

 780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

SEMIoTICS

Deliverable D4.1
SEMIoTICS SPDI Patterns (first draft)

Deliverable release date Initial 22.04.2019, revised 25.11.2019

Authors 1. Konstantinos Fysarakis, Jason Somarakis, Konstantina Koloutsou (STS)

2. Nikolaos Petroulakis, Manos Papoutsakis, Othonas Soultatos (FORTH)

3. Tobias Marktscheffel (UP)

4. Łukasz Ciechomski, Karolina Walędzik (BS)

5. Arne Bröring (SAG)

Responsible person Konstantinos Fysarakis (STS)

Reviewed by Nikolaos Petroulakis (FORTH), Georgios Spanoudakis (STS), Tobias
Marktscheffel (UP), Karolina Walędzik (BS), Arne Bröring (SAG)

Approved by PTC Members (Vivek Kulkarni, Nikolaos Petroulakis, Ermin Sakic, Mirko
Falchetto, Domenico Presenza, Verikoukis Christos)

PCC Members (Vivek Kulkarni, Nikolaos Petroulakis, Verikoukis Christos,
Georgios Spanoudakis, Domenico Presenza, Danilo Pau, Joachim
Posegga, Darek Dober, Kostas Ramantas, Ulrich Hansen)

Status of the Document Final

Version 1.0 revised

Dissemination level Public

Ref. Ares(2019)7267620 - 25/11/2019

https://upload.wikimedia.org/wikipedia/commons/b/b7/Flag_of_Europe.svg

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D4.1 SEMIoTICS SPDI Patterns (first draft)

Dissemination level: Public

2

Table of Contents

1 Introduction .. 6

1.1 PERT chart of SEMIoTICS ... 8

2 SPDI Pattern requirements .. 9

2.1 Security ... 9

2.2 Privacy ...11

2.2.1 Regulatory requirements ...11

2.2.2 Pilot-specific Privacy Aspects ..12

2.3 Dependability ..14

2.4 Interoperability ..16

2.5 Requirements Specification considerations ...19

2.6 Project KPIs considerations ..26

3 Pattern-Language Definition..29

3.1 Overview ..29

3.1.1 Related Works ..30

3.2 IoT application architecture and orchestration modelling ...36

3.3 Language Constructs ..39

3.4 Specification of SPDI patterns ...41

3.5 Example of Orchestration Definition ..42

3.6 Implementation aspects ..44

3.6.1 Machine-Processable Pattern encoding ...44

3.6.2 System Architecture and Key Components ..46

3.7 Language Interpretation and Instantiation ...49

3.8 Language Expressiveness and Versioning ..50

4 Pattern Rules ..51

4.1 Security ..51

4.1.1 Confidentiality ...51

4.1.2 Integrity ...53

4.1.3 Availability ...55

4.2 Privacy ...56

4.2.1 Pattern definition ...56

4.2.2 Pattern specification rule ...58

4.3 Dependability ..60

4.3.1 Pattern definition ...60

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D4.1 SEMIoTICS SPDI Patterns (first draft)

Dissemination level: Public

3

4.3.2 Pattern specification rule ...62

4.4 Interoperability ..63

4.4.1 Pattern definition ...63

4.4.2 Pattern specification rule ...65

4.5 Pattern Summary ..66

5 IoT Service Orchestration ...68

5.1 Recipe-driven IoT Application Workflow definition ...68

6 Recipes & Patterns Integration ..72

6.1 Application Example ...74

6.1.1 Design ..75

6.1.2 Instantiation ..75

6.1.3 Deployment ...77

6.1.4 Runtime ..78

6.2 Pattern-driven Orchestration Adaptations ..78

6.3 Use-case driven Scenarios ...79

6.3.1 Use case 1 ..79

6.3.2 use case 2 ..79

6.3.3 Use case 3 ..80

7 Conclusion ..82

References ..83

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D4.1 SEMIoTICS SPDI Patterns (first draft)

Dissemination level: Public

4

Acronyms Table

Acronym Definition

SPDI Security, Privacy, Dependability, Interoperability

 IoT Internet of Things

SDN Software-defined networking

QoS Quality of Service

API Application Programming Interface

E2E End to End

IIoT Industrial Internet of Things

IP Internet Protocol

ISO International Organization for Standardization

IEC International Electrotechnical Commission

GDPR General Data Protection Regulation

NIS
Directive

Directive on security of network and information systems

UC Use Case

SARA Service Availability and Readiness Assessment

HIPAA Health Insurance Portability and Accountability

HHSa Health and Human Services Agency

PHR Personal Health Record

CRC Cyclic Redundancy Check

DoS Denial of Service

HTTP Hypertext Transfer Protocol

CoAP Constrained Application Protocol

XMP eXtensible Multimedia Protocol

MQTT Message Queuing Telemetry Transport

DDS Data Distribution Service

DPWS Devices Profile for Web Services

UPnP Universal Plug and Play

OSGi Open Services Gateway initiative

TCP Transmission Control Protocol

M2M Machine to machine

VLAN Virtual LAN

VXLAN Virtual Extensible LAN

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D4.1 SEMIoTICS SPDI Patterns (first draft)

Dissemination level: Public

5

GRE Generic Routing Encapsulation

IDS Intrusion Detection System

CPU Central Processing Unit

VNF Virtual Network Function

ACS AREAS Cloud Service

EMF Eclipse Modelling Framework

UML Unified Modelling Language

WF Workflow

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D4.1 SEMIoTICS SPDI Patterns (first draft)

Dissemination level: Public

6

1 INTRODUCTION
This deliverable is the first output of Task 4.1 (“Architectural SPDI Patterns”) and provides the initial version of
the language for specifying SPDI patterns, referred to as pattern-language in the rest of this deliverable, and
the initial set of SPDI patterns developed in SEMIoTICS. This is directly targeting the first key overarching
objective of WP4, which is to: “Define a language for specifying machine interpretable SPDI patterns and
develop patterns encoding horizontal and vertical ways of composing parts of IoT applications that can
evidently guarantee SPDI properties across heterogeneous smart objects and components from all layers of
the IoT application implementation stack.”

In more detail, Task 4.1 activities focus on defining a language for specifying machine interpretable SPDI
patterns and then develop and specify, using this language, patterns encoding horizontal and vertical ways of
composing parts of or end-to-end IoT applications that can evidently guarantee SPDI properties. Such
properties may apply across heterogeneous smart objects and components from all layers of the
implementation stack of an IoT application. Thus, this deliverable presents the initial outcomes of Task 4.1.
More specifically, it presents the requirements, design process and the first version of the definition of the
pattern-language that will be used for the specification of the SEMIoTICS SPDI patterns. It also presents a first
set of SPDI patterns. The final versions of all of these aspects will be documented in the final version of this
deliverable, i.e. on D4.8 “SEMIoTICS SPDI Patterns (final)”, to be delivered in month 28 of the project.

The pattern language itself is based on a system model defined and presented within this deliverable. Said
system model is encompassing smart objects in the field layer (IoT sensors, actuators and gateways), the
network layers (e.g., SDN controllers) and at the backend (e.g., backend services), and the associated SPDI
and QoS properties, as well as their orchestrations. This model forms the basis of the language definition,
while a grammar is also defined to specify the exact structure of the language. The translation from this
language to a machine-processable format to allow for automated verification of the properties and the
triggering of adaptations is presented as well.

Moreover, a set of preliminary SPDI patterns have been defined in the deliverable, covering each of the key
properties (i.e., Confidentiality, Integrity, Availability, Dependability and Interoperability) and the different data
states (data in transit, at rest, and in process). A representation of these in machine-processable format is also
included, covering an important implementation aspect that will enable the automated processing, verification
and adaptation driven by the patterns.

In addition to the above, the deliverable also presents some pointers and examples of the envisioned
integration of the above pattern-driven elements with the Recipes approach. The latter allows the definition of
abstract IoT orchestrations, hiding the implementation details from the end user. The user (e.g., IoT service
provider or application developer) does not need to have expertise in configuring the network and physical
connections between the involved IoT devices, can use the Recipe definition tool to define this intended
application and the required SPDI and QoS at a high level. Then, these can be automatically instantiated
(choosing specific implementations of the included elements), via by the tool and the underlying technologies.
Thus, the integration of Recipes and Patterns will enable the user-friendly, abstract definition of IoT
orchestrations (through Recipes) with SPDI and QoS guarantees for said orchest rations, both at design and
runtime (through Patterns).

In more detail, and considering the above, the deliverable is structured as follows:
• Chapter 2 summarises the pattern language requirements that will have to be considered when defining

the language and the patterns.

• Chapter 3 features the pattern language definition, including the presentation of the SEMIoTICS
system model derived, the grammar of the language and the way this will be translated into a machine-
processable format to enable the automated SPDI-driven processing and adaptation.

• Chapter 4 provides an initial set of patterns that have been specified based on the language defined
in Chapter 3, covering all core property types, different data states and connectivity/interaction types

• Chapter 5 and 6 present the concept of Recipes, leveraged to define IoT orchestrations in a usable
manner and pointers to the integration approach to be followed for integrating Recipes with the

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D4.1 SEMIoTICS SPDI Patterns (first draft)

Dissemination level: Public

7

SEMIoTICS pattern-driven SPDI monitoring and adaptation approach, along with some examples of
its use.

• Finally, Section 7 features the concluding remarks of the deliverable, with pointers to the next steps
and the planned update to the content provided herein.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D4.1 SEMIoTICS SPDI Patterns (first draft)

Dissemination level: Public

8

1.1 PERT chart of SEMIoTICS

36 months Leader: SAG

31.12.202001.01.2018

WP1: Project Management

23 months Leader: ST-I

30.11.201901.01.2018

WP2: Requirements and Architecture for
Smart Sensing and Smart Actuation

24 months Leader: SAG

30.04.202001.05.2018

WP3: Smart objects and networks

25 months Leader: FORTH

30.06.202001.06.2018

WP4: Pattern-driven smart behavior of
IIoT with End-to-End Security and Privacy

24 months Leader: ENG

31.12.202001.01.2019

WP5: System Integration and Evaluation

36 months Leader: SAG

31.12.202001.01.2018

T1.1: Project coordination 36 months Leader: FORTH

31.12.202001.01.2018

T1.2: Project technical and innovation
management

36 months Leader: SAG

31.12.202001.01.2018

T1.3: Coordination with EU programme
level activities

3 months Leader: STS

31.03.201801.01.2018

T2.1: Analysis of emerging business and
technical IoT value drivers

4 months Leader: SAG

30.04.201801.01.2018

T2.2: Specification of use case scenarios
& applications and their requirements

4 months Leader: ST-I

30.06.201801.03.2018

T2.3: Specification of infrastructure
requirements

18 months Leader: BS

31.12.201901.07.2018

T2.4: SEMIoTICS architecture design

22 months Leader: SAG

29.02.202001.05.2018

T3.1: Software defined Aggregation,
Orchestration and cloud networks

22 months Leader: CTTC

29.02.202001.05.2018

T3.2: IIoT Network Function Virtualization

22 months Leader: SAG

29.02.202001.05.2018

T3.3: Semantics-based bootstrapping &
interfacing

22 months Leader: STS

29.02.202001.05.2018

T3.4: Network-level semantic
Interoperability

22 months Leader: IQU

30.04.202001.07.2018

T3.5: Implementation of Field-level
middleware & networking toolbox

23 months Leader: STS

30.04.202001.06.2018

T4.1:Architectural SPDI patterns

22 months Leader: ENG

30.04.202001.07.2018

T4.2: Monitoring, prediction and
diagnosis

22 months Leader: ST-I

30.04.202001.07.2018

T4.3: Embedded Intelligence and local
analytics

22 months Leader: FORTH

30.04.202001.07.2018

T4.4: End-to-End Semantic
Interoperability

22 months Leader: BS

30.06.202001.09.2018

T4.6: Implementation of SEMIoTICS
backend API

22 months Leader: UP

30.04.202001.07.2018

T4.5: End-to-End Security and Privacy

5 months Leader: UP

31.10.201901.06.2019

T5.1: KPIs and Evaluation Methodology

15 months Leader: BS

31.08.202001.06.2019

T5.2: Software system integration

20 months Leader: IQU

31.08.202001.01.2019

T5.3: IIoT Infrastructure set-up and
testing

13 months Leader: SAG

31.12.202001.12.2019

T5.4: Demonstration and validation of
IWPC- Energy scenario

13 months Leader: ENG

31.12.202001.12.2019

T5.5: Demonstration and validation of
SARA-Health scenario

13 months Leader: ST-I

31.12.202001.12.2019

T5.6: Demonstration and validation of
IHES-Generic IoT scenario

36 months Leader: CTTC

31.12.202001.01.2018

T6.1: Impact Creation and Dissemination 31 months Leader: ENG

31.12.202001.06.2018

T6.2: Exploitation of results

24 months Leader: SAG

31.12.202001.01.2019

T6.3: Standardization
36 months Leader: CTTC

31.12.202001.01.2018

WP6: Impact, Dissemination and
Standardization

Please note that the PERT chart is kept on task level for better readability.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D4.1 SEMIoTICS SPDI Patterns (first draft)

Dissemination level: Public

9

2 SPDI PATTERN REQUIREMENTS
An important first step in the development of the SEMIoTICS pattern language is to define the requ irements
that will guide the development of said language.

