/QoS 
properties that exist in the other layers, it needs this information from the other Pattern Engines. The Pattern 
Engines at the other layers, after triggering their local rules and having reasoned with all their available facts, 
conclude to an updated status whether the said properties are satisfied or not. Afterwards, they transmit these 
properties to the Pattern Engine at the Backend using the factUpdate API. Some refinement was necessary 
to the classes introduced during cycle 2 but the core of them remained the same. 

When a desired property is no longer satisfied, the Backend Pattern Engine is able to take adaptation actions 
accordingly. These actions are dictated accordingly from the Pattern Rules. We consider the scenario where a 
database component exists in the recipe, along with a requirement for encrypted storage. A Pattern Rule would 
identify that the database doesn’t support encryption and initiate a chain of actions that will result in the modification 
of the initial recipe. The new recipe will have an encryption node ahead of the database component thus satisfying 
the need for encrypted storage. 

The following rule is the implementation of the above scenario: 

rule "Encryption Adaptation" 
when 
    SoftwareComponent($pid:=placeholderid); 
    $pr:Property($pid:=subject, category=="storageencryption", satisfied==false); 
then 
    System.out.println("Contacting Pattern Orchestrator ..."); 
    Application.contactPO.flowUpdate($pr); 
end 

This rule is triggered whenever a software component such as a database exists along with a requirement for 
encrypted storage. The “then” part of the rule will contact Pattern Orchestrator, providing him will all the 
necessary information for updating the recipe. 
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The following snippet of code is the method that will contact Pattern Orchestrator in the above scenario. 

public String flowUpdate(Property pr){ 
    String jsonString =""; 
    Boolean connectivity=false; 
 
    //Convert Java Plain Object into JSON 
    Gson gsonBuilder = new GsonBuilder().create(); 
    String jsonFact = gsonBuilder.toJson(pr); 
 
    try { 
        URL url = new URL (baseURL + "/modifyRecipe"); 
        HttpURLConnection con = (HttpURLConnection)url.openConnection(); 
        con.setRequestMethod("POST"); 
        con.setRequestProperty("Content-Type", "application/json"); 
        con.setRequestProperty("Accept", "application/json"); 
        con.setDoOutput(true); 
        con.setConnectTimeout(5000); //set timeout to 5 seconds 
        String body = jsonFact; 
        try(OutputStream os = con.getOutputStream()) { 
            byte[] input = body.getBytes("utf-8"); 
            os.write(input, 0, input.length); 
        } 
        try(BufferedReader br = new BufferedReader( 
                new InputStreamReader(con.getInputStream(), "utf-8"))) { 
            StringBuilder response = new StringBuilder(); 
            String responseLine = null; 
            while ((responseLine = br.readLine()) != null) { 
                response.append(responseLine.trim()); 
            } 
            jsonString = response.toString(); 
            connectivity=true; 
 
        } 
    } catch (MalformedURLException e) { 
        e.printStackTrace(); 
    } catch(NoRouteToHostException e){ 
        System.out.println("no connection to Pattern Orchestrator at "+poIP+":"+poPort); 
    }catch (ConnectException e){ 
        System.out.println(e.getMessage() + ". Make sure that Pattern Orchestrator is runni
ng at "+poIP+":"+poPort); 
    } 
    catch (SocketTimeoutException e){ 
        System.out.println(e.getMessage() + ". Make sure that Pattern Orchestrator is runni
ng at "+poIP+":"+poPort); 
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    } 
    String jsonFromString=""; 
    if(connectivity) { 
        jsonFromString = jsonString; 
    } 
    return jsonFromString; 
} 
 

 COMPONENT API INTERACTIONS DESCRIPTION 

The following table includes the main set of APIs that were developed. The APIs are either internal to the 
same layer or external i.e. cross-layer. 

 

API Status API access 
type Additional comments 

insertRule Deployed internal Access only for Pattern Orchestrator 
removeRule Deployed internal Access only for Pattern Orchestrator 

getRule Deployed internal Access only for Pattern Orchestrator 

addFact Deployed external Access for Pattern Orchestrator and cross-layer access from 
other Pattern Engines 

factUpdate Deployed external Access for Pattern Orchestrator and cross-layer access from 
other Pattern Engines 

factStatus Deployed external Access for Pattern Orchestrator and cross-layer access from 
other Pattern Engines 

factRemove Deployed external Access for Pattern Orchestrator and cross-layer access from 
other Pattern Engines 

 
In the following figures all the APIs are presented with a sample input along with the corresponding response 
using SWAGGER. 
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FIGURE 28 INSERTRULE API 

 

 
FIGURE 29 GETRULE API 
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FIGURE 30 REMOVERULE API 

 

 
FIGURE 31 ADDFACT API 
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FIGURE 32 FACTREMOVE API 

 

 
FIGURE 33 FACTUPDATE API 
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FIGURE 34 FACTSTATUS 

 
 COMPONENT DEVELOPMENT SUMMARY AFTER ALL CYCLES 

During Cycle 1 the environment was based on Apache Maven 3.6.1, JBoss Drools2 7.15, and gRPC3 with Protocol 
Buffers4 Version 3. Based on that, we had successfully created a gRPC server loading the Pattern Engine with a 
basic set of Drools rules. Using a test client, we were able to successfully make gRPC calls to the server to request 
verification of specific pattern rule. API definition, pattern rules instantiation and a standalone repository for pattern 
rules were implemented. 

During Cycle 2 gRPC and Protocol Buffers were replaced with a corresponding REST approach for 
compatibility purposes with other SEMIoTICS components. The Spring Framework was adopted to build 
REST web services. Using REST clients, other SEMIoTICS components are able to successfully make REST 
requests to the Backend Pattern Engine API. Communication of network and field updates to Backend Pattern 
Engine were implemented as well as testing of flow from Recipe Cooker.  

During Cycle 3 the corresponding REST approach, was capable to fulfill all the needs with other SEMIoTICS 
components and therefore there was no need to make additional changes on that front. Classes that were 
introduced during Cycle 2 were refined, encryption was added to the REST endpoints and adaptation to 
maintain desired properties were implemented with pattern rules. 

 

 

 
2 https://docs.jboss.org/drools/release/7.15.0.Final/drools-docs/html_single/index.html 
3 https://grpc.io/ 
4 https://developers.google.com/protocol-buffers/docs/proto3 
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 SEMIOTICS REQUIREMENTS IMPLEMENTATION MAPPED TO PATTERN ENGINE 
(BACKEND) 

  
SEMIoTICS Requirement Pattern language 

considerations  
Reference 

Req. ID Description 

R.BC.18 

The backend layer must 
feature SPDI pattern 
reasoning embedded 
intelligence capabilities 

The system model and 
associated pattern language 
developed are tailored to the 
multi-layer approach of 
SEMIoTICS, also 
anticipating intra- and cross- 
layer reasoning. 
Furthermore, Pattern 
reasoning components 
(referred to as Pattern 
Engines) are embedded at 
all layers; see subsection 
3.7.2.2 of D4.8. 

The system model and 
associated pattern 
language developed are 
tailored to the multi-layer 
approach of SEMIoTICS, 
also anticipating intra- 
and cross- layer 
reasoning. 
Furthermore, Pattern 
reasoning components 
(referred to as Pattern 
Engines) are embedded 
at all layers; see 
subsection 3.7.2.2 of 
D4.8. 
The real-time reasoning 
will be achieved in 
conjunction with the 
monitoring framework 
(developed in the context 
of T4.2, and documented 
in D4.2), which can be 
used for providing Pattern 
Rules with the 
appropriate input for 
reasoning. 

 

R.BC.20 

The backend layer must 
aggregate intra-layer as well 
as inter-layer SPDI status 
information to enable local and 
global intelligence reasoning 
and adaptation 

R.GP.1 

End-to-end connectivity 
between the heterogeneous 
IoT devices (at the field level) 
and the heterogeneous IoT 
Platforms (at the backend 
cloud level) 

The real-time reasoning will 
be achieved in conjunction 
with the monitoring 
framework (developed in the 
context of T4.2, and 
documented in D4.2), which 
can be used for providing 
Pattern Rules with the 
appropriate input for 
reasoning.  

As can be seen in 
subsections 3.2 
(Language Model) and 
3.3 (Language 
Constructs) of D4.8, 
instances of Java class 
Link allow Pattern 
Engines to monitor and 
verify connectivity among 
IoT service orchestration 
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R.UC2.3 

The SEMIoTICS platform 
SHOULD guarantee proper 
connectivity between the various 
components of the SARA 
distributed application. The SARA 
solution is a distributed 
application not only because it 
uses different cloud services (e.g. 
AREAS Cloud services, AI 
services) from different remote 
computational nodes, but also 
because the SARA application 
logic itself is distributed across 
various edge nodes (SARA 
Hubs). 

components. This also 
encompasses the 
pattern-driven 
interoperability 
mechanisms developed 
in the context T3.4 (and 
which are further 
described in D3.4), which 
leverage the language 
and pattern definitions. 
Through the above and 
the integration of pattern-
based capabilities at the 
network level (SDN 
pattern engine), 
connectivity and QoS 
parameters can also be 
monitored. 

R.GP.3 

High adaptation capability to 
accommodate different QoS 
connectivity needs (e.g. low 
latency, reliable 
communication) 

 
As can be seen in 
subsections 3.2 (Language 
Model) and 3.3 (Language 
Constructs) of D4.8, 
instances of Java class Link 
allow Pattern Engines to 
monitor and verify 
connectivity among IoT 
service orchestration 
components. This also 
encompasses the pattern-
driven interoperability 
mechanisms developed in 
the context T3.4 (and which 
are further described in 
D3.4), which leverage the 
language and pattern 
definitions. 
Through the above and the 
integration of pattern-based 
capabilities at the network 
level (SDN pattern engine), 
connectivity and QoS 
parameters can also be 
monitored. 

As can be seen in 
subsections 3.3 
(Language Model) and 
4.5 (Language 
Constructs) of D4.8, Java 
class Property owns an 
attribute Category, 
allowing Pattern Engines 
to monitor QoS properties 
of the components of an 
IoT service orchestration. 
Moreover, the properties 
associated with the Link 
class directly affect the 
requirements relayed to 
the network layer (with 
the associated properties 
reasoned by the Pattern 
Engine embedded at the 
SDN controller; see 
subsection 3.7.2.2 of 
D4.8). 

