

 780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

SEMIoTICS

Deliverable D4.13
Implementation of Backend API (Final Cycle)

Deliverable release date 30/06/2020

Authors 1. Arne Broering (SAG)

2. Eftychia Lakka, Emmanouil Michalodimitrakis, Tsirantonakis Georgios,
Georgopoulos Konstantinos (FORTH)

3. Konstantinos Fysarakis, Iasonas Somarakis, Michail Smyrlis (STS)

4. Bartłomiej Lipa, Michał Rubaj, Urszula Stawicka (BS)

5. Felix Klement, Korbinian Spielvogel, Henrich C. Pöhls (UP)

Responsible person Bartłomiej Lipa (BS)

Reviewed by Mirko Falchetto (ST-I), Konstantinos Fysarakis (STS), Felix Klement (UP),
Eftychia Lakka, Nikolaos Petroulakis, Manolis Michalodimitrakis (FORTH)

Approved by PTC Members (Vivek Kulkarni, Nikolaos Petroulakis, Ermin Sakic, Mirko
Falchetto, Domenico Presenza, Christos Verikoukis)

PCC Members (Vivek Kulkarni, Nikolaos Petroulakis, Verikoukis Christos,
Georgios Spanoudakis, Domenico Presenza, Danilo Pau, Joachim Posegga,
Darek Dober, Kostas Ramantas, Urlich Hansen)

Status of the Document Final version

Version 1.0

Dissemination level Confidential

Ref. Ares(2020)3433041 - 30/06/2020

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D4.13 Implementation of BackEnd API (Final Cycle)
Dissemination level: [Confidential]

2

Table of Contents

1 Introduction .. 5
1.1 PERT chart of SEMIoTICS ... 6

2 Implementation approach ... 7
2.1 SEMIoTICS Development and Release Cycles .. 7
2.2 SEMIoTICS development workflow .. 8

 SEMIoTICS Git branches ... 8
 Continuous integration pipeline .. 9

3 Cycle plan ...11
4 Final Cycle components ..13

4.1 Graphical User Interface (GUI) ..13
 Development Status ..14
 Component API interactions description ..19
 Component development summary after all cycles ..23
 SEMIoTICS requirements implementation mapped to GUI ...25

4.2 Backend Orchestrator ...27
 Development Status ..29
 Component API interactions description ..30
 Component development summary after all cycles ..31
 SEMIoTICS requirements implementation mapped to Backend Orchestrator 31

4.3 Pattern Orchestrator ...32
 Development Status ..33
 Component API interactions description ..38
 Component development summary after all cycles ..41
 SEMIoTICS requirements implementation mapped to Pattern Orchestrator 41

4.4 Pattern Engine (backend) ...47
 Development Status ..48
 Component API interactions description ..51
 Component development summary after all cycles ..55
 SEMIoTICS requirements implementation mapped to Pattern Engine (Backend) 56

4.5 Backend Semantic Validator ...61
 Development Status ..63
 Component API interactions description ..65
 Component development summary after all cycles ..66
 SEMIoTICS requirements implementation mapped to Backend Semantic Validator66

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D4.13 Implementation of BackEnd API (Final Cycle)
Dissemination level: [Confidential]

3

4.6 Thing Directory ...67
 Development Status ..68
 Component API interactions description ..68

4.7 Recipe Cooker ..68
 Development Status ..70
 Component API interactions description ..70

4.8 Security Manager (backend) ...70
 Development Status ..72
 Component API interactons description ...76
 Component development summary after all cycles ..77
 SEMIoTICS requirements implementation mapped to Security Manager77

4.9 Local Embedded Intelligence (Field Layer) ..79
 Development Status ..80
 Component API interactions description ..80
 Component development summary after all cycles ..81
 SEMIoTICS requirements implementation mapped to Local Embedded Intelligence81

4.10 Monitoring ...86
 Development Status ..87
 Component API interactions description ..87
 SEMIoTICS requirements implementation mapped to Monitoring ...88

5 Validation..90
5.1 Related Project Objectives and Key Performance Indicators (KPIs) ...90
5.2 SEMIoTICS implementation requirements ...91

6 Conclusion ..93

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D4.13 Implementation of BackEnd API (Final Cycle)
Dissemination level: [Confidential]

4

TABLE 1 ACRONYMS TABLE
Acronym Definition

AEP Authentication Enforcement Point
API Application Programming Interface
BO Backend Orchestrator
CD Continuous Development
CI Continuous Integration
CPU Central Processing Unit
CRUD Create, Remove, Update, Delete
DVCS Distributed Version Control System
EMF Eclipse Modelling Framework
GUI Graphical User Interface
GW Gateway
HTTP Hypertext Transfer Protocol
IaaS Infrastructure as a Service
IIoT Industrial Internet of Things
IoT Internet of Things
JSON JavaScript Object Notation
JSON-LD JSON for Linking Data
OVS Open vSwitch
OVSDB Open vSwitch Database Management Protocol
PaaS Platform as a Service
PEP Policy Enforcement Point
PoC Proof of Concept
QoS Quality of Service
REST Representational State Transfer
SDN Software-Defined Networking
SEMIoTICS Smart End-to-end Massive IoT Interoperability, Connectivity and Security
SPDI Security, Privacy, Dependability and Interoperability
SW Software
TCP Transmission Control Protocol
TD Thing Description
TLS Transport Layer Security protocol
TTL Time To Live
UC Use Case
UML Unified Modelling Language
URI Uniform Resource Identifier
URL Uniform Resource Locator
VM Virtual Machine
vSwitch Virtual Switch
W3C World Wide Web Consortium
WoT Web of Things
WP Work Package

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D4.13 Implementation of BackEnd API (Final Cycle)
Dissemination level: [Confidential]

5

1 INTRODUCTION
SEMIoTICS aims to deliver an open source, proof-of-concept implementation of the SEMIoTICS framework,
integrating the core interoperability, monitoring, intelligence, adaptation, and networking capabilities. In this
context, the implementation of the backend API of SEMIoTICS will cover not only the implementation of the
necessary algorithms, techniques, and components but also deliver an open API set giving access to them.

Said backend API will provide communication across the layers and communication with external systems
and partners. Any kind of connection within the IoT platform will be monitored in order to ensure Security,
Privacy, Dependability, and Interoperability (SPDI) requirements relevant for each component. Delivery of 3
prototypes (use cases) of IoT applications will demonstrate the business and technological capabilities of the
SEMIoTICS framework, in the domains of Wind Energy, Healthcare and Smart Sensing.

Looking from an implementation perspective, the first implementation cycle (Cycle 1 due M17), the second
implementation cycle (Cycle 2 due M23) and the final implementation cycle (Cycle 3 due M30) combined
together provide the implementation of algorithms, techniques and components in WP4 (Tasks 4.1 - 4.5) and
deliver set of dedicated APIs giving access to them. As it has been stated in the project description of action,
this API provides IoT components communication across layers and integration with external systems and
partners.

Based on the above, Deliverable 4.13 “Implementation of SEMIoTICS Backend API (Cycle 3)”, being the final
output of T4.6 (Implementation of SEMIoTICS backend API), provides the status of the final implementation
cycle, describes the implementation approach and establishes which backend architectural components (see
D2.5) are developed in which SEMIoTICS development cycle. Within this deliverable, the implementation
status of the final algorithms, techniques, components. (as specified in T4.1 to T4.5 and the respective
deliverables) and API for accessing them are described.

In more detail, this document deliverable D4.13 is structured as follows:
• Section 2 describes the SEMIoTICS implementation approach.
• Section 3 establishes which backend architectural components (more details available in Deliverable

2.5 “SEMIoTICS high level architecture (final)”) are developed in which SEMIoTICS development
cycle.

• Section 4 covers the development status of Cycle 3 and describes the development of each of the
components related to cycle 3 in dedicated subsections.

• Finally, Section 5 validates and Section 6 concludes the work done within this cycle.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D4.13 Implementation of BackEnd API (Final Cycle)
Dissemination level: [Confidential]

6

1.1 PERT chart of SEMIoTICS

36 months Leader: SAG

31.12.202001.01.2018

WP1: Project Management

23 months Leader: ST-I

30.11.201901.01.2018

WP2: Requirements and Architecture for
Smart Sensing and Smart Actuation

24 months Leader: SAG

30.04.202001.05.2018

WP3: Smart objects and networks

25 months Leader: FORTH

30.06.202001.06.2018

WP4: Pattern-driven smart behavior of
IIoT with End-to-End Security and Privacy

24 months Leader: ENG

31.12.202001.01.2019

WP5: System Integration and Evaluation

36 months Leader: SAG

31.12.202001.01.2018

T1.1: Project coordination 36 months Leader: FORTH

31.12.202001.01.2018

T1.2: Project technical and innovation
management

36 months Leader: SAG

31.12.202001.01.2018

T1.3: Coordination with EU programme
level activities

3 months Leader: STS

31.03.201801.01.2018

T2.1: Analysis of emerging business and
technical IoT value drivers

4 months Leader: SAG

30.04.201801.01.2018

T2.2: Specification of use case scenarios
& applications and their requirements

4 months Leader: ST-I

30.06.201801.03.2018

T2.3: Specification of infrastructure
requirements

18 months Leader: BS

31.12.201901.07.2018

T2.4: SEMIoTICS architecture design

22 months Leader: SAG

29.02.202001.05.2018

T3.1: Software defined Aggregation,
Orchestration and cloud networks

22 months Leader: CTTC

29.02.202001.05.2018

T3.2: IIoT Network Function Virtualization

22 months Leader: SAG

29.02.202001.05.2018

T3.3: Semantics-based bootstrapping &
interfacing

22 months Leader: STS

29.02.202001.05.2018

T3.4: Network-level semantic
Interoperability

22 months Leader: IQU

30.04.202001.07.2018

T3.5: Implementation of Field-level
middleware & networking toolbox

23 months Leader: STS

30.04.202001.06.2018

T4.1:Architectural SPDI patterns

22 months Leader: ENG

30.04.202001.07.2018

T4.2: Monitoring, prediction and
diagnosis

22 months Leader: ST-I

30.04.202001.07.2018

T4.3: Embedded Intelligence and local
analytics

22 months Leader: FORTH

30.04.202001.07.2018

T4.4: End-to-End Semantic
Interoperability

22 months Leader: BS

30.06.202001.09.2018

T4.6: Implementation of SEMIoTICS
backend API

22 months Leader: UP

30.04.202001.07.2018

T4.5: End-to-End Security and Privacy

5 months Leader: UP

31.10.201901.06.2019

T5.1: KPIs and Evaluation Methodology

15 months Leader: BS

31.08.202001.06.2019

T5.2: Software system integration

20 months Leader: IQU

31.08.202001.01.2019

T5.3: IIoT Infrastructure set-up and
testing

13 months Leader: SAG

31.12.202001.12.2019

T5.4: Demonstration and validation of
IWPC- Energy scenario

13 months Leader: ENG

31.12.202001.12.2019

T5.5: Demonstration and validation of
SARA-Health scenario

13 months Leader: ST-I

31.12.202001.12.2019

T5.6: Demonstration and validation of
IHES-Generic IoT scenario

36 months Leader: CTTC

31.12.202001.01.2018

T6.1: Impact Creation and Dissemination 31 months Leader: ENG

31.12.202001.06.2018

T6.2: Exploitation of results

24 months Leader: SAG

31.12.202001.01.2019

T6.3: Standardization
36 months Leader: CTTC

31.12.202001.01.2018

WP6: Impact, Dissemination and
Standardization

FIGURE 1 PERT CHART

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D4.13 Implementation of BackEnd API (Final Cycle)
Dissemination level: [Confidential]

7

2 IMPLEMENTATION APPROACH
In SEMIoTICS, Task 4.6 is the main implementation task of WP4, which will deliver the SEMIoT ICS
components developed in WP4 in incremental release cycles. In the following sections, the software
development and release processes will be detailed. Implementation has been divided into 3 development
cycles as per Definition of Action. This has been consciously chosen due to the fact that entire project plan
has been aligned with such an approach. Moreover, in this section there is detailed description of the
development and release cycles based on Agile and Continuous Integration/Development (CI/CD) best
practices which have been proven to be very efficient approach in the IT domain.

2.1 SEMIoTICS Development and Release Cycles
In the context of Task 2.4, we have designed the SEMIoTICS architecture and defined the architectural
components of each layer. Each architectural component is associated with a respective functional module
(i.e. component) with an owner assigned. These components are implemented with an iterative process, which
follows the concept of CI. Such an iterative development process is performed in cycles, with each cycle ending
with a new software release. Each release cycle consists of the following phases, also illustrated in Figure 2,
and lasts approximately 4 months:

1. Feature planning: The consortium agrees on the features that will be implemented in the next release.
This might occur during a feature planning meeting, or during the regular project meetings and calls. It
defines all required mechanisms and interfaces in a high-level specification document, which also includes
the test cases which will be adopted during system verification. This phase requires approximately 1 month.

2. Development: With the requirements document at hand, all required features are implemented by the
responsible developers coordinated by component owners. Each developer is responsible for ensuring that
the proposed features are properly implemented in the associated architectural component, as defined in
Task 2.4, additionally ensuring that all related functionalities including legacy functionalities of the
component are preserved. Furthermore, appropriate testing will ensure that the developed components and
feature sets perform as specified. Development requires 2 months.

3. Integration: After completion of the development phase, changes are integrated into the main SEMIoTICS
codebase. Automated non-regression and sanity tests are performed to rule-out regressions. This task
requires 1-2 weeks.

4. System testing: The testing team deploys the new software release to the testbed and performs all the
required system tests to validate that it runs as specified, further, this is essential to ensure that and new
modules and features correctly interoperate with the rest of the system. In case of issues, they report back
to the responsible developers and depending on the required effort, further, development might occur to fix
the issue or move the issues for resolution in upcoming releases. This phase requires 2-3 weeks.

5. System release: Eventually, the developer generates all the release artifacts and documents and tags the
current version of the software. In addition, a system release review meeting takes place to identify and
discuss problems encountered during this release cycle.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D4.13 Implementation of BackEnd API (Final Cycle)
Dissemination level: [Confidential]

8

FIGURE 2 SEMIOTICS RELEASE CYCLE

Tentatively, the consortium adopted the following release schedule.

• M15 marked the start of the development process.
• On M17 (Cycle 1), the first software release was delivered, including the basic functionality of the

SEMIoTICS backend implementation.
• On M23 (Cycle 2), the second software release was delivered, incorporating the pattern -driven smart

behavior.
• On M30 (Cycle 3), the third release delivers the SEMIoTICS end-to-end architecture implementation.

2.2 SEMIoTICS development workflow
SEMIoTICS has adopted the Git Distributed Version Control System (DVCS) for source code and asset
management, as well as for monitoring the development process. We rely on a hosted solution from GitLab
which hosts the central SEMIoTICS repo located at https://gitlab.com/semiotics/. We refer to this repo as
the origin, which is the standard Git terminology and all SEMIoTICS partners have permissions to push and
pull changes. In addition to this, developers can directly pull changes from other peers to form sub-teams, e.g.,
to collaboratively work on a new feature which will then be pushed to the origin repo.

 SEMIOTICS GIT BRANCHES

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D4.13 Implementation of BackEnd API (Final Cycle)
Dissemination level: [Confidential]

9

FIGURE 3 SEMIOTICS GIT REPOSITORY BRANCHES

The central SEMIoTICS repository holds two main branches, the master branch, and the develop branch. The
master is generally considered to be the main branch, which reflects the latest stable software release. The
master branch integrates all delivered development changes for the next release, so it can also be considered
to be the “integration branch”. When the source code in the develop branch reaches a stable point and is ready
to be released, all of the changes should be merged back into master and then tagged with a release number.

In addition to the main branches (i.e., master and develop), feature branches may be used to develop new
features for the upcoming or a future release. Feature branches generally exist as long as a new feature is in
development and will eventually be merged back into the develop branch, to ultimately add the new feature to
an upcoming release, or even discarded in case of an experiment that led to a dead -end. Feature branches
are also created in the origin repo, so multiple developers can push to the same feature branch. Multiple feature
branches may exist at a time.

 CONTINUOUS INTEGRATION PIPELINE

A CI/CD pipeline is also part of GitLab features, in the form of a web application with an API that stores its
state in a database. It manages the project builds and provides a Graphical User Interface (GUI) which gives
an easy to understand overview of the project development process. Most importantly, the CI pipeline is closely
integrated with the core features of GitLab. The GitLab CI pipeline is part of the SEMIoTICS testing framework
and includes all required unit tests and integration tests. Tests can be authored by the respective developers

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D4.13 Implementation of BackEnd API (Final Cycle)
Dissemination level: [Confidential]

10

or a separate testing team. Only if tests pass, then a new code is committed to the source code repository.
Furthermore, the system performs nightly builds and in case of build failure notifies the responsible developers
to fix the issue. The SEMIoTICS Continuous Integration processes include the following, which may be
accomplished via the GitLab system, or additional tools:

• A ticketing system to assign tasks and feature requests to partners
• A task planning system to assign features to future releases
• Team collaboration tools (e.g., Messaging, File sharing, etc.)

It should be noted that access to the GitLab project is granted only for Consortium Members as per the
Consortium Agreement.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D4.13 Implementation of BackEnd API (Final Cycle)
Dissemination level: [Confidential]

11

3 CYCLE PLAN
The development of the WP4 components has been planned according to development cycles – from 1 to 3
(final) – as defined above. The plan of the cycles is related to the outputs of the different Tasks and the
respective components as depicted in the SEMIoTICS Architectural Framework (FIGURE 4). More specifically,
Task 4.6 provides the implementation of components defined within WP4 as well as the development of the
backend API. Moreover, partial integration of the respective components that are also related to the outputs of
the tasks as depicted in Figure 4 below is an important part of efforts within T4.6 however the main effort on
that is planned within WP5.

FIGURE 4 SEMIOTICS ARCHITECTURAL FRAMEWORK

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D4.13 Implementation of BackEnd API (Final Cycle)
Dissemination level: [Confidential]

12

Various components from SDN/NFV orchestration layer and field layer are mostly implemented in WP3, thus
Table 2 only shows the cycle-assignment of components implemented within WP4 to development cycles.
Each component is developed in at least two cycles.
It should be reiterated that this document is part of a sequence (D4.6, D4.7, and D4.13), with the current
deliverable (D4.13) covering the final cycle. More details about the individual components can be found in
Section 4.

TABLE 2 ASSIGNMENT OF COMPONENTS TO CYCLES
Component Owner Cycle 1 Cycle 2 Cycle 3

Backend Orchestrator BS Part 1 Part 2 Part 3
Pattern Orchestrator STS Part 1 Part 2 Part 3

Pattern Engine STS Part 1 Part 2 Part 3
Monitoring ENG - Part 1 Part 2

Backend Semantic Validator FORTH Part 1 Part 2 Part 3
GUI BS Part 1 Part 2 Part 3

Backend Security Manager UP - Part 1 Part 2
Recipe Cooker SAG Part 1 Part 2 Part 3
Thing Directory SAG Part 1 - Part 2

Local Embedded Intelligence ST - Part 1 Part 2

Every cycle plan is monitored with the use of the GitLab tool, while the feature backlog definition identified at
the early stage of the project, is provided within Section 4. As per the Agile methodology, the backlog is
constantly updated throughout the project.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D4.13 Implementation of BackEnd API (Final Cycle)
Dissemination level: [Confidential]

13

4 FINAL CYCLE COMPONENTS
As mentioned above, an implementation of the SEMIOTICS framework solution imposes not only the
implementation of the components but also designing suitable interactions between them. Not only the
definition of components APIs is required, but also defining which components will be a consumer of which
component API.
The landscape definition of the component interactions with API definitions have been initiated in Cycle 1,
continued in an early stage of Cycle 2 and finalized in Cycle 3 as crucial for further development of the specific
components.

4.1 Graphical User Interface (GUI)
As described in D4.6 and D.4.7, GUI is a component responsible for giving meaningful insights into the platform
and centralized visualization of the whole framework as well as is a layer of presentation for specific use cases.
During cycle 1 and cycle 2, there has been extensive analysis run, which outcome is designed. The following
approaches have been taken and implemented:

• GUI that communicates through the API with an external application.
• GUI that loads the view itself from the external application.
• GUI that is dedicated to the given backend application.

Several views have been developed within cycle 3 and few of them have been updated. Also, the architecture
of GUI has been enriched with several new components.