In this context, it is essential to consider how the pattern language will be used to specify machine interpretable
SPDI patterns supporting:

– the composition structure of the IoT applications and platform components;
– the end-to-end SPDI properties guaranteed by the pattern;
– the smart object/component/activity level SPDI properties required for the end-to-end SPDI

properties to hold;
– conditions about pattern components that need to be monitored at runtime to ensure
– end-to-end SPDI properties; and
– ways of adapting and/or replacing individual IoT application smart objects/components that

instantiate the pattern if it becomes necessary at runtime (e.g., when some components become
unavailable).

Moreover, the SPDI language will need to be able to support the definition of all SPDI properties, including the
six core property types, namely:

– Security (S), i.e. Confidentiality, integrity and availability,
– Privacy (P),
– Dependability (D) and
– Interoperability (I).

The above will be considered in all three data states:

– Data-in-transit,
– Data-at-rest, and
– Data-in-processing.

...and two cases of IoT platform connectivity:

– Within the SEMIoTICS platform
– Across IoT platforms

Considering these aspects, the detailed requirements are analysed in the subsections below, organized per
SPDI property.

2.1 Security

Security is generally composed of the three properties of confidentiality, integrity, and availability, som etimes
also abbreviated as CIA. In more detail:

– Confidentiality: the disclosure of information happens only in an authorised manner; i.e. non-
authorised access to information should not be possible.

– Integrity: maintenance and assurance of the accuracy and consistency of data.
– Availability: the invocation of an operation to access some information or use a resource leads to a

correct response to the request.

Therefore, for the pattern language, we will also develop patterns covering these three aspects , at the
component as well as at the end-to-end and workflow level.

In terms of the composition structures of IoT applications and platform components, the following must be
considered:

– Confidentiality: End-to-end confidentiality can be composed as confidentiality of each link, of each
platform handling the data, and of each platform processing the data. If one link or one platform fails
to achieve the property, then the property is broken end-to-end.

– Integrity: End-to-end integrity can be composed as integrity of each link and of each platform handling
the data. If one link or one platform fails to achieve the property, then the property is broken end -to-

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D4.1 SEMIoTICS SPDI Patterns (first draft)

Dissemination level: Public

10

end. For data-in-processing, integrity is typically irrelevant, as in most changes said processing
changes data; though there are cases where integrity of the processing would need to me monitored
(e.g. through internal checks in the processing functions). Data links in this context are logical links
and not network links. In particular, some SDN nodes may not be endpoints of a data link. Instead,
there may be a direct logical link between gateway and backend, preserving confidentiality and/or
integrity from gateway to backend.

– Availability: For availability, we consider mainly availability of network connections.
Sensors/actuators, gateways, switches and backend are usually singular components existing only
once, i.e. if one of these devices or platforms fails, then overall availability is lost. Thus, as there are
no alternatives in these cases, a pattern has no means of ensuring availability. In contrast, on the
network layer, SEMIoTICS generally assumes that there are several redundant network connections
available: The software defined network (SDN), interconnected by various SDN switches, connects the
gateway to the backend. In this case, a connection from gateway to backend is assumed to be available
if each intermediate hop on the connection is available. Should at least one intermediate hop from or
to an SDN switch become non-available, then the pattern can reroute the connection from gateway to
backend (or vice versa) to use a different intermediate route which is available.

In addition to the above, smart object/component/activity level SPDI properties required for the end-to-end
properties to hold. All components must provide standardized APIs for security functions which are mandatory
to be used, i.e. applications or virtual network functions must not use their own cryptography libraries. This is
necessary to be able to monitor use of cryptographic functions in order to enforce patterns.

Monitored conditions about pattern components to ensure above-mentioned E2E properties are needed.
These could include, e.g., encryption enforcement monitors, checks that traffic is encrypted, integrity checks
on stored data, or network components, such as SDN controllers and nodes, that are monitored for availability.

An example of such a monitor for the Availability property would be simple to devise, as a component is
considered to be available if it can be reached via the network and is able to perform specified services. Non -
availability can be due, e.g., to loss of network connectivity or the hardware running a network component
failing.

For Confidentiality, some examples for each state of data could include:

– Data in transit: At least one of the endpoints needs to be monitored. If there is a standard system -wide
API for cryptography functions, behavioural monitoring can be used: Before data can be transf erred, it
has to be encrypted, i.e. a call to a sufficiently strong encryption function must be observed. Depending
on the scenario, a call to a key generation function can also be required to generate keys for encryption
(and also to distribute them). If these calls, as required by the pattern, are missing, then a warning can
be logged and/or the network transmission can be stopped.

– Data at rest: Similarly, to data in transit, behaviour monitoring can be used to determine whether
confidentiality of data is ensured using sufficiently strong encryption. Before data is written to a file,
there must be a corresponding call to an encryption function. After data is read from a file, there must
be a corresponding call to a decryption function.

– Data in processing: For data processing, data at rest must be decrypted. During processing, it must be
monitored that there are no unexpected network connections by the data processing process(es).

Furthermore, patterns can also define to which recipients’ data may be sent in order to protect confidentiality
of data.

Similarly, for Integrity:

– Data in transit: Many network protocols provide integrity protection. Thus, if data integrity is required,
it must be monitored that protocols meeting this requirement are used.

– Data at rest: Data at rest is usually integrity protected at the hardware level and/or at the file system
level.

Finally, runtime adaptations will be needed to ensure the required (and monitored) security properties are
maintained, i.e. ways of adapting and/or replacing concrete IoT application smart objects/components that

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D4.1 SEMIoTICS SPDI Patterns (first draft)

Dissemination level: Public

11

instantiate the pattern if it becomes necessary at runtime. Thus, these will also need to be encoded in the
developed language.

2.2 Privacy

There have been plenty attempts to define privacy over the years but so far, no universal definition could be
created. Despite the fact that the claim for privacy is universal, its concrete form differs according to the current
era and context (technical landscape) [1]. In any case, IIoT devices generate, process, exchange and store
vast amounts of security add safety-critical data as well as privacy-sensitive information hence careful handling
is needed, both from an ethical as well as a regulatory perspective (esp. in cases where medical data is
involved).

It is important to understand that information collected in a system becomes personal if identity can b e
correlated with an activity [2]. Such identification can be direct or indirect. The identifier can be a name, an
identification number, location data or an online identifier (such as IP address). It may also be specific to the
physical, physiological, genetic, mental, economic, cultural or social identity of that natural person [3]. This is
why data protect law does not apply to anonymous data (i.e., data in which the data subjects are no longer
identifiable). However, if the risk of identif ication is reasonably high, then the information should be regarded
as personal data [4], experience shows that the risks may be quite high [5].

2.2.1 REGULATORY REQUIREMENTS

An important aspect when considering privacy is the compliance with regulations (such as the General Data
Protection Regulation of European Union – Regulation (EC) 2016/679 (European Parliament 2016)) [3] and
several standards, like the ISO/IEC standards 27018 (ISO/IEC 2014) [6] and 29100 (ISO/IEC 2011) [7]. Some
key aspects to be considered in the pattern language design (and the SEMIoTICS approach as a whole) are
analysed below.

Under the GDPR1, data controllers and processors need to ‘’implement appropriate technical and
organizational measures’’ (GDPR, Article 32). Such measures shall take into account the following elements:

– State-of-the-art;
– Cost of implementation;
– Nature, scope, context and purposes of the processing; and
– Risk of varying likelihood and severity of the rights and freedoms of natural persons

Nevertheless, the security measures to be implemented should be ‘’appropriate to the risk’’

– the pseudonymization and encryption of personal data;
– the ability to ensure the on-going confidentiality, integrity, availability and resilience of processing

systems and services;
– the ability to restore the availability and access to personal data in a timely manner in the event of

a physical or technical incident; and
– a process for regularly testing, assessing and evaluating the effectiveness of technical and

organizational measures for ensuring the security of the processing.
When considering the NIS directive, the following should be considered:

Essential Service "a service essential for the maintenance of critical societal and/or economic activities
depending on network & information systems, an incident to which would have significant disruptive effects on
the service provision “, defined in article 5.

EU Member States have to identify the operators of essential services established on their territory by 27
months after entry into force of the Directive. Operators active in the following sectors may be included: energy,
transport, banking, stock exchange, healthcare, utilities, and digital infrastructure (NIS Directive, Annex II)2.

1 https://eugdpr.org/
2 https://www.enisa.europa.eu/topics/nis-directive

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D4.1 SEMIoTICS SPDI Patterns (first draft)

Dissemination level: Public

12

When determining the significance of a disruptive effect in order to identify operators of essential services, the EU
Member States must consider the following factors:

• the number of users relying on the service concerned;
o For health sector, the number of patients under the provider’s care per year.

• the dependency of (one of) the sectors mentioned above on the service concerned;

• the impact incidents could have on economic and societal activities or public safety;

• the market shares of the entity concerned;

• the geographic spread of the area that could be affected by an incident;

• the importance of the entity to maintain a sufficient level of the service, taking into account the availability
of alternative means for the provision of that service;

o With regard to energy suppliers, we should be considered circumstances where an incident would
have significant disruptive effect on the provision of an essential services. Such factors could
include the volume or proportion of national power generated;

• and any other appropriate sector-specific factor (NIS Directive, art 6).

Digital Service "any service normally provided for remuneration, at a distance, by electronic means and at the
individual request of a recipient of services" (NIS Directive, art 4(5)). The NIS covers three different types of digital
services, Online Marketplace, Online search engine and Online computing service.
For our cases we need to consider the Online computing service which is defined as “services that allow access to
a scalable and elastic pool of shareable computing resources”.

2.2.2 PILOT-SPECIFIC PRIVACY ASPECTS

Since the 1st and 2nd pilot of SEMIoTICS focus on specific vertical domains, the intrinsic requirements of each
of those verticals has to be considered. The Industrial environment of UC1 has quite different requirements to
the healthcare environment of UC2, while the horizontal pilot (UC3) has to be able to consider to these and
other vertical domains and their intricacies. Especially for UC2 and the healthcare domain, special care will
need to be taken to monitor and safeguard the Privacy properties of components and their orchestrations.

2.2.2.1 HEALTHCARE-SPECIFIC PRIVACY CONSIDERATIONS

Additionally, specific requirements must be met for the demonstration of SEMIoTICS framework in the
healthcare pilot, the SARA-Health scenario. Following the example of HIPAA Privacy Rule (Health and Human
Services Privacy Rule and Public Health) [8], the definition of protected health information is needed” (HHSa,
2003, p. 1); the definition and limitation of the circumstances in which an individual’s protected health
information may be used or disclosed (HHSa, 2003, p. 4); the goal is to strike a balance that permits important
uses of information, while protecting the privacy of people who seek care and healing (HHSa, 2003, p. 1).

Additionally, End-user consent is crucial in the healthcare sector, patients should have control over their data
(e.g. Personal Health Record – PHR); who can access, for how long and under what conditions. Failure to
ensure the above may result in significant physical, financial and emotional harm to the patient . Slamanig and
Stringle [8] present certain mechanisms for prevent disclosure related attacks;

– Unlinkability

A system containing n users provides unlinkability if the relation of a document Di and a user Uj exists
with probability p= 1/n. Hence, an insider or attacker cannot gain any information on links between users
and documents by means of solely observing the system.

– Anonymity

It is the state of being not identifiable within a set of subjects X. The degree of anonymity can be measured
by the size of anonymity set |X|. For example, anonymity is provided when anonymous user in a set U′ ⊆U
can access document Dj

– Identity Management
A user’s identity can be managed by dividing the identity of a person into sub-identities I = {Ipublic, I1,.Ik
}, where each sub-identity is a user-chosen pseudonym. A user can assign any sub-identity for any subset

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D4.1 SEMIoTICS SPDI Patterns (first draft)

Dissemination level: Public

13

of his PHR/HER records. This allows the hiding of sensitive data via a sub-identity, this protecting them
from disclosure attacks.

Data that can be used to traced back the identity or the location of the patient [9] should be carefully handled
and be protected, meaning that mechanisms such as encryption [10], HL75 protocols and
anonymization/pseydo-anonymization, should be examined. Considering mechanisms like this, we can hide
the real identity that is tied to the stored data so that is not directly associable to the patient. Even if that that
data somehow ends on an unauthorized user, he will not be able to leverage (e.g. sell, modify it) it, without the
encryption key. Although invoking unlinkability/anonymity is very important we also need to consider ways of
achieving it so that we don’t disturb our data handling, in terms of data incorrectly ascribed (at any point in the
System’s processing of that data) to another patient. Since this will not only disclosure confidential data of a
current patient but also may cause medical problems due to false data for the assessment.

Other than sensor data during the SARA program, audio and video transmissions are captured during tele -
presence, SARA through SEMIoTICS must ensure that these communications remain private and follow the
same principles as we mentioned above. Storage of the said data, should be limited to what’s necessary and
accomplished in a secure backend database.

The accessibility of such data should be limited to authorized personnel that registered through a strict (e.g.
two factor) authentication process. Furthermore, the principle of least privilege should be used to minimize the
exposure of such data on irrelevant parties. For instance, the patient’s General Practitioner should have access
to all Patient medical records whereas the technician should only have access to technical system
configuration information. Using this approach, when an incident occurs we can already narrow our search.