R.GP.4 

Detection of events requiring a 
QoS change and triggering 
network reconfiguration 
needed by SPDI pattern 

R.UC2.15 

The SEMIoTICS platform 
SHOULD provide low latency 
connectivity between the SARA 
hubs and cloud services (i.e. 
AREAS cloud services and AI 
services) to allow offloading of 
near real-time computation 
intensive tasks to the cloud. 
Therefore, SARA hubs need to 
send with minimal delay: 
• raw range data (e.g. from 

Lidar sensors) to identify 
proximal objects/objects, 

• real-time audio stream for 
speech analysis, 

and real-time raw video stream 
(object/people recognition, 
gesture recognition, posture 
analysis). 
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R.S.1 

The confidentiality of all 
network communication MUST 
be protected using state-of-
the-art mechanisms. 

Concerns regarding any 
sensitive data that is 
generated, processed, 
stored and exchanged at all 
layers must be considered, 
enforcing and monitoring the 
corresponding security 
mechanisms, especially 
when different trust domains 
are involved. 
Proper authentication and 
authorisation services are a 
necessity when trying to 
safeguard the security and 
privacy of data and services. 
These aspects must be 
defined in the pattern 
language, monitored and 
enforced, considering the 
different types of devices 
(e.g. sensors, network 
controllers, backend 
servers), actors (e.g. 
humans, 
machines/applications) and 
interaction types (e.g. 
maintenance or medical 
staff, simple users). These, 
along with cryptographic 
mechanisms, will need to be 
used to establish trust within 
and across domains. 
Moreover, privacy 
considerations will have to 
be included (e.g. protection 
of private data at rest and in 
transit, data anonymization 
and minimisation, data 
retention; see section 2.2.1 
above). 
In addition to the above, 
patterns can also be 
leveraged to monitor and 
enforce the presence of 
security mechanisms in 
different IoT orchestrations. 
 

Security-related 
properties (such as 
Confidentiality) are at the 
core of the properties 
covered in the 
SEMIoTICS system 
model (subsection 3.3 of 
D4.8) and associated 
language (subsection 3.4 
of D4.8). Moreover, a first 
version of security-related 
pattern rules can be seen 
in subsection 4.1 of D4.8, 
while a first set of Privacy 
Patterns can be seen in 
subsection 4.1.5 of D4.8. 
Moreover, using the 
pattern language, 
different verification types 
can be declared for each 
of the properties (see 
subsection 3.3 of D4.8); 
this can be exploited to 
define interfaces with the 
various security 
mechanisms which will 
allow the verification of 
the different SPDI 
properties associated 
with them (e.g., 
monitoring encryption 
mechanisms that provide 
the property of 
Confidentiality). 
This will be achieved in 
conjunction with the 
monitoring framework 
(developed in the context 
of T4.2, and documented 
in D4.2), which can be 
used for providing Pattern 
Rules with the 
appropriate input for 
reasoning on relevant 
security and privacy -
related aspects, such as 
secure deletion of 
unnecessary data, 
limitation of sampling via 
a variant of the 
mechanisms used to 
ensure QoS parameters, 
etc. 
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R.S.5 

Before sensitive data is being 
transmitted, the respective 
components SHALL be 
authenticated as defined by 
requirements R.S.3 and R.S.4 

As can be seen in 
subsections 3.3 (Language 
Model) and 3.4 (Language 
Constructs) of D4.8, Java 
class Property owns an 
attribute Category, allowing 
Pattern Engines to monitor 
QoS properties of the 
components of an IoT 
service orchestration. 
Moreover, the properties 
associated with the Link 
class directly affect the 
requirements relayed to the 
network layer (with the 
associated properties 
reasoned by the Pattern 
Engine embedded at the 
SDN controller; see 
subsection 3.7.2.2 of D4.8). 

All key security and 
privacy properties are 
covered within the 
SEMIoTICS patterns (see 
Section 4 of D4.8). 
Furthermore, the 
language expressiveness 
allows the definition of 
the appropriate 
conditions (facts) to be 
verified in order to 
provide real-time 
verification of the 
properties sketched by 
these requirements (see 
subsections 3.4 and 3.9 
of D4.8). 

R.P.1 The collection of raw data 
MUST be minimized. 

 
Security-related properties 
(such as Confidentiality) are 
at the core of the properties 
covered in the SEMIoTICS 
system model (subsection 
3.3 of D4.8) and associated 
language (subsection 3.4 of 
D4.8). Moreover, a first 
version of security-related 
pattern rules can be seen in 
subsection 4.1 of D4.8, 
while a first set of Privacy 
Patterns can be seen in 
subsection 4.1.5 of D4.8. 
Moreover, using the pattern 
language, different 
verification types can be 
declared for each of the 
properties (see subsection 
3.3 of D4.8); this can be 
exploited to define interfaces 
with the various security 
mechanisms which will allow 
the verification of the 
different SPDI properties 
associated with them (e.g., 
monitoring encryption 
mechanisms that provide the 
property of Confidentiality). 

As documented in 
subsection 4.2 of D4.8, 
the SEMIoTICS patterns 
(and by extension the 
pattern-driven reasoning 
capabilities of 
SEMIoTICS at all layers) 
include all key privacy 
properties. 

R.P.3 Storage of data MUST be 
minimized. 

R.P.6 

Data MUST be anonymized 
wherever possible by removing 
the personally identifiable 
information in order to 
decrease the risk of 
unintended disclosure. 

R.P.8 Data MUST be stored in 
encrypted form. 

R.P.9 

Repeated querying for specific 
data by applications, services, 
or users that are not intent to 
act in this manner SHALL be 
blocked. 
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This is achieved in 
conjunction with the 
monitoring framework 
(developed in the context of 
T4.2, and documented in 
D4.9), which can be used for 
providing Pattern Rules with 
the appropriate input for 
reasoning on relevant 
security and privacy -related 
aspects, such as secure 
deletion of unnecessary 
data, limitation of sampling 
via a variant of the 
mechanisms used to ensure 
QoS parameters, etc. 

R.GSP.7 

The cloud platform SHALL be 
able to monitor the execution 
of an app, in particular its 
interactions with other apps, 
the network interface, and 
APIs. 

All key security and privacy 
properties are covered 
within the SEMIoTICS 
patterns (see Section 4 of 
D4.8). Furthermore, the 
language expressiveness 
allows the definition of the 
appropriate conditions 
(facts) to be verified in order 
to provide real-time 
verification of the properties 
sketched by these 
requirements (see 
subsections 3.4 and 3.9 of 
D4.8).  

As can be seen in section 
3.2 (Language Model) 
and 3.3 (Language 
Constructs) of D4.8, the 
pattern language that has 
been created can declare 
Properties whose 
verification type is 
Monitoring. That allows 
for capturing the 
monitoring critical 
aspects and enabling the 
reasoning on parameters 
related to properties such 
as reliability. 
As above, the necessary 
inputs will be aggregated 
from the monitoring 
framework of SEMIoTICS 
(T4.2/D4.2). 
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Availability and 
Dependability patterns 
developed within 
SEMIoTICS are able to 
accommodate the 
monitoring defined in 
these requirements (see 
subsections 4.1.3 and 4.3 
of D4.8). These features 
will be further explored 
and demonstrated in the 
context of the UC3 
scenarios, as detailed in 
subsection 7.3. 

R.P.12 

During all communication and 
processing phases logging 
MUST be performed to enable 
the examination that the 
system is operating as 
promised 

As documented in 
subsection 4.2 of D4.8, the 
SEMIoTICS patterns (and by 
extension the pattern-driven 
reasoning capabilities of 
SEMIoTICS at all layers) 
include all key privacy 
properties. 

All pattern engine 
components (see 
subsection 3.7.2.2 of 
D4.8) feature integrated 
logging mechanisms that 
allow for auditing on all 
pattern-driven reasoning 
and adaptation actions 
triggered. 
In other parts of the 
SEMIoTICS framework 
and protected 
infrastructure, the 
deployment and 
monitoring of the proper 
operation of the logging 
functions can be 
introduced as with any 
other mechanism (see 
subgroups of 
requirements above). 

 

4.5 Backend Semantic Validator 
The aim of the Backend Semantic Validator (BSV) component is to tackle the semantic interoperability issues 
that arise in the SEMIoTICS framework, at the application orchestration layer. The Backend Semantic Validator 
provides: 

• validation mechanisms to ensure semantic interoperability,  
• connection with Recipe Cooker to resolve the semantic conflicts using the Adaptor Nodes,  
• connection with external IoT platforms to enable interoperability between these targeted external IoT 

enabling platforms and SEMIoTICS and  
• adaptability taking to account the interoperability of devices that are used in SEMIoTICS, interacting 

with the Pattern Engine (Backend layer). 
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TABLE 11 BSV BACKLOG 
Feature/task scope Short description Cycle 

assignment 
Status 

First installation of a server 
using gRPC and protocol 
buffers 

In order to receive a request from an IoT 
application, a service is required from the 
BSV side. For this reason, a server is 
implemented with the appropriate 
endpoints, using gRPC framework and 
protocol buffers, for the aforementioned 
communication. 

Cycle 1 Delivered 

Establish communication 
between Recipe Cooker and 
BSV 

Recipe Cooker is the primary tool for 
designing the flow that involves Things as 
well as other components. In order to be 
able to guarantee the semantic 
interoperability between the Things, the 
Recipe Cooker needs to be able to 
communicate with BSV. The output of the 
Recipe cooker is in JSON format that BSV 
parses. 

Cycle 2 Delivered 

Re-implement BSV’s 
endpoints using RESTFul 
services instead of gRPC 

Due to compatibility issues with Recipe 
Cooker, the need to abandon gRPC 
implementation and replace it with 
RESTFul Services. 

Cycle 2 Delivered 

Resolve semantic conflicts 
using the Adaptor Nodes 

Upon receiving a recipe from Recipe 
Cooker, the BSV checks the semantic 
validity of the involved Things and 
responds accordingly to Recipe Cooker. 
When two Things are not semantically 
interoperable, the BSV creates an 
Adaptor Node, which resolves the 
semantic conflicts between them. 

Cycle 2 & 3 Delivered 

Communication with the 
Semantic API & Protocol 
Binding component 

When the request of an IoT application 
results in the involvement of brownfield 
systems, it is necessary to forward the 
request to the Semantic API & Protocol 
Binding component, which is responsible 
to trigger the GW Semantic Mediator in 
the filed layer. Therefore, communication 
between BSV and Semantic API & 
Protocol Binding needs to be 
implemented. 