TABLE 3 GUI BACKLOG

Feature/task scope Short description Cycle
assignment Status

Initialize GUI application Create a SpringBoot & Angular application Cycle 1 Delivered

Create a view to perform
basic actions on Things

Create all necessary endpoints for GUI.
Create a graphical user interface. The
interface should allow to register a thing
description, delete a thing description,
display all registered things, display
things’ details.

Cycle 1 Delivered

Provide support for multiple
environments

Create maven profiles to facilitate the
process of the application deployment

Cycle 1 Delivered

Prepare GUI for deployment
on Backend Orchestrator

Create dockerfile and dockerize the
application so it can be later deployed on
Kubernetes

Cycle 1 Delivered

Create a database for GUI Create a database that should store
information about registered things, their
details including all the properties and
actions and all the data gathered from
them.
Create entities, services, repositories. Add
a database connection handler. Change
the already existing implementation of
methods so they can use database

Cycle 2 Delivered

Add dashboard functionality Create PoC that allows a user to perform
basic CRUD operations on dashboards
and widgets.

Cycle 2 Delivered

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D4.13 Implementation of BackEnd API (Final Cycle)
Dissemination level: [Confidential]

14

Create a simulator of a thing. Create a mock-up application which
imitates the behavior of the real IoT
device

Cycle 2 Delivered

Add a mechanism to gather
historic data from IoT devices

Create a mechanism to collect data from
IoT devices and save them in the
database

Cycle 2 Delivered

Create a view that displays
SPDI Patterns

Create a service that allows getting the
SPDI Patterns from Pattern Orchestrator
and to prepare them to be displayed in
GUI.
Create an interface that displays SPDI
patterns from all of the SEMIoTICS’s
architecture layers and their details

Cycle 2 Delivered

Create a view that displays
SPDI Recipes

Create a service that allows getting the
SPDI Recipes from Pattern Orchestrator
and to prepare them to be displayed in
GUI. Create a GUI that displays SPDI
recipes in the form of graphs.

Cycle 2 Delivered

Create a view to interact with
Things.

Create a graphical user interface and a
service that mediates between GUI and
IoT Devices and allows to:
get real-time properties values of sensors,
perform an action on actuators,

Cycle 2 Delivered

Implement a fully functional
user dashboard with widgets

Implement all the essential functions and
views

Cycle 3 Delivered

Add routing to other
SEMIoTICS’ components

Create a bar that allows navigating
through other SEMIoTICS’ components

Cycle 3 Delivered

 DEVELOPMENT STATUS

The main two tasks planned for development in Cycle 3 were the implementation of widgets and the placement
of other components’ URLs in the navbar. Widgets has been provided by integrating GUI with a FIWARE
KNOWAGE component. The scope of the task delivered all essential functionalities for widget management
in GUI. The pictures below depict the view of user’s widgets and the visualisation of the data gathered from
IoT sensors. The navbar expect for GUI’s subsites contains redirection to other SEMIoTICS co mponents like
e.g. Recipe Cooker.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D4.13 Implementation of BackEnd API (Final Cycle)
Dissemination level: [Confidential]

15

FIGURE 5 DASHBOARD

FIGURE 6 GUI

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D4.13 Implementation of BackEnd API (Final Cycle)
Dissemination level: [Confidential]

16

During the cycle, some of the project requirements changed and after having acquainted with the opinion of
other components owners it was decided that a few functionalities which have already been delivered in GUI
should be an amendment and a few new functionalities should be implemented and added to GUI. Table 4
shows the tasks which were additionally created during the third cycle.

TABLE 4 LIST OF ADDED AND AMENDMENT FUNCTIONALITIES
Feature/task scope Short description New functionality /

Amendment of
already existing

Status

Displaying Things per
Thing Directory

A user has an
availability to specify
which Thing Directory
he wants to display
Things from

Amendment of already
existing

Delivered

Displaying Monitoring
High Level Events in
GUI

New view with the
visualisation of high-
level events.

New functionality Delivered

Refreshing SPDI
Patterns

SPDI Pattern should be
constantly refreshed
and the user should be
notified whenever the
status of pattern
changes

New functionality

Delivered

Implementation of oath
2.0

The access to GUI
should be given only to
users authorized in
Security Manager

New functionality

Delivered

Improvement of
graphical user interface

Refactor of visualisation Amendment of already
existing

Delivered

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D4.13 Implementation of BackEnd API (Final Cycle)
Dissemination level: [Confidential]

17

FIGURE 7 NEW SPDI PATTERN VIEW

FIGURE 8 NEW MONITORING EVENT VIEW

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D4.13 Implementation of BackEnd API (Final Cycle)
Dissemination level: [Confidential]

18

FIGURE 9 UPDATED THING LIST VIEW

FIGURE 10 UPDATED THING DETAILS VIEW

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D4.13 Implementation of BackEnd API (Final Cycle)
Dissemination level: [Confidential]

19

FIGURE 11 UPDATED THING PROPERTIES AND ACTIONS VIEW

 COMPONENT API INTERACTIONS DESCRIPTION
GUI is a module that overlays some components of the SEMIoTICS projects. Its main purpose is to support the
visualization of individual components and the presentation of collected data in one IoT platform. According to the
project assumptions, GUI integrates with Thing Directory, Local Thing Directories, IoT Gateway, Pattern
Orchestrator, Monitoring, FIWARE Knowage, Security Manager and Recipe Cooker. Due to that fact, the description
of each API created for integration with these components is provided in the table below. The technical aspect of
each API is presented in the screenshots with the Swagger documentation.

TABLE 5 GUI API’S
API Status API access type Additional comments
GET
td/authorize/knowage

Deployed Internal Access only through GUI component. Special
sessionKey required.

GET td/cockpits Deployed Internal Access only through GUI after login. API is
inaccessible outside Kubernetes network.

POST td/cockpits Deployed Internal Access only through GUI after login. API is
inaccessible outside Kubernetes network.

DELETE td/cockpits Deployed Internal Access only through GUI after login. API is
inaccessible outside Kubernetes network.

GET
td/spdi/getGraphData

Deployed Internal Access only through GUI after login. API is
inaccessible outside Kubernetes network.

GET
td/spdi/getRecipeList

Deployed Internal Access only through GUI after login. API is
inaccessible outside Kubernetes network.

GET
td/spdi/getSpdiMonito
ringData

Deployed Internal Access only through GUI after login. API is
inaccessible outside Kubernetes network.

GET
td/spdi/getSpdiTable
Data

Deployed Internal Access only through GUI after login. API is
inaccessible outside Kubernetes network.

GET
td/thingMonitoring
getMonitoredValues

Deployed Internal Access only through GUI after login. API is
inaccessible outside Kubernetes network.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D4.13 Implementation of BackEnd API (Final Cycle)
Dissemination level: [Confidential]

20

POST
td/thingMonitoring
saveProperties

Deployed Internal Access only through GUI after login. API is
inaccessible outside Kubernetes network.

POST
td/thingMonitoring/ex
ecuteAction

Deployed Internal Access only through GUI after login. API is
inaccessible outside Kubernetes network.

GET
td/{directoryId}/things

Deployed Internal Access only through GUI after login. API is
inaccessible outside Kubernetes network.

POST
td/{directoryId}/things

Deployed Internal Access only through GUI after login. API is
inaccessible outside Kubernetes network.

DELETE
td/{directoryId}/things

Deployed Internal Access only through GUI after login. API is
inaccessible outside Kubernetes network.

GET
td/{directoryId}/things
/{thingId}

Deployed Internal Access only through GUI after login. API is
inaccessible outside Kubernetes network.

GET td/filterAllThings Deployed Internal Access only through GUI after login. API is
inaccessible outside Kubernetes network.

GET
td/getDeletedThing

Deployed Internal Access only through GUI after login. API is
inaccessible outside Kubernetes network.

GET td/iot-
gateway/devices

Deployed Internal Access only through GUI after login. API is
inaccessible outside Kubernetes network.

GET td/iot-
gateway/ip-
addresses

Deployed Internal Access only through GUI after login. API is
inaccessible outside Kubernetes network.

POST td/iot-
gateway/register

Deployed Internal Access only through GUI after login. API is
inaccessible outside Kubernetes network.

GET
td/monitoring/contrib
uting-events

Deployed Internal Access only through GUI after login. API is
inaccessible outside Kubernetes network.

GET
td/monitoring/high-
level-events

Deployed Internal Access only through GUI after login. API is
inaccessible outside Kubernetes network.

POST
td/monitoring/high-
level-events

Deployed Internal Access only through GUI after login. API is
inaccessible outside Kubernetes network.

Login In
progress

External

4.1.2.1 APIS FOR FIWARE KNOWAGE INTEGRATION
Integration GUI with Knowage was created to visualize collected data from sensors and devices on highly extensive
and efficient dashboards. To use all main functionalities provided by FIWARE Knowage, the above-mentioned APIs
were developed. User can list all available cockpits (HTTP GET ‘td/cockpits’), create or edit dashboards (HTTP
POST ‘td/cockpits’) and delete existing cockpits(HTTP DELETE ‘td/cockpits’). To enable communication with
Knowage, GUI authorizes in Knowage and receives a special token.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D4.13 Implementation of BackEnd API (Final Cycle)
Dissemination level: [Confidential]

21

FIGURE 12 APIS FOR INTEGRATION WITH KNOWAGE

4.1.2.2 APIS FOR PATTERN ORCHESTRATOR INTEGRATION
This integration aims to support Pattern Orchestrator in monitoring the current state of SPDI patterns from all recipes
and location SPDI patterns in an individual layer e.g. backend, network, gateway. Additionally, GUI can present
existing recipes in the interactive graph form as a combination of nodes, links, and layers. APIs developed in the
GUI allows user to view SPDI patterns in real-time in two forms, in view with tiles (HTTP GET
‘td/spdi/getSpdiMonitoringData’) or in table view (HTTP GET ‘td/spdi/getSpdiTableData’) . User can also see all
existing recipes (HTTP GET ‘td/spdi/getRecipeList’) or watch recipe in graph form (HTTP GET
‘td/spdi/getGraphData’).

FIGURE 13 APIS FOR INTEGRATION WITH PATTERN ORCHESTRATOR

4.1.2.3 APIS FOR THING DIRECTORY AND IOT GATEWAY INTEGRATION

Integration with Thing Directory, Local Thing Directories, and IoT Gateway provides the largest number of
endpoints. This kind of integration was created to visualize devices registered in Global Thing Directory or Local
Thing Directories, register, and delete new ones. Additionality allows users to interact with devices and watch their
properties. The development of APIs for IoT Gateway allows finding new devices and register them directly through
this component. User can use one of the existing endpoints:

• HTTP GET ‘td/thing-directories’ to list all available Local Thing Directories and one Global Thing Directory,
• HTTP POST ‘td/thingMonitoring/executeAction’ to run one of selected action from device,
• HTTP GET ‘td/thingMonitoring/getMonitoredValues’ to get current values of thing’s properties,
• HTTP POST td thingMonitoring/saveProperties’ to start collecting data for selected property of
• device,
• HTTP GET ‘td/{directoryId}/things’ to get all thing for selected Thing Directory,
• HTTP POST ‘td/{directoryId}/things’ to register a new thing in selected Thing Directory,
• HTTP DELETE ‘td/{directoryId}/things’ to delete thing for selected Thing Directory,
• HTTP GET ‘td/{directoryId}/things/{thingId}’ to get details of selected thing,

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D4.13 Implementation of BackEnd API (Final Cycle)
Dissemination level: [Confidential]

22

• HTTP GET ‘td/filterAllThings’ to filter Thing Directory using SPARQL syntax query,
• HTTP GET ‘td/getDeletedThing’ to get details of deleted thing for given ip,
• HTTP GET ‘td/iot-gateway/devices’ to scan IoT Gateway in the range of ip addresses to find new

o devices,
• HTTP GET ‘td/iot-gateway/ ip-addresses’ to scan IoT Gateway in the range of ip addresses to find ip

o addresses of devices,
• HTTP POST ‘td/iot-gateway/register’ to register a new device in Global Thing Directory using IoT

o Gateway.

FIGURE 14 APIS FOR INTEGRATION WITH TDS AND IOT GATEWAY

4.1.2.4 APIS FOR MONITORING INTEGRATION

Integration between GUI and Monitoring component was created to provide visualization for predictive monitoring
of events that might occur in the whole SEMIoTICS platform. It allows users to view high-level-events and
contributing-events, and preparing queries with the definition of high-level-event. User can use one of the existing
endpoints:

• HTTP GET ‘td/monitoring/contributing-events’ to get all contributing events for selected high-level-event,
• HTTP GET ‘td/monitoring/high-level-events’ to get all high-level-events that had occurred ,
• HTTP POST ‘td/monitoring/high-level-events’ to register query with definition of high-level-event.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D4.13 Implementation of BackEnd API (Final Cycle)
Dissemination level: [Confidential]

23

FIGURE 15 APIS FOR INTEGRATION WITH MONITORING

 COMPONENT DEVELOPMENT SUMMARY AFTER ALL CYCLES

After all 3 cycles, GUI is a fully working component integrated with other SEMIoTICS components as
presented in Deliverable 5.2. A detailed description of development progress can be found in D4.6 for cycle
1 and in D4.7 for cycle 2. According to the initial assumption, GUI should meet 3 basic requirements:

• communication through the API with an external application,
• loading the view itself from the external application,
• redirecting to the given backend application.

All of the abovementioned requirements were implemented in the next steps. In cycle 2 communication was
established through the API with external applications that include:

• communication with Thing Directory to show and interact with all registered devices,
• communication with Pattern Orchestrator to visualize real-time SPDI patterns.

Communication with Monitoring API to visualize high-level-events was implemented in cycle 3. In this cycle it
was also added loading the view from an external application which was Knowage- one of the FIWARE
Generic Enabler for complex data visualization. Additionally , in GUI was implemented redirection to Recipe
Cooker that is one of SEMIoTICS backend applications. The redirection to SDN/NFV development view, that
is a dedicated GUI for SPDI patterns is still in progress. The full sidebar with navigation to all SEMIoTICS
views and APIs are presented below.

FIGURE 16 FULL SIDEBAR WITH NAVIGATION TO ALL COMPONENTS

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D4.13 Implementation of BackEnd API (Final Cycle)
Dissemination level: [Confidential]

24

During all 3 cycles, the basic assumptions were expanded and additional functionalities were added to adjust
to the project requirements. All changes were easily applicable thanks to generic component architecture.
The most significant improvements that were developed:

• support for all Local Thing Directories, not only for one Global Thing Directory,
• scanning and registering new devices through IoT Gateway,
• presenting recipe combined with SPDI patterns as an interactive graph.

The Picture below depicts GUI in the final version with the full navigation to external components.

FIGURE 17 FINAL GUI VIEW

The most significant aspect during development and integration components was to provide safe and secure
communication. To achieve this aim a special component AEP and Policy Enforcer Point (PEP) were
developed. Each time the GUI component sends a request to another component it is signed by AEP and a
special application token is added. Before the request is received by an external component, PEP gets an
application token and validates it in Security Manager. If GUI has permission to communicate with the
application, PEP sends a request to this app and returns a response to GUI as presented below.

FIGURE 18 DIAGRAM WITH SECURED COMMUNICATION PROVIDED BY AEP AND PEP

Using AEP and PEP components in SEMIoTICS architecture protects against access to data of
unauthorized users or applications.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D4.13 Implementation of BackEnd API (Final Cycle)
Dissemination level: [Confidential]

25

 SEMIOTICS REQUIREMENTS IMPLEMENTATION MAPPED TO GUI
GUI component should meet Semiotics requirements and KPIs as described in D5.1. According to these
requirements customized solutions were implemented during the development process. A description of KPIs
with the detailed substantiation is presented in the table below.

KPI id Description Status of
development

Substantiation

R.P.1 • The collection of raw
data MUST be
minimized.

• Done • GUI application uses and storages only
necessary data collected from all devices
to the SEMIoTICS platform. GUI contains
internal components ThingWorker and
ThingOrchestrator dedicated to collecting
data. Thing Orchestrator is a component
responsible for creating and distribute jobs
between Thing Workers and also for
deleting assigned jobs to Thing Workers.
Job is created when a user of the GUI
starts collecting measurements. Thing
Worker is responsible for collecting data
for specific properties of devices with a set
by user frequency. Thus, not all properties
of devices are collected but only selected.
Thing Worker stops saving measurements
form devices when the job is deleted or
when devices are off. In GUI there is no
redundant and unnecessary data.

• R.P.2 • The data volume that is
collected or requested
by an IoT application
MUST be minimized
(e.g. minimize sampling
rate, amount of data,
recording duration,
different parameters).

• Done • GUI application uses and storages only
necessary data for communication with
related components of the SEMIoTICS
platform. Data that is used in the GUI
application but stored in databases of
individual components is only requested
and immediately visualized. Examples of
such interactions are communication with
the Thing Directory and Pattern
Orchestrator components, where received
data is mapped and transformed to show
it in a form that the user can understand.
Therefore, there are no tables repetitions
and no data redundancy. GUI also sends
requests with different parameters for
individual requests to reduce the amount
of data transferred. For data that is used
only in GuiHub dedicated PostgreSQL
database was created. A relational data
model is the most suitable solution and
ensures that the database is lightweight
because it contains only a few tables. The
tables in this database are tailored to the
needs of the application and data models
used. GUI database collects and stores
only selected measurements from devices
registered to the SEMIoTICS platform.

• R.P.3 • Storage of data MUST
be minimized.

• Done • GUI database stores mostly thing's
metadata such as properties, actions, the

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D4.13 Implementation of BackEnd API (Final Cycle)
Dissemination level: [Confidential]

26

data essential for the worker orchestrator,
and finally the values gathered from
sensors. This is the minimum data that is
required to accomplish the given tasks.

• R.P.4. • A short data retention
period MUST be
enforced, and
maintaining data for
longer than necessary
avoided.

• Done • The user can specify the retention period
of the measurement gathered by IoT
devices. Data from IoT devices is
collected by default by 1 month and can
be customized by user to 3 months. When
a data collection expires, the
measurements are not saved in the
database.

• R.P.9 • Repeated querying for
specific data by
applications, services,
or users that are not
intent to act in this
manner SHALL be
blocked.

• In progress • In this stage of development of
SEMIoTICS, we do not provide this
functionality. We have not data to
determine the minimal intervals of
repeated queries for specific data. This is
an area that can be improved after
collecting the requirements from users.
Currently, database performance is the
only limitation in the frequency of data
access.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D4.13 Implementation of BackEnd API (Final Cycle)
Dissemination level: [Confidential]

27

4.2 Backend Orchestrator
Backend orchestrator is a component responsible for integrating all backend services and exposing APIs.
Kubernetes (https://kubernetes.io) has been chosen as a component responsible for orchestration of the
SEMIoTICS backend. Kubernetes is an open source project that enables declarative framework orchestration
that has become a standard and is available to install on most of the platforms. Additionally, this technology is
in line with proposed micro services architecture (described widely in D2.5).
Most important Kubernetes features are1:

- Kubernetes provides a container-centric management environment,
- Kubernetes orchestrates computing, networking, and storage infrastructure on behalf of user workloads,
- Kubernetes provides much of the simplicity of Platform as a Service (PaaS) with the flexibility of

Infrastructure as a Service (IaaS), and enables portability across infrastructure providers.

The development of the Backend Orchestrator component has been continued within Cycle 3.

Within Table 6 updated backlog of the tasks planned for the component is visible with the given status of the
implementation. Further sections provide more details of the implementation .

The technologies which have been chosen to be used for backend orchestration are the following:
- Kubernetes – technology used as backend orchestrator to orchestrate backend applications
- Ansible 2.5 – technology used as a tool to automatize installation of Kubernetes and its dependencies
- Docker – technology used for containerization of applications written in different languages

TABLE 6 BACKEND ORCHESTRATOR BACKLOG

Feature/task scope Short description Cycle
assignment Status

Comparison and choosing
the technology for Backend
Orchestrator

Comparison of OpenStack, Kubernetes,
and OpenShift.

Cycle 1 Delivered

Installation of Kubernetes on
a cloud server for fast testing
the chosen technology

Creating an instance of Kubernetes
Cluster on AWS. Testing process to
determine the size of resources for the
physical cluster.

Cycle 1 Delivered

Creating a docker images
repository

Creating a repository for Docker images
on the GitLab.

Cycle 1 Delivered

First installation of Backend
Orchestrator on BLS cluster

Creating the ansible script for installing
required tools on a cluster. Testing one
node Kubernetes architecture

Cycle 1 Delivered

Changing the internal
architecture of Backend
Orchestrator

Creating at least two nodes. There have to
be a master node and a slave.