As mentioned above, consent is crucial on nowadays technical landscape and more importantly to sensitive
health related data gathered by IoT devices. We must consider mechanisms that ensure that the patient (or
close relatives) should always be properly informed (e.g. by the RA) prior of using the service. This includes
notifications to the user, whenever a tele-presence session is about to begin & to end, and the clarification of
the identity of the person responsible for that session (e.g. remote operator)

When considering the composition structures of IoT applications and platform components, the following
aspects should be highlighted:

– Data pseudonymization in-transit: Data’s identifier should not be able to be tracked directly during
transit.

– Data pseudonymization at rest: Data’s identifier won’t be able to be tracked directly during rest.
– Data pseudonymization in-transformation: Pseudonymization should be reversible and should still

remain difficult to track directly during transformation. Transformation should be reversible while
keeping the pseudonymization.

In the privacy context, the E2E properties that must be guaranteed by the patterns and their protection
mechanisms should include

• Data collection
o Consent
o Opt-in
o Fairness

• Data access
o Identifiability
o Notification
o Auditability
o Challenge compliance (Accountability)

• Data usage
o Retention
o Disposal
o Report
o Break or incident

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D4.1 SEMIoTICS SPDI Patterns (first draft)

Dissemination level: Public

14

For the E2E properties to hold, additional component-level properties must be identified and guaranteed by
the patterns. Regarding sensors, initially, proper configuration must be attained via certain pattern
mechanisms; these mechanisms need to be easily repeatable in order for re-configuration on runtime to apply.
Appropriate, authentication must be achieved through identifiable attributes that can be integrated in the
sensor’s hardware such as Trusted Platform Module [11]. Additionally, it is important that the sensors have
enough resources (e.g. computational power) to complete as much processing of the data as possible at their
end, to effectively avoid leaking identifiable or user related data to interested parties; if they do need to send
such data for the purposes of SEMIoTICS, then operations to encrypt and anonymize the data must be
supported by the computational environment and performed prior sending them. Malfunctioning sensors, that
can no longer guarantee the properties above should be detected by the Sensing unit’s dedicated firewall and
reported to the IoT gateway.

For both E2E and component-level properties to endure through the pattern language mechanisms,
SEMIoTICS will monitor certain conditions and make necessary runtime adaptations.

Authentication and authorization services throughout the framework (cross-layer) and between all components
(cross-platform) must be observed carefully to ensure only approved and appropriate (e.g. privilege wise)
interactions occur. In the case that an abuse is detected, specific pattern-based mechanisms must engage to
notify related components, such as an IoT gateway, to compel certain actions (e.g. shutdown a sensing unit).
Moreover, the patterns must track the procedures that interact with sensitive data and intend to secure them;
including protection of sensitive data at rest and at transit operations (e.g. encryption); mechanisms that ensure
only the necessary data is aggregated, stored, processed and send (minimization, under GDPR); mechanisms
that offer secure disposition/deletion of unimportant, no longer relevant or personal data (under GDPR’s right
to be forgotten). In the event of misuse of such mechanisms, due to misconfiguration/malfunction/malicious
activity, specific privacy-pattern-driven operations will be used in runtime to tackle this.

2.3 Dependability

Dependability is the ability of a system to deliver its intended level of service to its users [12]. The main
attributes which constitute dependability are reliability, availability, safety and maintainability. Dependable
systems impose the necessity to provide higher fault and intrusion tolerance. The satisfaction of these
attributes can avoid threats such as faults, errors and failures offering fault prevention, fault tolerance and fault
detection. More specifically, dependability in SEMIoTICS is focused on three major attributes such as re liability,
availability, and fault tolerance as follows:

• Reliability is the ability of a system to perform a required function under stated conditions for a
specified period of time [13]. It is an attribute of system dependability and it is also correlated with
availability. For hardware components, the property is usually provided by the manufacturer. This is
calculated based on the complexity and the age of the component. Reliability can be classified into two
main categories the deterministic models and the probabilistic ones.

• Availability guarantees that information is available when it is needed [13]. The lack of availability in
network transmissions has a severe influence on both the security and the dependability of network.
More specifically, network availability is the ability of a system to be operational and accessible when
required for use. Moreover, availability in networks is the probability of successful packet reception
[14]. Other factors which affect the availability of a link are the transmission range of the signal strength,
noise, fading effects, interference, modulation method, and frequency.

• Fault Tolerance is the ability of a system or component to continue normal operation despite the
presence of hardware or software faults [13]. Network fault tolerance appears to be a critical topic for
research [15]. The most common solutions to guarantee fault tolerance and avoid single point of failure,
include the replication of paths forwarding traffic in parallel, the use of redundant paths and the ability
to switch in case of failure (failover) and traffic diversity. Fault tolerance mechanisms exists in all layers
of field, network and backend/cloud. In the field layer, failures involve the drop of sensors or actuators
and the gateways. More specifically, fault tolerance in network architectures requires the design of a
network able to guarantee avoidance of single or multiple link failures, faulty end hosts and switches,
or attacks. The key technical solution of the problem includes the creation of a fault tolerance
mechanism to provide open-flexible design where existing fault tolerance solutions are not effective.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D4.1 SEMIoTICS SPDI Patterns (first draft)

Dissemination level: Public

15

Dependability analysis of an IoT system includes whether non-functional requirements such as availability,
reliability, safety and maintainability are preserved. The conditions depend on the respective dependability
property that the system guarantee. The satisfiability of a property can be defined by a Boolean value (i.e. true,
false), an arithmetic measure (i.e. delay) or probability measure (i.e. reliability/uptime availability).

More specifically, for the SEMIoTICS framework a number of different dependability requirements have been
defined as follows:

• Use Case 1 (Wind Energy) defines that network resource isolation must be performed for guaranteed
service properties – i.e. reliability, delay and bandwidth constraints. Furthermore, fail -over and highly
available network management shall be performed in the face of either controller or data-plane failures.
Finally, decisions made by unreliable, i.e. faulty or malicious SDN controllers, shall be identified and
excluded.

• Use case 2 (SARA) defines that SEMIoTICS platform should support time- and safety- critical
requirements by allowing SARA application logic to be deployed on resource-constrained edge
gateways (e.g. smartphones, vehicles, mobile robots). SEMIoTICS platform functionalities should be
locally available even in case of failure of communication with the SEMIoTICS cloud nodes.
Furthermore, the SEMIoTICS platform should support the SARA solution to manage the trade-off
between different requirements (e.g. reliability, power consumption, latency, fault -tolerance) by
allowing both SARA application logic and platform features to be distributed over a cluster of gateways
(SARA Hubs). Finally, the connectivity should keep track of the field device connectivity state (e.g. to
detect anomalies, but also required for higher-level (cognitive) control algorithms).

• In Use Case 3 (Smart Sensing), there are not defined any specific dependability requirements.
However, the previously described properties such as reliability, safety and availability requirements
should be also satisfied for the component in the field layer as involved for this scenario.

In terms of the Composition structures of IoT applications and platform components, the following aspects
should be noted: The definition of the composition includes also a set of constraints as requirements that
should be satisfied by the individual components composed or by the component composition as a whole.
These constraints may represent functional requirements such as connectivity and reachability. Considering
the functional requirements, the connectivity between the different components is one of mode crucial
requirements of the component composition. Different parameters such as the distance between network
nodes that is a topological constraint for a network may also be expressed through patterns constraints. For
instance, in wired networks this connectivity can be satisfied using suitable interfaces and cables.

However, in IoT devices such as wireless sensors, the connectivity is based on the coverage of each IoT
device and it can be classified into deterministic and probabilistic models. But for a wireless link the following
can be assumed: either a communication link can be characterized as a component having speci fic properties
(propagation, length, interference, noise, etc.) or a link can be a connector which connects two components
i.e. two wireless sensors. Other constraints which may be expressed may refer to the quantity and type of
nodes, interfaces per nodes, cost and energy consumption. Furthermore, the applications and services in the
that make use of the network are crucial factors on the design of a network as they can affect the available
resources such as computational power, available memory, storage and networking capabilities.

Based on the above, as components, we may consider the different elements of SEMIoTICS architecture. That
includes applications and clouds in the backend cloud, controllers, switches in the network level, and finally,
sensors, gateways and actuators in the field devices.

In terms of the E2E properties that must be guaranteed by the patterns, the need for end-to-end dependability
between the heterogeneous IoT devices (at the field level), the heterogeneous IoT Platforms (at the b ackend
cloud level) and the network level include high adaptation capability to accommodate different dependability
needs such as reliable communication, availability and low latency.

Monitored Conditions about pattern components to ensure above-mentioned E2E properties should include

failure monitoring and detection, which is required to discover link failures and packet losses in order to identify
lack of network availability. To do so, a suitable mechanism is able to dynamically monitoring path and
component conditions. For instance, in network layer, when there are dropped packets between two nodes or

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D4.1 SEMIoTICS SPDI Patterns (first draft)

Dissemination level: Public

16

the link is down, the monitoring mechanism detects it as failure. This can be done also by the use of node
connector statistics as fetched by switches such as receive/transmit packets, errors, drops CRC errors and
collisions in the SDN components. Furthermore, these statistics can be used as an intrusion detection
mechanism to forward traffic to different secure paths. In SEMIoTICS, suitable mechanism shoul d be defined
for monitoring the components on the different layers of SEMIoTICS architecture.

When the monitors detect unwanted alterations of the dependability state, ways of adapting and/or replacing
concrete IoT application smart objects/components that instantiate the pattern should be present, if it becomes
necessary, at runtime. Dependability-driven adaptations can be used at runtime when the property is
violated in case of DoS attacks. In case of a network fall, new alternative network paths or components must
be found. However, the most important factor for runtime adaptation appear to be after the detection and the
identification of an attack/ failure, the required adaptation time for restoration . Apart from the proactive
definition of the respective paths, a reactive mechanism should exist to dynamically allocate paths for fast fault
detection and restoration, which is required to detect link failures and packet losses in order to restore network
availability. The abstract form of the fault detection and restoration of network faults or attacks and can be
applied first locally and then globally. In SEMIoTICS, suitable mechanism should be defined to replace, re-
instantiate, or reroute traffic at runtime adaptation.

2.4 Interoperability

Desired interoperability characteristic imposes special requirements on the designed SEMIoTICS framework.
Interoperability gives an ability to a system or a product to connect and work with other systems or products.
Interoperability is defined as a characteristic of a product or system, whose interfaces are completely
understood, to work with other products or systems, present or future, in either implementation or access,
without any restrictions [16].

The following types of interoperability can be distinguished and will be covered by SEMIoTICS:

• Technological interoperability – enables seamless operation and cooperation on heterogeneous
devices that utilize different communication protocols

• Syntactic interoperability – establishes clearly defined formats for data, interfaces and encoding

• Semantic interoperability – settles commonly agreed information models and ontologies for the used
terms that are processed by the interfaces or are included in exchanged data
Organizational interoperability – cross-domain service integration and orchestration through
common semantic and programming interfaces.

Considering the composition structures of IoT applications and platform components, and from the perspective
of semantic operability, an information about every entity should be available through dedicated interface.
There should be interfaces for exchanging information about entities, values of their attributes, metadata and
availability status. Similarly, IoT platforms services should be available to use via dedicated interface. Some
key components to be considered in the regard, are highlighted below.

Semantic Broker: Although, a common interpretation of exchanged information is a desired characteristic of
designed SEMIoTICS solution, shared ontology between local systems is not always available. Thus, it is
necessary to enable interaction in indirect way. The Semantic Information Broker proposed in [17] can be used
for this purpose. This component is responsible for correlating required information and enabling the
interoperability of systems with different semantics as well as cross-domain interaction.

The metadata interoperability is a prerequisite for uniform access to objects in multiple autonomous and
heterogeneous systems. Domain experts must establish the metadata interoperability model before uniform
access can be achieved [18]. Metadata interoperability can be defined as a qualitative property of metadata
information objects that enables systems and applications to work with or use these objects across system
boundaries [18].

Mechanisms that can be used to reconciling heterogeneities among models are: language mapping, schema
mapping, instance transformation and metadata mapping [18]. For example, temperature units can be
Fahrenheit, Celsius or Kelvin, but they express the same information which can be obtained after proper

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D4.1 SEMIoTICS SPDI Patterns (first draft)

Dissemination level: Public

17

instance transformation (Figure 1) using the correct mathematical formula. Semantic ontology for each domain
(healthcare, smart sensing, renewable energy) should be established first by domain experts.

FIGURE 1 ACHIEVING METADATA INTEROPERABILITY BY INSTANCE TRANSFORMATION MAPPING
ON THE EXAMPLE OF TEMPERATURE

Common Programming Interface: Furthermore, a common Application Programming Interface (API) is
established by EU funded project BIG IoT between different IoT middleware platforms. This approach wi ll ease
the development of software services and applications for different platforms.

Functionalities provided by such an API can also implement interoperability on device -, fog-, and cloud-level.
The main functionalities of API:

- Identity management and registration to resources
- Resource discovery based on user-defined criteria
- Access to data or metadata (publish/subscribe streams)
- Command forwarding to things enabling smart actuation
- Vocabulary management of semantic information
- Security management (authentication, authorization, key management)

Charging and billing management for using providing assets.