Cycle 3 This feature was 
not implemented, 
because it was 
out of the 
requirements of 
the final 
implementation of 
the SEMIoTICS 
UCs scenarios 
(see D4.11) 

Interact with other European 
platforms (e.g. FIWARE). 

The request from an IoT application 
includes Thing Description in JSON-LD 
format, which may reference other 
European schemas different from 
iot.schema (e.g. schema.lab.fiware.org). 
Therefore, an example of interaction with 
at least one European platform should be 
implemented. 

Cycle 3 Delivered 

Interact with Pattern related 
modules 

One of the features promised in Pattern 
Engine regards interoperability properties. 
The semantic interoperability, in 
particular, implies the interaction between 
BSV and Pattern Engine. 

Cycle 3 Delivered 
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 DEVELOPMENT STATUS 
The phase of the BSV implementation that involves the decision of the interoperability between the things and 
harmonization of the semantic model capabilities of them with the registration of extra Adaptor Nodes in the 
Recipe Cooker was implemented during the Cycle 2 (see D4.7- subsection 4.5.2). However, the procedure of 
the Adaptor Node development, with specific functionality, are modified in Cycle 3. The reason for this further 
implementation came from the fact that the initial implementation required the re -run of the Recipe Cooker 
component in order to the new node modules be installed at runtime. Hence, the HTTP API methods from 
node-RED are used and Function node for the corresponding Adaptor Node are introduced in the flow recipe 
to resolve the interoperability issues. 
Specifically, to enable the interoperability between the flow’s Things, a number of different step phases are 
required, following the corresponding sequence diagram in Figure 36. In fact, the Recipe Cooker component 
which is responsible for cooking (creating) recipes reflecting user requirements, sends the recipe in Pattern 
Orchestrator component (using POST method request), which is in charge of the automated configuration, 
coordination, and management of different patterns and their deployment to express requirements of the flows 
to guarantee interoperability based on architectural patterns.  
The second phase includes the insertion of the interoperability requirement as a POST from the Orchestrator 
to the Pattern Engine to enforce the respective pattern rules (see Figure 35). The pattern is expressed in a 
machine-processable Drool rule format of the said semantic interoperability for any inserted flow. The when 
part identify the requested placeholders placed in sequence, required to satisfy the semantic interoperability 
property. If the conditions are met, the rule in then can guarantee that the requested property is satisfied.  
 
rule "Sequence Semantic Interoperability Verification" 
when 
      Placeholder($pA:=placeholderid) 
      Property ($pA:=subject, category=="semantic", $prvaluein1:=input_value,  
   $prvalueout1:=output_value, satisfied==true) 
      Placeholder($pB:=placeholderid) 
      Property ($pB:=subject, category=="semantic", $prvaluein2:=input_value,  
   $prvalueout2:=out_value, satisfied==true) 
      Sequence($sId:=placeholderid, $pA:=placeholdera, $pB:=placeholderb) 
        $PR: Property ($sId:=subject, category=="semantic", $prvalueout1==$prvaluein2, 
 satisfied==false) 
then 
      modify($PR){satisfied=true, input_value=$prvaluein1, output_value=$prvalueout2}; 
end    

FIGURE 35 SEMANTIC INTEROPERABILITY VERIFICATION DROOL RULE 
 

Therefore, this rule used by Pattern Engine to trigger the BSV, which resolves semantic interoperability issues, 
between any link of Things in the flow recipe. Particularly, the BSV receives a request with the flow id from 
and the Things’ id for each link. Based on this information, the component begins the procedure to tackle the 
semantic interoperability issues between these two things from the said flow. For that reason, it sends SPARQL 
query to Thing Directory to receive the Thing Description of the Things.  
In the sequel, the final phase of the interoperability adaptation is the following. It involves the harmonization of 
the semantic model capabilities with the registration of extra Adaptor Nodes in the Recipe Cooker if required. 
Namely, there are three possible results. Firstly, the link source and destination are interoperable, so the BSV 
updates the Pattern Engine with the TRUE response. Secondly, the link source and destination are not 
interoperable and the BSV can add Adaptor Nodes in order to guarantee the interoperability. In this c ase, the 
BSV not only sends the TRUE response to pattern engine, but it also updates the flow using the PUT method5 
of Recipe Cooker API and create the corresponding Functions nodes. Lastly, when the link source and 
destination are not interoperable and the validator does not have the required information to develop the 
adaptor nodes, the validator sends FALSE response to Pattern Engine. 

 
5 https://nodered.org/docs/api/admin/methods/ 
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Furthermore, another role of the BSV is the connection of SEMIoTICS with other external platforms (e.g . 
FIWARE). This integration is developed during the Cycle 3 and follows the above procedure with the difference 
that BSV sends request to the Orion Context Broker FIWARE platform to receive the context data Description 
of FIWARE Sensor that participates in the recipe flow. More details are mentioned in the D4.11 – subsection 
6.2.2. 
 

 
FIGURE 36 SEQUENCE DIAGRAM FOR SEMANTIC INTEROPERABILITY ADAPTATION MECHANISMS 
 

 
FIGURE 37 SEMANTIC VALIDATION/ADAPTATION MECHANISMS 
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 COMPONENT API INTERACTIONS DESCRIPTION 

The following table includes the main set of APIs that were developed. The APIs are either internal to the 
same layer. 
 
 

API Status API access type  Additional comments 
validateData Deployed internal • Access for any component (Backend Layer) 
validateRecipeFlow Deployed internal • Access for Pattern Engine (Backend Layer) 

 
In the following Figure 38 and Figure 39, the APIs are presented with a sample input along with the 
corresponding response using SWAGGER. 
 

 
FIGURE 38 VALIDATEDATA API 
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FIGURE 39 VALIDATE RECIPE FLOW API 

 
 

 COMPONENT DEVELOPMENT SUMMARY AFTER ALL CYCLES 
During Cycle 1 a server was implemented loading the BSV component, using gRPC 6 framework and protocol 
buffers, for the verification of semantic interoperability between two Things (i.e. sensor, actuator), which are 
described with two different TDs. Moreover, the installation and interaction (discovery and registration TDs) 
with Thing Directory was accomplished (see D4.6). 
During Cycle 2 gRPC and Protocol Buffers were replaced with a corresponding REST approach for 
compatibility purposes with other SEMIoTICS components. The Spring Framework was adopted to build 
REST web services to provide services for receiving data in a convenient format, creating new data, updating 
data and deleting data between the interaction of SEMIoTICS architecture components. The fi rst approach 
for resolving any possible semantic conflicts between the interacting different Things, us ing or creating the 
corresponding Adaptor Nodes in Recipe Cooker was implemented (see D4.7).  
Lastly, the Cycle 3 includes the modification of the initial  Adaptor Nodes implementation for the semantic 
conflicts of Things in the Recipe Cooker. Additionally, connection with external IoT platforms to enable 
interoperability between these targeted external IoT enabling platforms and SEMIoTICS was implemented in  
this cycle. Finally, the adaptation approach, taking to account the interoperability of devices that a re used in 
SEMIoTICS and interacting with the Pattern Engine (Backend layer) is part of the cycle 3 (see D4.11).  
 

 SEMIOTICS REQUIREMENTS IMPLEMENTATION MAPPED TO BACKEND SEMANTIC 
VALIDATOR 

Requirements 
(D2.3) 

Description Reference 

 
6  https://grpc.io/ 
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R.GP.1 End-to-end connectivity between the heterogeneous 
IoT devices (at the field level) and the heterogeneous 
IoT Platforms (at the backend cloud level) 

D4.11 - Section 6 

R.UC1.8 
Semantic and robust bootstrapping/registration of IIoT 
sensors and actuators with IIoT gateway MUST be 
supported 

D4.11 - Subsection 2.2.1 

R.UC1.9 
Semantic interaction between use-case specific 
application on IIoT Gateway and legacy turbine control 
system MUST be supported 

D4.11 - Section 8, Section 
9 

R.UC1.12 Standardized semantic models for semantic-based 
engineering and IIoT applications SHALL be utilized 

D4.11 - Subsection 4.2, 
Subsection 4.3 

R.UC2.3 

The SEMIoTICS platform SHOULD guarantee proper 
connectivity between the various components of the 
SARA distributed application. The SARA solution is a 
distributed application not only because it uses 
different cloud services (e.g. AREAS Cloud services, 
AI services) from different remote computational 
nodes, but also because the SARA application logic 
itself is distributed across various edge nodes (SARA 
Hubs). 

D4.11 – Section 6, 
Subsection 9.2 

R.UC2.6 

The SEMIoTICS platform SHOULD allow the SARA 
solution to retrieve the resources exposed by 
registered devices via their object model (i.e. a data 
structure wherein each element represents a 
resource, or a group of resources, belonging to a 
device). The SEMIoTICS platform SHOULD support at 
least the OMA LWM2M object model. 

D4.11 -  Subsection 3.2, 
Subsection 9.2 

R.UC2.11 
The SEMIoTICS platform SHOULD allow a SARA 
component to request a group of devices to 
take/initiate an action (e.g. turn on/off a light bulb). 

D4.11 – Subsection 2.2, 
Subsection 9.2 

R.UC3.1 
IoT Sensing unit shall be able to embed environmental 
(e.g. temperature, pressure, humidity, light) and 
inertial sensors (accelerometer, gyroscope). 

D4.11 - Subsection 2.2, 
Subsection 9.3 

R.UC3.15  

A use case specific serialized message protocol is 
required to coordinate the gateway and its associated 
units and exchange data / events / anomalies between 
them. JSON will be the preferred serialization format 
adopted.  

D4.11 - Subsection 5.1.1, 
Subsection 9.3 

 

4.6 Thing Directory 
Thing Directory is a component hosting Thing Descriptions (TDs) of registered things and can be used to 
browse and discover Things based on their TDs. This is the Thing Directory deployed on the backend level (or 
network level depending on demo setup). It interacts with the Local Thing Directory that runs on IIoT GW. 

Table 12 presents the identified backlog scope and assignment to development cycles planned including the 
implementation status. 