Cycle 1 Delivered

Implement a proxy mechanism
in PEP

Implement a proxy mechanism to intercept
HTTP traffic going to the main application
and authorize the request in Security
Manager

Cycle 1&2 Delivered

Add a proxy application to
authenticate requests

Add mitmproxy application as an
Authentication Enforcement Point which
adds the client’s token to an HTTP request

Cycle 1&2 Delivered

Preparation of PEP for
deployment on Backend
Orchestrator

Create dockerfile and dockerize the
application so it can be later deployed on
Kubernetes

Cycle 1&2 Delivered

1 https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D4.13 Implementation of BackEnd API (Final Cycle)
Dissemination level: [Confidential]

28

Set of access rules for
consortium partners to
Backend Orchestrator

Configure the namespaces and roles on
Kubernetes. Creating the script that
assigns permission per roles and
namespaces.

Cycle 2&3 Delivered

Develop the scheme of
deploying the component

Creating the script of deployment, service
and config map for example component.

Cycle 2 Delivered

Deploying GUI and Thing
Simulator on Kubernetes
cluster

Developing the structure of deployment
files for GUI and Thing Simulator

Cycle 2 Delivered

Automate the repeatable
process of deploying the
components.

Installation Jenkins on the machine.
Creating the access rules for Jenkins to
the BO.

Cycle 2 Delivered

Enabling communication
between components
deployed on Backend
Orchestrator and to external
applications

Develop the scripts that allow to expos
the component to externals networks

Cycle 2 Delivered

Performing the test of
communication between
components

Testing internal and external
communication between deployed
components

Cycle 2 Delivered

Develop the way of storage
and updating the credentials
for externals applications

Set of rules about storage and user
credentials for GitLabRepository.

Cycle 2 Delivered

Manual deployment of Thing
Directory

Create dockerfile and dockerize the
application so it can be later deployed on
Kubernetes. Deployment component

Cycle 2 Delivered

Creating and configuration of
the tool for the administrator
of Backend Orchestrator

Configure a dashboard that shows the
state of the cluster. Creating the
notification when the dangerous state of a
cluster.

Cycle 2 Delivered

Creating deployment files for
AOL components

Create deployment .yml files for GUI,
Security Manager, Think Directory, Think
Simulator and Think Worker, which allows
deployment on Kubernetes.

Cycle 2 Delivered

Create automatized jobs for
deploying components.

Create CI/CD pipeline that allows
deploying the following components GUI,
Security Manager, Think Directory, Think
Simulator and Think Worker on
Kubernetes after manual initialization.

Cycle 2 Delivered

Creating deployment files for
AOL components

Create deployment .yml files for Pattern
Engine, Recipe Cooker, Backend
Semantic Validator, Pattern
Orchestrator which allows deployment on
Kubernetes.

Cycle 3 Delivered

Create automatized jobs for
deploying components.

Create CI/CD pipeline that allows
deploying the following components:
Pattern Engine, Recipe Cooker, Backend
Semantic Validator, Pattern
Orchestrator on Kubernetes after manual
initialization.

Cycle 3 Delivered

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D4.13 Implementation of BackEnd API (Final Cycle)
Dissemination level: [Confidential]

29

 DEVELOPMENT STATUS
The development outcome of cycle 3 were deployment files for all the component that have not been deployed
during the previous cycles e.g. Pattern Engine, Backend Semantic Validator, Recipe Cooker, Pattern
Orchestrator. Each of those deployment has dedicated pipeline in Jenkins to facilitate the process of
deployment. Every pipeline fetches the code of an application, builds the docker image and eventually,
deploys it on the Kubernetes cluster.

apiVersion: apps/v1
kind: Deployment
metadata:
 name: backend-semantic-validator
 namespace: semiotics
 labels:
 app: bsv
spec:
 replicas: 1
 selector:
 matchLabels:
 app: bsv
 template:
 metadata:
 labels:
 app: bsv
 spec:
 containers:
 - name: bsv
 image: registry.gitlab.com/semiotics/backend/semantic-mediator:latest resources:
 requests:
 memory: "230Mi"
 cpu: "100m"
 limits:
 memory: "460Mi"
 cpu: "200m"
 imagePullPolicy: Always
 ports:
 - containerPort: 8086
 imagePullSecrets:
 - name: blue-k8s

kind: Service
apiVersion: v1
metadata:
 name: bsv-svc
 namespace: semiotics
spec:
 ports:
 - nodePort: 31006
 port: 8086
 targetPort: 8086
 selector:
 app: bsv
 sessionAffinity: None

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D4.13 Implementation of BackEnd API (Final Cycle)
Dissemination level: [Confidential]

30

FIGURE 19 AN EXAMPLE OF JENKINS PIPELINE

 COMPONENT API INTERACTIONS DESCRIPTION

Backend Orchestrator is based entirely on Kubernetes. To successfully accomplish the functionalities of the
component, already existing APIs have been adjusted and configured in Kubernetes accordingly to the
project’s needs and use cases. Because of aforementioned reasons, none of APIs have been developed
throughout any cycle. The table below shows Kubernetes API which have been used for the development of
Backend Orchestrator.

TABLE 7 KUBERNETES API DETAILS
API Status API

access
type

Additional comments

K8s
HPA

• Discarded • Internal Access only for components of Kubernetes network.
The Horizontal Pod Autoscaler automatically scales the number of
pods in a replication controller, deployment, replica set or stateful set
based on observed CPU utilization

K8s
CronJob
s

• Discarded • Internal • Currently no use case is foreseen for this service. If any need will be
identified, it can be set up.

K8s
Ingress

• Deployed • Internal • Access only for components of Kubernetes network. Ingress exposes
HTTP and HTTPS routes from outside the cluster to services within
the cluster

K8s
PVCs

• Deployed • Internal Access only for components of Kubernetes network.
a request for storage by a user.

K8s PVs • Deployed • Internal Access only for components of Kubernetes network.
a piece of storage in the cluster. used to store data in a way that it
persists beyond the lifetime of a pod

K8s
Secrets

• Deployed • Internal Access only for components of Kubernetes network.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D4.13 Implementation of BackEnd API (Final Cycle)
Dissemination level: [Confidential]

31

an object that contains a small amount of sensitive data such as a
password, a token, or a key.

K8s
Jobs

• Deployed • Internal • Access only for components of Kubernetes network. a Job is a
controller object that represents a finite task.

K8s
Deploym
ents

• Deployed • Internal • Access only for components of Kubernetes network. An object for
management a set of identical pods.

K8s
Services

• Deployed • Internal • Access only for components of Kubernetes network. defines a logical
set of Pods and a policy by which to access them

K8s
Pods

• Deployed • Internal • Access only for components of Kubernetes network. is a group of one
or more containers , with shared storage/network, and a specification
for how to run the containers.

K8s
Variable
s

• Deployed • Internal • Access only for components of Kubernetes network. An Object which
stores a non-confidential data as key-value pairs.

 COMPONENT DEVELOPMENT SUMMARY AFTER ALL CYCLES

During development cycles, the best tool for orchestration has been chosen, tested, and used in the working
environment. During the first cycle, three possible orchestrators have been investigated: OpenStack,
OpenShift, and Kubernetes. The best option for the SEMIoTICS proved to be Kubernetes. Its capabilities most
suit microservices architecture of the SEMIoTICS platform. Tests have been performed on bare metal as well
on the cloud provider cluster. There was initial implementation performed and administra tion rules developed.
The architecture of a working cluster has been established and configured. The repository for Docker images
has been established and tested with two components.

In the second cycle, the priority was the automatization of component deployment. Jenkins has been chosen
to create an automatic process of deployment which consists of a compilation of pushed code to GitLab
repository, creation of Docker image, and deployment on a Kubernetes cluster. In the testing process, the
deployment files for each component have been written and test used. Security policies have been also
implemented, the roles on Kubernetes have been assigned to each user based on best practices used in
CI/CD solutions. Role configuration used in Backend Orchestrator ensures that each user has limited access
to a cluster which might sometimes bring difficulties but prevents many actions that may disturb the proper
operation of orchestrator. The connectivity aspects have been tested and implemented with appropriate
policies and workflows in internal networking. Configuration of externals connectivity has been done and
tested. The secure process of storage and usage of technical user credentials has been created and used for
connectivity with external applications. Tools for administrating the cluster have been configured and tested.
Administration tools allow to remotely connect to the Backend Orchestrator, monitor its state, and make
necessary adjustments. Some of the components get their automated deployment pipelines.

The third cycle has been used for further testing of functionalities developed in previous cycles. More pipelines
have been created and monitor their functionality. The exposed API of Kubernetes has been tested and
incorporated in the monitoring process. In this period, we have intensively use Backend Orchestrator for
deployment and hosting SEMIoTICS platform components.

 SEMIOTICS REQUIREMENTS IMPLEMENTATION MAPPED TO BACKEND ORCHESTRATOR

Requirements for the Backend Orchestrator have been formulated in Deliverable D2.3 and core functionalities
have been formulated in section 3.1.1 of deliverable D2.4.

Details of Backend Orchestrator implementation are described in section 4.2 of deliverables D4.6, D4.7, and
D4.13.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D4.13 Implementation of BackEnd API (Final Cycle)
Dissemination level: [Confidential]

32

The table below shows the requirements of the Backend Orchestrator, a short description of fulfillin g it and
status of delivery.

Requirement Status Description of implementation

Secure
communication
among the various
Backend Cloud
components (e.g.,
use of dedicated
management
network, appropriate
Firewall rules)

Delivered

Backend Orchestrator has a built-in network policy object. It is a
specification of how groups of pods are allowed to communicate with
each other and other network endpoints. By default, all pods in a
Kubernetes cluster can communicate freely with each other without any
issues therefore by applying network restrictions we can isolate the
services running in pods from each other. Network policies have been
applied to all of the backend components to prevent any security leaks
and to maintain the traffic that is required by architecture of the
SEMIoTICS.

End-to-end
connectivity between
the heterogeneous
IoT devices (at the
field level) and the
heterogeneous IoT
Platforms (at the
backend cloud level)

Delivered

Every application managed by Backend Orchestrator has its instance of
service object.
A service exposes a running application in a pod as a network service
and because of that, the APIs of applications are exposed to any external
HTTP call.
As long as IoT devices have built-in mechanism to create HTTP requests,
the end-to-end connectivity is provided.

Scalable
infrastructure due to
the fast-paced growth
of IoT devices

Delivered

Backend Orchestrator(BO) in SEMIoTICS project is a Kubernetes
instance that provides easy scalability and high availability.
The unit of deployment in BO is a "pod" which contains one application or
one SEMIoTICS component. Kubernetes gives a wide range of options
for managing and scaling pods setting simple parameters like
"ReplicaSet" in the deployment file. When one application of the
SEMIoTICS platform is overloaded, BO can create the next instance of
an application to balance the load between them. A similar situation
occurs when one of the components will be inactive or breaks down, then
BO deletes the wrong application and creates a new one.
The fast-paced growth of IoT devices connected to SEMIoTICS platform
does not affect the BO operation because the number of applications at
any time is adapted to the number of devices using them.

4.3 Pattern Orchestrator
The Pattern Orchestrator is a module responsible for automated configuration, coordination, and
management of different patterns and their deployment.

In further detail, the Pattern Orchestrator is able to:
1. Receive instantiated recipes from Recipe Cooker via defined API
2. Extract SPDI & QoS properties/requirements from instantiated recipes and convert to patterns
3. Convert patterns to Drools
4. Classify and distribute patterns (as Drools) to the different pattern engines in three layers (Backend,

Network, Field)

Cycle 3 includes:

• Extension of the Pattern Orchestrator - Pattern Engines interfacing with more REST services
• Integration with SEMIoTICS GUI
• New classes for the instantiation of Drools facts

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D4.13 Implementation of BackEnd API (Final Cycle)
Dissemination level: [Confidential]

33

TABLE 8 PATTERN ORCHESTRATOR BACKLOG
Feature/task scope Short description Cycle assignment Status

API definition between
Recipe Cooker and
Pattern Orchestrator

Recipe Cooker needs to submit an
instantiated recipe to the Pattern
Orchestrator and expects a response
that indicates whether the recipe
definition is feasible to execute. For
that reason, an API needs to be
defined.

Cycle 1 Delivered

Transformation of an
instantiated recipe to
patterns

Pattern Orchestrator must understand
the instantiated Recipes it receives, as
defined by the Recipe Cooker and
transform them into patterns.

Cycle 1 Delivered

Communication with the
three Pattern Engines

Interfacing with Pattern Engines on all
layers (Backend, Network, and Field)
needs to be implemented and tested.

Cycle 1 Delivered

Store patterns (as
Drools) in the backend
pattern repository

The patterns created by Pattern
Orchestrator need to be communicated
to the Backend Pattern Engine for
storing in the local repository.

Cycle 2 Delivered

Classify and distribute
patterns (as Drools) to
the different pattern
engines

Pattern Orchestrator must be able to
decide for each of the Drools
Rules/Facts (patterns), which is the
appropriate Pattern Engine to deliver
it.

Cycle 2 & 3 Delivered

IoT service orchestration
adaptation

In case an SPDI or QoS property is no
longer guaranteed, adaptation actions
must be taken, changing a number of
orchestration components. In that way,
the Pattern Engines can guarantee
that the SPDI/QoS property in question
is henceforward satisfied.

Cycle 3 Delivered

Regarding the distribution of patterns to different pattern engines, the decision mechanism of the Pattern
Orchestrator, although it delivered in its current state, updates may be made. This is due to the fact that new
patterns (rules, facts) are created constantly and will continue to be created until the end of the project.
Therefore, the decision mechanism is constantly updated in order to include the newly created patterns.

 DEVELOPMENT STATUS
According to Table 8 the first feature that was added to Pattern Orchestrator during cycle 3 is the classification
and distribution of the Recipe components as Drools facts to the three different Pattern Engines.

An instantiated Recipe, which serves as input to the Pattern Orchestrator, constitutes by a number of Recipe
components of different types such as:

• Placeholders in the form of Host, IoTSensor, IoTActuator, IoTGateway, SoftwareComponent,
SoftwareService, NetworkComponent,

• Orchestrations in the form of Sequences, Merges, Splits, Choices
• Properties of all the above
• Interfaces and Operations of the Placeholders

The classification of the Recipe components is done based on their type.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D4.13 Implementation of BackEnd API (Final Cycle)
Dissemination level: [Confidential]

34

Placeholders: Each of the Recipe components is recognized, based on an ANTLR parser, and is sent to the
appropriate Pattern Engine, to be added as Drools facts in their working memory. The type of each Recipe
components determines the layer of the Pattern Engine it is sent to. For example, IoTSensors, IoTActuators
and IoTGateways are sent to the Pattern Engine at the Field layer. NetworkComponents, on the other hand,
are sent to the Pattern Engine at the network layer. SoftwareComponents and SoftwareServices are sent to
the Pattern Engine at the Backend layer.

Orchestrations: The layer decision for the different types of placeholders is pretty straightforward. However,
it is not clear for Orchestrations to which layer they belong. In order to define the layer of an Orchestrati on we
have to take under consideration the layers of the involved placeholders.

Let’s take a Sequence as an example case. A sequence consists of two Placeholders, the output of the first
becomes input of the second. If the layer of the first placeholder matches the layer of the second, the layer of
their Sequence is set to that very same layer. Nevertheless, if the layers of the two Place holders does not
match, the layer of their Sequences falls to one of the three cross layer cases named, Backend -Network,
Backend-Field, Field-Network. What we have just described is depicted as code snippet below.

 // Set the Layer of all Sequences based to the layers of their placeholders
 private static void setSequencesLayer() {
 for (Sequence sequence : sequencestosend) {
 String plaId = sequence.getPlaceholdera();
 String plaType = getPlaceholderType(plaId);
 String plaLayer = getPlaceholderLayer(plaId, plaType);

 String plbId = sequence.getPlaceholderb();
 String plbType = getPlaceholderType(plbId);
 String plbLayer = getPlaceholderLayer(plbId, plbType);

 if (plaLayer.equals(plbLayer)) {
 sequence.setLayer(plaLayer);
 }
 else {
 if ((plaLayer.toLowerCase().equals("backend") && plbLayer.toLowerCase().equals("network"
)) || (plbLayer.toLowerCase().equals("backend") && plaLayer.toLowerCase().equals("network"))) {
 sequence.setLayer("CROSSLAYERBN");
 }
 if ((plaLayer.toLowerCase().equals("backend") && plbLayer.toLowerCase().equals("gateway"
)) || (plbLayer.toLowerCase().equals("backend") && plaLayer.toLowerCase().equals("gateway"))) {
 sequence.setLayer("CROSSLAYERGB");
 }
 if ((plaLayer.toLowerCase().equals("network") && plbLayer.toLowerCase().equals("gateway"
)) || (plbLayer.toLowerCase().equals("network") && plaLayer.toLowerCase().equals("gateway"))) {
 sequence.setLayer("CROSSLAYERNG");
 }
 }

 }
 }

The setSequencesLayer() method run through all the sequences of a Recipe and, first of all, gets the layers of
the two involved Placeholders in the plaLayer and plbLayer variables. Then if these variables are equal, the
layer of the current Sequence is set to the same layer (if statement). If they are not, the Sequence layer is set
to one of the three cross layer cases (else statement).

Properties: Properties describe a characteristic of a Recipe component. As a result, each Property has a
subject that it is referred to. This subject defines the layer of the Property itse lf. As we can see in the code
snippet below, the definePropertyLayer() method takes as parameters a subject and a layer and runs through
all the Recipe properties. The parameter subject is actually a Recipe component and the parameter layer is its
layer. If the property iteration spots a Property with subject the said Recipe component, the Property layer is
set to the Recipe component’s layer.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D4.13 Implementation of BackEnd API (Final Cycle)
Dissemination level: [Confidential]

35

 // Set the Layer of all Properties that are subject to a specific placeholder based on the layer of
the placeholder
 private static void definePropertyLayer(String subject, String layer) {
 for (Property property: propertiestosend) {
 if (property.getSubject().equals(subject)) {
 property.setLayer(layer);
 }
 }
 }

Interfaces and Operations: The same way we define the layer of a property, an interface or operation layer
is defined. Interfaces and Operations have also subjects that are referred to Recipe components. The methods
defineInterfaceLayer() and defineOperationLayer() are equivalent to the definePropertyLayer() we described
above.

 // Set the Layer of all Interfaces that are subject to a specific placeholder based on the layer of
the placeholder
 private static void defineInterfaceLayer(String subject, String layer) {
 for (Interface interface: interfacestosend) {
 if (interface.getSubject().equals(subject)) {
 interface.setLayer(layer);
 }
 }
 }

 // Set the Layer of all Operations that are subject to a specific placeholder based on the layer of
the placeholder
 private static void defineOperationLayer(String subject, String layer) {
 for (Operation operation: operationstosend) {
 if (operation.getSubject().equals(subject)) {
 operation.setLayer(layer);
 }
 }
 }

Another feature that was added to Pattern Orchestrator during cycle 3 is its ability to communicate with the
Recipe Cooker to send the potentially altered flow in case adaptation actions are needed. Adaptation actions
may take place in case an SPDI or QoS Property, referred to the whole Recipe or to a part of it, does not hold.
The said adaptation action ends up to a new, updated Recipe, that is communicated back to the Recipe Cooker
in order to be deployed again. The updated version of the Recipe may have additional components or
substituted components.

Recipe Cooker is based on Node-Red. The latter exposes an API that allows the update of a given flow. The
flow is represented as a tab within the Node-Red editor and all its nodes are stopped before the new flow
configuration is started. A PUT request is required at the following URL:
http://“nodeRedIP”:“nodeRedPort”/flow/“RecipeID”. In the body of the request, the updated flow is inserted in
JSON format. The expected response is the ID of the updated flow. All the above are depicted in Figure 20 ,
where an update-flow request is shown.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D4.13 Implementation of BackEnd API (Final Cycle)
Dissemination level: [Confidential]

36

FIGURE 20 UPDATEFLOW REQUEST TO NODE-RED

Let’s assume that the flow depicted in FIGURE 21 is sent to Pattern Orchestrator in order the Property
Encryption to be verified against the sequence of the two nodes PatternOrchestratorGUI and InfluxDatabase.
Since no encryption takes place between these two nodes, the verification Drools rules that will be t riggered
in the corresponding Pattern Engine will respond that the Encryption Property is not satisfied. In that case,
the Pattern Engine will send a request to the modifyRecipe API of the Pattern Orchestrator with the SPDI/QoS
Property that is not satisfied. In that way, all the needed information such as the Recipe ID and the subject of
the Property become available.