In terms of the corresponding E2E properties that must be guaranteed by the patterns, and from the
perspective of IoT landscape, interoperability means that every smart object should be seamlessly plugged
into a system without additional effort while the whole process of establishing meaningful connection should
be as transparent as possible. The data collected by smart objects should be sent automatically in a way that
ensures user requirements and this data should be completely understood in the destination place without any
loss of data (or with acceptable minimal one). Established connection must have confidentiality and integrity
properties, but other patterns will be responsible for that. From the destination perspective it should be also
possible to seamlessly interact with smart objects like actuators to enable actions in response to corresponding
events generated by analytics backend. To fulfil interoperability pattern requirements SEMIoTICS framework
should have an ability not only to recognize and balance the heterogeneous capabilities and constraints of
smart objects and to correctly interpret data generated by this objects, but a lso to establish meaningful
connections between different IoT platforms.

IoT ecosystem’s end-to-end interoperability features that should be guaranteed by service orchestration-
focused patterns, referred to as Recipes, introduced in the context of the BIG IoT project3. These patterns are
listed below [19].

- Cross platform – applications or services access resources from multiple platform though the common
interfaces.

3 http://big-iot.eu/

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D4.1 SEMIoTICS SPDI Patterns (first draft)

Dissemination level: Public

18

- Platform-scale independence – integrates the resources from platforms at different scale in the way
that application can uniformly aggregate information for different scale platforms (cloud-, fog-, device-
level).

- Platform independence – refers to distinct platforms that implement the same functionality in the way
that ensures that a single driver application can interoperate with both platforms in a uniform manner
without requiring any changes.

- Cross application domain – refers to uniform access to information from platforms that process data
from different domains.

- Higher-level service facades – services can also interact themselves through common API.
Therefore, a single application can interact with two platforms to create value-added operations.

Smart object/component level interoperability properties are required in this case as well, for the end-to-end
properties to hold. A table with component-level interoperability properties is presented below.

TABLE 1 COMPONENT-LEVEL INTEROPERABILITY PROPERTIES

Component Requirements for vertical
interoperability

Requirements for horizontal
interoperability

Smart object Technological interoperability -
device should have a protocol which
enables to operate with framework

Technological interoperability – Two
device should have the same
communicate interface and thus be
able to work with each other

Gateway Technological interoperability –
gateways should implement
multimode radios and support
different technologies (Wi-Fi,
Bluetooth, ZigBee)

Syntactic interoperability –
gateway proxies for messaging
protocols converting messages from
one messaging protocol to
compatible format of another protocol
(RESTful HTTP, CoAP, XMP, MQTT,
DDS, platform specific protocols
<DPWS, UPnP, OSGi> or other
protocols)

Network Technological interoperability –
network elements should support the
same technologies (e.g., wired
Ethernet)

Technological interoperability –
network elements should support the
same technologies (e.g., wired
Ethernet)

Syntactic interoperability –
Considering the presence of SDN,
network elements should support the
same protocol for control flows
(OpenFlow)

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D4.1 SEMIoTICS SPDI Patterns (first draft)

Dissemination level: Public

19

SEMIoTICS

Backend/Cloud

Semantic interoperability and

Cross-domain/organizational
interoperability - usage of some
services like Semantic Information
Brokers correlating required
information and enabling
interoperability of the system

Semantic interoperability and

Cross-domain/organizational
interoperability - common
Application Programming Interface
(API) for connecting platforms and
objects to a SEMIoTICS framework

IoT Platform /

 services

Technological interoperability -
service should have an API which
enables to operate with framework

Semantic interoperability and

Cross-domain/organizational
interoperability – common
programming interface between
different IoT platforms/services to
establish meaningful connection and
give ability to work with each other

When considering Monitored Conditions about pattern components to ensure above-mentioned E2E
properties, verifying whether interoperability requirements are satisfied will be possible by testing if devices
are able to communicate with SEMIoTICS components without compatibility issues in different scenarios.
When any new device is plugged, ensure that data type mappings exist for this smart object, ensure that
semantic mechanism exists and the desired IoT platform/service is available.

Interoperability properties such us cross platform property, platform-scale independence, platform
independence, cross platform domain and higher-level service facades will be tested to ensure interoperability
condition. It should be noted that in the pattern scheme, these properties can also be achieved by the presence
of specific certifications that the devices/applications hold, and which, while valid, provide guarantees about
the interoperability/compatibility properties of the entity.

In terms of ways of adapting and/or replacing concrete IoT application smart objects/components that
instantiate the interoperability pattern if it becomes necessary at runtime, the interoperability between each
related component should be checked again in case of any observed change in connection occurs, before
checking integrity conditions. An any change in connection with the device/smart object, especially
disconnection, should be handled by network protocol.

2.5 Requirements Specification considerations

The table below highlights some key pertinent requirements, as defined in deliverable D2.3 (“Requirements
specification of SEMIoTICS framework”), also including non-SPDI specific requirements, such as
underlying/global requirements, functional requirements etc., that directly or indirectly affect the design of SPDI
patterns and which will need to be considered during the pattern language definition.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D4.1 SEMIoTICS SPDI Patterns (first draft)

Dissemination level: Public

20

TABLE 2. PATTERN LANGUAGE REQUIREMENTS

SEMIoTICS Requirement
Pattern language
considerations

Reference Req. ID Description

R.BC.18
The backend layer must feature SPDI pattern
reasoning embedded intelligence capabilities

This is a core set of
requirements for the SPDI
capabilities that must be
covered within the pattern-
driven approach developed
within T4.1. Individual
Pattern reasoning
components should be
developed and deployed at
all layers, while the backend
should feature global
reasoning capabilities. All
reasoning engines should
aggregate (through
interfacing with monitoring)
relevant information needed
for said reasoning.

The system model
and associated
pattern language
developed are
tailored to the multi-
layer approach of
SEMIoTICS, also
anticipating intra-
and cross- layer
reasoning.

Furthermore,
Pattern reasoning
components
(referred to as
Pattern Engines)
are embedded at all
layers; see
subsection 3.6.2.2.

The real-time
reasoning will be
achieved in
conjunction with the
monitoring
framework
(developed in the
context of T4.2, and
documented in
D4.2), which can be
used for providing
Pattern Rules with
the appropriate
input for reasoning.

R.BC.19
The backend layer should feature pattern-driven
cross-layer orchestration capabilities

R.BC.20

The backend layer must aggregate intra-layer as
well as inter-layer SPDI status information to
enable local and global intelligence reasoning
and adaptation

R.NL.12
The network layer must feature SPDI pattern
reasoning local embedded intelligence
capabilities

R.NL.13
The network layer must aggregate intra-layer
monitored information to enable local intelligence
reasoning and adaptation

R.FD.14
The field layer must feature SPDI pattern
reasoning local embedded intelligence
capabilities

R.FD.15
The field layer must aggregate intra-layer
monitored information to enable local intelligence
reasoning and adaptation

R.GP.1

End-to-end connectivity between the
heterogeneous IoT devices (at the field level)
and the heterogeneous IoT Platforms (at the
backend cloud level)

While an indirect set of
requirements, the various
cross platform and cross
layer interactions (including
E2E between field and
backend) with
heterogeneous components
will need to be supported
and their SPDI properties
monitored accordingly.

As can be seen in
subsections 3.2
(Language Model)
and 3.3 (Language
Constructs),
instances of Java
class Link allows
Pattern Engines to
monitor and verify
connectivity among
IoT service
orchestration

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D4.1 SEMIoTICS SPDI Patterns (first draft)

Dissemination level: Public

21

components. This
also encompasses
the pattern-driven
interoperability
mechanisms
developed in the
context T3.4 (and
which are further
described in D3.4),
which leverage the
language and
pattern definitions.

R.UC1.1
Automatic establishment of networking setup
MUST be performed to establish end-to-end
connectivity between different stakeholders

R.UC2.3

The SEMIoTICS platform SHOULD guarantee
proper connectivity between the various
components of the SARA distributed application.
The SARA solution is a distributed application not
only because it uses different cloud services (e.g.
AREAS Cloud services, AI services) from different
remote computational nodes, but also because the
SARA application logic itself is distributed across
various edge nodes (SARA Hubs).

R.GP.3
High adaptation capability to accommodate
different QoS connectivity needs (e.g. low
latency, reliable communication)

Other than the aspects of
availability and
dependability (and
associated concepts; e.g.
fault tolerance) that are
already integral in the SPDI
properties, other QoS-
related parameters (e.g.
latency) can also be
accommodated by the
pattern language adopted.
Moreover, the pattern
language must be able to
leverage appropriate
monitors and interface with
the necessary mechanisms
to act as an enabler for
configuring the network and
triggering network updates /
reconfigurations, as needed
(e.g. for fault tolerance or
QoS).

As can be seen in
subsections 3.2
(Language Model)
and 3.3 (Language
Constructs), Java
class Property owns
an attribute
Category, allowing
Pattern Engines to
monitor QoS
properties of the
components of an
IoT service
orchestration.
Moreover, the
properties
associated with the
Link class directly
affect the
requirements
relayed to the
network layer (with

R.GP.4
Detection of events requiring a QoS change and
triggering network reconfiguration needed by
SPDI pattern

R.GP.7
SDN controller giving feedback for a future
generation of SPDI patterns to avoid using the
same pattern in case of failure

R.UC1.5
Fail-over and highly available network
management SHALL be performed in the face of
either controller or data-plane failures.

R.UC1.3
There MUST be enabled the definition of network
QoS on application-level and automated
translation into SDN controller configurations.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D4.1 SEMIoTICS SPDI Patterns (first draft)

Dissemination level: Public

22

the associated
properties reasoned
by the Pattern
Engine embedded
at the SDN
controller; see
subsection 3.6.2.2).

R.UC1.4
Network resource isolation MUST be performed
for guaranteed Service properties – i.e.
reliability, delay and bandwidth constraints.

R.UC2.15

The SEMIoTICS platform SHOULD provide low
latency connectivity between the SARA hubs and
cloud services (i.e. AREAS cloud services and AI
services) to allow offloading of near real-time
computation intensive tasks to the cloud.
Therefore, SARA hubs need to send with minimal
delay:
• raw range data (e.g. from Lidar sensors) to

identify proximal objects/objects,
• real-time audio stream for speech analysis,

and real-time raw video stream (object/people
recognition, gesture recognition, posture analysis).

R.GSP.1
The Intrusion Detection System (IDS) MUST
capture and process suspicious traffic.

Considerations regarding
any sensitive data that is
generated, processed,
stored and exchanged at all
layers must be considered,
enforcing and monitoring the
corresponding security
mechanisms, especially
when different trust domains
are involved.

Proper authentication and
authorization services are a
necessity when trying to
safeguard the security and
privacy of data and services.
These aspects must be
defined in the pattern
language, monitored and
enforced, considering the
different types of devices
(e.g. sensors, network
controllers, backend
servers), actors (e.g.
humans,
machines/applications) and
interaction types (e.g.
maintenance or medical
staff, simple users). These,
along with cryptographic

Security-related
properties (such as
Confidentiality) are
at the core of the
properties covered
in the SEMIoTICS
system model
(subsection 3.2) and
associated
language
(subsection 3.3).
Moreover, a first
version of security-
related pattern rules
can be seen in
subsection 4.1,
while a first set of
Privacy Patterns
can be seen in
subsection 4.2.

Moreover, using the
pattern language,
different verification
types can be
declared for each of
the properties (see
subsection 3.2); this
can be exploited to
define interfaces

R.NL.11

Secure communication with the various Backend
Cloud components (e.g., use of dedicated
management network, appropriate Firewall
rules), as well as the communication between
VIM, SDN Controller, and MANO, with data paths
acting as computing nodes for VNF spinoff.

R.S.7
The negotiation interface of the SDN Controller
SHALL be secure against network-based attacks

R.S.1
The confidentiality of all network communication
MUST be protected using state-of-the-art
mechanisms.

R.S.6

Sensors SHALL be able to encrypt the data they
generate, i.e. their CPU and memory SHALL be
sufficient to perform these cryptographic
operations.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D4.1 SEMIoTICS SPDI Patterns (first draft)

Dissemination level: Public

23

mechanisms, will need to be
used to establish trust within
and across domains.

Moreover, privacy
considerations will have to
be included (e.g. protection
of private data at rest and in
transit, data anonymization
and minimisation, data
retention; see section 2.2.1
above).

In addition to the above,
patterns can also be
leveraged to monitor and
enforce the presence of
security mechanisms in
different IoT orchestrations.

with the various
security
mechanisms which
will allow the
verification of the
different SPDI
properties
associated with
them (e.g.,
monitoring
encryption
mechanisms that
provide the property
of Confidentiality).

This will be
achieved in
conjunction with the
monitoring
framework
(developed in the
context of T4.2, and
documented in
D4.2), which can be
used for providing
Pattern Rules with
the appropriate
input for reasoning
on relevant security
and privacy -related
aspects, such as
secure deletion of
unnecessary data,
limitation of
sampling via a
variant of the
mechanisms used to
ensure QoS
parameters, etc.

R.S.2

Authentication and authorization of the
stakeholders MUST be enforced by the Network
controller, e.g. through access and role-based
lists for different levels of function granularities
(overlay, customized access to service, QoS
manipulation, etc.)