TABLE 12 THING DIRECTORY BACKLOG 
Feature/task scope Short description Cycle assignment Status 
Implementation Based on an existing, open-source 

implementation of the Thing Directory, we 
provided a solution, which is compliant 

Cycle 1 Delivered 
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with the W3C Thing Description. We 
packaged the Thing Directory as a Docker 
container for easy deployment. 

Deployment: Cloud-level We deployed the Thing Directory in an 
AWS Cloud environment, accessible for 
all project partners 

Cycle 1 Delivered 

Implementation: Up-to-
date TDs 

A mechanism is being implemented that 
uploads the latest version of TDs from 
field devices to the Thing Directory so that 
components such as the Recipe Cooker 
will always have the up-to-date view on 
the field level. 

Cycle 3 In progress 

 
 DEVELOPMENT STATUS 

The works on the mechanism for updating the TDs to their current version is being implemented from the 
field layer side. The status of the developments is in progress. 
 

 COMPONENT API INTERACTIONS DESCRIPTION 
 
 API  Status API access type  Additional comments 
registerThing Done HTTP - 
deleteThing Done HTTP - 
getThings Done HTTP - 
getThingsDetails Done HTTP - 
searchUsingSPARQL Done HTTP - 
 

4.7 Recipe Cooker 
Recipe Cooker component is responsible for cooking (creating) recipes that reflect user requirements on 
different layers (cloud, edge, network), transforming recipes into understandable rules for each of layer. It uses 
Thing directory with all necessary models to create these rules. 

Table 13 presents the identified backlog scope and assignment to development cycles planned including the 
implementation status.  

TABLE 13 RECIPE COOKER BACKLOG 
Feature/task scope Short description Cycle 

assignment 
Status 

Design: merge of recipe + 
pattern concepts 

Introduced the recipe concept, as 
developed in the BIG IoT project, within 
the SEMIoTICS architecture. A recipe 
can be considered as a template for an 
IoT application. At this point in time, we 
merged the recipe concept together with 
the SPDI pattern concept. : By enabling 
the application-centric definition of 
recipes and automatically translating 
them into SPDI patterns and network-
specific details, we hide the details of 
network configuration from the 
developers and they can fully concentrate 

Cycle 1 Delivered 
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on the program logic of their IoT 
application. (Documented in D3.4, 
Section 2.3 as well as D4.1) 

Design: translation of 
recipes into facts 

After the conceptual merging of the two 
concepts, we worked out a mechanism 
for a translation chain from the recipe, 
over SDN network mode, to patterns and 
finally facts in the rule engine. We, 
therefore, enable the semantic 
description of application-level 
constraints and their automatic 
conversion into network configurations. 
(Documented in D4.4) 

Cycle 1 Delivered  

Implementation: Recipe 
Cooker as Node-RED 
extension 

Redefinition of the recipe cooker, as 
implemented in BIG IoT, by use of the 
Node-RED visual programming 
environment. The advantage of Node-
RED is that we can build upon a broad 
ecosystem of nodes for the integration of 
IoT devices and services. (Documented 
in Section 4.7.1) 

Cycle 1 Delivered  

Implementation: Distributed 
execution of recipes 

Extension of the recipe cooker’s 
execution environment for IoT flows to 
allow their distributed IoT orchestration. 
The extension enables the deployment of 
the components of a flow to different 
devices. Further, the extension allows the 
definition of application-specific QoS 
constraints to be auto-translated into 
patterns for network configuration.  
Therefore, the so-called ‘DirectCom’ 
node was developed, which allows 
representing the network in the 
application flows defined via the recipe 
cooker. For example, an application flow 
could utilize this ‘DirectCom’ node to 
transmit a video stream from a camera to 
an Edge device that runs an AI pipeline 
on the video images. In this example, the 
DirectCom node allows now to define the 
video frame rate to a minimum of 15 
frames per second. This is 
communicated to the Pattern 
Orchestrator and then the Pattern Engine 
for the network to be configured and 
monitored. 

Cycle 2 In finalization 

Implementation: Distributed 
AI  

According to the wind turbine use case, a 
distributed AI approach is implemented 
with the Recipe Cooker by implementing 
nodes for the execution of machine 
learning models that can detect grease 
leakage in a turbine. 
Therefore, dedicated nodes for AI 
inference have been developed to 

Cycle 3 Delivered 
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implement the AI pipeline and the use 
case.  
In a first proof of concept, these nodes 
realize the functionalities to (1) read 
images in high frequency from the video 
stream, (2) convert an image into a 
tensor, and (3) to classify the tensor 
according to a defined Neural Network 
model. 

Implementation: 
Federated Learning 

To support the wind turbine use case on 
oil leakage detection, existing Neural 
Network models need to be retrained for 
the particular imagery expected to be 
seen inside the turbine – either with 
leaked grease/oil or without it. This 
retraining should be done locally at each 
turbine to avoid sending training data 
(large imagery data) over the network. 
However, a central model should 
aggregate the model updates from the 
different turbines. Therefore, nodes have 
to be implemented which allow the 
retraining, and the federation of the 
model updates. 

Cycle 3 Delivered 

Implementation: second 
proof of concept on audio 
analytics 

In a second proof of concept for the wind 
turbine use case, we will implement 
Federated Learning on an unsupervised 
AI model. This will support the detection 
of anomalies in the noise generated from 
the turbine. 

Cycle 3 In progress 

 
 

 DEVELOPMENT STATUS 
We have implemented components, which realize the inference of distributed AI models as well as their 
training with a Federated Learning approach. We have realized these components as Node -RED nodes. 
 
We utilized these nodes to build a proof of concept for oil/grease leakage in wind turbines based on video 
imagery. A second proof of concept for anomaly detection in turbine noises based on audio data is being 
implemented currently. 
 

 COMPONENT API INTERACTIONS DESCRIPTION 
 

API Status API access 
type  

Additional comments 

user interface done visually • The common Node-RED UI is utilized. 
recipe access / 
modification 

done HTTP • Based on flow read/modification offered by Node-
RED. 

 
 

4.8 Security Manager (backend) 
The Security Manager in the backend layer is the component that is responsible for ensuring end-to-end 
security and safety. Its development started in Cycle 2. The Security Manager helps SEMIoTICS to tackle the 
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security and privacy problems that arise from the multi-tenant scenarios in a variety of levels, i.e., from the 
networking layer to the application layer. Therefore, the SEMIoTICS architectural framework depicted in Table 
14 shows several Security Manager components (at the level of the backend and additionally at the network- 
and field-level) that work together but are controlled by the Security Manager in the backend. The components 
allow SEMIoTICS to achieve the required functionality in order to:  

• provide mechanisms to authenticate users and manage their identities.  
• provide mechanisms to manage the identities of other entities, e.g. sensors.  
• support use case applications to enforce access to privacy-sensitive information within the application. 
• support use case applications to enforce access to privacy-sensitive information when the data is 

stored in a cloud server, e.g., by using attribute-based encryption and lightweight encryption 
algorithms. 

• provide mechanisms to configure and manage SEMIoTICS end-to-end secure networking capabilities. 
 

All those requirements are covered and managed by one or more of the different software modules of the 
Security Manager. 
 

TABLE 14 SECURITY MANAGER BACKLOG 

Feature/task scope Short description Cycle 
assignment  Status 

Initialize PEP application Create a SpringBoot application Cycle 2 Delivered 

Implement a Proxy 
mechanism in PEP 

Implement a Proxy mechanism to 
intercept HTTP traffic going to the 
main application and authorize the 
request in Security Manager 

Cycle 2 Delivered 

Add a proxy application to 
authenticate requests 

Add mitmproxy application as an 
Authentication Enforcement Point 
which adds the client’s token to an 
HTTP request 

Cycle 2 Delivered 

Prepare PEP for 
deployment on Backend 
Orchestrator 

Create dockerfile and dockerize the 
application so it can be later deployed 
on Kubernetes 

Cycle 2 Delivered 

Prepare AEP for 
deployment on Backend 
Orchestrator 

Create dockerfile and dockerize the 
application so it can be later deployed 
on Kubernetes 

Cycle 2 Delivered 

Add a mechanism to 
configure PEP from a file. 

Implement a mechanism that allows 
configuring mapping between an 
HTTP request and Security Manager 
calls 

Cycle 3 Delivered 

Merge all the existing 
submodules into one 
component 

Merge all the submodules to one 
component to simplify the 
implementation of CI/CD pipeline  

Cycle 2 Delivered 

Add MongoDB to support 
Security Manager 

Implement MongoDB as a database 
used by Security Manager to increase 
the performance of the Security 
Manager 

Cycle 2 Delivered 

Implementation of a call to 
find entities with a visible 
attribute 

Implementation of functionality to find 
entities with a particular, visible 
attribute to allow the evaluation of a 
privacy pattern in Pattern Engine. 

Cycle 2 Delivered 

Implementation of 
attribute-based encryption 

Implementation of attribute-based 
encryption and a REST call to 
generate keys for an entity (based on 
its attributes or based on its policy) 

Cycle 3 Delivered 
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Integration with Thing 
Directory 

Implementation of calls and methods 
essential to register new things as 
soon as they appear available in 
Security Manager 

Cycle 3 In progress 

Dockerized Backend 
Security Manager 

Container deployment of the whole 
Security Manager Architecture 

Cycle 3 Delivered 

Enable optional cookie 
support 

On top of oauth we can additionally 
support basic uninitialized sessions. 

Cycle 3 Delivered 

Security Manager 
Configuration Service 

Node.js based application prototype 
facilitating the Security Manager API 
showcases the easy interaction with 
SecMan functionality, like creating 
new users; s 

Cycle 3 Delivered 

Support dynamically 
added redirect URI’s 

We enabled a setup in order to 
support dynamically added redirect 
URI’s provided from the PEP  

Cycle 3 Delivered 

 
 

 DEVELOPMENT STATUS 
 

4.8.1.1 SECURITY MANAGER 
Within Cycle 3, we have completed the development process for all tasks that were planned there. The 
deployment of Security Manager’s submodules was delivered followed by the extensive testing based on the 
workflow identified within Use Case 2 on Assisted Living. The integration test with SEMIoTICS Pattern Engine 
was completed. Moreover, the detailed definition, the implementation and testing on how the Sidecar Proxy 
subcomponent developed within cycle 1 and interacted with the Security Manager in order to provide the 
functionality of a Policy Enforcement Point (PEP). 
 