FIGURE 21 ORIGINAL FLOW WITH UNENCRYPTED COMMUNICATION

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D4.13 Implementation of BackEnd API (Final Cycle)
Dissemination level: [Confidential]

37

As soon as, the Pattern Orchestrator receives the said request, sends its own request to Node -Red asking
for the flow in JSON format. After that, an extra node is added in the flow, changing its JSON representation.
The new, changed JSON file is sent to Node-Red using the update-flow API. In order to satisfy the Encryption
Property , an EncryptionNode is added which is able to encrypt the transferred message using one of the
most well-known encryption algorithms and a provided secret key.

FIGURE 22 UPDATED FLOW WITH ENCRYPTED COMMUNICATION

The code snippet below depicts what is added by Pattern Orchestrator to the JSON representation of the flow.
These lines describe the EncryptionNode. As we can see, its id, name and type are defined. The z attribute
represents the flow to which this new node is added. Moreover, we see that the encryption algorithm and the
secret key are defined. Finally, the wires attribute includes the ids of the nodes that use the output of the node
in question as their input. In our case, it includes the id of the InfluxDatabase node.

{
 "id": "6757fce7.108a94",
 "type": "encrypt",
 "z": "99783291.272d2",
 "name": "EncryptionNode",
 "algorithm": "AES",
 "key": "semiotics",
 "x": 720,
 "y": 260,
 "wires": [
 [
 "eae7b2ac.b98fc"
]
]

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D4.13 Implementation of BackEnd API (Final Cycle)
Dissemination level: [Confidential]

38

 }

 COMPONENT API INTERACTIONS DESCRIPTION
The developed APIs within Pattern Orchestrator can be seen in Table 9 below. We present each of them using
Swagger API documentation. We show what are the parameters of a request to these APIs, and how the
response body should look like.

TABLE 9: LIST OF API DEVELOPED WITHIN PATTERN ORCHESTRATOR
API Status API access type Additional comments

gui Deployed internal • Used by the GUI hub of SEMIoTICS
insertRecipe Deployed internal • Used by the Recipe Cooker
removeRecipe Deployed internal • Used by the Recipe Cooker
modifyRecipe Deployed internal • Used by the Pattern Engines

FIGURE 23 INSERTRECIPE API USING SWAGGER

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D4.13 Implementation of BackEnd API (Final Cycle)
Dissemination level: [Confidential]

39

FIGURE 24 GUI API USING SWAGGER

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D4.13 Implementation of BackEnd API (Final Cycle)
Dissemination level: [Confidential]

40

FIGURE 25 REMOVERECIPE API USING SWAGGE

FIGURE 26 MODIFYRECIPE API USING SWAGGER

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D4.13 Implementation of BackEnd API (Final Cycle)
Dissemination level: [Confidential]

41

 COMPONENT DEVELOPMENT SUMMARY AFTER ALL CYCLES
During cycle 1 the system model was defined using the Eclipse Modeling framework (EMF). A UML diagram
was created using the EMF graphical editor and based on that, an EBNF grammar was created. The expected
input of the Pattern Orchestrator is a flow expressed with the system model. Moreover, using the Eclipse
ANTLR4 plugin, the said grammar produced a parser and a listener allowing for syntactic verification of flows
expressed with the system model. A more detailed description can be found in D4.6.

During cycle 2, Rest web services were built for Pattern Orchestrator using the Spring Framework. In that
way, other SEMIoTICS components, such as Recipe Cooker and SEMIoTICS GUI, are able to make REST
requests to the Pattern Orchestrator API using REST clients. Recipe Cooker uses the InsertRecipe API to
communicate an instantiated Recipe to the Pattern Orchestrator, while GUI uses the patternStatus API to get
information of the Recipe patterns in order to visualize their status. The description of those APIs can be
found in D4.7. A REST client was also created in order the Pattern Orchestrator to be able to send requests
to the REST APIs of the three Pattern Engines in the backend, network and field layers.

During cycle 3, additional code to the Pattern Orchestrator, allowed the later to be able to classify the different
Recipe components and to decide, based on their classification, to which Pattern Engine to communicate
them. The description on how this is done can be found on section 4.3.1 above. Moreover, one additional
REST API was created for the communication of the information needed for an adaptation action to take
place. Pattern Engines send requests to this new API. Respectively, new REST client was created for the
communication between the Pattern Orchestrator and the Recipe Cooker. This communication is depicted in
details in section 4.3.1.

 SEMIOTICS REQUIREMENTS IMPLEMENTATION MAPPED TO PATTERN ORCHESTRATOR
SEMIoTICS Requirement Pattern language

considerations Reference Req. ID Description

R.BC.18
The backend layer must feature SPDI
pattern reasoning embedded intelligence
capabilities

This is a core set of
requirements for the
SPDI capabilities that
must be covered within
the pattern-driven
approach developed
within T4.1. Individual
Pattern reasoning
components should be
developed and deployed
at all layers, while the
backend should feature
global reasoning
capabilities. All reasoning
engines should aggregate
(through interfacing with
monitoring) relevant
information needed for
said reasoning.

The system model
and associated
pattern language
developed are
tailored to the
multi-layer
approach of
SEMIoTICS, also
anticipating intra-
and cross- layer
reasoning.
Furthermore,
Pattern reasoning
components
(referred to as
Pattern Engines)
are embedded at
all layers; see
subsection 3.7.2.2
of D4.8.
The real-time
reasoning will be
achieved in
conjunction with

R.BC.19 The backend layer should feature pattern-
driven cross-layer orchestration capabilities

R.BC.20

The backend layer must aggregate intra-
layer as well as inter-layer SPDI status
information to enable local and global
intelligence reasoning and adaptation

R.NL.12
The network layer must feature SPDI
pattern reasoning local embedded
intelligence capabilities

R.NL.13
The network layer must aggregate intra-
layer monitored information to enable local
intelligence reasoning and adaptation

R.FD.14
The field layer must feature SPDI pattern
reasoning local embedded intelligence
capabilities

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D4.13 Implementation of BackEnd API (Final Cycle)
Dissemination level: [Confidential]

42

R.FD.15
The field layer must aggregate intra-layer
monitored information to enable local
intelligence reasoning and adaptation

the monitoring
framework
(developed in the
context of T4.2,
and documented
in D4.2), which
can be used for
providing Pattern
Rules with the
appropriate input
for reasoning.

R.GP.1

End-to-end connectivity between the
heterogeneous IoT devices (at the field
level) and the heterogeneous IoT Platforms
(at the backend cloud level)

While an indirect set of
requirements, the various
cross platform and cross
layer interactions
(including E2E between
field and backend) with
heterogeneous
components will need to
be supported and their
SPDI properties
monitored accordingly.

As can be seen in
subsections 3.2
(Language Model)
and 3.3
(Language
Constructs) of
D4.8, instances of
Java class Link
allow Pattern
Engines to
monitor and verify
connectivity
among IoT service
orchestration
components. This
also encompasses
the pattern-driven
interoperability
mechanisms
developed in the
context T3.4 (and
which are further
described in
D3.4), which
leverage the
language and
pattern definitions.
Through the
above and the
integration of
pattern-based
capabilities at the
network level
(SDN pattern
engine),
connectivity and
QoS parameters
can also be
monitored.

R.UC1.1

Automatic establishment of networking
setup MUST be performed to establish end-
to-end connectivity between different
stakeholders

R.UC2.3

The SEMIoTICS platform SHOULD guarantee
proper connectivity between the various
components of the SARA distributed
application. The SARA solution is a distributed
application not only because it uses different
cloud services (e.g. AREAS Cloud services,
AI services) from different remote
computational nodes, but also because the
SARA application logic itself is distributed
across various edge nodes (SARA Hubs).

R.GP.3
High adaptation capability to accommodate
different QoS connectivity needs (e.g. low
latency, reliable communication)

Other than the aspects of
availability and
dependability (and

As can be seen in
subsections 3.3
(Language Model)

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D4.13 Implementation of BackEnd API (Final Cycle)
Dissemination level: [Confidential]

43

R.GP.4
Detection of events requiring a QoS change
and triggering network reconfiguration
needed by SPDI pattern

associated concepts; e.g.
fault tolerance) that are
already integral in the
SPDI properties, other
QoS-related parameters
(e.g. latency) can also be
accommodated by the
pattern language
adopted. Moreover, the
pattern language must be
able to leverage
appropriate monitors and
interface with the
necessary mechanisms to
act as an enabler for
configuring the network
and triggering network
updates /
reconfigurations, as
needed (e.g. for fault
tolerance or QoS).

and 3.4
(Language
Constructs) of
D4.8, Java class
Property owns an
attribute Category,
allowing Pattern
Engines to
monitor QoS
properties of the
components of an
IoT service
orchestration.
Moreover, the
properties
associated with
the Link class
directly affect the
requirements
relayed to the
network layer
(with the
associated
properties
reasoned by the
Pattern Engine
embedded at the
SDN controller;
see subsection
3.7.2.2 of D4.8).

R.GP.7
SDN controller giving feedback for a future
generation of SPDI patterns to avoid using
the same pattern in case of failure

R.UC1.5

Fail-over and highly available network
management SHALL be performed in the
face of either controller or data-plane
failures.

R.UC1.3

There MUST be enabled the definition of
network QoS on application-level and
automated translation into SDN controller
configurations.

R.UC1.4

Network resource isolation MUST be
performed for guaranteed Service properties
– i.e. reliability, delay and bandwidth
constraints.

R.UC2.15

The SEMIoTICS platform SHOULD provide
low latency connectivity between the SARA
hubs and cloud services (i.e. AREAS cloud
services and AI services) to allow offloading of
near real-time computation intensive tasks to
the cloud.
Therefore, SARA hubs need to send with
minimal delay:
• raw range data (e.g. from Lidar sensors)

to identify proximal objects/objects,
• real-time audio stream for speech

analysis,
and real-time raw video stream (object/people
recognition, gesture recognition, posture
analysis).

R.GSP.1 The Intrusion Detection System (IDS) MUST
capture and process suspicious traffic.

Concerns regarding any
sensitive data that is
generated, processed,
stored and exchanged at
all layers must be
considered, enforcing and
monitoring the
corresponding security
mechanisms, especially
when different trust
domains are involved.
Proper authentication and
authorisation services are
a necessity when trying to
safeguard the security
and privacy of data and
services. These aspects

Security-related
properties (such
as Confidentiality)
are at the core of
the properties
covered in the
SEMIoTICS
system model
(subsection 3.3 of
D4.8) and
associated
language
(subsection 3.4 of
D4.8). Moreover,
a first version of
security-related
pattern rules can
be seen in

R.NL.11

Secure communication with the various
Backend Cloud components (e.g., use of
dedicated management network,
appropriate Firewall rules), as well as the
communication between VIM, SDN
Controller, and MANO, with data paths
acting as computing nodes for VNF spinoff.

R.S.7
The negotiation interface of the SDN
Controller SHALL be secure against
network-based attacks

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D4.13 Implementation of BackEnd API (Final Cycle)
Dissemination level: [Confidential]

44

R.S.1
The confidentiality of all network
communication MUST be protected using
state-of-the-art mechanisms.

must be defined in the
pattern language,
monitored and enforced,
considering the different
types of devices (e.g.
sensors, network
controllers, backend
servers), actors (e.g.
humans,
machines/applications)
and interaction types
(e.g. maintenance or
medical staff, simple
users). These, along with
cryptographic
mechanisms, will need to
be used to establish trust
within and across
domains.
Moreover, privacy
considerations will have
to be included (e.g.
protection of private data
at rest and in transit, data
anonymization and
minimisation, data
retention; see section
2.2.1 above).
In addition to the above,
patterns can also be
leveraged to monitor and
enforce the presence of
security mechanisms in
different IoT
orchestrations.

subsection 4.1 of
D4.8, while a first
set of Privacy
Patterns can be
seen in
subsection 4.1.5
of D4.8.
Moreover, using
the pattern
language,
different
verification types
can be declared
for each of the
properties (see
subsection 3.3 of
D4.8); this can be
exploited to define
interfaces with the
various security
mechanisms
which will allow
the verification of
the different SPDI
properties
associated with
them (e.g.,
monitoring
encryption
mechanisms that
provide the
property of
Confidentiality).
This will be
achieved in
conjunction with
the monitoring
framework
(developed in the
context of T4.2,
and documented
in D4.2), which
can be used for
providing Pattern
Rules with the
appropriate input
for reasoning on
relevant security
and privacy -
related aspects,
such as secure
deletion of
unnecessary data,
limitation of

R.S.6

Sensors SHALL be able to encrypt the data
they generate, i.e. their CPU and memory
SHALL be sufficient to perform these
cryptographic operations.

R.S.2

Authentication and authorisation of the
stakeholders MUST be enforced by the
Network controller, e.g. through access and
role-based lists for different levels of
function granularities (overlay, customized
access to service, QoS manipulation, etc.)

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D4.13 Implementation of BackEnd API (Final Cycle)
Dissemination level: [Confidential]

45

sampling via a
variant of the
mechanisms used
to ensure QoS
parameters, etc.

R.S.3
Sensors SHALL be identifiable (e.g. by a
TPM module/smartcard) and authenticated
by the gateway.

These Security and
Privacy requirements are
indirectly related to the
pattern approach
presented herein.
Nevertheless, the
SEMIoTICS patterns
need to be able to
accommodate all these
requirements, monitoring
the status of the
corresponding
components
implementing these
security and privacy
requirements, and
triggering adaptations if
needed.

All key security
and privacy
properties are
covered within the
SEMIoTICS
patterns (see
Section 4 of
D4.8).
Furthermore, the
language
expressiveness
allows the
definition of the
appropriate
conditions (facts)
to be verified in
order to provide
real-time
verification of the
properties
sketched by these
requirements (see
subsections 3.4
and 3.9 of D4.8).

R.S.4
All components from gateway, via SDN
Controller, to cloud platforms and their
users MUST authenticate mutually.

R.S.5

Before sensitive data is being transmitted,
the respective components SHALL be
authenticated as defined by requirements
R.S.3 and R.S.4

R.S.17

There MUST be an interface between the
network controller and the network
administrators for the designation of the
applications’ permissions.

R.S.18 All network functions SHALL be mapped to
application permissions

R.GSP.4 Platforms, e.g. cloud platform and sensor,
SHALL be trusted.

R.GSP.9 The SARA system SHALL provide robust
mechanisms to protect Patient-related data.

R.GSP.10

The SARA system MUST fully comply with
all relevant Italian laws governing the
privacy, security and storage of sensitive
Patient health-related data.

R.P.1 The collection of raw data MUST be
minimized.

Coverage of privacy
requirements within the
SEMIoTICS patterns is
needed.

As documented in
subsection 4.2 of
D4.8, the
SEMIoTICS
patterns (and by
extension the
pattern-driven
reasoning
capabilities of
SEMIoTICS at all
layers) include all
key privacy
properties.

R.P.3 Storage of data MUST be minimized.

R.P.4
A short data retention period MUST be
enforced and maintaining data for longer
than necessary avoided.

R.P.6

Data MUST be anonymized wherever
possible by removing the personally
identifiable information in order to decrease
the risk of unintended disclosure.

R.P.8 Data MUST be stored in encrypted form.

R.P.9

Repeated querying for specific data by
applications, services, or users that are not
intent to act in this manner SHALL be
blocked.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D4.13 Implementation of BackEnd API (Final Cycle)
Dissemination level: [Confidential]

46

R.UC1.6
Decisions made by unreliable, i.e. faulty or
malicious SDN controllers, SHALL be
identified and excluded.

Events received from
monitoring critical
aspects of the systems’
and subsystems’
operation, as highlighted
by the pattern language,
will need to be
aggregated and
evaluated by the pattern
engine. These will need
to encompass SPDI and
other parameters (e.g.
QoS related), as well as
anomalies, indicators of
malicious actions,
malfunction, resource
depletion, failures etc.,
across the different layers
and (physical & logical)
components of the
SEMIoTICS deployment.
Pattern-driven
interoperability
mechanisms will ensure
that these connections
can be established,
further explored in D3.4.
In cases of privacy-
sensitive monitoring data
(e.g. location of the
device), the necessary
privacy provisions will
need to be enforced.

As can be seen in
section 3.2
(Language Model)
and 3.3
(Language
Constructs), the
pattern language
that has been
created can
declare Properties
whose verification
type is Monitoring.
That allows for
capturing the
monitoring critical
aspects and
enabling the
reasoning on
parameters
related to
properties such as
reliability.
As above, the
necessary inputs
will be aggregated
from the
monitoring
framework of
SEMIoTICS
(T4.2/D4.2).

R.GSP.7

The cloud platform SHALL be able to
monitor the execution of an app, in
particular its interactions with other apps,
the network interface, and APIs.

R.UC3.7
MCU IoT Sensing unit shall be able to send
change detection and signal local changes /
anomalies to IoT Sensing gateway.

This set of requirements
indirectly affects the
development of the

Availability and
Dependability
patterns

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D4.13 Implementation of BackEnd API (Final Cycle)
Dissemination level: [Confidential]

47

R.UC3.16

Each registered sensing unit should send to
the sensing gateway a keep alive signal on
a specified period (e.g. few seconds) to
notify the gateway it is correctly working.
The sensing gateway should detect by this
mean any non-working sensing unit and
reconfigure the system accordingly.

SEMIoTICS pattern
solution. The Availability
and Dependability
aspects integrated into
the pattern approach
need to support these UC
requirements.

developed within
SEMIoTICS are
able to
accommodate the
monitoring defined
in these
requirements (see
subsections 4.1.3
and 4.3 of D4.8).
These features
will be further
explored and
demonstrated in
the context of the
UC3 scenarios, as
detailed in
subsection 7.3.

R.UC3.18

Sensing units may be equipped with
dedicated FW to detect relevant sensors
malfunctioning and report that to the
gateway

R.P.12

During all communication and processing
phases logging MUST be performed to
enable the examination that the system is
operating as promised

Logging is an integral
part of security, enabling
auditing functions and
providing accountability.
Moreover, regulatory
drivers also necessitate it
(e.g. transparency
through logging is
essential under GDPR).
This must be considered
in the definition of the
pattern language, the
associated engine and its
monitors, enabling the
provision of reliable and
trustworthy logging
mechanisms both for the
various actors as well as
the events and reasoning
of the pattern engine
itself.

All pattern engine
components (see
subsection 3.7.2.2
of D4.8) feature
integrated logging
mechanisms that
allow for auditing
on all pattern-
driven reasoning
and adaptation
actions triggered.
In other parts of
the SEMIoTICS
framework and
protected
infrastructure, the
deployment and
monitoring of the
proper operation
of the logging
functions can be
introduced as with
any other
mechanism (see
subgroups of
requirements
above).

4.4 Pattern Engine (backend)
As described in D4.6 and D4.7, the Backend Pattern Engine is a module featuring an underlying semantic
reasoner processing Drools rules and facts. It also supports the capability to insert, modify, execute and retract
patterns at design time (via Pattern Orchestrator) or at runtime in the SEMIoTICS backend. Using Drools rule
engine, along with monitoring capabilities present at the backend layer, the Pattern Engine is able to reason
on the SPDI and QoS properties of aspects pertaining to the operation of the SEMIoTICS backend.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D4.13 Implementation of BackEnd API (Final Cycle)
Dissemination level: [Confidential]

48

During runtime, the Backend Pattern Engine Module is able to receive fact updates from the Pattern engines
of lower layers (Network & Field), in order to have an up-to-date view of the SPDI state of all the layers and
the corresponding components.

Cycle 3 development includes:

• Refinement of classes implemented in Cycle 2 for the instantiation of Drools facts.
• Add encryption to the endpoints.
• Update of Backend Pattern Engine status based on information from the SDN/NFV layer and Field layer
• Adaptation to maintain desired properties.

Please refer to Table 10 for more details.

TABLE 10 PATTERN ENGINE BACKLOG

Feature/task scope Short description Cycle
assignment

Status

API Definition Pattern Engines in all layers need a
common API for the interactions between
them, therefore the first step is to define
the API.

Cycle 1 Delivered

Drools pattern rules
instantiation

Patterns in the form of Drools Rules must
be created and instantiated inside the
Drools Engine of the Backend Pattern
Engine.

Cycle 1 Delivered

Drools pattern rules storage
in a standalone repository

A standalone repository is needed for the
Drools pattern rules in order to maintain
them in the case of restarting the engine.