R.S.3
Sensors SHALL be identifiable (e.g. by a TPM
module/smartcard) and authenticated by the
gateway.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D4.1 SEMIoTICS SPDI Patterns (first draft)

Dissemination level: Public

24

R.S.4
All components from gateway, via SDN
Controller, to cloud platforms and their users
MUST authenticate mutually.

R.S.5
Before sensitive data is being transmitted, the
respective components SHALL be authenticated
as defined by requirements R.S.3 and R.S.4

R.S.17

There MUST be an interface between the
network controller and the network
administrators for the designation of the
applications’ permissions.

R.S.18
All network functions SHALL be mapped to
application permissions

R.GSP.4
Platforms, e.g. cloud platform and sensor,
SHALL be trusted.

R.GSP.9
The SARA system SHALL provide robust
mechanisms to protect Patient-related data…

R.GSP.10

The SARA system MUST fully comply with all
relevant Italian laws governing the privacy,
security and storage of sensitive Patient health-
related data.

R.P.1 The collection of raw data MUST be minimized.

R.P.3 Storage of data MUST be minimized.

R.P.4
A short data retention period MUST be enforced
and maintaining data for longer than necessary
avoided.

R.P.6

Data MUST be anonymized wherever possible
by removing the personally identifiable
information in order to decrease the risk of
unintended disclosure.

R.P.8 Data MUST be stored in encrypted form.

R.P.9
Repeated querying for specific data by
applications, services, or users that are not intent
to act in this manner SHALL be blocked.

R.UC1.6
Decisions made by unreliable, i.e. faulty or
malicious SDN controllers, SHALL be identified
and excluded.

R.GSP.7

The cloud platform SHALL to be able to monitor
the execution of an app, in particular its
interactions with other apps, the network
interface, and APIs.

Events received from
monitoring critical aspects of
the systems’ and
subsystems’ operation, as
highlighted by the pattern

As can be seen in
section 3.2
(Language Model)
and 3.3 (Language
Constructs), the

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D4.1 SEMIoTICS SPDI Patterns (first draft)

Dissemination level: Public

25

language, will need to be
aggregated and evaluated
by the pattern engine. These
will need to encompass
SPDI and other parameters
(e.g. QoS related), as well
as anomalies, indicators of
malicious actions,
malfunction, resource
depletion, failures etc.,
across the different layers
and (physical & logical)
components of the
SEMIoTICS deployment.
Pattern-driven
interoperability mechanisms
will ensure that these
connections can be
established, further explored
in D3.4. In cases of privacy-
sensitive monitoring data
(e.g. location of the device),
the necessary privacy
provisions will need to be
enforced.

pattern language
that has been
created can declare
Properties that their
verification type is
Monitoring. That
allows for capturing
the monitoring
critical aspects and
enabling the
reasoning on
parameters related
to availability,
reliability, .

As above, the
necessary inputs
will be aggregated
from the monitoring
framework of
SEMIoTICS
(T4.2/D4.2).

R.UC2.7

The SEMIoTICS platform SHOULD notify
periodically the SARA solution about the state of
the resources hosted by registered IoT field
devices.

R.UC2.8

The SEMIoTICS connectivity SHOULD keep track
of the field device connectivity state (e.g. to detect
anomalies, but also required for higher-level
(cognitive) control algorithms).

R.UC3.7
MCU IoT Sensing unit shall be able to send
change detection and signal local changes /
anomalies to IoT Sensing gateway.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D4.1 SEMIoTICS SPDI Patterns (first draft)

Dissemination level: Public

26

R.UC3.16

Each registered sensing unit should send to the
sensing gateway a keep alive signal on a
specified period (e.g. few seconds) to notify the
gateway it is correctly working. The sensing
gateway should detect by this mean any non-
working sensing unit and reconfigure the system
accordingly.

R.UC3.18
Sensing units may be equipped with dedicated
FW to detect relevant sensors malfunctioning
and report that to the gateway

R.P.12

During all communication and processing
phases logging MUST be performed to enable
the examination that the system is operating as
promised

Logging is an integral part of
security, enabling auditing
functions and providing
accountability. Moreover,
regulatory drivers also
necessitate it (e.g.
transparency through
logging is essential under
GDPR). This must be
considered in the definition
of the pattern language, the
associated engine and its
monitors, enabling the
provision of reliable and
trustworthy logging
mechanisms both for the
various actors as well as the
events and reasoning of the
pattern engine itself.

All pattern engine
components (see
subsection 3.6.2.2)
feature integrated
logging mechanisms
that allow for
auditing on all
pattern-driven
reasoning and
adaptation actions
triggered.

In other parts of the
SEMIoTICS
framework and
protected
infrastructure, the
deployment and
monitoring of the
proper operation of
the logging
functions can be
introduced as with
any other
mechanism (see
subgroups of
requirements
above).

2.6 Project KPIs considerations

In addition to the requirements stemming from the project’s concept and approach (as described in subsections
2.1 to 2.4), as well as the formally defined project requirements (subsection 2.5), an additional aspect
considered are the overarching Objectives and associated KPIs. These are detailed in Table 3 and Table 4.

TABLE 3. PATTERN-SPECIFIC KPIS

Objective KPI Relation and Status

Description ID Description

1 Development of
patterns for

KPI-1.1 Delivery of 36
verified SPDI

Pattern-driven SPDI management is at the core of
the SEMIoTICS security-by-design approach. The

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D4.1 SEMIoTICS SPDI Patterns (first draft)

Dissemination level: Public

27

orchestration of
smart objects and
IoT platform
enablers in IoT
applications with
guaranteed
security, privacy,
dependability and
interoperability
(SPDI) properties.

patterns covering
the 6 core property
types for 3 data
states and 2 cases

first set of patterns is defined herein (see Section
4). As aggregated in subsection 4.5, 10 out of 36
patterns are presented, while this first set of
patterns covers all key SPDI properties and
different data states and cases of platform
connectivity.

KPI-1.2 Machine-
processable
pattern language

First version of the pattern language is defined and
presented in detail herein (see Section 3). This will
be updated and refined as the implementation of
the SEMIoTICS components and the use case
scenarios progresses, and the final version of the
language will be presented in D4.8, which updates
D4.1.

TABLE 4. CONSIDERATIONS AND RELATION TO OTHER PROJECT OBJECTIVES AND ASSOCIATED
KPIS

Objective KPI Relation and Status

Description ID Description

2 Development of
semantic
interoperability
mechanisms for
smart objects,
networks and IoT
platforms.

KPI-2.1 Semantic descriptions
for 6 types of smart
objects

The pattern-driven approach of SEMIoTICS
has been integrated with the usable IoT
orchestrations framework leveraging Thing
Descriptions (Task 3.3), as shown in Sections
5 and 6 below.

3 Development of
dynamically and
self-adaptable
monitoring
mechanisms
supporting
integrated and
predictive
monitoring of smart
objects of all layers
of the IoT
implementation
stack in a scalable
manner.

KPI-3.1 Delivery of a monitoring
management layer for
generating monitoring
strategies for different
checks and
configurations of
monitors available in
the targeted IoT
platforms

The initial semantics of a monitoring
language, derived in the context of Task 4.2,
are presented in D4.2, while the associated
SPDI monitoring properties are foreseen in
the design of the SPDI model and associated
pattern language (see subsections 3.2 and
3.3, respectively).

KPI-3.2 Delivery of a monitoring
language capable of
defining platform
agnostic monitoring
conditions (as part of
SPDI patterns),
correlations of different
IoT platform events that
are necessary for this,
and predictive
monitoring checks

4 Development of
core mechanisms
for multi-layered

KPI-4.2 Delivery of adaptation
mechanisms that
support proactive and

Pattern rules defined herein (see section 4),
along with the associated pattern components
able to reason on said pattern rules and facts

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D4.1 SEMIoTICS SPDI Patterns (first draft)

Dissemination level: Public

28

embedded
intelligence, IoT
application
adaptation,
learning and
evolution, and end-
to-end security,
privacy,
accountability and
user control.

reactive, as well as
horizontal and vertical
adaptation actions,
related to network,
smart objects and IoT
platforms with an
adaptation time of 15ms

(see subsection 3.6.2), will be key drivers
behind the SEMIoTICS adaptations. This is in
tandem with the proactive mechanisms
(defined within D4.2), backend orchestration
for management/adaptation (see D4.6).

KPI-4.6 Development of 3 new
security
mechanisms/controls
enabling the secure
management of smart
devices and sensors
over programmable
industrial networks

The SPDI-focused pattern-driven monitoring
and adaptation that is at the heart of the
SEMIoTICS concept and is presented herein
is one of the three core security-related
innovations of the project and a key enabler
of the multi-layered embedded intelligence of
the platform.

6 Development of a
reference
prototype of the
SEMIoTICS open
architecture,
demonstrated and
evaluated in both
IIoT (renewable
energy) and IoT
(healthcare), as
well as in a
horizontal use
case bridging the
two landscapes
(smart sensing),
and delivery of the
respective open
API.

KPI-6.1 Reduce Required
Manual Interventions.

The semi-autonomous operation of the IoT
deployment, through the multi-layered
embedded intelligence capabilities that,
among others, the pattern-driven approach
presented herein provides, aims to reduce
manual interventions and also effectively and
efficiently mitigate the SPDI-related risks
stemming from the faults introduced from
erroneous or malicious human actions.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D4.1 SEMIoTICS SPDI Patterns (first draft)

Dissemination level: Public

29

3 PATTERN-LANGUAGE DEFINITION

3.1 Overview

This section defines the Pattern Language. Overall, this language:

- provides constructs for expressing/encoding dependencies between SPDI properties at the component
and at the composition/orchestration level.

- is structural; It does not prescribe exactly how the functions should be executed nor, e.g., how the
ports ensure communication.

- Supports the static and dynamic verification of SPDI properties.
- It is automatically processable by the SEMIoTICS framework so that IoT applications can be adapted

at runtime.

Patterns expressed in this language will enable the pattern-based IoT application management process
followed in SEMIoTICS, in which patterns are used to

• design IoT applications that satisfy required SPDI properties

• verify that existing IoT applications satisfy required SPDI properties at design time, prior to the
deployment of the application

• enable the adaptation of IoT applications or partial orchestrations of components within them at runtime
in a manner that guarantees the satisfaction of required SPDI properties

To fulfil the above, SPDI patterns encode proven dependencies between security, privacy, dependability and
interoperability (SPDI) properties of individual components of IoT applications and corresponding properties of
orchestrations of such components. More specifically, a pattern encodes relationships of the form

P1 and P2 and … and Pn → Pn+1

where Pi (i=1,…,n) are properties of individual components and Pn+1 is a property of the orchestration of these
components. The relation encoded by a pattern is an entailment relation.

The runtime adaptations that can be enabled by SPDI patterns may take three forms:

(1) to replace particular components of an orchestration
(2) to change the structure of an orchestration, and
(3) a combination of (1) and (2).

The above types of adaptations are exemplified in Figure 2, where we consider nodes (these could represent
any atomic component; e.g., a physical device or a service) which are composed through links (e.g., a network
connection) into more complex orchestrations (e.g., a complex workflow involving several services), forming a
graph. As shown in the figure at the node level Node 1 is replaced by Node 1’. This adaptation may, for
example, become necessary as a component of the role and type of Node 1 may be required (by a pattern) to
have a security certificate to prove a property (e.g., encryption of data with a 256 algorithm) that is needed of
the component for the overall system to fulfil another property (confidentiality). If at some point during runtime
the (encryption) certificate of Node1 expires, the active pattern will trigger the replacement the component.
Adaptations may also be at the link level. More specifically, a network link between Node 1 and Node 2 may
be replaced with two links (two alternative networks) to offer increased redundancy (e.g. to achieve the required
levels of dependability). Finally, adaptations may be triggered at graph level. In Figure 2, the graph containing
Node 3, Node 4, Node 5 and their links is replaced completely with a new graph, containing Node 3’, Node 4’
and Node 5’ and their new links (e.g. to satisfy the need for a certain end-to-end security property).

SPDI patterns cover the different and heterogeneous orchestration models required for IoT and Industrial IoT
(IIoT) applications, covering aspects of both the high-level service orchestration view as well as the deployment
view of said applications.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D4.1 SEMIoTICS SPDI Patterns (first draft)

Dissemination level: Public

30

FIGURE 2. EXAMPLES OF PATTERN ADAPTATIONS AT THE NODE, LINK AND GRAPH LEVEL

3.1.1 RELATED WORKS

The popularity of Internet of Things (IoT) brought the realization that the application of semantic technologies
(ontologies, semantic annotation, Linked Data and semantic Web services) to IoT offers many advantages with
the most important of them being interoperability among IoT resources promoting the interoperability among
data providers and consumers, data access and integration, resource discovery, semantic reasoning, and
knowledge extraction. Semantic technologies are the principal solutions for the realization of the IoT [21].
However, the ultimate goal of achieving more capable and powerful applications remains and leads to service
composition approaches oriented in the area of IoT.

There are some attempts for describing IoT service compositions such as those of [21], [22] and [23] which
focus on the energy consumption of the involved IoT devices. The latter pays attention to QoS properties
reducing the services search space and the composition time, but none of them take under consideration
possible Security properties of the individual IoT services or the whole composition.

Moreover, there is the work of [24] that introduce a contExt Aware web Service dEscription Language
(wEASEL) is introduced. wEASEL is an abstract service model to represent services and user tasks in Ambient
Assisted Living (AAL) environments. Attention is paid to data-flow and context-flow constraints for the service
composition but the authors do not mention any security properties.