Furthermore, in order to comply with the overall orchestration approach for the backend layer, the Security 
Manager component in the backend has been finally 100% dockerized. Such an approach allows the easy 
deployment of the component to the Backend Orchestrator as well as provides the capability of smooth 
integration with all backend services and exposed APIs. 
 
In order to support an easy way of integrating with the Security Manager , we support on top of oauth an 
additionally basic uninitialized session logon while initializing a connection. We have devised a configuration 
file which will allows us to enable or disable this feature. 

 
Another feature to support dynamically redirected URI’s was built in. With this, we are able to maintain 
forcefully given redirect URI’s from the policy enforcement point. To empower this setting, it is required to set 
the redirectURI parameter in the core config file with an asterisk. A complete dynamically enabled redirect 
configuration looks like the following: 
 

{      
"id": "AuthEnableRedirect",        
"name": "AuthEnableRedirect",        
"clientSecret": "Babababanana",        
"redirectURI": "*"      
},  

 
We also implemented a fully working node.js based application prototype, which facilitates the Security 
Manager API and shows how to integrate and interact with the Security Manager. It can also be used as a 
fully working configuration service. All the functionality of the API of the Security Manager is mapped there 
via the GUI and can be easily accessed via the interface. This removes the hurdle of having to write 
complicated configuration files to use the Security Manager initially.  
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4.8.1.2 ATTRIBUTE BASED ENCRYPTION – REST API 
 
Attribute-Based Encryption (ABE) determines the authorization of a user to decrypt encrypted data based on 
the user‘s attributes. That means that the decryption of a ciphertext is only possible if the user can present 
that the user possesses a set of attribute; these attributes are enclosed in the user’s decryption key. 
Cryptographically the encryption fails unless the decryption keys attributes match the attributes of the 
ciphertext. This means that the attributes required are encoded during the encryption of the data (for more 
information we refer to Deliverable 4.12).  
A REST API endpoint (Figure 40, Figure 41, Figure 42) was implemented, to make available the needed ABE 
functionality; the cryptographic functionality is based upon the open source library OpenABE library7 that 
provides a variety of attribute-based encryption algorithms. With this API, SEMIoTICS is enabled to 
seamlessly incorporate ABE technology into the Security Manager. This can then be used where approp riate, 
to secure information. Also, it ensures that the information can only be accessed by a certain entity or by a 
group of entities with the requested set of attributes, e.g. only entities with the attribute "doctor" are able to 
access encrypted medical data. 
During Cycle 3, the implementation & testing of the ABE REST API was finalized. This component is an 
important part for establishing security & privacy for sensitive data in the Use Case 2 demo . 
 

 
 

 
7 https://github.com/zeutro/openabe 



780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017 
Deliverable D4.13 Implementation of BackEnd API (Final Cycle) 
Dissemination level: [Confidential]  

 

74 
 

 
FIGURE 40 ATTRIBUTE BASED ENCRYPTION – REST API - KEY GENERATION 
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FIGURE 41 ATTRIBUTE BASED ENCRYPTION – REST API - ENCRYPTION 
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FIGURE 42 ATTRIBUTE BASED ENCRYPTION – REST API - DECRYPTION 

 
 

 COMPONENT API INTERACTONS DESCRIPTION 
 
 

API Status API access type  Additional comments 
postBatchEvaluation Deployed External • Evaluates whether the authenticated user 

can excute a set of actions or can read 
attributes from entity. 

getEntityPolicy Deployed External • Returns the policy for an entity. 
getEntityPolicyOfField Deployed External • Returns the policy for a field within a 

policy structure for an entity. 
deleteEntityPolicyOfField Deployed External • Returns the resulting policy structure for 

the entity after deletion. 
getToken Deployed External • See Authorize button in swagger api 
deleteActionEvaluation Deployed External • Evaluates whether the authenticated user 

can delete an action of an entity. 
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postActionEvaluation Deployed External • Evaluates whether the authenticated user 
can post an action of an entity. 

putActionEvaluation Deployed External • Evaluates whether the authenticated user 
can update an action of an entity. 

getActionEvaluation Deployed External • Evaluates whether the authenticated user 
can read an action of an entity. 

deleteAttributeEvaluation Deployed External • Evaluates whether the authenticated user 
can delete attribute of an entity. 

postAttributeEvaluation Deployed External • Evaluates whether the authenticated user 
can update attribute of an entity. 

putAttributeEvaluation Deployed External • Evaluates whether the authenticated user 
can update an attribute of an entity. 

getAttributeEvaluation Deployed External • Evaluates whether the authenticated user 
can read an attribute of an entity. 

 
 COMPONENT DEVELOPMENT SUMMARY AFTER ALL CYCLES 

The development of the Security manager started in Cycle 2 as planned. This allowed to base the 
development on the requirements, thus we followed the security -by-design approach. 
 
During cycle 2, the implementation of the Backend Security Manager was started according to the steps of 
the release circle except for the software module/component that provides the attribute-based encryption 
(ABE) functionality. The latter, was at this point still under development and in early testing phases. In Cycle 
2 we also started checking that the components are generic enough to support all other use cases that are 
foreseen for the Backend Security Manager. 
 
During cycle 3, the ABE-API was finished and fully tested. It now supports all functionalities (Encryption, 
Decryption & Key-Generation) for Ciphertext-Policy ABE (CP-ABE) as well as for Key-Policy ABE (KP-ABE). 
Furthermore,  all of the developed components were dockerized, so that the integration to the upcoming Use 
Cases, specifically Use Case 2, will be much easier. 
 
At the end of cycle 3 we can state that we completely developed and tested the developed the security 
manager’s subcomponents with full API documentation and thus fully offer the  planned functionality for 
Attribute based Encryption ( ABE) and Access Control, and Dynamic Policy Management for which the 
Security Manager in the Backend was designed. 
 
Now that the core development has ended UP will oversee and aid with the integration of the Security Manager 
in Backend components into the Use Cases, and if necessary update or bug-fix them. 
 

 SEMIOTICS REQUIREMENTS IMPLEMENTATION MAPPED TO SECURITY MANAGER 
SEMIoTICS Requirement Evaluation Reference 

Req. ID Description 
R.BC.15 Secure communication 

among the various 
Backend Cloud 
components (e.g., use 
of dedicated 
management network, 
appropriate Firewall 
rules) 

Generally, the security 
manager’s API is bound 
to specific ports that can 
be firewalled. 
Furthermore, the 
interfaces of the security 
manager can be secured 
by enabling TLS for 
those services 

 

R.S.1 
 

The confidentiality of all 
network communication 
MUST be protected 

SDN connection with 
ovs switches by 
enabling SSL, + 

D3.7 and D4.12 Section 
3.2.2 + Section 3.4.2 
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using state-of-the-art 
mechanisms 

Communication 
between Pattern 
Orchestrator and 
Pattern Engines with 
SSL 

R.P.3 
 

Storage of data MUST 
be minimized. 

This can be technically 
supported by mongo 
DB’s compression 
options as well as Level 
DB’s MCPE extension. 

Will be evaluated in 
D5.5 

R.P.4 
 

A short data retention 
period MUST be 
enforced, and 
maintaining data for 
longer than necessary 
avoided. 

In order to provide a 
mechanism to support 
a short data retention 
period we leverage for 
all current supported 
databases a TTL 
parameter. 
 
Furthermore, ABE can 
also be used to make 
the encrypted 
information only 
accessible for a certain 
timeframe by inserting 
a timestamp as an 
additional attribute into 
the encryption and 
decryption process. 
 

Will be evaluated in 
D5.5 

R.P.5 As much data as 
possible MUST be 
processed at the edge 
in order to hide data 
sources and not reveal 
user related information 
to adversaries (e.g. 
user’s location). 

Replica of Security 
Manager can be 
deployed in the field 
layer, i.e. running on 
the gateway which is at 
the edge of the 
network. Having the 
replica running at the 
gateway, there is no 
need to send 
requests/answers 
to/from the backend 
that might leak 
information about 
access being requested 
or performed. Thus, the 
replication helps to 
reduce this attack 
surface. 
 
 
See D4.12 Section 
3.4.1  

Will be evaluated in 
D5.5 

R.P.8 
 

Data MUST be stored 
in encrypted form. 

Attribute Based 
Encryption (ABE) 

Will be evaluated in 
D5.5 
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allows to encrypt data 
before it is stored such 
that the protected data 
can only be decrypted 
by authorised users 
that posses the 
required attributes. 
ABE is described in 
Section 4.8.1.2  
 
and 
 
D4.12 Section 3.2.1.4 
can be of aid 
 

R.P.12 
 

During all 
communication and 
processing phases 
logging MUST be 
performed to enable the 
examination that the 
system is operating as 
promised. 

Security Manager 
supports different log 
levels. 

Will be evaluated in 
D5.5 
 

R.GSP.9 
 

The SARA system 
SHALL provide robust 
mechanisms to protect 
Patient-related data. 

ABE is used for 
encryption but with our 
library we can also 
facilitate access control 
with it. 
 
ABE as described in 
Section 4.8.1.2  
 
and 
 
D4.12 Section 3.2.1.4 
can be of aid  
 

Will be evaluated in 
D5.5 

 

4.9 Local Embedded Intelligence (Field Layer) 
The Local Embedded Intelligence Component in SEMIoTICS aims to provide a logical interface for exposing 
to the SEMIoTICS ecosystem the complete set of analytics algorithms developed within the project and 
described in D4.10 “Embedded Intelligence and Local Analytics (final draft)”. These algorithms are the major 
enablers of the edge computing algorithms supported in the SEMIoTICS project. In particular, they could be 
subdivided into some further category according to the intended main usage scenario. 
The 1st set of algorithms enables the gait analysis on the SARA Healthcare scenario (i.e. UC2), whereas the 
2nd set of algorithms will support the Smart sensing use case (Generic IoT horizontal) that will be demonstrated 
mainly in UC3 final demo. The need for a coherent integration logic driven by SEMIoTICS SPDI pattern 
approach with other SEMIoTICS components is enforced by the fact that these algorithms will be deployed 
on different types of field devices, with different legacy middleware constraints. As an example, the role of 
smart sensing units, within UC3, is played by small microcontroller (smart sensing) units tightly coupled with 
miniaturized environmental/inertial sensors. Due to the heterogeneous set of available devices, and also very 
heterogeneous set algorithms available, an integration methodology has been identified and designed in 
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SEMIoTICS as a viable solution for exposing the results of these algorithms in a coherent manner  within each 
specific UC need / requirement. This methodology implies the definition of an abstract interface, used to wrap 
conveniently the heterogeneous set of algorithms developed within Task 4.3 activities in order to make their 
outputs available in the field device level of SEMIoTICS. In this deliverable an update related to the status of 
this aspect within SEMIoTICS will be provided according to what has been already reported in D4.10 Local 
Embedded Analytics (final draft) where the complete set of algorithms has been fully characterized. The 
outputs of the local analytics algorithms are described as event messages that are sent to the SEMIoTICS 
field level infrastructure in a semantically interoperable manner by instantiating specific scenario driven 
patterns through the some of the components available in the SEMIoTICS field level infrastructure (i.e. the 
local pattern engine, the Semantic GW mediator and the Semantic Edge Platform). As an example, the 
outcomes (i.e. anomalies) reported by the analytics/machine learning algorithms on the Generic UC3 IoT 
scenario are reported to SEMIoTICS field level at a bottom side as timestamped events through a dedicated 
JSON protocol published over a MQTT infrastructure. The final integration of the component is plan ned for 
the Cycle 3 final iteration where those events will be integrated and notified by translated them into dedicated 
patterns thanks to the pattern engine. Similar integration logic is currently under development on all the three 
main scenarios under consideration as part of WP5 Task 5.4 to Task 5.6 activities. 
In the following Table, a summary of the implementation tasks is presented detailing Cycle 2 and updated 
Cycle 3 implementation plans. 
 