Cycle 1 Delivered

Communication of network
and field updates to Backend
Pattern Engine

The Backend Pattern Engine must have a
global view of the SPDI properties,
therefore, Pattern Engines in the field and
network layer must propagate their
updates to Backend Pattern Engine

Cycle 2 Delivered

Successful testing of flow
from Recipe Cooker

The Recipe Cooker is the point of start for
an IoT service orchestration to be
deployed with SPDI properties assigned to
it. The IoT service orchestration must be
communicated to the relevant Pattern
Engines through the Pattern Orchestrator
(please see the comment below).

Cycle 2 & 3 Delivered

Refinement of classes from
Cycle 2

The classes used for the instantiation of
Drools facts, needed to be adapted to fit
the needs of Use Cases.

Cycle 3 Delivered

Add encryption to the REST
endpoints

In order to increase the level of security all
the REST endpoints are encrypted.

Cycle 3 Delivered

Update of Backend Pattern
Engine status based on
information from the
SDN/NFV layer and Field
layer

Update of Backend Pattern Engine on
status based on instantiated paths with
different properties, and adaptation of
network to maintain desired properties
and used SFC chains.

Cycle 3 Delivered

Adaptation to maintain
desired properties

When the desired property is no longer
satisfied, the Backend Pattern Engine
must take adaptation actions accordingly.

Cycle 3 Delivered

 DEVELOPMENT STATUS

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D4.13 Implementation of BackEnd API (Final Cycle)
Dissemination level: [Confidential]

49

Regarding the Backend Pattern Engine the environment that was adapted during Cycle 2 after replacing gRPC
and Protocol buffers with the corresponding REST approach, was capable to fulfill all the needs with oth er
SEMIoTICS components and therefore there was no need to make additional changes on that front.

In addition, the REST web services that were built on Cycle 2 are now secured with encryption with the use
of SSL. The necessary certificates are also included in the other Pattern Engines in order to communicate
with the Pattern Engine at the Backend. The Spring Framework was also configured to redirect all http
traffic to https as depicted in Figure 27.

FIGURE 27 REDIRECTION OF HTTP TRAFFIC TO HTTPS

In order for the Pattern Engine at the Backend to have an up to date information about all the components
involved in all layers, two steps were taken. The first step was in cooperation with the Pattern Orchestrat or
and the second was in cooperation with the Pattern Engines at the other layers. Pattern Orchestrator decides
which facts should arrive to which Pattern Engine. The Pattern Engine at the Backend, in addition to the facts
that are specific for the backend layer, will also receive all the facts from the Pattern Orchestrator that are
sent to the other layers. This process is accomplished with the use of the addFact API.

Due to the fact that the Pattern Engine at the Backend is not in position to verify on it s own, the SPDI/QoS
properties that exist in the other layers, it needs this information from the other Pattern Engines. The Pattern
Engines at the other layers, after triggering their local rules and having reasoned with all their available facts,
conclude to an updated status whether the said properties are satisfied or not. Afterwards, they transmit these
properties to the Pattern Engine at the Backend using the factUpdate API. Some refinement was necessary
to the classes introduced during cycle 2 but the core of them remained the same.

When a desired property is no longer satisfied, the Backend Pattern Engine is able to take adaptation actions
accordingly. These actions are dictated accordingly from the Pattern Rules. We consider the scenario where a
database component exists in the recipe, along with a requirement for encrypted storage. A Pattern Rule would
identify that the database doesn’t support encryption and initiate a chain of actions that will result in the modification
of the initial recipe. The new recipe will have an encryption node ahead of the database component thus satisfying
the need for encrypted storage.

The following rule is the implementation of the above scenario:

rule "Encryption Adaptation"
when
 SoftwareComponent($pid:=placeholderid);
 $pr:Property($pid:=subject, category=="storageencryption", satisfied==false);
then
 System.out.println("Contacting Pattern Orchestrator ...");
 Application.contactPO.flowUpdate($pr);
end

This rule is triggered whenever a software component such as a database exists along with a requirement for
encrypted storage. The “then” part of the rule will contact Pattern Orchestrator, providing him will all the
necessary information for updating the recipe.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D4.13 Implementation of BackEnd API (Final Cycle)
Dissemination level: [Confidential]

50

The following snippet of code is the method that will contact Pattern Orchestrator in the above scenario.

public String flowUpdate(Property pr){
 String jsonString ="";
 Boolean connectivity=false;

 //Convert Java Plain Object into JSON
 Gson gsonBuilder = new GsonBuilder().create();
 String jsonFact = gsonBuilder.toJson(pr);

 try {
 URL url = new URL (baseURL + "/modifyRecipe");
 HttpURLConnection con = (HttpURLConnection)url.openConnection();
 con.setRequestMethod("POST");
 con.setRequestProperty("Content-Type", "application/json");
 con.setRequestProperty("Accept", "application/json");
 con.setDoOutput(true);
 con.setConnectTimeout(5000); //set timeout to 5 seconds
 String body = jsonFact;
 try(OutputStream os = con.getOutputStream()) {
 byte[] input = body.getBytes("utf-8");
 os.write(input, 0, input.length);
 }
 try(BufferedReader br = new BufferedReader(
 new InputStreamReader(con.getInputStream(), "utf-8"))) {
 StringBuilder response = new StringBuilder();
 String responseLine = null;
 while ((responseLine = br.readLine()) != null) {
 response.append(responseLine.trim());
 }
 jsonString = response.toString();
 connectivity=true;

 }
 } catch (MalformedURLException e) {
 e.printStackTrace();
 } catch(NoRouteToHostException e){
 System.out.println("no connection to Pattern Orchestrator at "+poIP+":"+poPort);
 }catch (ConnectException e){
 System.out.println(e.getMessage() + ". Make sure that Pattern Orchestrator is runni
ng at "+poIP+":"+poPort);
 }
 catch (SocketTimeoutException e){
 System.out.println(e.getMessage() + ". Make sure that Pattern Orchestrator is runni
ng at "+poIP+":"+poPort);

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D4.13 Implementation of BackEnd API (Final Cycle)
Dissemination level: [Confidential]

51

 }
 String jsonFromString="";
 if(connectivity) {
 jsonFromString = jsonString;
 }
 return jsonFromString;
}

 COMPONENT API INTERACTIONS DESCRIPTION

The following table includes the main set of APIs that were developed. The APIs are either internal to the
same layer or external i.e. cross-layer.

API Status API access
type Additional comments

insertRule Deployed internal Access only for Pattern Orchestrator
removeRule Deployed internal Access only for Pattern Orchestrator

getRule Deployed internal Access only for Pattern Orchestrator

addFact Deployed external Access for Pattern Orchestrator and cross-layer access from
other Pattern Engines

factUpdate Deployed external Access for Pattern Orchestrator and cross-layer access from
other Pattern Engines

factStatus Deployed external Access for Pattern Orchestrator and cross-layer access from
other Pattern Engines

factRemove Deployed external Access for Pattern Orchestrator and cross-layer access from
other Pattern Engines

In the following figures all the APIs are presented with a sample input along with the corresponding response
using SWAGGER.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D4.13 Implementation of BackEnd API (Final Cycle)
Dissemination level: [Confidential]

52

FIGURE 28 INSERTRULE API

FIGURE 29 GETRULE API

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D4.13 Implementation of BackEnd API (Final Cycle)
Dissemination level: [Confidential]

53

FIGURE 30 REMOVERULE API

FIGURE 31 ADDFACT API

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D4.13 Implementation of BackEnd API (Final Cycle)
Dissemination level: [Confidential]

54

FIGURE 32 FACTREMOVE API

FIGURE 33 FACTUPDATE API

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D4.13 Implementation of BackEnd API (Final Cycle)
Dissemination level: [Confidential]

55

FIGURE 34 FACTSTATUS

 COMPONENT DEVELOPMENT SUMMARY AFTER ALL CYCLES

During Cycle 1 the environment was based on Apache Maven 3.6.1, JBoss Drools2 7.15, and gRPC3 with Protocol
Buffers4 Version 3. Based on that, we had successfully created a gRPC server loading the Pattern Engine with a
basic set of Drools rules. Using a test client, we were able to successfully make gRPC calls to the server to request
verification of specific pattern rule. API definition, pattern rules instantiation and a standalone repository for pattern
rules were implemented.

During Cycle 2 gRPC and Protocol Buffers were replaced with a corresponding REST approach for
compatibility purposes with other SEMIoTICS components. The Spring Framework was adopted to build
REST web services. Using REST clients, other SEMIoTICS components are able to successfully make REST
requests to the Backend Pattern Engine API. Communication of network and field updates to Backend Pattern
Engine were implemented as well as testing of flow from Recipe Cooker.

During Cycle 3 the corresponding REST approach, was capable to fulfill all the needs with other SEMIoTICS
components and therefore there was no need to make additional changes on that front. Classes that were
introduced during Cycle 2 were refined, encryption was added to the REST endpoints and adaptation to
maintain desired properties were implemented with pattern rules.

2 https://docs.jboss.org/drools/release/7.15.0.Final/drools-docs/html_single/index.html
3 https://grpc.io/
4 https://developers.google.com/protocol-buffers/docs/proto3

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D4.13 Implementation of BackEnd API (Final Cycle)
Dissemination level: [Confidential]

56

 SEMIOTICS REQUIREMENTS IMPLEMENTATION MAPPED TO PATTERN ENGINE
(BACKEND)

SEMIoTICS Requirement Pattern language

considerations
Reference

Req. ID Description

R.BC.18

The backend layer must
feature SPDI pattern
reasoning embedded
intelligence capabilities

The system model and
associated pattern language
developed are tailored to the
multi-layer approach of
SEMIoTICS, also
anticipating intra- and cross-
layer reasoning.
Furthermore, Pattern
reasoning components
(referred to as Pattern
Engines) are embedded at
all layers; see subsection
3.7.2.2 of D4.8.

The system model and
associated pattern
language developed are
tailored to the multi-layer
approach of SEMIoTICS,
also anticipating intra-
and cross- layer
reasoning.
Furthermore, Pattern
reasoning components
(referred to as Pattern
Engines) are embedded
at all layers; see
subsection 3.7.2.2 of
D4.8.
The real-time reasoning
will be achieved in
conjunction with the
monitoring framework
(developed in the context
of T4.2, and documented
in D4.2), which can be
used for providing Pattern
Rules with the
appropriate input for
reasoning.

R.BC.20

The backend layer must
aggregate intra-layer as well
as inter-layer SPDI status
information to enable local and
global intelligence reasoning
and adaptation

R.GP.1

End-to-end connectivity
between the heterogeneous
IoT devices (at the field level)
and the heterogeneous IoT
Platforms (at the backend
cloud level)

The real-time reasoning will
be achieved in conjunction
with the monitoring
framework (developed in the
context of T4.2, and
documented in D4.2), which
can be used for providing
Pattern Rules with the
appropriate input for
reasoning.

As can be seen in
subsections 3.2
(Language Model) and
3.3 (Language
Constructs) of D4.8,
instances of Java class
Link allow Pattern
Engines to monitor and
verify connectivity among
IoT service orchestration

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D4.13 Implementation of BackEnd API (Final Cycle)
Dissemination level: [Confidential]

57

R.UC2.3

The SEMIoTICS platform
SHOULD guarantee proper
connectivity between the various
components of the SARA
distributed application. The SARA
solution is a distributed
application not only because it
uses different cloud services (e.g.
AREAS Cloud services, AI
services) from different remote
computational nodes, but also
because the SARA application
logic itself is distributed across
various edge nodes (SARA
Hubs).

components. This also
encompasses the
pattern-driven
interoperability
mechanisms developed
in the context T3.4 (and
which are further
described in D3.4), which
leverage the language
and pattern definitions.
Through the above and
the integration of pattern-
based capabilities at the
network level (SDN
pattern engine),
connectivity and QoS
parameters can also be
monitored.

R.GP.3

High adaptation capability to
accommodate different QoS
connectivity needs (e.g. low
latency, reliable
communication)

As can be seen in
subsections 3.2 (Language
Model) and 3.3 (Language
Constructs) of D4.8,
instances of Java class Link
allow Pattern Engines to
monitor and verify
connectivity among IoT
service orchestration
components. This also
encompasses the pattern-
driven interoperability
mechanisms developed in
the context T3.4 (and which
are further described in
D3.4), which leverage the
language and pattern
definitions.
Through the above and the
integration of pattern-based
capabilities at the network
level (SDN pattern engine),
connectivity and QoS
parameters can also be
monitored.

As can be seen in
subsections 3.3
(Language Model) and
4.5 (Language
Constructs) of D4.8, Java
class Property owns an
attribute Category,
allowing Pattern Engines
to monitor QoS properties
of the components of an
IoT service orchestration.
Moreover, the properties
associated with the Link
class directly affect the
requirements relayed to
the network layer (with
the associated properties
reasoned by the Pattern
Engine embedded at the
SDN controller; see
subsection 3.7.2.2 of
D4.8).

R.GP.4

Detection of events requiring a
QoS change and triggering
network reconfiguration
needed by SPDI pattern

R.UC2.15

The SEMIoTICS platform
SHOULD provide low latency
connectivity between the SARA
hubs and cloud services (i.e.
AREAS cloud services and AI
services) to allow offloading of
near real-time computation
intensive tasks to the cloud.
Therefore, SARA hubs need to
send with minimal delay:
• raw range data (e.g. from

Lidar sensors) to identify
proximal objects/objects,

• real-time audio stream for
speech analysis,

and real-time raw video stream
(object/people recognition,
gesture recognition, posture
analysis).

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D4.13 Implementation of BackEnd API (Final Cycle)
Dissemination level: [Confidential]

58

R.S.1

The confidentiality of all
network communication MUST
be protected using state-of-
the-art mechanisms.

Concerns regarding any
sensitive data that is
generated, processed,
stored and exchanged at all
layers must be considered,
enforcing and monitoring the
corresponding security
mechanisms, especially
when different trust domains
are involved.
Proper authentication and
authorisation services are a
necessity when trying to
safeguard the security and
privacy of data and services.
These aspects must be
defined in the pattern
language, monitored and
enforced, considering the
different types of devices
(e.g. sensors, network
controllers, backend
servers), actors (e.g.
humans,
machines/applications) and
interaction types (e.g.
maintenance or medical
staff, simple users). These,
along with cryptographic
mechanisms, will need to be
used to establish trust within
and across domains.
Moreover, privacy
considerations will have to
be included (e.g. protection
of private data at rest and in
transit, data anonymization
and minimisation, data
retention; see section 2.2.1
above).
In addition to the above,
patterns can also be
leveraged to monitor and
enforce the presence of
security mechanisms in
different IoT orchestrations.

Security-related
properties (such as
Confidentiality) are at the
core of the properties
covered in the
SEMIoTICS system
model (subsection 3.3 of
D4.8) and associated
language (subsection 3.4
of D4.8). Moreover, a first
version of security-related
pattern rules can be seen
in subsection 4.1 of D4.8,
while a first set of Privacy
Patterns can be seen in
subsection 4.1.5 of D4.8.
Moreover, using the
pattern language,
different verification types
can be declared for each
of the properties (see
subsection 3.3 of D4.8);
this can be exploited to
define interfaces with the
various security
mechanisms which will
allow the verification of
the different SPDI
properties associated
with them (e.g.,
monitoring encryption
mechanisms that provide
the property of
Confidentiality).
This will be achieved in
conjunction with the
monitoring framework
(developed in the context
of T4.2, and documented
in D4.2), which can be
used for providing Pattern
Rules with the
appropriate input for
reasoning on relevant
security and privacy -
related aspects, such as
secure deletion of
unnecessary data,
limitation of sampling via
a variant of the
mechanisms used to
ensure QoS parameters,
etc.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D4.13 Implementation of BackEnd API (Final Cycle)
Dissemination level: [Confidential]

59

R.S.5

Before sensitive data is being
transmitted, the respective
components SHALL be
authenticated as defined by
requirements R.S.3 and R.S.4

As can be seen in
subsections 3.3 (Language
Model) and 3.4 (Language
Constructs) of D4.8, Java
class Property owns an
attribute Category, allowing
Pattern Engines to monitor
QoS properties of the
components of an IoT
service orchestration.
Moreover, the properties
associated with the Link
class directly affect the
requirements relayed to the
network layer (with the
associated properties
reasoned by the Pattern
Engine embedded at the
SDN controller; see
subsection 3.7.2.2 of D4.8).

All key security and
privacy properties are
covered within the
SEMIoTICS patterns (see
Section 4 of D4.8).
Furthermore, the
language expressiveness
allows the definition of
the appropriate
conditions (facts) to be
verified in order to
provide real-time
verification of the
properties sketched by
these requirements (see
subsections 3.4 and 3.9
of D4.8).

R.P.1 The collection of raw data
MUST be minimized.

Security-related properties
(such as Confidentiality) are
at the core of the properties
covered in the SEMIoTICS
system model (subsection
3.3 of D4.8) and associated
language (subsection 3.4 of
D4.8). Moreover, a first
version of security-related
pattern rules can be seen in
subsection 4.1 of D4.8,
while a first set of Privacy
Patterns can be seen in
subsection 4.1.5 of D4.8.
Moreover, using the pattern
language, different
verification types can be
declared for each of the
properties (see subsection
3.3 of D4.8); this can be
exploited to define interfaces
with the various security
mechanisms which will allow
the verification of the
different SPDI properties
associated with them (e.g.,
monitoring encryption
mechanisms that provide the
property of Confidentiality).

As documented in
subsection 4.2 of D4.8,
the SEMIoTICS patterns
(and by extension the
pattern-driven reasoning
capabilities of
SEMIoTICS at all layers)
include all key privacy
properties.

R.P.3 Storage of data MUST be
minimized.

R.P.6

Data MUST be anonymized
wherever possible by removing
the personally identifiable
information in order to
decrease the risk of
unintended disclosure.

R.P.8 Data MUST be stored in
encrypted form.

R.P.9

Repeated querying for specific
data by applications, services,
or users that are not intent to
act in this manner SHALL be
blocked.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D4.13 Implementation of BackEnd API (Final Cycle)
Dissemination level: [Confidential]

60

This is achieved in
conjunction with the
monitoring framework
(developed in the context of
T4.2, and documented in
D4.9), which can be used for
providing Pattern Rules with
the appropriate input for
reasoning on relevant
security and privacy -related
aspects, such as secure
deletion of unnecessary
data, limitation of sampling
via a variant of the
mechanisms used to ensure
QoS parameters, etc.

R.GSP.7

The cloud platform SHALL be
able to monitor the execution
of an app, in particular its
interactions with other apps,
the network interface, and
APIs.

All key security and privacy
properties are covered
within the SEMIoTICS
patterns (see Section 4 of
D4.8). Furthermore, the
language expressiveness
allows the definition of the
appropriate conditions
(facts) to be verified in order
to provide real-time
verification of the properties
sketched by these
requirements (see
subsections 3.4 and 3.9 of
D4.8).

As can be seen in section
3.2 (Language Model)
and 3.3 (Language
Constructs) of D4.8, the
pattern language that has
been created can declare
Properties whose
verification type is
Monitoring. That allows
for capturing the
monitoring critical
aspects and enabling the
reasoning on parameters
related to properties such
as reliability.
As above, the necessary
inputs will be aggregated
from the monitoring
framework of SEMIoTICS
(T4.2/D4.2).

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D4.13 Implementation of BackEnd API (Final Cycle)
Dissemination level: [Confidential]

61

Availability and
Dependability patterns
developed within
SEMIoTICS are able to
accommodate the
monitoring defined in
these requirements (see
subsections 4.1.3 and 4.3
of D4.8). These features
will be further explored
and demonstrated in the
context of the UC3
scenarios, as detailed in
subsection 7.3.

R.P.12

During all communication and
processing phases logging
MUST be performed to enable
the examination that the
system is operating as
promised

As documented in
subsection 4.2 of D4.8, the
SEMIoTICS patterns (and by
extension the pattern-driven
reasoning capabilities of
SEMIoTICS at all layers)
include all key privacy
properties.

All pattern engine
components (see
subsection 3.7.2.2 of
D4.8) feature integrated
logging mechanisms that
allow for auditing on all
pattern-driven reasoning
and adaptation actions
triggered.
In other parts of the
SEMIoTICS framework
and protected
infrastructure, the
deployment and
monitoring of the proper
operation of the logging
functions can be
introduced as with any
other mechanism (see
subgroups of
requirements above).