A work that includes security aspects is that of [25]. BPMN 2.0 is used for the description of the service
choreographies that the built platform can synthesize and execute. Regarding the security aspect, the
enforcement of security properties is exclusively done by the existing communication protocols since the

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D4.1 SEMIoTICS SPDI Patterns (first draft)

Dissemination level: Public

31

security filter component is able to filter these protocols and keep only those that conform to the specified
security requirements.

Finally, [26] present a mechanism that manages IoT choreographies at runtime dynamically. According to their
approach IoT service compositions are described by templates called Recipes, which are consisted of
Ingredients and their Interactions. In addition, there are more requirements described by offering selection
rules (OSRs) that make the reconfiguration of the system possible during runtime. The authors’ service
composition approach is semi-automated to avoid the complexity of the semantic models and the inefficiency
of the reasoner due to the large number of available devices and services. We consider this approach closer
to the way we envision a pattern language. Their way of IoT representation with the notions of Ingredients and
Interactions, and the fact that the OSRs allow for requirement description inspired the creation of the language
described in this chapter.

Table 5 in the next page summarizes related works on different approaches/frameworks of service
composition. This survey of the SoTA, and considering the expertise available within the consortium, the choice
is to combine the expertise on pattern-driven SPDI management with the Recipes approach by [26], tailoring
the former to the intricacies of IoT environments covered in SEMIoTICS and extending the latter with SPDI
property specification, monitoring and adaptation at design and at runtime (through said patterns).

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D4.1 SEMIoTICS SPDI Patterns (first draft)

Dissemination level: Public

TABLE 5: RELATED WORKS

Compositio
n Category Title

Compos
ition
Type

Targeted
Environm

ent Service representation Pros Cons Security

E
n

e
rg

y-
co

n
su

m
p

tio
n

 s
er

vi
ce

 c
o

m
po

si
tio

n

Zhangbing Zhou, Deng Zhao, Lu Liu,
Patrick C.K. Hung, “Energy-aware
composition for wireless sensor
networks as a service”, Future
Generation Computer Systems,
Volume 80, 2018, Pages 299-310,
ISSN 0167-739X,
https://doi.org/10.1016/j.future.2017.0
2.050.

Automat
ed, static

sensor
nodes in
wireless
sensor
networks
(WSNs)

* WSN service is a tuple (nm,dsc, op, eng,
spt, tpr), where (i) nm is the name, (ii) dsc is
the text description, (iii) op is an operation
(functionality), (iv) eng is the remaining
energy, (v) spt is the spatial constraint, and
(vi) tpr is the temporal constraint. * Service
network snSC is adirected graph, and is
represented as a tuple (SvC (=service
classes), Lnk (=direct links), InvP
(=invocation possibility))

+ approximately optimal WSN
services compositions
+ no need for the users to
represent their requirements in a
explisit specification, just input,
output and description
+ energy-aware service
composition
+ high availability

- the linkage
between services
and physical sensor
nodes is not
explored
- high complexity
- low scalability
- a certain, but
limited number of
service classes can
be identified in a
certain domain
(service network)

Not covered / Not
mentioned

Baker, Thar & Asim, Muhammad &
Tawfik, Hissam & Aldawsari, Bandar
& Buyya, Rajkummar. (2017). An
Energy-aware Service Composition
Algorithm for Multiple Cloud-based
IoT Applications. Journal of Network
and Computer Applications.
10.1016/j.jnca.2017.03.008.

Automat
ed, static

IoT a service s is described by its provider in a 3-
tuple format (si,so,sec), where sec is the
energy required for the service computation
at the hosting datacenter, si is the input and
so is the output

+ power efficiency of the
physical devices incomposition
approach
+ minimum number of IoT
services in the composition
+transitional relationships
between the customer and the
datacenters are taken under
consideration
+superior performance against
established composition
algorithms

- each cloud provider
must have pre-
defined/developed
composition plans
- high time and cost

Not covered / Not
mentioned

D
a

ta
-o

ri
e

n
te

d

se
rv

ic
e

co
m

p
o

si
tio

n

A. Urbieta, A. González-Beltrán, S.
Ben Mokhtar, M. Anwar Hossain, L.
Capra, “Adaptive and context-aware
service composition for IoT-based
smart cities”, Future Generation
Computer Systems, Volume 76,
2017, Pages 262-274

Automat
ed, static

IoT contExt Aware web Service dEscription
Language (wEASEL)

+ deals simultaneously with
signature and specification
matching and supports several
concept matching techniques

- no QoS attributes in
the evaluation

Not covered / Not
mentioned

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D4.1 SEMIoTICS SPDI Patterns (first draft)

Dissemination level: Public

33

Montori, Federico & Bedogni, Luca &
Bononi, Luciano. (2017). A
Collaborative Internet of Things
Architecture for Smart Cities and
Environmental Monitoring. IEEE
Internet of Things Journal. PP. 1-1.
10.1109/JIOT.2017.2720855.

Automat
ed, static

IoT N/A + exploitation of the devices
owned by the
end users
+crowdsensing
+homogeneity to data

- end users must
want to participate
(may want a reward)
- some sources may
be unreliable
- no prediction for
sensitive information
- single point of
failure (server-client
system)

Not covered / Not
mentioned

IP
-b

a
se

d
se

rv
ic

e
 c

o
m

p
os

iti
o

n

Kleinfeld, Robert & Steglich, Stephan
& Radziwonowicz, Lukasz & Doukas,
Charalampos. (2014). glue.things – a
Mashup Platform for wiring the
Internet of Things with the Internet of
Services. 10.13140/2.1.3039.9049.

Designer
, static

Web-
enabled
IoT
devices,
web
services

Json-based data models (triggers and
actions)

+ token management of devices
+ user management
+ integration of IoT and web
services,
+ Interfaces for registration,
configuration and monitoring

- availability of nodes
- low scalability

Web service
authorization with
OAuth

Chen, Lei & Englund, Cristofer.
(2017). Choreographing Services for
Smart Cities: Smart Traffic
Demonstration. 1-5.
10.1109/VTCSpring.2017.8108625.

Designer IoT N/A + runtime insurance for services
communication,
+ BPMN usage

- platform under
construction,
- availability of
stakeholders

Filters the interaction
protocols of the
service with respect
to different security
requirements

Doukas, Charalampos & Antonelli,
Fabio. (2015). Developing and
deploying end-to-end interoperable &
discoverable IoT applications. 673-
678. 10.1109/ICC.2015.7248399.

Designer
(uses
Node-
RED),
static

IoT iServe (a service warehouse which unifies
service publication, analysis, and discovery
through the use of lightweight semantics as
well as advanced discovery and analytic
capabilities.)

+ bridge between REST and
MQTT/ WebSockets/STOMP,
+ reuse of services,
+ monitoring

- availability of
services

Access control, Data
privacy, Integrity

Georgios Pierris , Dimosthenis
Kothris , Evaggelos Spyrou , Costas
Spyropoulos, SYNAISTHISI: an
enabling platform for the current
internet of things ecosystem,
Proceedings of the 19th Panhellenic
Conference on Informatics, October
01-03, 2015, Athens, Greece
[doi>10.1145/2801948.2802019]

Designer
, static

IoT
(sensors,
processors
,
actuators)

IoT ontology + SNN ontology + qu-rec20
ontology

+ Reuse of registers services,
+ secure storage

- no GUI yet,
- availability of
services,
- no runtime
monitoring

Authentication,
Authorization, Data-
anonymization in
storage

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D4.1 SEMIoTICS SPDI Patterns (first draft)

Dissemination level: Public

34

Mayer, Simon & Verborgh, Ruben &
Kovatsch, Matthias & Mattern,
Friedemann. (2016). Smart
Configuration of Smart Environments.
IEEE Transactions on Automation
Science and Engineering. 13. 1-9.
10.1109/TASE.2016.2533321.

Automat
ed (goal-
driven
configur
ation),
dynamic

IoT, Web
of things

RESTdesc expressed in Notation3 + adaptation to dynamic
environments,
+ fault tolerance,
+ scalability,
+ correct service composition,
+ security requirements

- no universal
remedy for false
compositions,
- inefficient
reasoning for large
number of devices

Confidentiality of
data exchanged
within a mashup

J. Seeger, R. A. Deshmukh and A.
Broring, "Running Distributed and
Dynamic IoT Choreographies," in
Global IoT Summit (GIoTS), Bilbao,
2018.

Designer
,
dynamic

IoT Recipe, Offerings, OSRs, RRCs + Dynamic update of IoT
components,
+ choreography approach,
+ scalability,
+ failure detection

- No SDN support yet
- Limited availability
of offerings

Not covered / Not
mentioned

Huber, Steffen & Seiger, Ronny &
Kühnert, André & Schlegel, Thomas.
(2016). Using Semantic Queries to
Enable Dynamic Service Invocation
for Processes in the Internet of
Things. 10.1109/ICSC.2016.75.

Designer
(table-
based
editors
for
Ecore
models),
dynamic

IoT arbitrary ontologies can be integrated
(DogOnt ontology)

+ concept can be generalized
and applied to different models
and systems from the BPM and
IoT communities
+ allows for context-sensitive
resource allocation

- In large-scale
systems containing
more than 106 IoT
services, service
discovery and
invocation will most
likely take minute
- SPARQL queries
introduces an
additional overhead

Not covered / Not
mentioned

O
th

er
 (

N
o

 S
er

vi
ce

 C
o

m
p

os
iti

o
n

Nambi, S. & Sarkar, Chayan &
Prasad, Venkatesha & Biswas, Abdur
Rahim. (2014). A unified semantic
knowledge base for IoT. 2014 IEEE
World Forum on Internet of Things,
WF-IoT 2014. 575-580. 10.1109/WF-
IoT.2014.6803232.

N/A IoT Resource Ontology, Location ontology
(extension of GeoNames ontology), Context
and Domain Ontologies (Aspect-Scale-
Context), Policy ontology (Belief-Desire-
Intention-Policy model), Service ontology
(extension of OWL-S)

+ The proposed knowledge base
integrates several existing
ontologies that were mainly
related to sensor resources, web
services and extends them for
IoT

- This is just the
knowledge base and
they do not mention
anything about
composition of
services

Not covered / Not
mentioned

W. Wang, S. De, R. Toenjes, E.
Reetz, and K. Moessner, ‘‘A
comprehensive ontology for
knowledge representation in the
Internet of Things,’’ in Proc. IEEE
11th Int. Conf. Trust, Secur. Privacy
Comput. Commun. (TrustCom), Jun.
2012, pp. 1793–1798

N/A IoT IoT service is a subclass of the Service class
defined in the OWL-S, therefore, an IoT
Service can have one Service Profile and one
Process that describe its functional and non-
functional properties, as well as links to
domain knowledge (e.g., service category and
physical location ontologies),

+ functional and non-functional
properties for the services,
+ a model based approach to
guide automatic test generation
and control

- Νο QoS and QoL
aware methods for
service composition
and adaptation

Not covered / Not
mentioned

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D4.1 SEMIoTICS SPDI Patterns (first draft)

Dissemination level: Public

35

Vögler, Michael & Li, Fei & Claeßens,
Markus & Schleicher, Johannes &
Sehic, Sanjin & Nastic, Stefan &
Dustdar, Schahram. (2015). COLT
Collaborative Delivery of Lightweight
IoT Applications. 10.1007/978-3-319-
19656-5_38.

N/A ΙοΤ an IoT Application is represented as a self-
contained archive with corresponding
metadata, containing the following
information: (i) a Name that uniquely identifies
the application, (ii) a natural language
Description, (iii) Provider name and id, (iv) a
list of Suitable Devices the application can be
deployed and executed on, and (v) a Version
number

+ browse the market for
applications
+ buy and deploy applications
+monitoring component

- Νο pricing and
revenue sharing
models that allow
more stakeholders
that are involved in
the development
process, to
collaborate

Not covered / Not
mentioned

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D4.1 SEMIoTICS SPDI Patterns (first draft)

Dissemination level: Public

3.2 IoT application architecture and orchestration modelling

The overall objective of SEMIoTICS is to develop a framework that will be capable of managing the IoT
applications based on patterns. Therefore, it is necessary to develop a language for specifying the components
that constitute such applications along with their interfaces and interactions. Thus, the security and other
quality properties may be required of such components and their orchestrations. A model with such
characteristics will effectively serve as a general “architecture and workflow model” of the IoT application. Once
defined, this model will be used in conjunction with patterns to enable the reasoning required for determining
the applicability of particular SPDI patterns in specific IoT applications and subsequently reason based on
them to enable the different types of adaptation that were introduced in Sect. 4.1.

The development of the language for specifying an IoT application architecture and workflow model (referred
to as “IoT application model” in the rest of this deliverable) has also taken into account the requirements
identified in Section 2 and the current SoTA presented in subsection 3.1.

For the creation of the IoT application model we used Eclipse that through the EMF modelling framework
enables the use of the default tree-based editor. The tree-based editor allows to define properties for classes,
attributes and references.

The basic constructs for defining an IoT application model in SEMIoTICS is shown in Figure 3.The figure shows
the basic modelling constructs of the language and their relations in the form of a UML diagram 4.