TABLE 15 LOCAL EMBEDDED INTELLIGENCE BACKLOG 
Feature/task scope Short description Cycle 

assignment 
Status 

UC3 Generic IoT Local 
Analytics Algorithms 

UC3 Local Embedded Component 
wrapper deployed on ST X-Nucleo 
Microcontroller equipped with MQTT 
Client. The component provides MQTT 
events regarding anomalies on inertial or 
environmental real-time acquired data. 

Cycle 2 Delivered – see 
D4.10 

UC3 Generic IoT Local 
Analytics Algorithms 

UC3 Local Embedded Component MQTT 
events mapping to dedicated patterns in 
pattern engine component 

Cycle 3 Ongoing 
deployment into 
T5.6 

UC3 Generic IoT Local GTW 
Supervisor Service 

UC3 Local GTW Supervisor Service Cycle 3 Delivered – see 
D4.10 

UC3 Generic IoT Local 
Analytics Algorithms 

UC3 Local Event DB component 
development 

Cycle 3 Delivered – see 
D4.10 

UC3 Generic IoT Local 
Analytics Algorithms 

UC3 Local Event DB component 
integration 

Cycle 3 Ongoing 
deployment into 
T5.6 

Gait Analysis Local Analytics 
Algorithms 

The algorithms are under active 
development. Wrapping component 
implementation will be started on the 
cycle 3 period. 

Cycle 3 Characterized 
and defined – 
see D4.10 

 
 

 DEVELOPMENT STATUS 
Current development status of the local embedded functional ity in SEMIoTICS is reported in Table 15. In 
particular, during Cycle 3 integration the majority of functionalities of  the local embedded analytics has been 
implemented through dedicated algorithms mapped to specific field layer components according to the  
specific use case scenario. All the algorithms has been identified and characterized (please refer to D4.10 for 
a complete detailed presentation) and currently their deployment and component mapping into the 
SEMIoTICS architecture is taking place as part to WP5 integration activities within each use case (i.e. from 
task 5.4 to task 5.6 activities).   
 

 COMPONENT API INTERACTIONS DESCRIPTION 
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An example of interaction APIs implemented and documented in D4.10 is shown in Table 15. It provides an 
abstract interaction interface that is used by some SEMIoTICS FL components deployed at the IoT gateway 
(i.e. the pattern engine, the IoT Generic Supervisor Service component, etc.) to implement semantic bridging 
vs use case specific UC3 patterns. Each of those components have a built-in MQTT client able to interact 
with the Local Embedded Analytics deployed into the Sensing Unit mapped onto the STM32 Microcontroller 
HW board. 
 

API Status API access type  Additional comments 
pushRawData Implemented  Internal (MQTT) • As JSON payload message reported in D4.10. 

Push raw sensor data readings (publish) 
getRawData Implemented Internal (MQTT) • As JSON payload message reported in D4.10. 

Get raw sensor data readings (subscribe) 
getMsgEvent Implemented Internal (MQTT) • As JSON payload message reported in D4.10. 

Get analytics results / events (subscribe) 
pushMsgEvent Implemented Internal (MQTT) • As JSON payload message reported in D4.10. 

Push analytics results / events (publish) 
reset Implemented Internal (MQTT) • As JSON payload message reported in D4.10. 

Node device SW reset event (publish) 
reconfigure Implemented Internal (MQTT) • As JSON payload message reported in D4.10. 

Node device reconfigure event (publish). 
See R.UC3.5 on section 4.9.4 

pushKeepAlive Implemented Internal (MQTT) • As JSON payload message reported in D4.10. 
Node keepalive message to detects faulty 
units and implements dependability pattern in UC3 

 
 COMPONENT DEVELOPMENT SUMMARY AFTER ALL CYCLES 

The majority of the SEMIoTICS components needed by the local embedded analytics have been developed 
and are currently moving to the integration / deployment phase as part of WP5 activities. Three specific 
components have been specifically developed for the UC3 Generic IoT scenario in order to accomplish the 
task of providing smart artificial intelligence enable sensing devices units, whereas for other use case scenario 
the local embedded intelligence have been designed to interact at the IoT gateway level with existing 
components hereby deployed (i.e. the pattern engine, the Semantic Edge platform, the local thing directory, 
etc.) 

 
 SEMIOTICS REQUIREMENTS IMPLEMENTATION MAPPED TO LOCAL EMBEDDED 

INTELLIGENCE 
. 
The following table summarizes the complete set of requirements considered during the design and 
implementation of the local embedded analytics component in SEMIoTICS:  
 

SEMIoTICS Requirement Local Analytics 
considerations Reference Req. ID Description 

R.GP.2 
 

Scalable infrastructure due to 
the fast-paced growth of IoT 
devices 

This is a set of generic 
requirements in SEMIoTICS 
that motivates the need for 
layered distributed 
intelligence in the project 
integrated into the platform 
exploiting the SPDI pattern 
approach. 

Patterns has been 
defined and characterized 
in SEMIoTICS in many 
WP3 deliverables, i.e. in 
task 3.3 (Patterns), task 
3.4 (Network-level 
semantic Interoperability) 
and task 3.5 
(Implementation of Field-

R.GP.4 
 

Detection of events requiring a 
QoS change and triggering 
network reconfiguration need 
by SPDI pattern 
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R.NL.12 

The network layer must 
feature SPDI pattern 
reasoning local embedded 
intelligence capabilities 

level middleware & 
networking toolbox) 

R.FD.1 

Field devices SHOULD be 
able to get data from the 
environment through sensors 
(sensors). 

This is a set of specific field 
layer requirements, common 
to all use case scenarios that 
affects the definition of the 
local embedded analytics 
component.  

Local embedded 
components (i.e. the 
algorithms used in 
SEMIoTICS) has been 
mainly identified during 
task 4.3 activities in two 
submitted deliverables. 
Communication design, 
interoperability aspects 
and deployment has been 
considered in a larger 
scope within WP4 
activities (i.e. task 4.1 for 
SPDI patterns, task 4.4 for 
End-to-End Semantic 
Interoperability and finally in 
task 4.6 for the interfacing 
APIs) and for integration / 
deployment aspects in 
WP5 as part of the use 
case specific 
demonstrators (i.e. form 
T5.4 to task 5.6) 

R.FD.2 
Field devices SHOULD be 
able to process data in near 
real time (process units). 

R.FD.4 
Field devices SHOULD use a 
global clock for time 
synchronization. 

R.FD.5 

Field devices SHOULD be 
able to interact with 
SEMIoTICS IIoT/IoT gateway 
dedicated components 

R.FD.6 

Field devices MUST 
interoperate using a standard 
communication protocol like 
Rest APIs, COAP, MQTT. 

R.FD.7 

Field devices MUST use 
standardize interoperable 
message format (e.g. JSON, 
etc.). 

R.FD.9 

Field devices MUST be able to 
communicate with the IIoT 
Gateway / other architectural 
components. 

R.FD.10 Field devices SHOULD 
minimize data traffic. 

R.FD.11 Field devices SHOULD 
minimize energy consumption. 

R.FD.12 

Greenfield device is expected 
to expose its capability over a 
W3C Thing Description, which 
semantically describes field 
resources, and to be 
computationally powerful 
enough to run a node-wot 
servient (that exposes the TD). 

R.FD.14 

The field layer must feature 
SPDI pattern reasoning local 
embedded intelligence 
capabilities 

R.FD.15 

The field layer must aggregate 
intra-layer information to 
enable local intelligence 
reasoning and adaptation 
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R.P.3 
Storage of data MUST be 
minimized. 

This is a set of specific 
privacy requirements, 
common to all use case 
scenarios where the local 
embedded analytics could 
support through its distributed 
local data processing the 
concept of data retention and 
data anonymization. 

In D4.10 all algorithms 
used in SEMIoTICS for the 
local embedded analytics 
has been presented. In 
this deliverable it is 
presented for each 
specific use case under 
consideration the impact 
on the architecture where 
the benefits of the data 
anonymization and 
customizable data 
retention are shortly 
discussed.  

R.P.4 

A short data retention period 
MUST be enforced and 
maintaining data for longer 
than necessary avoided 

R.P.5 

As much data as possible 
MUST be processed at the 
edge in order to hide data 
sources and not reveal user 
related information to 
adversaries (e.g. user’s 
location). 

R.P.6 

Data MUST be anonymized 
wherever possible by removing 
the personally identifiable 
information in order to 
decrease the risk of 
unintended disclosure 

R.GSP.3 

IoT gateway SHALL be able to 
estimate abnormal detection 
based on (un)-supervised 
model. 

R.UC1.10 

Local analytical capability of 
IIoT Gateway to run machine 
learning algorithms (e.g. 
specific to 2 specific sub-use 
cases) 

This is the complete list of 
use case specific 
requirements that has been 
considered for the 
development of the local 
analytics components in the 
main three use case 
scenarios in SEMIoTICS. 
They have been used to 
identify / develop / 
characterize and later on 
deploy all the embedded 
local analytics algorithms in 
SEMIoTICS 

Please refer to D4.10 for 
an in-depth discussion of 
all the local embedded 
analytics algorithms 
developed within 
SEMIoTICS project.  