4.5 Backend Semantic Validator
The aim of the Backend Semantic Validator (BSV) component is to tackle the semantic interoperability issues
that arise in the SEMIoTICS framework, at the application orchestration layer. The Backend Semantic Validator
provides:

• validation mechanisms to ensure semantic interoperability,
• connection with Recipe Cooker to resolve the semantic conflicts using the Adaptor Nodes,
• connection with external IoT platforms to enable interoperability between these targeted external IoT

enabling platforms and SEMIoTICS and
• adaptability taking to account the interoperability of devices that are used in SEMIoTICS, interacting

with the Pattern Engine (Backend layer).

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D4.13 Implementation of BackEnd API (Final Cycle)
Dissemination level: [Confidential]

62

TABLE 11 BSV BACKLOG
Feature/task scope Short description Cycle

assignment
Status

First installation of a server
using gRPC and protocol
buffers

In order to receive a request from an IoT
application, a service is required from the
BSV side. For this reason, a server is
implemented with the appropriate
endpoints, using gRPC framework and
protocol buffers, for the aforementioned
communication.

Cycle 1 Delivered

Establish communication
between Recipe Cooker and
BSV

Recipe Cooker is the primary tool for
designing the flow that involves Things as
well as other components. In order to be
able to guarantee the semantic
interoperability between the Things, the
Recipe Cooker needs to be able to
communicate with BSV. The output of the
Recipe cooker is in JSON format that BSV
parses.

Cycle 2 Delivered

Re-implement BSV’s
endpoints using RESTFul
services instead of gRPC

Due to compatibility issues with Recipe
Cooker, the need to abandon gRPC
implementation and replace it with
RESTFul Services.

Cycle 2 Delivered

Resolve semantic conflicts
using the Adaptor Nodes

Upon receiving a recipe from Recipe
Cooker, the BSV checks the semantic
validity of the involved Things and
responds accordingly to Recipe Cooker.
When two Things are not semantically
interoperable, the BSV creates an
Adaptor Node, which resolves the
semantic conflicts between them.

Cycle 2 & 3 Delivered

Communication with the
Semantic API & Protocol
Binding component

When the request of an IoT application
results in the involvement of brownfield
systems, it is necessary to forward the
request to the Semantic API & Protocol
Binding component, which is responsible
to trigger the GW Semantic Mediator in
the filed layer. Therefore, communication
between BSV and Semantic API &
Protocol Binding needs to be
implemented.

Cycle 3 This feature was
not implemented,
because it was
out of the
requirements of
the final
implementation of
the SEMIoTICS
UCs scenarios
(see D4.11)

Interact with other European
platforms (e.g. FIWARE).

The request from an IoT application
includes Thing Description in JSON-LD
format, which may reference other
European schemas different from
iot.schema (e.g. schema.lab.fiware.org).
Therefore, an example of interaction with
at least one European platform should be
implemented.

Cycle 3 Delivered

Interact with Pattern related
modules

One of the features promised in Pattern
Engine regards interoperability properties.
The semantic interoperability, in
particular, implies the interaction between
BSV and Pattern Engine.

Cycle 3 Delivered

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D4.13 Implementation of BackEnd API (Final Cycle)
Dissemination level: [Confidential]

63

 DEVELOPMENT STATUS
The phase of the BSV implementation that involves the decision of the interoperability between the things and
harmonization of the semantic model capabilities of them with the registration of extra Adaptor Nodes in the
Recipe Cooker was implemented during the Cycle 2 (see D4.7- subsection 4.5.2). However, the procedure of
the Adaptor Node development, with specific functionality, are modified in Cycle 3. The reason for this further
implementation came from the fact that the initial implementation required the re -run of the Recipe Cooker
component in order to the new node modules be installed at runtime. Hence, the HTTP API methods from
node-RED are used and Function node for the corresponding Adaptor Node are introduced in the flow recipe
to resolve the interoperability issues.
Specifically, to enable the interoperability between the flow’s Things, a number of different step phases are
required, following the corresponding sequence diagram in Figure 36. In fact, the Recipe Cooker component
which is responsible for cooking (creating) recipes reflecting user requirements, sends the recipe in Pattern
Orchestrator component (using POST method request), which is in charge of the automated configuration,
coordination, and management of different patterns and their deployment to express requirements of the flows
to guarantee interoperability based on architectural patterns.
The second phase includes the insertion of the interoperability requirement as a POST from the Orchestrator
to the Pattern Engine to enforce the respective pattern rules (see Figure 35). The pattern is expressed in a
machine-processable Drool rule format of the said semantic interoperability for any inserted flow. The when
part identify the requested placeholders placed in sequence, required to satisfy the semantic interoperability
property. If the conditions are met, the rule in then can guarantee that the requested property is satisfied.

rule "Sequence Semantic Interoperability Verification"
when
 Placeholder($pA:=placeholderid)
 Property ($pA:=subject, category=="semantic", $prvaluein1:=input_value,
 $prvalueout1:=output_value, satisfied==true)
 Placeholder($pB:=placeholderid)
 Property ($pB:=subject, category=="semantic", $prvaluein2:=input_value,
 $prvalueout2:=out_value, satisfied==true)
 Sequence($sId:=placeholderid, $pA:=placeholdera, $pB:=placeholderb)
 $PR: Property ($sId:=subject, category=="semantic", $prvalueout1==$prvaluein2,
 satisfied==false)
then
 modify($PR){satisfied=true, input_value=$prvaluein1, output_value=$prvalueout2};
end

FIGURE 35 SEMANTIC INTEROPERABILITY VERIFICATION DROOL RULE

Therefore, this rule used by Pattern Engine to trigger the BSV, which resolves semantic interoperability issues,
between any link of Things in the flow recipe. Particularly, the BSV receives a request with the flow id from
and the Things’ id for each link. Based on this information, the component begins the procedure to tackle the
semantic interoperability issues between these two things from the said flow. For that reason, it sends SPARQL
query to Thing Directory to receive the Thing Description of the Things.
In the sequel, the final phase of the interoperability adaptation is the following. It involves the harmonization of
the semantic model capabilities with the registration of extra Adaptor Nodes in the Recipe Cooker if required.
Namely, there are three possible results. Firstly, the link source and destination are interoperable, so the BSV
updates the Pattern Engine with the TRUE response. Secondly, the link source and destination are not
interoperable and the BSV can add Adaptor Nodes in order to guarantee the interoperability. In this c ase, the
BSV not only sends the TRUE response to pattern engine, but it also updates the flow using the PUT method5
of Recipe Cooker API and create the corresponding Functions nodes. Lastly, when the link source and
destination are not interoperable and the validator does not have the required information to develop the
adaptor nodes, the validator sends FALSE response to Pattern Engine.

5 https://nodered.org/docs/api/admin/methods/

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D4.13 Implementation of BackEnd API (Final Cycle)
Dissemination level: [Confidential]

64

Furthermore, another role of the BSV is the connection of SEMIoTICS with other external platforms (e.g .
FIWARE). This integration is developed during the Cycle 3 and follows the above procedure with the difference
that BSV sends request to the Orion Context Broker FIWARE platform to receive the context data Description
of FIWARE Sensor that participates in the recipe flow. More details are mentioned in the D4.11 – subsection
6.2.2.

FIGURE 36 SEQUENCE DIAGRAM FOR SEMANTIC INTEROPERABILITY ADAPTATION MECHANISMS

FIGURE 37 SEMANTIC VALIDATION/ADAPTATION MECHANISMS

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D4.13 Implementation of BackEnd API (Final Cycle)
Dissemination level: [Confidential]

65

 COMPONENT API INTERACTIONS DESCRIPTION

The following table includes the main set of APIs that were developed. The APIs are either internal to the
same layer.

API Status API access type Additional comments
validateData Deployed internal • Access for any component (Backend Layer)
validateRecipeFlow Deployed internal • Access for Pattern Engine (Backend Layer)

In the following Figure 38 and Figure 39, the APIs are presented with a sample input along with the
corresponding response using SWAGGER.

FIGURE 38 VALIDATEDATA API

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D4.13 Implementation of BackEnd API (Final Cycle)
Dissemination level: [Confidential]

66

FIGURE 39 VALIDATE RECIPE FLOW API

 COMPONENT DEVELOPMENT SUMMARY AFTER ALL CYCLES
During Cycle 1 a server was implemented loading the BSV component, using gRPC 6 framework and protocol
buffers, for the verification of semantic interoperability between two Things (i.e. sensor, actuator), which are
described with two different TDs. Moreover, the installation and interaction (discovery and registration TDs)
with Thing Directory was accomplished (see D4.6).
During Cycle 2 gRPC and Protocol Buffers were replaced with a corresponding REST approach for
compatibility purposes with other SEMIoTICS components. The Spring Framework was adopted to build
REST web services to provide services for receiving data in a convenient format, creating new data, updating
data and deleting data between the interaction of SEMIoTICS architecture components. The fi rst approach
for resolving any possible semantic conflicts between the interacting different Things, us ing or creating the
corresponding Adaptor Nodes in Recipe Cooker was implemented (see D4.7).
Lastly, the Cycle 3 includes the modification of the initial Adaptor Nodes implementation for the semantic
conflicts of Things in the Recipe Cooker. Additionally, connection with external IoT platforms to enable
interoperability between these targeted external IoT enabling platforms and SEMIoTICS was implemented in
this cycle. Finally, the adaptation approach, taking to account the interoperability of devices that a re used in
SEMIoTICS and interacting with the Pattern Engine (Backend layer) is part of the cycle 3 (see D4.11).

 SEMIOTICS REQUIREMENTS IMPLEMENTATION MAPPED TO BACKEND SEMANTIC
VALIDATOR

Requirements
(D2.3)

Description Reference

6 https://grpc.io/

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D4.13 Implementation of BackEnd API (Final Cycle)
Dissemination level: [Confidential]

67

R.GP.1 End-to-end connectivity between the heterogeneous
IoT devices (at the field level) and the heterogeneous
IoT Platforms (at the backend cloud level)

D4.11 - Section 6

R.UC1.8
Semantic and robust bootstrapping/registration of IIoT
sensors and actuators with IIoT gateway MUST be
supported

D4.11 - Subsection 2.2.1

R.UC1.9
Semantic interaction between use-case specific
application on IIoT Gateway and legacy turbine control
system MUST be supported

D4.11 - Section 8, Section
9

R.UC1.12 Standardized semantic models for semantic-based
engineering and IIoT applications SHALL be utilized

D4.11 - Subsection 4.2,
Subsection 4.3

R.UC2.3

The SEMIoTICS platform SHOULD guarantee proper
connectivity between the various components of the
SARA distributed application. The SARA solution is a
distributed application not only because it uses
different cloud services (e.g. AREAS Cloud services,
AI services) from different remote computational
nodes, but also because the SARA application logic
itself is distributed across various edge nodes (SARA
Hubs).

D4.11 – Section 6,
Subsection 9.2

R.UC2.6

The SEMIoTICS platform SHOULD allow the SARA
solution to retrieve the resources exposed by
registered devices via their object model (i.e. a data
structure wherein each element represents a
resource, or a group of resources, belonging to a
device). The SEMIoTICS platform SHOULD support at
least the OMA LWM2M object model.

D4.11 - Subsection 3.2,
Subsection 9.2

R.UC2.11
The SEMIoTICS platform SHOULD allow a SARA
component to request a group of devices to
take/initiate an action (e.g. turn on/off a light bulb).

D4.11 – Subsection 2.2,
Subsection 9.2

R.UC3.1
IoT Sensing unit shall be able to embed environmental
(e.g. temperature, pressure, humidity, light) and
inertial sensors (accelerometer, gyroscope).

D4.11 - Subsection 2.2,
Subsection 9.3

R.UC3.15

A use case specific serialized message protocol is
required to coordinate the gateway and its associated
units and exchange data / events / anomalies between
them. JSON will be the preferred serialization format
adopted.

D4.11 - Subsection 5.1.1,
Subsection 9.3

4.6 Thing Directory
Thing Directory is a component hosting Thing Descriptions (TDs) of registered things and can be used to
browse and discover Things based on their TDs. This is the Thing Directory deployed on the backend level (or
network level depending on demo setup). It interacts with the Local Thing Directory that runs on IIoT GW.

Table 12 presents the identified backlog scope and assignment to development cycles planned including the
implementation status.

TABLE 12 THING DIRECTORY BACKLOG
Feature/task scope Short description Cycle assignment Status
Implementation Based on an existing, open-source

implementation of the Thing Directory, we
provided a solution, which is compliant

Cycle 1 Delivered

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D4.13 Implementation of BackEnd API (Final Cycle)
Dissemination level: [Confidential]

68

with the W3C Thing Description. We
packaged the Thing Directory as a Docker
container for easy deployment.

Deployment: Cloud-level We deployed the Thing Directory in an
AWS Cloud environment, accessible for
all project partners

Cycle 1 Delivered

Implementation: Up-to-
date TDs

A mechanism is being implemented that
uploads the latest version of TDs from
field devices to the Thing Directory so that
components such as the Recipe Cooker
will always have the up-to-date view on
the field level.

Cycle 3 In progress

 DEVELOPMENT STATUS

The works on the mechanism for updating the TDs to their current version is being implemented from the
field layer side. The status of the developments is in progress.

 COMPONENT API INTERACTIONS DESCRIPTION

 API Status API access type Additional comments
registerThing Done HTTP -
deleteThing Done HTTP -
getThings Done HTTP -
getThingsDetails Done HTTP -
searchUsingSPARQL Done HTTP -

4.7 Recipe Cooker
Recipe Cooker component is responsible for cooking (creating) recipes that reflect user requirements on
different layers (cloud, edge, network), transforming recipes into understandable rules for each of layer. It uses
Thing directory with all necessary models to create these rules.

Table 13 presents the identified backlog scope and assignment to development cycles planned including the
implementation status.

TABLE 13 RECIPE COOKER BACKLOG
Feature/task scope Short description Cycle

assignment
Status

Design: merge of recipe +
pattern concepts

Introduced the recipe concept, as
developed in the BIG IoT project, within
the SEMIoTICS architecture. A recipe
can be considered as a template for an
IoT application. At this point in time, we
merged the recipe concept together with
the SPDI pattern concept. : By enabling
the application-centric definition of
recipes and automatically translating
them into SPDI patterns and network-
specific details, we hide the details of
network configuration from the
developers and they can fully concentrate

Cycle 1 Delivered

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D4.13 Implementation of BackEnd API (Final Cycle)
Dissemination level: [Confidential]

69

on the program logic of their IoT
application. (Documented in D3.4,
Section 2.3 as well as D4.1)

Design: translation of
recipes into facts

After the conceptual merging of the two
concepts, we worked out a mechanism
for a translation chain from the recipe,
over SDN network mode, to patterns and
finally facts in the rule engine. We,
therefore, enable the semantic
description of application-level
constraints and their automatic
conversion into network configurations.
(Documented in D4.4)

Cycle 1 Delivered

Implementation: Recipe
Cooker as Node-RED
extension

Redefinition of the recipe cooker, as
implemented in BIG IoT, by use of the
Node-RED visual programming
environment. The advantage of Node-
RED is that we can build upon a broad
ecosystem of nodes for the integration of
IoT devices and services. (Documented
in Section 4.7.1)

Cycle 1 Delivered

Implementation: Distributed
execution of recipes

Extension of the recipe cooker’s
execution environment for IoT flows to
allow their distributed IoT orchestration.
The extension enables the deployment of
the components of a flow to different
devices. Further, the extension allows the
definition of application-specific QoS
constraints to be auto-translated into
patterns for network configuration.
Therefore, the so-called ‘DirectCom’
node was developed, which allows
representing the network in the
application flows defined via the recipe
cooker. For example, an application flow
could utilize this ‘DirectCom’ node to
transmit a video stream from a camera to
an Edge device that runs an AI pipeline
on the video images. In this example, the
DirectCom node allows now to define the
video frame rate to a minimum of 15
frames per second. This is
communicated to the Pattern
Orchestrator and then the Pattern Engine
for the network to be configured and
monitored.

Cycle 2 In finalization

Implementation: Distributed
AI

According to the wind turbine use case, a
distributed AI approach is implemented
with the Recipe Cooker by implementing
nodes for the execution of machine
learning models that can detect grease
leakage in a turbine.
Therefore, dedicated nodes for AI
inference have been developed to

Cycle 3 Delivered

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D4.13 Implementation of BackEnd API (Final Cycle)
Dissemination level: [Confidential]

70

implement the AI pipeline and the use
case.
In a first proof of concept, these nodes
realize the functionalities to (1) read
images in high frequency from the video
stream, (2) convert an image into a
tensor, and (3) to classify the tensor
according to a defined Neural Network
model.

Implementation:
Federated Learning

To support the wind turbine use case on
oil leakage detection, existing Neural
Network models need to be retrained for
the particular imagery expected to be
seen inside the turbine – either with
leaked grease/oil or without it. This
retraining should be done locally at each
turbine to avoid sending training data
(large imagery data) over the network.
However, a central model should
aggregate the model updates from the
different turbines. Therefore, nodes have
to be implemented which allow the
retraining, and the federation of the
model updates.

Cycle 3 Delivered

Implementation: second
proof of concept on audio
analytics

In a second proof of concept for the wind
turbine use case, we will implement
Federated Learning on an unsupervised
AI model. This will support the detection
of anomalies in the noise generated from
the turbine.

Cycle 3 In progress

 DEVELOPMENT STATUS
We have implemented components, which realize the inference of distributed AI models as well as their
training with a Federated Learning approach. We have realized these components as Node -RED nodes.

We utilized these nodes to build a proof of concept for oil/grease leakage in wind turbines based on video
imagery. A second proof of concept for anomaly detection in turbine noises based on audio data is being
implemented currently.

 COMPONENT API INTERACTIONS DESCRIPTION

API Status API access
type

Additional comments

user interface done visually • The common Node-RED UI is utilized.
recipe access /
modification

done HTTP • Based on flow read/modification offered by Node-
RED.

4.8 Security Manager (backend)
The Security Manager in the backend layer is the component that is responsible for ensuring end-to-end
security and safety. Its development started in Cycle 2. The Security Manager helps SEMIoTICS to tackle the

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D4.13 Implementation of BackEnd API (Final Cycle)
Dissemination level: [Confidential]

71

security and privacy problems that arise from the multi-tenant scenarios in a variety of levels, i.e., from the
networking layer to the application layer. Therefore, the SEMIoTICS architectural framework depicted in Table
14 shows several Security Manager components (at the level of the backend and additionally at the network-
and field-level) that work together but are controlled by the Security Manager in the backend. The components
allow SEMIoTICS to achieve the required functionality in order to:

• provide mechanisms to authenticate users and manage their identities.
• provide mechanisms to manage the identities of other entities, e.g. sensors.
• support use case applications to enforce access to privacy-sensitive information within the application.
• support use case applications to enforce access to privacy-sensitive information when the data is

stored in a cloud server, e.g., by using attribute-based encryption and lightweight encryption
algorithms.

• provide mechanisms to configure and manage SEMIoTICS end-to-end secure networking capabilities.

All those requirements are covered and managed by one or more of the different software modules of the
Security Manager.

TABLE 14 SECURITY MANAGER BACKLOG

Feature/task scope Short description Cycle
assignment Status

Initialize PEP application Create a SpringBoot application Cycle 2 Delivered

Implement a Proxy
mechanism in PEP

Implement a Proxy mechanism to
intercept HTTP traffic going to the
main application and authorize the
request in Security Manager

Cycle 2 Delivered

Add a proxy application to
authenticate requests

Add mitmproxy application as an
Authentication Enforcement Point
which adds the client’s token to an
HTTP request

Cycle 2 Delivered

Prepare PEP for
deployment on Backend
Orchestrator

Create dockerfile and dockerize the
application so it can be later deployed
on Kubernetes

Cycle 2 Delivered

Prepare AEP for
deployment on Backend
Orchestrator

Create dockerfile and dockerize the
application so it can be later deployed
on Kubernetes

Cycle 2 Delivered

Add a mechanism to
configure PEP from a file.

Implement a mechanism that allows
configuring mapping between an
HTTP request and Security Manager
calls

Cycle 3 Delivered

Merge all the existing
submodules into one
component

Merge all the submodules to one
component to simplify the
implementation of CI/CD pipeline

Cycle 2 Delivered

Add MongoDB to support
Security Manager

Implement MongoDB as a database
used by Security Manager to increase
the performance of the Security
Manager

Cycle 2 Delivered

Implementation of a call to
find entities with a visible
attribute

Implementation of functionality to find
entities with a particular, visible
attribute to allow the evaluation of a
privacy pattern in Pattern Engine.