4 http://www.uml.org/

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D4.1 SEMIoTICS SPDI Patterns (first draft)

Dissemination level: Public

37

FIGURE 3. SEMIOTICS IOT ORCHESTRATION SYSTEM MODEL

The language for defining IoT application models advocates an orchestration based approach. In this
approach, the interactions between the different types of components of such applications (e.g., software
components, software services, sensors, actuators) interact with each other as specified as orchestration(s)
within the IoT application. Such orchestrations are modelled by the class Orchestration in Figure 3. An
orchestration of activities may be of different types depending on the order in which the different activities
involved in it must be executed. According to this criterion, an orchestration may be defined as a Sequential,
Parallel, Merge, Choice or Iterate orchestration. The meaning of these types of orchestrations is as follows:

(i) Sequence is a segment of a process instance in which several activities are executed in sequence under
a single thread of execution.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D4.1 SEMIoTICS SPDI Patterns (first draft)

Dissemination level: Public

38

(ii) Parallel is a segment of a process instance where two or more activity instances are executing in parallel
within the workflow, giving rise to multiple threads of control.

(iii) Merge is a point in the workflow where two or more parallel executing/alternative activities converge into
a single common thread of control.

(iv) Choice is a point within the workflow where a single thread of control makes a decision upon which
branch to take when encountered with multiple alternative workflow branches, based on a choice
condition.

(v) Iterates is a workflow activity cycle involving the repetitive execution of one (or more) workflow activity(s)
until a condition is met.

Moreover, an orchestration involves orchestration activities (see class OrchestrationActivity in Figure 3). At
any instance of time, these activities may have a known implementation or a not known implementation. In the
former case, the activity will be a linked activity (see class LinkedActivity in Figure 3). In the latter, the activity
will be an unassigned activity (see class UnassignedActivity in Figure 3). Unassigned activities in an IoT
application orchestration may exist during the design of the IoT application, when the exact implementation of
a specific orchestration activity might not have been decided yet or at runtime when the particular component
that used to provide the implementation of the activity can no longer be used (because, for example, it might
be unavailable or because it no longer fulfils the properties required of it) and must be replaced.

The implementation of an activity in an IoT application orchestration may be provided by:

(i) A software component, i.e., a software module with an available and modifiable implementation that
encapsulates a set of functions and data and makes them available through a programmatic interface.

(ii) A software service, i.e., a software module that encapsulates a set of functions and data and makes
them available through a programmatic interface, accessible remotely over a network, whose
implementation is neither available to the owner nor modifiable.

(iii) A network component, such as software defined network controllers, software switches/vSwitches, and
potentially legacy networking components.

(iv) An IoT sensor, i.e., a device that collects data from the environment or object under measurement and
turns it into useful data.

(v) An IoT actuator, i.e., a device that takes electrical input and transforms the input into tangible action .
(vi) An IoT gateway, i.e., is a physical device or software program that serves as the connection point

between the field devices and the SEMIoTICS backend, via the software-defined network layer, t.
(vii) A (sub) orchestration of IoT application activity implementers of types (i) to (vi).

Software component may also represent external IoT platform services. By adding this class to our model, the
description of two different types of platform connectivity, within SEMIoTICS project and across IoT platforms,
becomes feasible. In that way we can create patterns that can be used for the verification of SPDI properties
in IoT application orchestrations described just within the SEMIoTICS ecosystem and/or across SEMIoTICS
and other IoT platform services, such as FI-WARE.

The above types of IoT application activity implementers are grouped under the general concept of placeholder
(see the class Placeholder in Figure 3). The language introduces also subclasses of the general class
Placeholder to represent the above elements. These are the classes Orchestration and OrchestrationActivity.
As already described Orchestration class above, the OrchestrationActivity class is extended by LinkedActivity
and UnassignedActivity classes. Both of these classes have an attribute Name to identify them unambiguously.
LinkedActivity, referring to activities whose implementation is known, defines the specification of the SDPI
properties of the involved activity. On the other hand, UnassignedActivity, referring to a not known
implementation, requires a Thing Description, which provides the details on how the activity is implemented,
the characteristics of the underlying devices and relevant parameters (e.g., IP address, exposed endpoints,
available resources), the corresponding SDPI properties, etc. For the exact information that may be included
within these Thing Descriptions, please refer to Deliverable D3.3 – “Bootstrapping and interfacing SEMIoTICS
field level devices (first draft)”.

A placeholder is accessible through a set of interfaces. An interface is a named set of operations through which
the functions and the data of the placeholder can be accessed from any element outside it. Interfaces are

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D4.1 SEMIoTICS SPDI Patterns (first draft)

Dissemination level: Public

39

represented by the class Interface in Figure 3. The interfaces through which a placeholder can be accessed
are linked to the placeholder as the interfaces that it provides (see provides association end between the class
Placeholder and Interface in Figure 3). In addition, placeholders may require additional interfaces provided by
other placeholders for them to function properly. A placeholder P1 that provides access to a set of data may,
for example, authenticate data access requests by relying to another placeholder P2 with responsibility for
authentication and authorisation checks over users. In this case, P2 would be modelled as a placeholder that
provides two interfaces, i.e., an authentication and an authorisation interface, and P1 as a placeholder that
requires these two interfaces. Requires relations between placeholders and interfaces are modelled through
requires association end between the class Placeholder and Interface in Figure 3.

The individual operations that constitute the interface of a placeholder are represented by the class Operation
in Figure 3. As shown in the figure an operation has a set of parameters: i) name, ii) input and iii) output. Name
is used as an identifier for the Operation and the input and output are a set of Parameters. If we assume that
an activity PaymentService is to be invoked, the name of the operation could be “payment” and the input/output
could be a set of parameters such as the items to be purchased, the number of the credit card and the address
for the items to be delivered.

Placeholders (of all different types) may also be characterised by their SPDI and QoS properties. A property
of a placeholder is specified according to the class Property in Figure 3. According to it, a Property has a name,
a type, a verification, a category and a dataState. The attribute type refers to the state of the property, which
can be required or confirmed. A required property is a property that a placeholder must hold in order to be
included (considered for) the orchestration. For example, if the required property of an orchestration defining
a secure logging process is Confidentiality, then all placeholder activities involved in the orchestration and the
links between them may be required to have the Confidentiality property. On the other hand, a confirmed
property is a property that is verified at runtime, through a specific means as defined in the Verification.

Verification is a class that describes the way a Property of a Placeholder is verified. The verification process
can be done through monitoring, testing, a certificate or via a pattern. This means that the existence of a
monitoring service or a testing tool allows the verification of the SPDI property of a placeholder activity. Such
a monitoring service could, for example, justify that a service or a device is available at specific time windows
if the desirable property is a specific target for availability. Another way of verifying SPDI properties could be
a repository with certificates that are able to justify that a certain placeholder satisfies a certain property. In
case of a pattern the Mean of verification is the pattern itself; in all the other cases we need an interface to a
corresponding monitoring tool, testing service or certificate repository through which the verification can take
place.

Moving on with category attribute, the Category enumerator in Figure 3, shows the different categories. A
Property can belong to confidentiality, integrity, availability, privacy, dependability, interoperability or QoS. In
this way a classification of the properties is achieved.

The final attribute, dataState, is referred to state of the data of a Placeholder (see enumerator DataState in
Figure 3). In SEMIoTICS, all three data states are considered, i.e. data in transit, at rest or in processing. If
the Placeholder is an Orchestration, then the state of the data will be “in_transit”. If we have to do with an
OrchestrationActivity and the OrchestrationActivity is bound to a storage service for example, then dataSate
could also be “at_rest”. If the OrchestrationActivity is bound to a service or device that transforms data, then
dataSate could be “in_processing”. This attribute was added in the model to allow description of different
pattern regarding the three aforementioned data states. This can be done by creating Orchestrations that are
subjects to Properties with variant datastates.

Finally, the set of all the SPDI properties that are inferred for the different placeholders of an orchestrator by
a pattern are aggregated into PropertyPlan object.

3.3 Language Constructs

Based on the IoT application model presented above we created a corresponding language the constructs of
which are described using an EBNF grammar. This language can be used to define activities, as well as basic
control flow operations (namely sequential, parallel, choice and merge) enabling their composition into complex
orchestrations, and to define the associated individual and composition properties. Upon instantiation of the

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D4.1 SEMIoTICS SPDI Patterns (first draft)

Dissemination level: Public

40

orchestration, the abstract definition of the orchestration structure is replaced with the actual components
implementing said orchestration. This grammar is presented in Table 6.

In order to create the said language, we used Eclipse’s Xtext textual editor, which enables the production of a
textual representation of the IoT application model. This textual (Χtext) representation was used as input for
an online language converter5 to produce the equivalent constructs expressed in EBNF6.

TABLE 6. PATTERN LANGUAGE CONSTRUCTS

Placeholder ::= Placeholder_Impl | Orchestration_Impl | Sequence | Parallel | Merge |
Choice | Iterate | OrchestrationActivity_Impl | LinkedActivity |
UnassignedActivity | SoftwareComponent | SoftwareService |
NetworkComponent | IoTSensor | IoTActuator | IoTGateway

Property Subject ::= PropertySubject_Impl | Link | Parameter | Operation | Placeholder_Impl |
Orchestration_Impl | Sequence | Parallel | Merge | Choice | Iterate |
OrchestrationActivity_Impl | LinkedActivity | UnassignedActivity |
SoftwareComponent | SoftwareService | NetworkComponent | IoTSensor
| IoTActuator | IoTGateway

Property ::= 'Property' '{' ('propertyName' EString)? ('propertyType' PropertyType)?
('category' Category)? ('dataState' DataState)? 'verification' EString
'subject' '(' EString (',' EString)* ')' '}'

EString ::= STRING | ID

Interface ::= 'Interface' '{' ('interfaceName' EString)? ('interfaceType' InterfaceType
)? 'operation' '{' Operation (',' Operation)* '}' '}'

Placeholder_Impl ::= 'Placeholder' '{' ('placeholderID' EString)? ('property' '(' EString (','
EString)* ')')? ('interface' '(' EString (',' EString)* ')')? '}

Verification ::= 'Verification' '{' ('verificationType' VerificationType)? ('means' Means)?
'}'

PropertySubject_Impl ::= 'PropertySubject' '{' ('property' '(' EString (',' EString)* ')')? '}'

Link ::= 'Link' '{' ('linkID' EString)? ('property' '(' EString (',' EString)* ')')?
'placeholderA' EString 'placeholderB' EString '}'

Parameter ::= 'Parameter' '{' ('parameterName' EString)? ('parameterType'
ParameterType)? ('property' '(' EString (',' EString)* ')')? '}'

Operation ::= 'Operation' '{' ('operation Name' EString)? ('property' '(' EString (','
EString)* ')')? ('inputs' '{' Parameter (',' Parameter)* '}')? ('outputs' '{'
Parameter (',' Parameter)* '}')? '}'

Orchestration_Impl ::= 'Orchestration' '{' ('placeholderID' EString)? ('property' '(' EString (','
EString)* ')')? ('interface' '(' EString (',' EString)* ')')? 'placeholder' '{'
Placeholder (',' Placeholder)* '}' '}'

Sequence ::= 'Sequence' '{' ('placeholderID' EString)? ('property' '(' EString (',' EString
)* ')')? ('interface' '(' EString (',' EString)* ')')? 'placeholder' '{'
Placeholder (',' Placeholder)* '}' '}'

Parallel ::= 'Parallel' '{' ('placeholderID' EString)? ('property' '(' EString (',' EString
)* ')')? ('interface' '(' EString (',' EString)* ')')? 'placeholder' '{'
Placeholder (',' Placeholder)* '}' '}'

5 https://bottlecaps.de/convert/
6 https://tomassetti.me/ebnf/

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D4.1 SEMIoTICS SPDI Patterns (first draft)

Dissemination level: Public

41

Choice ::= 'Choice' '{' ('placeholderID' EString)? ('property' '(' EString (',' EString
)* ')')? ('interface' '(' EString (',' EString)* ')')? 'placeholder' '{'
Placeholder (',' Placeholder)* '}' '}'

Merge ::= 'Merge' '{' ('placeholderID' EString)? ('property' '(' EString (',' EString)*
')')? ('interface' '(' EString (',' EString)* ')')? 'placeholder' '{' Placeholder
(',' Placeholder)* '}' '}'

Iterate ::= 'Iterate' '{' ('placeholderID' EString)? ('property' '(' EString (',' EString)*
')')? ('interface' '(' EString (',' EString)* ')')? 'placeholder' '{' Placeholder

(',' Placeholder)* '}' '}'

OrchestrationActivity_Impl ::= 'OrchestrationActivity' '{' ('placeholderID' EString)? ('property' '(' EString
(',' EString)* ')')? ('interface' '(' EString (',' EString)* ')')? '}'

LinkedActivity ::= 'LinkedActivity' '{' ('placeholderID' EString)? ('linkedActivityName'
EString)? ('certifiedProperties' EString)? ('property' '(' EString (','
EString)* ')')? ('interface' '(' EString (',' EString)* ')')? ('placeholder' '{'
Placeholder (',' Placeholder)* '}')? '}'

UnassignedActivity ::= 'UnassignedActivity' '{' ('placeholderID' EString)? (
'unassignedActivityName' EString)? ('description' EString)? ('property'
'(' EString (',' EString)* ')')? ('interface' '(' EString (',' EString)* ')')? '}'