R.UC2.6 

The SEMIoTICS platform 
SHOULD allow the SARA 
solution to retrieve the 
resources exposed by 
registered devices via their 
object model (i.e. a data 
structure wherein each 
element represents a 
resource, or a group of 
resources, belonging to a 
device). The SEMIoTICS 
platform SHOULD support at 
least the OMA LWM2M object 
model. 

R.UC3.1 

IoT Sensing unit shall be able 
to embed environmental (e.g. 
temperature, pressure, 
humidity, light) and inertial 
sensors (accelerometer, 
gyroscope). 

R.UC3.2 

IIoT Sensing unit shall be able 
to interface to the IIoT Sensing 
gateway in order to coordinate 
with it. A standard IP based 
(i.e. TCP transport) 1 to many 
M2M communication protocol 
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must be adopted to properly 
handle node communication 
with components in the 
gateway. 

R.UC3.3 

IIoT Sensing unit shall be able 
to learn a model from 
observed data in an 
unsupervised manner. In 
particular IoT Sensing unit 
shall be equipped with a low 
power (tens/hundreds of mW 
range) 32 bits MCU to support 
unsupervised learning and 
unsupervised statistical 
processing. 

R.UC3.4 

IIoT Sensing unit shall be able 
to detect relevant changes 
from the learned model and 
report them to IIoT Sensing 
gateway. 

R.UC3.5 
IIoT Sensing unit shall be able 
to adapt to a new model if IIoT 
sensing gateway requires this. 

R.UC3.6 

IIoT Sensing gateway shall be 
able to coordinate a set of IIoT 
sensing units by finding any 
correlation btw them according 
to observed data, models 

R.UC3.7 

IIoT Sensing gateway shall be 
able aggregate relevant events 
(i.e. changes) coming from 
whichever of connected IIoT 
sensing units deciding if they 
are global or local changes 

R.UC3.8 

IIoT Sensing gateway may 
have the capability to 
exchange relevant information 
(i.e. events) between itself, the 
cloud and the sensing units 
with some connectivity 
capabilities 

R.UC3.11 

IoT Sensing unit shall be able 
to run Artificial neural networks 
on the MCU in real time at the 
sensor data rate of choice. 

R.UC3.12 

IoT Sensing unit shall be able 
to run lightweight statistical 
model analysis algorithms on 
the MCU not in real time at the 
sensor data rate of choice. 

R.UC3.14 

MCU IoT Sensing unit shall be 
able to run neural network 
online training at the sensor 
data rate of choice. 



780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017 
Deliverable D4.13 Implementation of BackEnd API (Final Cycle) 
Dissemination level: [Confidential]  

 

85 
 

R.UC3.15 

IoT Sensing gateway shall 
support 1 to many standard IP 
based (i.e. TCP transport) 
M2M communication protocol 
to interface a number N of 
connecting Sensing units (e.g. 
broadcast type). 

R.UC3.19 

IoT Sensing gateway should 
be able to support http and 
standard protocols for cloud 
interfacing. 

R.UC3.20 

The specific M2M protocol 
adopted on UC3 is based on 
MQTT. A MQTT broker service 
will be available to dispatch 
messages between the 
coordinating Sensing gateway 
and its associated Sensing 
units. 

R.UC3.21 

A use case specific serialized 
message protocol is required 
to coordinate the gateway and 
its associated units and 
exchange data / events / 
anomalies between them. 
JSON will be the preferred 
serialization format adopted. 

R.UC3.22 

Each connected IHES sensing 
unit should send to the 
gateway a keep alive signal on 
a specified period (e.g. few 
seconds) to notify the gateway 
it is correctly working. The 
sensing gateway should detect 
by this mean any non-working 
sensing unit and reconfigure 
the system accordingly. 

R.UC3.23 

Sensing units and sensing 
gateway should share a 
common clock (i.e. global 
reference time), precise up to 
milliseconds, to properly 
classify events and data 
acquired during the 
processing. This global 
reference time will be 
negotiated when a sensing 
unit node will join a given 
gateway. Internally the system 
will work scheduling activities 
according to this global 
reference time. 

R.UC3.24 
Sensing units may be 
equipped with dedicated FW to 
detect relevant sensors 
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malfunctioning and report that 
to the gateway 

 
 

4.10 Monitoring 
The objectives of the SEMIoTICS Monitoring component are twofold:  

• To generate specific messages in response to the reception of a set of messages generated by the 
components of an IoT application and matching some condition specified in the monitoring component by 
a client application (Monitoring requirement). 

• To guarantee that the messages needed to decide whether to generate a message can be produced by 
an IoT application and received by the monitoring component (Observability property). 

• The project’s deliverable D4.9 - “SEMIoTICS Monitoring, Prediction and Diagnosis Mechanisms 
(final)” presents the final design of the monitoring, prediction and diagnosis mechanisms in 
SEMIoTICS along with algorithmic and technological options choose for the implementation of its key 
functionalities. 

Table 22 presents the identified backlog scope and assignment to development cycles planned.  

TABLE 22 MONITORING COMPONENT BACKLOG 

Feature/task scope Short description Cycle 
assignment  Status 

sem-mdp-api Create a library for Monitoring API Cycle 2 Delivered 

sem-mdp-controller The first version of the Monitoring 
Controller  

Cycle 2 Delivered 

sem-mdp-web Bundle making available controller as a 
REST service 

Cycle 2 Delivered 

sem-mdp-cep-flink Flink-based implementation of the 
Complex Event Processor (CEP) 
(replanning of the delivery was needed 
due to the revision process of other 
deliverables) 

Cycle 2/3 Delivered 

sem-mdp-signaller-wot Event Signaller for WoT (Web of Things) 
devices 
(replanning of the delivery was needed 
due to the revision process of other 
deliverables) 

Cycle 2/3 Delivered 

sem-mdp-signaller-fiware 
The FIWARE Signaler implements the 
Signaler interface offering the operations 
to read, write or subscribe attributes of 
NGSIv2 entities. 

Cycle 3 Delivered 

sem-mdp-signaller-network 
The network signaler is responsible for 
monitoring the status of the network 
topology of the SEMIoTICS use cases. 

Cycle 3 Delivered 
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sem-mdp-signaller-
kubernetes 

The Backend Orchestrator exposes API 
to get the events as they have occurred in 
the Kubernetes cluster.  

Cycle 3 Delivered 

sem-mdp-cmi 
Causal Model Identifier has the role to 
build the causal models. These models 
are created using as input both the 
(Re)configuration commands emitted by 
the Monitoring Controller and the events 
generated by the Business Event Monitor 

Cycle 3 Delivered 

sem-mdp-epredictor The Event Predictor uses to Causal Model 
learned by the Causal Model Identifier to 
infer events not directly observable 
through the Events Signalers 

Cycle 3 Delivered 

sem-mdp-disgnosis-gui Visualization for the diagnosis Cycle 3 Delivered 

sem-mdp-storgae Storage of High-Level events generated 
by an implementation of the Complex 
Event Processor (i.e. one of the sem-
mdp-cep-* components) 

Cycle 2 Delivered 

 
 
 

 DEVELOPMENT STATUS 
During cycle 3 of development the following modules were delivered: 

• sem-mdp-cep-flink 
• sem-mdp-signaller-wot 
• sem-mdp-signaller-fiware 
• sem-mdp-signaller-network 
• sem-mdp-signaller-kubernetes 
• sem-mdp-cmi 
• sem-mdp-epredictor 
• sem-mdp-disgnosis-gui 

 
 COMPONENT API INTERACTIONS DESCRIPTION 
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API Status API access type  Additional comments 

submitQuery Delivered External - 

cancelQuery Delivered External - 

checkQueryStatus Delivered External - 

 
 SEMIOTICS REQUIREMENTS IMPLEMENTATION MAPPED TO MONITORING 

SECTION 1.1 OF DELIVERABLE D4.9 - “SEMIoTICS Monitoring, prediction and diagnosis mechanisms 
(FINAL)” shows which are the SEMIoTICS Requirements addressed by the Monitoring component as 
detailed in the following Table. 
 

TABLE 16 REQUIREMENTS ADDRESSED BY THE MPD 
 

SEMIoTICS Requirement Evaluation Reference 
Req. ID Description 

R.GP.4 

Detection of events 
requiring a QoS change 
and triggering network 
reconfiguration need by 
SPDI pattern 

The MPD allows detecting Network 
level events thanks to the availability 
of adapters able to capture the events 
generated by the SDN Controller and 
Virtual Infrastructure Manager (VIM). 

Section 2.2.7 in D4.9 

R.P.4 

A short data retention 
period MUST be 
enforced, and 
maintaining data for 
longer than necessary 
avoided. 

The MPD uses Complex Event 
Processing technology to aggregate 
data.  In fact, CEP technology allows 
detecting events patterns directly in 
the stream of events without the need 
to store the events in a database for 
subsequent processing. 

Section 2.3 in D4.9 

R9.4 

The cloud platform 
SHALL to be able to 
monitor the execution of 
an app, in particular its 
interactions with other 
apps, the network 
interface, and APIs. 

The MPD provides adapters that 
enable to monitor the execution of 
apps by means of the native 
monitoring capabilities of Cloud and 
IoT platforms 

Section 2.2 in D4.9 

R.BC.20 

The backend layer must 
aggregate intra-layer as 
well as inter-layer SPDI 
status information to 
enable local and global 
intelligence reasoning 
and adaptation. 

The MPD provides adapters to 
capture events generated by the 
backend layer. The MPD aggregates 
events using CEP technology. MPD 
defines strategies to translate SPDI 
pattern into monitoring policies. 

Section 1.2, Section 
2.5, Section 2.6 in D4.9 

R.NL.13 

The network layer must 
aggregate intra-layer 
monitored information to 
enable local intelligence 
reasoning and 
adaptation. 

The MPD provides adapters to 
capture events generated by network 
layer. The MPD aggregates events 
using CEP technology. MPD defines 
strategies to translate SPDI patterns 
into monitoring policies. 