Cycle 2 Delivered

Implementation of
attribute-based encryption

Implementation of attribute-based
encryption and a REST call to
generate keys for an entity (based on
its attributes or based on its policy)

Cycle 3 Delivered

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D4.13 Implementation of BackEnd API (Final Cycle)
Dissemination level: [Confidential]

72

Integration with Thing
Directory

Implementation of calls and methods
essential to register new things as
soon as they appear available in
Security Manager

Cycle 3 In progress

Dockerized Backend
Security Manager

Container deployment of the whole
Security Manager Architecture

Cycle 3 Delivered

Enable optional cookie
support

On top of oauth we can additionally
support basic uninitialized sessions.

Cycle 3 Delivered

Security Manager
Configuration Service

Node.js based application prototype
facilitating the Security Manager API
showcases the easy interaction with
SecMan functionality, like creating
new users; s

Cycle 3 Delivered

Support dynamically
added redirect URI’s

We enabled a setup in order to
support dynamically added redirect
URI’s provided from the PEP

Cycle 3 Delivered

 DEVELOPMENT STATUS

4.8.1.1 SECURITY MANAGER
Within Cycle 3, we have completed the development process for all tasks that were planned there. The
deployment of Security Manager’s submodules was delivered followed by the extensive testing based on the
workflow identified within Use Case 2 on Assisted Living. The integration test with SEMIoTICS Pattern Engine
was completed. Moreover, the detailed definition, the implementation and testing on how the Sidecar Proxy
subcomponent developed within cycle 1 and interacted with the Security Manager in order to provide the
functionality of a Policy Enforcement Point (PEP).

Furthermore, in order to comply with the overall orchestration approach for the backend layer, the Security
Manager component in the backend has been finally 100% dockerized. Such an approach allows the easy
deployment of the component to the Backend Orchestrator as well as provides the capability of smooth
integration with all backend services and exposed APIs.

In order to support an easy way of integrating with the Security Manager , we support on top of oauth an
additionally basic uninitialized session logon while initializing a connection. We have devised a configuration
file which will allows us to enable or disable this feature.

Another feature to support dynamically redirected URI’s was built in. With this, we are able to maintain
forcefully given redirect URI’s from the policy enforcement point. To empower this setting, it is required to set
the redirectURI parameter in the core config file with an asterisk. A complete dynamically enabled redirect
configuration looks like the following:

{
"id": "AuthEnableRedirect",
"name": "AuthEnableRedirect",
"clientSecret": "Babababanana",
"redirectURI": "*"
},

We also implemented a fully working node.js based application prototype, which facilitates the Security
Manager API and shows how to integrate and interact with the Security Manager. It can also be used as a
fully working configuration service. All the functionality of the API of the Security Manager is mapped there
via the GUI and can be easily accessed via the interface. This removes the hurdle of having to write
complicated configuration files to use the Security Manager initially.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D4.13 Implementation of BackEnd API (Final Cycle)
Dissemination level: [Confidential]

73

4.8.1.2 ATTRIBUTE BASED ENCRYPTION – REST API

Attribute-Based Encryption (ABE) determines the authorization of a user to decrypt encrypted data based on
the user‘s attributes. That means that the decryption of a ciphertext is only possible if the user can present
that the user possesses a set of attribute; these attributes are enclosed in the user’s decryption key.
Cryptographically the encryption fails unless the decryption keys attributes match the attributes of the
ciphertext. This means that the attributes required are encoded during the encryption of the data (for more
information we refer to Deliverable 4.12).
A REST API endpoint (Figure 40, Figure 41, Figure 42) was implemented, to make available the needed ABE
functionality; the cryptographic functionality is based upon the open source library OpenABE library7 that
provides a variety of attribute-based encryption algorithms. With this API, SEMIoTICS is enabled to
seamlessly incorporate ABE technology into the Security Manager. This can then be used where approp riate,
to secure information. Also, it ensures that the information can only be accessed by a certain entity or by a
group of entities with the requested set of attributes, e.g. only entities with the attribute "doctor" are able to
access encrypted medical data.
During Cycle 3, the implementation & testing of the ABE REST API was finalized. This component is an
important part for establishing security & privacy for sensitive data in the Use Case 2 demo .

7 https://github.com/zeutro/openabe

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D4.13 Implementation of BackEnd API (Final Cycle)
Dissemination level: [Confidential]

74

FIGURE 40 ATTRIBUTE BASED ENCRYPTION – REST API - KEY GENERATION

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D4.13 Implementation of BackEnd API (Final Cycle)
Dissemination level: [Confidential]

75

FIGURE 41 ATTRIBUTE BASED ENCRYPTION – REST API - ENCRYPTION

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D4.13 Implementation of BackEnd API (Final Cycle)
Dissemination level: [Confidential]

76

FIGURE 42 ATTRIBUTE BASED ENCRYPTION – REST API - DECRYPTION

 COMPONENT API INTERACTONS DESCRIPTION

API Status API access type Additional comments
postBatchEvaluation Deployed External • Evaluates whether the authenticated user

can excute a set of actions or can read
attributes from entity.

getEntityPolicy Deployed External • Returns the policy for an entity.
getEntityPolicyOfField Deployed External • Returns the policy for a field within a

policy structure for an entity.
deleteEntityPolicyOfField Deployed External • Returns the resulting policy structure for

the entity after deletion.
getToken Deployed External • See Authorize button in swagger api
deleteActionEvaluation Deployed External • Evaluates whether the authenticated user

can delete an action of an entity.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D4.13 Implementation of BackEnd API (Final Cycle)
Dissemination level: [Confidential]

77

postActionEvaluation Deployed External • Evaluates whether the authenticated user
can post an action of an entity.

putActionEvaluation Deployed External • Evaluates whether the authenticated user
can update an action of an entity.

getActionEvaluation Deployed External • Evaluates whether the authenticated user
can read an action of an entity.

deleteAttributeEvaluation Deployed External • Evaluates whether the authenticated user
can delete attribute of an entity.

postAttributeEvaluation Deployed External • Evaluates whether the authenticated user
can update attribute of an entity.

putAttributeEvaluation Deployed External • Evaluates whether the authenticated user
can update an attribute of an entity.

getAttributeEvaluation Deployed External • Evaluates whether the authenticated user
can read an attribute of an entity.

 COMPONENT DEVELOPMENT SUMMARY AFTER ALL CYCLES

The development of the Security manager started in Cycle 2 as planned. This allowed to base the
development on the requirements, thus we followed the security -by-design approach.

During cycle 2, the implementation of the Backend Security Manager was started according to the steps of
the release circle except for the software module/component that provides the attribute-based encryption
(ABE) functionality. The latter, was at this point still under development and in early testing phases. In Cycle
2 we also started checking that the components are generic enough to support all other use cases that are
foreseen for the Backend Security Manager.

During cycle 3, the ABE-API was finished and fully tested. It now supports all functionalities (Encryption,
Decryption & Key-Generation) for Ciphertext-Policy ABE (CP-ABE) as well as for Key-Policy ABE (KP-ABE).
Furthermore, all of the developed components were dockerized, so that the integration to the upcoming Use
Cases, specifically Use Case 2, will be much easier.

At the end of cycle 3 we can state that we completely developed and tested the developed the security
manager’s subcomponents with full API documentation and thus fully offer the planned functionality for
Attribute based Encryption (ABE) and Access Control, and Dynamic Policy Management for which the
Security Manager in the Backend was designed.

Now that the core development has ended UP will oversee and aid with the integration of the Security Manager
in Backend components into the Use Cases, and if necessary update or bug-fix them.

 SEMIOTICS REQUIREMENTS IMPLEMENTATION MAPPED TO SECURITY MANAGER
SEMIoTICS Requirement Evaluation Reference

Req. ID Description
R.BC.15 Secure communication

among the various
Backend Cloud
components (e.g., use
of dedicated
management network,
appropriate Firewall
rules)

Generally, the security
manager’s API is bound
to specific ports that can
be firewalled.
Furthermore, the
interfaces of the security
manager can be secured
by enabling TLS for
those services

R.S.1

The confidentiality of all
network communication
MUST be protected

SDN connection with
ovs switches by
enabling SSL, +

D3.7 and D4.12 Section
3.2.2 + Section 3.4.2

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D4.13 Implementation of BackEnd API (Final Cycle)
Dissemination level: [Confidential]

78

using state-of-the-art
mechanisms

Communication
between Pattern
Orchestrator and
Pattern Engines with
SSL

R.P.3

Storage of data MUST
be minimized.

This can be technically
supported by mongo
DB’s compression
options as well as Level
DB’s MCPE extension.

Will be evaluated in
D5.5

R.P.4

A short data retention
period MUST be
enforced, and
maintaining data for
longer than necessary
avoided.

In order to provide a
mechanism to support
a short data retention
period we leverage for
all current supported
databases a TTL
parameter.

Furthermore, ABE can
also be used to make
the encrypted
information only
accessible for a certain
timeframe by inserting
a timestamp as an
additional attribute into
the encryption and
decryption process.

Will be evaluated in
D5.5

R.P.5 As much data as
possible MUST be
processed at the edge
in order to hide data
sources and not reveal
user related information
to adversaries (e.g.
user’s location).

Replica of Security
Manager can be
deployed in the field
layer, i.e. running on
the gateway which is at
the edge of the
network. Having the
replica running at the
gateway, there is no
need to send
requests/answers
to/from the backend
that might leak
information about
access being requested
or performed. Thus, the
replication helps to
reduce this attack
surface.

See D4.12 Section
3.4.1

Will be evaluated in
D5.5

R.P.8

Data MUST be stored
in encrypted form.

Attribute Based
Encryption (ABE)

Will be evaluated in
D5.5

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D4.13 Implementation of BackEnd API (Final Cycle)
Dissemination level: [Confidential]

79

allows to encrypt data
before it is stored such
that the protected data
can only be decrypted
by authorised users
that posses the
required attributes.
ABE is described in
Section 4.8.1.2

and

D4.12 Section 3.2.1.4
can be of aid

R.P.12

During all
communication and
processing phases
logging MUST be
performed to enable the
examination that the
system is operating as
promised.

Security Manager
supports different log
levels.

Will be evaluated in
D5.5

R.GSP.9

The SARA system
SHALL provide robust
mechanisms to protect
Patient-related data.

ABE is used for
encryption but with our
library we can also
facilitate access control
with it.

ABE as described in
Section 4.8.1.2

and

D4.12 Section 3.2.1.4
can be of aid

Will be evaluated in
D5.5

4.9 Local Embedded Intelligence (Field Layer)
The Local Embedded Intelligence Component in SEMIoTICS aims to provide a logical interface for exposing
to the SEMIoTICS ecosystem the complete set of analytics algorithms developed within the project and
described in D4.10 “Embedded Intelligence and Local Analytics (final draft)”. These algorithms are the major
enablers of the edge computing algorithms supported in the SEMIoTICS project. In particular, they could be
subdivided into some further category according to the intended main usage scenario.
The 1st set of algorithms enables the gait analysis on the SARA Healthcare scenario (i.e. UC2), whereas the
2nd set of algorithms will support the Smart sensing use case (Generic IoT horizontal) that will be demonstrated
mainly in UC3 final demo. The need for a coherent integration logic driven by SEMIoTICS SPDI pattern
approach with other SEMIoTICS components is enforced by the fact that these algorithms will be deployed
on different types of field devices, with different legacy middleware constraints. As an example, the role of
smart sensing units, within UC3, is played by small microcontroller (smart sensing) units tightly coupled with
miniaturized environmental/inertial sensors. Due to the heterogeneous set of available devices, and also very
heterogeneous set algorithms available, an integration methodology has been identified and designed in

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D4.13 Implementation of BackEnd API (Final Cycle)
Dissemination level: [Confidential]

80

SEMIoTICS as a viable solution for exposing the results of these algorithms in a coherent manner within each
specific UC need / requirement. This methodology implies the definition of an abstract interface, used to wrap
conveniently the heterogeneous set of algorithms developed within Task 4.3 activities in order to make their
outputs available in the field device level of SEMIoTICS. In this deliverable an update related to the status of
this aspect within SEMIoTICS will be provided according to what has been already reported in D4.10 Local
Embedded Analytics (final draft) where the complete set of algorithms has been fully characterized. The
outputs of the local analytics algorithms are described as event messages that are sent to the SEMIoTICS
field level infrastructure in a semantically interoperable manner by instantiating specific scenario driven
patterns through the some of the components available in the SEMIoTICS field level infrastructure (i.e. the
local pattern engine, the Semantic GW mediator and the Semantic Edge Platform). As an example, the
outcomes (i.e. anomalies) reported by the analytics/machine learning algorithms on the Generic UC3 IoT
scenario are reported to SEMIoTICS field level at a bottom side as timestamped events through a dedicated
JSON protocol published over a MQTT infrastructure. The final integration of the component is plan ned for
the Cycle 3 final iteration where those events will be integrated and notified by translated them into dedicated
patterns thanks to the pattern engine. Similar integration logic is currently under development on all the three
main scenarios under consideration as part of WP5 Task 5.4 to Task 5.6 activities.
In the following Table, a summary of the implementation tasks is presented detailing Cycle 2 and updated
Cycle 3 implementation plans.

TABLE 15 LOCAL EMBEDDED INTELLIGENCE BACKLOG
Feature/task scope Short description Cycle

assignment
Status

UC3 Generic IoT Local
Analytics Algorithms

UC3 Local Embedded Component
wrapper deployed on ST X-Nucleo
Microcontroller equipped with MQTT
Client. The component provides MQTT
events regarding anomalies on inertial or
environmental real-time acquired data.

Cycle 2 Delivered – see
D4.10

UC3 Generic IoT Local
Analytics Algorithms

UC3 Local Embedded Component MQTT
events mapping to dedicated patterns in
pattern engine component

Cycle 3 Ongoing
deployment into
T5.6

UC3 Generic IoT Local GTW
Supervisor Service

UC3 Local GTW Supervisor Service Cycle 3 Delivered – see
D4.10

UC3 Generic IoT Local
Analytics Algorithms

UC3 Local Event DB component
development

Cycle 3 Delivered – see
D4.10

UC3 Generic IoT Local
Analytics Algorithms

UC3 Local Event DB component
integration

Cycle 3 Ongoing
deployment into
T5.6

Gait Analysis Local Analytics
Algorithms

The algorithms are under active
development. Wrapping component
implementation will be started on the
cycle 3 period.

Cycle 3 Characterized
and defined –
see D4.10

 DEVELOPMENT STATUS
Current development status of the local embedded functional ity in SEMIoTICS is reported in Table 15. In
particular, during Cycle 3 integration the majority of functionalities of the local embedded analytics has been
implemented through dedicated algorithms mapped to specific field layer components according to the
specific use case scenario. All the algorithms has been identified and characterized (please refer to D4.10 for
a complete detailed presentation) and currently their deployment and component mapping into the
SEMIoTICS architecture is taking place as part to WP5 integration activities within each use case (i.e. from
task 5.4 to task 5.6 activities).

 COMPONENT API INTERACTIONS DESCRIPTION

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D4.13 Implementation of BackEnd API (Final Cycle)
Dissemination level: [Confidential]

81

An example of interaction APIs implemented and documented in D4.10 is shown in Table 15. It provides an
abstract interaction interface that is used by some SEMIoTICS FL components deployed at the IoT gateway
(i.e. the pattern engine, the IoT Generic Supervisor Service component, etc.) to implement semantic bridging
vs use case specific UC3 patterns. Each of those components have a built-in MQTT client able to interact
with the Local Embedded Analytics deployed into the Sensing Unit mapped onto the STM32 Microcontroller
HW board.

API Status API access type Additional comments
pushRawData Implemented Internal (MQTT) • As JSON payload message reported in D4.10.

Push raw sensor data readings (publish)
getRawData Implemented Internal (MQTT) • As JSON payload message reported in D4.10.

Get raw sensor data readings (subscribe)
getMsgEvent Implemented Internal (MQTT) • As JSON payload message reported in D4.10.

Get analytics results / events (subscribe)
pushMsgEvent Implemented Internal (MQTT) • As JSON payload message reported in D4.10.

Push analytics results / events (publish)
reset Implemented Internal (MQTT) • As JSON payload message reported in D4.10.

Node device SW reset event (publish)
reconfigure Implemented Internal (MQTT) • As JSON payload message reported in D4.10.

Node device reconfigure event (publish).
See R.UC3.5 on section 4.9.4

pushKeepAlive Implemented Internal (MQTT) • As JSON payload message reported in D4.10.
Node keepalive message to detects faulty
units and implements dependability pattern in UC3

 COMPONENT DEVELOPMENT SUMMARY AFTER ALL CYCLES

The majority of the SEMIoTICS components needed by the local embedded analytics have been developed
and are currently moving to the integration / deployment phase as part of WP5 activities. Three specific
components have been specifically developed for the UC3 Generic IoT scenario in order to accomplish the
task of providing smart artificial intelligence enable sensing devices units, whereas for other use case scenario
the local embedded intelligence have been designed to interact at the IoT gateway level with existing
components hereby deployed (i.e. the pattern engine, the Semantic Edge platform, the local thing directory,
etc.)

 SEMIOTICS REQUIREMENTS IMPLEMENTATION MAPPED TO LOCAL EMBEDDED

INTELLIGENCE
.
The following table summarizes the complete set of requirements considered during the design and
implementation of the local embedded analytics component in SEMIoTICS:

SEMIoTICS Requirement Local Analytics
considerations Reference Req. ID Description

R.GP.2

Scalable infrastructure due to
the fast-paced growth of IoT
devices

This is a set of generic
requirements in SEMIoTICS
that motivates the need for
layered distributed
intelligence in the project
integrated into the platform
exploiting the SPDI pattern
approach.

Patterns has been
defined and characterized
in SEMIoTICS in many
WP3 deliverables, i.e. in
task 3.3 (Patterns), task
3.4 (Network-level
semantic Interoperability)
and task 3.5
(Implementation of Field-

R.GP.4

Detection of events requiring a
QoS change and triggering
network reconfiguration need
by SPDI pattern

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D4.13 Implementation of BackEnd API (Final Cycle)
Dissemination level: [Confidential]

82

R.NL.12

The network layer must
feature SPDI pattern
reasoning local embedded
intelligence capabilities

level middleware &
networking toolbox)

R.FD.1

Field devices SHOULD be
able to get data from the
environment through sensors
(sensors).

This is a set of specific field
layer requirements, common
to all use case scenarios that
affects the definition of the
local embedded analytics
component.

Local embedded
components (i.e. the
algorithms used in
SEMIoTICS) has been
mainly identified during
task 4.3 activities in two
submitted deliverables.
Communication design,
interoperability aspects
and deployment has been
considered in a larger
scope within WP4
activities (i.e. task 4.1 for
SPDI patterns, task 4.4 for
End-to-End Semantic
Interoperability and finally in
task 4.6 for the interfacing
APIs) and for integration /
deployment aspects in
WP5 as part of the use
case specific
demonstrators (i.e. form
T5.4 to task 5.6)

R.FD.2
Field devices SHOULD be
able to process data in near
real time (process units).

R.FD.4
Field devices SHOULD use a
global clock for time
synchronization.

R.FD.5

Field devices SHOULD be
able to interact with
SEMIoTICS IIoT/IoT gateway
dedicated components

R.FD.6

Field devices MUST
interoperate using a standard
communication protocol like
Rest APIs, COAP, MQTT.

R.FD.7

Field devices MUST use
standardize interoperable
message format (e.g. JSON,
etc.).

R.FD.9

Field devices MUST be able to
communicate with the IIoT
Gateway / other architectural
components.

R.FD.10 Field devices SHOULD
minimize data traffic.

R.FD.11 Field devices SHOULD
minimize energy consumption.

R.FD.12

Greenfield device is expected
to expose its capability over a
W3C Thing Description, which
semantically describes field
resources, and to be
computationally powerful
enough to run a node-wot
servient (that exposes the TD).

R.FD.14

The field layer must feature
SPDI pattern reasoning local
embedded intelligence
capabilities

R.FD.15

The field layer must aggregate
intra-layer information to
enable local intelligence
reasoning and adaptation

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D4.13 Implementation of BackEnd API (Final Cycle)
Dissemination level: [Confidential]

83

R.P.3
Storage of data MUST be
minimized.

This is a set of specific
privacy requirements,
common to all use case
scenarios where the local
embedded analytics could
support through its distributed
local data processing the
concept of data retention and
data anonymization.

In D4.10 all algorithms
used in SEMIoTICS for the
local embedded analytics
has been presented. In
this deliverable it is
presented for each
specific use case under
consideration the impact
on the architecture where
the benefits of the data
anonymization and
customizable data
retention are shortly
discussed.