Section 1.2, Section 
2.5, Section 2.6 in D4.9 

R.FD.15 

The field layer must 
aggregate intra-layer 
monitored information to 
enable local intelligence 

The MPD provides adapters to 
capture events generated by field 
devices. The MPD aggregates events 
using CEP technology. MPD defines 

Section 1.2, Section 
2.5, Section 2.6 in D4.9 
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reasoning and 
adaptation. 

strategies to translate SPDI pattern 
into monitoring policies. 

R.UC2.10 

The SEMIoTICS platform 
SHOULD allow the 
SARA components (e.g. 
SARA Hubs) to query 
and aggregate (e.g. to 
average) the values of a 
resource (e.g. current 
measured temperature) 
hosted by a group of 
field devices. The SARA 
solution defines a group 
of devices by specifying 
filtering criteria over the 
set of registered devices. 

The MPD provides adapters to 
capture events generated by field 
devices. The Query language of the 
MPD provides means to express 
filtering conditions over the sources of 
events. 

Section 2.2.8, Section 
2.5 in D4.9 

R.UC2.12 

The SEMIoTICS platform 
SHOULD allow SARA 
components to delegate 
to the platform the 
computation of complex 
functions over the data 
received by field 
devices. These 
computations may result 
either in the generation 
of higher-level 
observation events (e.g. 
significant Patient events 
abstracted form sensor 
data) towards the ACS 
or in sensors 
configuration parameters 
(including actuators 
command). 

The MPD provides adapters to 
capture events generated by field 
devices. Moreover, The Query 
language of the MPD provide 
business IoT applications (e.g. SARA) 
with means to specify a high-level 
observation event as the occurrence 
of a specific pattern of events within 
the stream of events generated by 
field devices. 

Section 2.2.8, Section 
2.5 in D4.9 
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5 VALIDATION 
This Section describes the validation features of SEMIoTICS that are related to the implementation of backend 
components and the rest topics that are presented in this document. 

5.1 Related Project Objectives and Key Performance Indicators (KPIs) 
Table 17 presents the task objectives and appropriate sections addressing those while Table 18 presents 
the KPI’s objective which is relevant for Task 4.6. 
 

TABLE 17 TASK’S OBJECTIVES 
T4.6 Objectives D4.13 Sections 

• Implementation of the algorithms, techniques, and components in Tasks 4.1-4.5 
and the delivery of an API giving access to them. 

4.2, 4.3, 4.4, 
4.8, 4.9, 4.10 

• Providing IoT components communication across layers and integration with 
external systems and partners. 

4.2 

• Receiving messages from sensors and resource provisioning as a result of 
analytics computing. 

4.1 

• Implementation of appropriate security levels for each connection type, in order 
to ensure the coherence of data and minimal latency in data transmission.  

4.2, 4.8 

• Using semantic communication metadata to enable negotiation and 
interoperability between components. 

4.5, 4.8 

• Registration of SPDI pattern, which will include the SPDI patterns known to the 
infrastructure and their currently deployed instances in the IoT applications 
managed by the infrastructure. 

4.3, 4.4, 4.6, 4.7 

• Dashboard providing administrators of such applications with access to runtime 
IoT application management information. 

4.2 

• Component supporting different types of horizontal and vertical runtime of 
proactive and reactive adaptation. 

4.2, 4.3, 4.9, 
4.10 

 
Because task 4.6 is closely related to Tasks 4.1-4.5 and provides an implementation of the algorithms, 
techniques, and components described in these tasks, hence is correlated with the project’s requirements from 
the entire WP4. The KPI’s objectives for T4.6 are presented below: 
 

 
TABLE 18 KPI’S AND OBJECTIVES 

Objective KPI-ID Description Related task 
1 SPDI Patterns KPI-1.1 Number of SPDI Patterns T4.1 
1 SPDI Patterns KPI-1.2 Deployment of a multi-

domain SDN orchestrator 
T4.1 

2 Semantic Interoperability KPI-2.1 Semantic descriptions for 
6 types of smart objects 

T4.1,T4.4 

2 Semantic Interoperability KPI-2.2 Data type mapping and 
ontology alignment 

T4.4 

2 Semantic Interoperability KPI-2.3 Semantic interoperability 
with 3 IoT platforms 

T4.4 

3 Monitoring Mechanisms KPI-3.1.1 Generating monitoring 
strategies in the 3 
targeted IoT platforms 

T4.1, T4.2 
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3 Monitoring Mechanisms KPI-3.1.2 Fuse results from these 
monitors 

T4.1, T4.2 

3 Monitoring Mechanisms KPI-3.1.3 Performing predictive 
monitoring with an 
average accuracy of 80% 

T4.1, T4.2 

3 Monitoring Mechanisms KPI-3.2 Delivery of a monitoring 
language 

T4.1, T4.2 

4 Multi-layered Embedded 
Intelligence 

KPI-4.1 Delivery of lightweight 
ML algorithms 

T4.3 

4 Multi-layered Embedded 
Intelligence 

KPI-4.2 Delivery of mechanisms 
with adaptation time of 
15ms 

T4.1, T4.2, T4.3 

4 Multi-layered Embedded 
Intelligence 

KPI-4.3 Delivery of adaptations 
mechanisms enabling 
improvement by at least 
20% 

T4.2, T4.3 

4 Multi-layered Embedded 
Intelligence 

KPI-4.4 Detection time of less 
than 10 ms 

T4.3 

4 Multi-layered Embedded 
Intelligence 

KPI-4.6 Development of new 
security 
mechanisms/controls 

T4.1, T4.5 

5 IoT-aware Programmable 
Networks 

KPI-5.2 Service Function 
Chaining (SFC) of a 
minimum 3 VNFs 

T4.1 

6 Development of a Reference 
Prototype 

KPI-6.1 Reduce Required Manual 
Interventions 

T4.1 

6 Development of a Reference 
Prototype 

KPI-6.3 Delivery of 3 prototypes 
of IIoT/IoT applications 

T4.6 

5.2 SEMIoTICS implementation requirements 
The general SEMIoTICS’ requirements that are covered by the presented implementation o f SEMIoTICS 
components are summarized in the next table.  
For the sake of easier readability, here we present only the requirements directly related to Task 4.6 and 
logical components belonging only to this task, while all requirements related to Tasks 4.1  to T4.5 are 
presented in respective deliverables. The full scope of requirements mapping is available in D2.4 
 

 
TABLE 19 TASK’S REQUIREMENTS 

Requirements  Description Related task Status 

R.GP.1 

End-to-end connectivity between the 
heterogeneous IoT devices (at the field level) 
and the heterogeneous IoT Platforms (at the 
backend cloud level) 

T4.6 Delivered 

R.GP.2 Scalable infrastructure due to the fast-paced 
growth of IoT devices 

T4.6 Delivered 

R.BC.15 

Secure communication among the various 
Backend Cloud components (e.g., use of 
dedicated management network, appropriate 
Firewall rules) 

T4.6 Delivered 

R.P.1 The collection of raw data MUST be 
minimized. 

T4.6 Delivered 

R.P.2 The data volume that is collected or 
requested by an IoT application MUST be 

T4.6 Delivered 
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minimized (e.g. minimize sampling rate, 
amount of data, recording duration, different 
parameters). 

R.P.3 Storage of data MUST be minimized. T4.6 Delivered 

R.P.4 
A short data retention period MUST be 
enforced and maintaining data for longer than 
necessary avoided. 

T4.6 In progress 

R.P.9 

Repeated querying for specific data by 
applications, services, or users that are not 
intended to act in this manner SHALL be 
blocked. 

T4.6 In progress 
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6 CONCLUSION 
Within this deliverable, the details of the WP4 developed components of the final cycle of implementation Task 4.6 
are presented. The progress of work advancement has been tracked using GitLab, which is the main code 
repository of the development monitoring and tracking. Based on the open issues tracked in Gitlab, weekly technical 
meetings have been held for the status and any risk tracking.  
 
All work delivered within cycle 3 has been focusing on the variety of key aspects of SEMIoTICS. The development, 
distributed across involved partners, was delivered separately while the integration part has been reserved for the 
future cycle and mainly for the WP5. Planning and implementation of cycle 3 have been performed within five 
subjective streams as follows:  
• The first workstream is focusing on SPDI patterns, going from Recipe Cooker where the distributed execution 

of recipes was developed. Moreover, storing the patterns in the backend repository of Pattern Engine has been 
delivered along with the classification and distribution of the patterns from Pattern Orchestrator to Pattern 
Engines. Finally, the visualization of patterns in the SEMIoTICS platform has been delivered within the GUI 
component. 

• Within the second workstream, the effort has been put into the delivery of semantic interoperability. 
Communication between Recipe Cooker and BSV has been established successfully. The BSV’s endpoints 
were reimplemented using RESTful services instead of gRPC and the work on resolving semantic conflicts 
using the Adaptor Nodes has been started and was continued in cycle 3.  

• The third workstream was focusing on the security aspects. PEP, AEP and Proxy mechanisms.  
• The fourth workstream has been focusing on the Backend Orchestrator implementation and proper 

configuration along with further development of one central GUI for user interaction with the framework.  
• The last workstream was focusing on the monitoring and local embedded intelligence aspects. The Monitoring 

component has identified two interfaces (Query API and Storage API) and 3 possible domains of queries: 
domain-specific, security-related and self-monitoring. Local embedded intelligence efforts have been focusing 
on the generic local IoT analytic algorithms.  

 
According to the description provided in Section 3, Task 4.6 delivers the implementation of components defined 
within WP4, the backend API and the integration of the respective components that are also related to the outputs 
of the tasks as depicted in Figure 4. The outcome of the task T4.6 are deliverables D4.6 (presented in June 2019), 
D4.7 (presented December 2019) and D4.13 (the outcome of cycle 3 development). Deliverable D4.13 has provided 
development status for Graphical User Interface, Backend orchestrator, Patter Orchestrator, Pattern Engine 
(backend), Backend Semantic Validator, Thing Directory, Recipe Cooker, Security Manager (backend), Local 
Embedded Intelligence and Monitoring.  
 
Deliverable D4.13 has covered the finalization of the development of all components involved within WP4. While 
the interaction between all the architectural components is defined within D2.5 (Deliverable 2.5 “SEMIoTICS high-
level architecture (final)”), the detailed specifications of the API area partially the outcome of D4.7 (cycle 2) and 
D4.13 (Final Cycle ) development. Following those 3 cycles of development, the SEMIoTICS has reached its 
development maturity within the delivery of cycle 3 (final). 