R.P.4

A short data retention period
MUST be enforced and
maintaining data for longer
than necessary avoided

R.P.5

As much data as possible
MUST be processed at the
edge in order to hide data
sources and not reveal user
related information to
adversaries (e.g. user’s
location).

R.P.6

Data MUST be anonymized
wherever possible by removing
the personally identifiable
information in order to
decrease the risk of
unintended disclosure

R.GSP.3

IoT gateway SHALL be able to
estimate abnormal detection
based on (un)-supervised
model.

R.UC1.10

Local analytical capability of
IIoT Gateway to run machine
learning algorithms (e.g.
specific to 2 specific sub-use
cases)

This is the complete list of
use case specific
requirements that has been
considered for the
development of the local
analytics components in the
main three use case
scenarios in SEMIoTICS.
They have been used to
identify / develop /
characterize and later on
deploy all the embedded
local analytics algorithms in
SEMIoTICS

Please refer to D4.10 for
an in-depth discussion of
all the local embedded
analytics algorithms
developed within
SEMIoTICS project.

R.UC2.6

The SEMIoTICS platform
SHOULD allow the SARA
solution to retrieve the
resources exposed by
registered devices via their
object model (i.e. a data
structure wherein each
element represents a
resource, or a group of
resources, belonging to a
device). The SEMIoTICS
platform SHOULD support at
least the OMA LWM2M object
model.

R.UC3.1

IoT Sensing unit shall be able
to embed environmental (e.g.
temperature, pressure,
humidity, light) and inertial
sensors (accelerometer,
gyroscope).

R.UC3.2

IIoT Sensing unit shall be able
to interface to the IIoT Sensing
gateway in order to coordinate
with it. A standard IP based
(i.e. TCP transport) 1 to many
M2M communication protocol

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D4.13 Implementation of BackEnd API (Final Cycle)
Dissemination level: [Confidential]

84

must be adopted to properly
handle node communication
with components in the
gateway.

R.UC3.3

IIoT Sensing unit shall be able
to learn a model from
observed data in an
unsupervised manner. In
particular IoT Sensing unit
shall be equipped with a low
power (tens/hundreds of mW
range) 32 bits MCU to support
unsupervised learning and
unsupervised statistical
processing.

R.UC3.4

IIoT Sensing unit shall be able
to detect relevant changes
from the learned model and
report them to IIoT Sensing
gateway.

R.UC3.5
IIoT Sensing unit shall be able
to adapt to a new model if IIoT
sensing gateway requires this.

R.UC3.6

IIoT Sensing gateway shall be
able to coordinate a set of IIoT
sensing units by finding any
correlation btw them according
to observed data, models

R.UC3.7

IIoT Sensing gateway shall be
able aggregate relevant events
(i.e. changes) coming from
whichever of connected IIoT
sensing units deciding if they
are global or local changes

R.UC3.8

IIoT Sensing gateway may
have the capability to
exchange relevant information
(i.e. events) between itself, the
cloud and the sensing units
with some connectivity
capabilities

R.UC3.11

IoT Sensing unit shall be able
to run Artificial neural networks
on the MCU in real time at the
sensor data rate of choice.

R.UC3.12

IoT Sensing unit shall be able
to run lightweight statistical
model analysis algorithms on
the MCU not in real time at the
sensor data rate of choice.

R.UC3.14

MCU IoT Sensing unit shall be
able to run neural network
online training at the sensor
data rate of choice.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D4.13 Implementation of BackEnd API (Final Cycle)
Dissemination level: [Confidential]

85

R.UC3.15

IoT Sensing gateway shall
support 1 to many standard IP
based (i.e. TCP transport)
M2M communication protocol
to interface a number N of
connecting Sensing units (e.g.
broadcast type).

R.UC3.19

IoT Sensing gateway should
be able to support http and
standard protocols for cloud
interfacing.

R.UC3.20

The specific M2M protocol
adopted on UC3 is based on
MQTT. A MQTT broker service
will be available to dispatch
messages between the
coordinating Sensing gateway
and its associated Sensing
units.

R.UC3.21

A use case specific serialized
message protocol is required
to coordinate the gateway and
its associated units and
exchange data / events /
anomalies between them.
JSON will be the preferred
serialization format adopted.

R.UC3.22

Each connected IHES sensing
unit should send to the
gateway a keep alive signal on
a specified period (e.g. few
seconds) to notify the gateway
it is correctly working. The
sensing gateway should detect
by this mean any non-working
sensing unit and reconfigure
the system accordingly.

R.UC3.23

Sensing units and sensing
gateway should share a
common clock (i.e. global
reference time), precise up to
milliseconds, to properly
classify events and data
acquired during the
processing. This global
reference time will be
negotiated when a sensing
unit node will join a given
gateway. Internally the system
will work scheduling activities
according to this global
reference time.

R.UC3.24
Sensing units may be
equipped with dedicated FW to
detect relevant sensors

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D4.13 Implementation of BackEnd API (Final Cycle)
Dissemination level: [Confidential]

86

malfunctioning and report that
to the gateway

4.10 Monitoring
The objectives of the SEMIoTICS Monitoring component are twofold:

• To generate specific messages in response to the reception of a set of messages generated by the
components of an IoT application and matching some condition specified in the monitoring component by
a client application (Monitoring requirement).

• To guarantee that the messages needed to decide whether to generate a message can be produced by
an IoT application and received by the monitoring component (Observability property).

• The project’s deliverable D4.9 - “SEMIoTICS Monitoring, Prediction and Diagnosis Mechanisms
(final)” presents the final design of the monitoring, prediction and diagnosis mechanisms in
SEMIoTICS along with algorithmic and technological options choose for the implementation of its key
functionalities.

Table 22 presents the identified backlog scope and assignment to development cycles planned.

TABLE 22 MONITORING COMPONENT BACKLOG

Feature/task scope Short description Cycle
assignment Status

sem-mdp-api Create a library for Monitoring API Cycle 2 Delivered

sem-mdp-controller The first version of the Monitoring
Controller

Cycle 2 Delivered

sem-mdp-web Bundle making available controller as a
REST service

Cycle 2 Delivered

sem-mdp-cep-flink Flink-based implementation of the
Complex Event Processor (CEP)
(replanning of the delivery was needed
due to the revision process of other
deliverables)

Cycle 2/3 Delivered

sem-mdp-signaller-wot Event Signaller for WoT (Web of Things)
devices
(replanning of the delivery was needed
due to the revision process of other
deliverables)

Cycle 2/3 Delivered

sem-mdp-signaller-fiware
The FIWARE Signaler implements the
Signaler interface offering the operations
to read, write or subscribe attributes of
NGSIv2 entities.

Cycle 3 Delivered

sem-mdp-signaller-network
The network signaler is responsible for
monitoring the status of the network
topology of the SEMIoTICS use cases.

Cycle 3 Delivered

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D4.13 Implementation of BackEnd API (Final Cycle)
Dissemination level: [Confidential]

87

sem-mdp-signaller-
kubernetes

The Backend Orchestrator exposes API
to get the events as they have occurred in
the Kubernetes cluster.

Cycle 3 Delivered

sem-mdp-cmi
Causal Model Identifier has the role to
build the causal models. These models
are created using as input both the
(Re)configuration commands emitted by
the Monitoring Controller and the events
generated by the Business Event Monitor

Cycle 3 Delivered

sem-mdp-epredictor The Event Predictor uses to Causal Model
learned by the Causal Model Identifier to
infer events not directly observable
through the Events Signalers

Cycle 3 Delivered

sem-mdp-disgnosis-gui Visualization for the diagnosis Cycle 3 Delivered

sem-mdp-storgae Storage of High-Level events generated
by an implementation of the Complex
Event Processor (i.e. one of the sem-
mdp-cep-* components)

Cycle 2 Delivered

 DEVELOPMENT STATUS
During cycle 3 of development the following modules were delivered:

• sem-mdp-cep-flink
• sem-mdp-signaller-wot
• sem-mdp-signaller-fiware
• sem-mdp-signaller-network
• sem-mdp-signaller-kubernetes
• sem-mdp-cmi
• sem-mdp-epredictor
• sem-mdp-disgnosis-gui

 COMPONENT API INTERACTIONS DESCRIPTION

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D4.13 Implementation of BackEnd API (Final Cycle)
Dissemination level: [Confidential]

88

API Status API access type Additional comments

submitQuery Delivered External -

cancelQuery Delivered External -

checkQueryStatus Delivered External -

 SEMIOTICS REQUIREMENTS IMPLEMENTATION MAPPED TO MONITORING

SECTION 1.1 OF DELIVERABLE D4.9 - “SEMIoTICS Monitoring, prediction and diagnosis mechanisms
(FINAL)” shows which are the SEMIoTICS Requirements addressed by the Monitoring component as
detailed in the following Table.

TABLE 16 REQUIREMENTS ADDRESSED BY THE MPD

SEMIoTICS Requirement Evaluation Reference
Req. ID Description

R.GP.4

Detection of events
requiring a QoS change
and triggering network
reconfiguration need by
SPDI pattern

The MPD allows detecting Network
level events thanks to the availability
of adapters able to capture the events
generated by the SDN Controller and
Virtual Infrastructure Manager (VIM).

Section 2.2.7 in D4.9

R.P.4

A short data retention
period MUST be
enforced, and
maintaining data for
longer than necessary
avoided.

The MPD uses Complex Event
Processing technology to aggregate
data. In fact, CEP technology allows
detecting events patterns directly in
the stream of events without the need
to store the events in a database for
subsequent processing.

Section 2.3 in D4.9

R9.4

The cloud platform
SHALL to be able to
monitor the execution of
an app, in particular its
interactions with other
apps, the network
interface, and APIs.

The MPD provides adapters that
enable to monitor the execution of
apps by means of the native
monitoring capabilities of Cloud and
IoT platforms

Section 2.2 in D4.9

R.BC.20

The backend layer must
aggregate intra-layer as
well as inter-layer SPDI
status information to
enable local and global
intelligence reasoning
and adaptation.

The MPD provides adapters to
capture events generated by the
backend layer. The MPD aggregates
events using CEP technology. MPD
defines strategies to translate SPDI
pattern into monitoring policies.

Section 1.2, Section
2.5, Section 2.6 in D4.9

R.NL.13

The network layer must
aggregate intra-layer
monitored information to
enable local intelligence
reasoning and
adaptation.

The MPD provides adapters to
capture events generated by network
layer. The MPD aggregates events
using CEP technology. MPD defines
strategies to translate SPDI patterns
into monitoring policies.

Section 1.2, Section
2.5, Section 2.6 in D4.9

R.FD.15

The field layer must
aggregate intra-layer
monitored information to
enable local intelligence

The MPD provides adapters to
capture events generated by field
devices. The MPD aggregates events
using CEP technology. MPD defines

Section 1.2, Section
2.5, Section 2.6 in D4.9

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D4.13 Implementation of BackEnd API (Final Cycle)
Dissemination level: [Confidential]

89

reasoning and
adaptation.

strategies to translate SPDI pattern
into monitoring policies.

R.UC2.10

The SEMIoTICS platform
SHOULD allow the
SARA components (e.g.
SARA Hubs) to query
and aggregate (e.g. to
average) the values of a
resource (e.g. current
measured temperature)
hosted by a group of
field devices. The SARA
solution defines a group
of devices by specifying
filtering criteria over the
set of registered devices.

The MPD provides adapters to
capture events generated by field
devices. The Query language of the
MPD provides means to express
filtering conditions over the sources of
events.

Section 2.2.8, Section
2.5 in D4.9

R.UC2.12

The SEMIoTICS platform
SHOULD allow SARA
components to delegate
to the platform the
computation of complex
functions over the data
received by field
devices. These
computations may result
either in the generation
of higher-level
observation events (e.g.
significant Patient events
abstracted form sensor
data) towards the ACS
or in sensors
configuration parameters
(including actuators
command).

The MPD provides adapters to
capture events generated by field
devices. Moreover, The Query
language of the MPD provide
business IoT applications (e.g. SARA)
with means to specify a high-level
observation event as the occurrence
of a specific pattern of events within
the stream of events generated by
field devices.

Section 2.2.8, Section
2.5 in D4.9

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D4.13 Implementation of BackEnd API (Final Cycle)
Dissemination level: [Confidential]

90

5 VALIDATION
This Section describes the validation features of SEMIoTICS that are related to the implementation of backend
components and the rest topics that are presented in this document.

5.1 Related Project Objectives and Key Performance Indicators (KPIs)
Table 17 presents the task objectives and appropriate sections addressing those while Table 18 presents
the KPI’s objective which is relevant for Task 4.6.

TABLE 17 TASK’S OBJECTIVES
T4.6 Objectives D4.13 Sections

• Implementation of the algorithms, techniques, and components in Tasks 4.1-4.5
and the delivery of an API giving access to them.

4.2, 4.3, 4.4,
4.8, 4.9, 4.10

• Providing IoT components communication across layers and integration with
external systems and partners.

4.2

• Receiving messages from sensors and resource provisioning as a result of
analytics computing.

4.1

• Implementation of appropriate security levels for each connection type, in order
to ensure the coherence of data and minimal latency in data transmission.

4.2, 4.8

• Using semantic communication metadata to enable negotiation and
interoperability between components.

4.5, 4.8

• Registration of SPDI pattern, which will include the SPDI patterns known to the
infrastructure and their currently deployed instances in the IoT applications
managed by the infrastructure.

4.3, 4.4, 4.6, 4.7

• Dashboard providing administrators of such applications with access to runtime
IoT application management information.

4.2

• Component supporting different types of horizontal and vertical runtime of
proactive and reactive adaptation.

4.2, 4.3, 4.9,
4.10

Because task 4.6 is closely related to Tasks 4.1-4.5 and provides an implementation of the algorithms,
techniques, and components described in these tasks, hence is correlated with the project’s requirements from
the entire WP4. The KPI’s objectives for T4.6 are presented below:

TABLE 18 KPI’S AND OBJECTIVES

Objective KPI-ID Description Related task
1 SPDI Patterns KPI-1.1 Number of SPDI Patterns T4.1
1 SPDI Patterns KPI-1.2 Deployment of a multi-

domain SDN orchestrator
T4.1

2 Semantic Interoperability KPI-2.1 Semantic descriptions for
6 types of smart objects

T4.1,T4.4

2 Semantic Interoperability KPI-2.2 Data type mapping and
ontology alignment

T4.4

2 Semantic Interoperability KPI-2.3 Semantic interoperability
with 3 IoT platforms

T4.4

3 Monitoring Mechanisms KPI-3.1.1 Generating monitoring
strategies in the 3
targeted IoT platforms

T4.1, T4.2

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D4.13 Implementation of BackEnd API (Final Cycle)
Dissemination level: [Confidential]

91

3 Monitoring Mechanisms KPI-3.1.2 Fuse results from these
monitors

T4.1, T4.2

3 Monitoring Mechanisms KPI-3.1.3 Performing predictive
monitoring with an
average accuracy of 80%

T4.1, T4.2

3 Monitoring Mechanisms KPI-3.2 Delivery of a monitoring
language

T4.1, T4.2

4 Multi-layered Embedded
Intelligence

KPI-4.1 Delivery of lightweight
ML algorithms

T4.3

4 Multi-layered Embedded
Intelligence

KPI-4.2 Delivery of mechanisms
with adaptation time of
15ms

T4.1, T4.2, T4.3

4 Multi-layered Embedded
Intelligence

KPI-4.3 Delivery of adaptations
mechanisms enabling
improvement by at least
20%

T4.2, T4.3

4 Multi-layered Embedded
Intelligence

KPI-4.4 Detection time of less
than 10 ms

T4.3

4 Multi-layered Embedded
Intelligence

KPI-4.6 Development of new
security
mechanisms/controls

T4.1, T4.5

5 IoT-aware Programmable
Networks

KPI-5.2 Service Function
Chaining (SFC) of a
minimum 3 VNFs

T4.1

6 Development of a Reference
Prototype

KPI-6.1 Reduce Required Manual
Interventions

T4.1

6 Development of a Reference
Prototype

KPI-6.3 Delivery of 3 prototypes
of IIoT/IoT applications

T4.6

5.2 SEMIoTICS implementation requirements
The general SEMIoTICS’ requirements that are covered by the presented implementation o f SEMIoTICS
components are summarized in the next table.
For the sake of easier readability, here we present only the requirements directly related to Task 4.6 and
logical components belonging only to this task, while all requirements related to Tasks 4.1 to T4.5 are
presented in respective deliverables. The full scope of requirements mapping is available in D2.4

TABLE 19 TASK’S REQUIREMENTS

Requirements Description Related task Status

R.GP.1

End-to-end connectivity between the
heterogeneous IoT devices (at the field level)
and the heterogeneous IoT Platforms (at the
backend cloud level)

T4.6 Delivered

R.GP.2 Scalable infrastructure due to the fast-paced
growth of IoT devices

T4.6 Delivered

R.BC.15

Secure communication among the various
Backend Cloud components (e.g., use of
dedicated management network, appropriate
Firewall rules)

T4.6 Delivered

R.P.1 The collection of raw data MUST be
minimized.

T4.6 Delivered

R.P.2 The data volume that is collected or
requested by an IoT application MUST be

T4.6 Delivered

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D4.13 Implementation of BackEnd API (Final Cycle)
Dissemination level: [Confidential]

92

minimized (e.g. minimize sampling rate,
amount of data, recording duration, different
parameters).

R.P.3 Storage of data MUST be minimized. T4.6 Delivered

R.P.4
A short data retention period MUST be
enforced and maintaining data for longer than
necessary avoided.

T4.6 In progress

R.P.9

Repeated querying for specific data by
applications, services, or users that are not
intended to act in this manner SHALL be
blocked.

T4.6 In progress

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D4.13 Implementation of BackEnd API (Final Cycle)
Dissemination level: [Confidential]

93

6 CONCLUSION
Within this deliverable, the details of the WP4 developed components of the final cycle of implementation Task 4.6
are presented. The progress of work advancement has been tracked using GitLab, which is the main code
repository of the development monitoring and tracking. Based on the open issues tracked in Gitlab, weekly technical
meetings have been held for the status and any risk tracking.

All work delivered within cycle 3 has been focusing on the variety of key aspects of SEMIoTICS. The development,
distributed across involved partners, was delivered separately while the integration part has been reserved for the
future cycle and mainly for the WP5. Planning and implementation of cycle 3 have been performed within five
subjective streams as follows:
• The first workstream is focusing on SPDI patterns, going from Recipe Cooker where the distributed execution

of recipes was developed. Moreover, storing the patterns in the backend repository of Pattern Engine has been
delivered along with the classification and distribution of the patterns from Pattern Orchestrator to Pattern
Engines. Finally, the visualization of patterns in the SEMIoTICS platform has been delivered within the GUI
component.

• Within the second workstream, the effort has been put into the delivery of semantic interoperability.
Communication between Recipe Cooker and BSV has been established successfully. The BSV’s endpoints
were reimplemented using RESTful services instead of gRPC and the work on resolving semantic conflicts
using the Adaptor Nodes has been started and was continued in cycle 3.

• The third workstream was focusing on the security aspects. PEP, AEP and Proxy mechanisms.
• The fourth workstream has been focusing on the Backend Orchestrator implementation and proper

configuration along with further development of one central GUI for user interaction with the framework.
• The last workstream was focusing on the monitoring and local embedded intelligence aspects. The Monitoring

component has identified two interfaces (Query API and Storage API) and 3 possible domains of queries:
domain-specific, security-related and self-monitoring. Local embedded intelligence efforts have been focusing
on the generic local IoT analytic algorithms.

According to the description provided in Section 3, Task 4.6 delivers the implementation of components defined
within WP4, the backend API and the integration of the respective components that are also related to the outputs
of the tasks as depicted in Figure 4. The outcome of the task T4.6 are deliverables D4.6 (presented in June 2019),
D4.7 (presented December 2019) and D4.13 (the outcome of cycle 3 development). Deliverable D4.13 has provided
development status for Graphical User Interface, Backend orchestrator, Patter Orchestrator, Pattern Engine
(backend), Backend Semantic Validator, Thing Directory, Recipe Cooker, Security Manager (backend), Local
Embedded Intelligence and Monitoring.

Deliverable D4.13 has covered the finalization of the development of all components involved within WP4. While
the interaction between all the architectural components is defined within D2.5 (Deliverable 2.5 “SEMIoTICS high-
level architecture (final)”), the detailed specifications of the API area partially the outcome of D4.7 (cycle 2) and
D4.13 (Final Cycle) development. Following those 3 cycles of development, the SEMIoTICS has reached its
development maturity within the delivery of cycle 3 (final).