SoftwareComponent ::= 'SoftwareComponent' '{' ('placeholderID' EString)? ('property' '(' EString
(',' EString)* ')')? ('interface' '(' EString (',' EString)* ')')? '}'

SoftwareService ::= 'SoftwareService' '{' ('placeholderID' EString)? ('property' '(' EString (','
EString)* ')')? ('interface' '(' EString (',' EString)* ')')? '}'

NetworkComponent ::= 'NetworkComponent' '{' ('placeholderID' EString)? ('property' '(' EString
(',' EString)* ')')? ('interface' '(' EString (',' EString)* ')')? '}'

IoTSensor ::= 'IoTSensor' '{' ('placeholderID' EString)? ('property' '(' EString (','
EString)* ')')? ('interface' '(' EString (',' EString)* ')')? '}'

IoTActuator ::= 'IoTActuator' '{' ('placeholderID' EString)? ('property' '(' EString (','
EString)* ')')? ('interface' '(' EString (',' EString)* ')')? '}'

IoTGateway ::= 'IoTGateway' '{' ('placeholderID' EString)? ('property' '(' EString (' ,'
EString)* ')')? ('interface' '(' EString (',' EString)* ')')? '}'

PropertyType ::= 'required' | 'confirmed'

Category ::= 'confidentiality' | 'integrity' | 'availability' | 'privacy' | 'dependability' |
'interoperability' | 'QoS'

DataState ::= 'at_rest' | 'in_transit' | 'in_processing' | 'end_to_end'

VerificationType ::= 'patternbased' | 'monitoring' | 'testing' | 'certificate'

Means ::= 'pattern' | 'interface'

ParameterType ::= 'SOAP' | 'REST'

InterfaceType ::= 'provided' | 'required'

3.4 Specification of SPDI patterns

SPDI patterns encode proven dependencies between SPDI properties of individual placeholders implementing
activities in IoT applications orchestrations (i.e. activity-level SPDI properties) and SPDI properties of these
orchestrations (i.e. workflow-level SPDI properties). The specification of an SPDI pattern consists of four parts:

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D4.1 SEMIoTICS SPDI Patterns (first draft)

Dissemination level: Public

42

i. The Activity Properties (AP) part, which defines the activity-level SPDI properties which are required
of the activity placeholders present in the workflow of the pattern to allow for the guarantee of the OP
properties detailed in the corresponding part of the pattern.

ii. The Orchestration (ORCH) part, which defines the abstract form of the orchestration that the pattern
applies to. As such, the ORCH is specified as an orchestration of abstract activity placeholders. When
the pattern is matched against a specific orchestration, the placeholders in its ORCH may be bound to
operations of specific nodes or sub-orchestrations of it.

iii. The Conditions part, which defines the functional requirements, the states or the constraints that a
system should define or what a system must do and how it reacts on specific inputs or situations.

iv. The Orchestration Properties (OP) part, which defines the orchestration-level SPDI properties that
the pattern can guarantee for the orchestration specified in its ORCH part.

Based on the above, a semantic interpretation of an SPDI pattern having the above structure is that if the AP
properties that have been specified for the activity placeholders in the orchestration of the pattern and the
conditions of the pattern hold (verified as True), then the OP property specified in the pattern also holds for
the whole ORCH. Formally, this can be expressed as:

𝐴𝑃 ⋀ 𝑂𝑅𝐶𝐻 ⋀ 𝐶𝑂𝑁𝐷𝐼𝑇𝐼𝑂𝑁𝑆 ⊨ 𝑂𝑃,

where ⊨ denotes the entailment relation that has been established by the proof of the pattern.

APs are materialized using the Property class in Figure 3. Property name identifies uniquely the SPDI property
and the PropertySubject depicts the Placeholder that implements the activity for which the property is required
or verifiable (PropertyType). In the latter case, PropertyVerification depicts how the verification takes place.
PropertyCategory classifies the SPDI property, while DataState show that state of the data used by the
Placeholder.

ORCH is an Orchestration object including Placeholders of type UnassignedActivity, making our model
parametric since it does not have to refer to exact placeholders. This Orchestration can be of different types
(Sequential, Parallel, Merge, Choice or Iterate) depending on the order that the involved activities are
executed.

CONDITIONS are materialized using the Operation and Parameters classes. Inputs and outputs of the activity
placeholders of the SPDI pattern are defined in the objects of those two classes.

Finally, OP is an orchestration-wide Property object. That means that values of some of its attributes are pre-
defined, such as the PropertySubject, which is the ORCH described above, and the DataState that is set to
“end-to-end”.

3.5 Example of Orchestration Definition

To showcase the use of the above, let us consider an example of a simple orchestration involving three
activities in a sequential composition, as depicted in Figure 4.

FIGURE 4. A SIMPLE SEQUENTIAL ORCHESTRATION INVOLVING THREE ACTIVITIES

Moreover, the sequential orchestration pattern is defined as follows:

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D4.1 SEMIoTICS SPDI Patterns (first draft)

Dissemination level: Public

43

0. _ORCH “Seq2”
1. Placeholder (_a, (ActivityName, Description))
2. Placeholder (_b, (ActivityName, Description))
3. Sequence (_a, _b)

4. Link (_l1, _a, _b)
5. Property (_p1, _a, PropertyType, (VerificationType, VerificationMeans), PropertyCategory, DataState)
6. Property (_p2, _l1, PropertyType, (VerificationType, VerificationMeans), PropertyCategory, “in_transit”)
7. Property (_p3, _b, PropertyType, (VerificationType, VerificationMeans), PropertyCategory, DataState)
8. Property (_OP, “ConfSeq2”, required, (pattern-based, _PR), PropertyCategory, “end_to_end”)
9. PatternRule (_PR: _p1, _p2, _p3 → _OP)

In the above, the underscore before the name (e.g. as in “_a”) is used to express that these are placeholders,
which, as mentioned, will be replaced with actual activities when the pattern is matched to actual workflows.
Line 1 denotes that the orchestration type between the three activities is sequential (other orchestration
patterns are also supported, as mentioned above; e.g. Parallel(_a,_b)). Moreover, the involved activities are
further specified within the pattern in lines 2-3, to define specific parameters about each, if needed.
Furthermore, the link between the activities have to be specified, as managing and monitoring the properties
of the networking infrastructure is an important aspect of the SEMIoTICS framework and also necessary to
guarantee the end-to-end satisfaction of individual properties. Therefore, line 4 defines the links between the
involved activities and their type. Lines 5 to 7 define Activity Properties (AP), such as _p1 for placeholder _a

and _p2 for _l1, i.e. the link between placeholders _a and _b. Finally, line 8 includes an Orchestration Property

(OP) that can be guaranteed as long as the Activity Properties _p1 to _p3 hold, as defined in pattern rule _PR
(defined in line 9).

The sequential orchestration pattern of Figure 4, which involves three activities, can be defined via the “Seq2”
orchestration pattern as follows:

_ORCH “Seq3” : Sequence (_a, _b, _c) == _ORCH “Seq2” : Sequence (Sequence (_a, _b), _c)

Therefore, activities _a and _b are composed into a single (complex) activity by applying the sequential
orchestration pattern “Seq2”, and the resulting activity forms the first part of the next application of “Seq2”, with
_c as the second term in it.

When instantiating the above template, the placeholders are substituted by specific activities (or orchestrations
of activities, which can be considered as sub-orchestrations), and also the properties become specific.
Continuing with the same example above, a specific instance of the orchestration template can be seen in
Figure 5 below, whereby placeholders _a, _b and _c are instantiated with activities “A1”, “A2” and “A3”,
respectively.

FIGURE 5. INSTANCE OF THE SEQ3 ORCHESTRATION DEPICTED IN FIGURE 4

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D4.1 SEMIoTICS SPDI Patterns (first draft)

Dissemination level: Public

44

Thus, the description of the instance of the orchestration of Figure 4, as shown in Figure 5, can be defined by
replacing placeholder _a with activity “A1” (e.g. , _b with activity “A2” and _c with activity “A3”. Then the
individual descriptions become specific, such as:

- Placeholder (A1, (PaymentActivity, PaymentDescription))
- Placeholder (A2, (PlaceOrderActivity, PlaceOrderDescription))
- Placeholder (A3, (WriteReportActivity, WriteReportDescription))
- Link (L1, A1, A2)
- Link (L2, Α2, Α3)

The same goes for the individual and orchestration-wide properties; examples include:

- Property (P1, A1, required, (monitoring, interface), confidentiality, in_processing)
- Property (P2, L1, required, (monitoring, interface), confidentiality, in_transit)
- Property (P3, A2, required, (pattern-based, PSP), confidentiality, in_processing)
- Property (P4, L2, required, (monitoring, interface), confidentiality, in_transit)
- Property (P5, A3, required, (certificate, interface), confidentiality, at_rest)
- Property (OP, “Seq2”, required, (pattern-based, PR1), confidentiality, “end_to_end”)

In the above instantiation example, we assume that the end-to-end confidentiality is pursued for the instantiated
orchestration, and therefore individual component confidentiality properties need to be verified. Specific details
about the individual properties are included in the instantiated form of the orchestration; e.g., property P1 (see

line 7) refers to confidentiality of data in processing at activity A1, and this is verified through monitoring of a

specific interface. Similarly, P3 refers to the confidentiality in processing at activity A2, but in this case the
verification is pattern-based, and more specifically via pattern PSP (more details on the PSP property can be
found in section 4.1.1).

The verification takes place by iteratively applying the Sequential composition pattern for two activities (“A1”
and “A2”) and then again for the derived complex activity and “A3” , as previously defined for the generic
example.

3.6 Implementation aspects

3.6.1 MACHINE-PROCESSABLE PATTERN ENCODING

An important requirement for implementing the SPDI pattern-driven management and adaptation of the
SEMIoTICS infrastructure is to support the automated processing of developed patterns. To achieve this, the
SEMIoTICS SPDI patterns will be expressed as Drools business production rules, and the associated rule
engine, by applying and extending the Rete algorithm [27]. The latter is an efficient pattern-matching algorithm
known to scale well for large numbers of rules and data sets of facts, thus allowing for an efficient
implementation of the pattern-based reasoning process.

In more detail, the language constructs depicted in Table 3 above will be represented as Java classes in a
Drools project for loading and executing Drools rules. It is decided, SPDI patterns to be expressed as Drools
production rules to take advantage of the associated rule engine that comes with Drools rules for automated
processing of the patterns.

A Drools production rule has the following generic structure:

rule name <attributes>*

when <conditional element>* then <action>* end

The when part of the rule specifies a set of conditions and the then part of the rule a list of actions. When a

rule is applied, the Drools rule engine checks whether the rule conditions (defined within the <conditional
element> above) match with the facts in the Drools Knowledge Base (KB) and if they do, it executes the

actions (i.e. “<action>”) of the rule. Rule actions are typically used to modify the KB by inserting, retracting

or updating the objects (facts) in it, through the standard Drools actions “insert”, “retract” and “update”,

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D4.1 SEMIoTICS SPDI Patterns (first draft)

Dissemination level: Public

45

respectively. The conditions of a rule are expressed as patterns of objects that encode the facts in the Drools
KB. These patterns define object types and constraints for the data encoded in objects which may be atomic
or complex. Complex Drool object constraints are defined through logical operators (e.g. and, or, not,
exists, forall, contains). The full grammar of the current version of the Drools rule language (version

7.16.0 as of writing this deliverable) can be found online7, while an overview of the main specification constructs
is provided in Table 7 to allow the reader to follow the pattern specifications provided within the work presented
herein.

TABLE 7. HIGH LEVEL DROOLS RULE SPECIFICATION CONSTRUCTS

Type Construct Description

Conditional
element

and-CE | or-CE | not-CE
| exists-CE | forall-CE
| contains-CE | from-CE
| collect-CE |
accumulate-CE | eval-CE

Conditional elements are used to specify conditions in the when
part of a rule and in constraint expressions (see Pattern construct
below). Conditional elements realise basic logical operators (e.g.
and, or, not); quantified logic operators (contains, forall and
exists); and object collection operators (e.g. collect, accumulate).

Pattern Top level syntax:

Pattern: <pattern-
Binding “:” >
PatternType “(“
Constraints “)”

Patterns are matched with elements in the working memory. The
pattern binding is typically a variable and the pattern type refers
to declared object types that could be matched with the pattern.
Constraints are specified by logical expressions. Such
expressions can be constructed by logic conditional elements
(see above); object collection elements; unification operators;
relational; arithmetic; property/list access operators; data
accumulation functions; regular expression matching operators,
and; temporal operators.

Action Modify | Update | Insert
| Retract

Pattern-related actions include Modify to modify the contents of
a fact, Update a face, Insert to insert new fact in the KB and
Retract to delete a fact.

As mentioned, Drools are used in SEMIoTICS to encode the relation between AP and OP properties in SPDI
patterns in a way that allows the inference of the AP properties required of the activity placeholders present in
the ORCH of said pattern in order for the ORCH to have the SPDI property guaranteed by the pattern. In more
detail, the matching between Drool rules and patterns happens as follows:

• The when part encodes the ORCH part of the pattern, conditions regarding the inputs and outputs of

activities within the ORCH, as well as the OP property guaranteed by the patterns for the specific
ORCH;

• the then part encodes the AP (i.e. activity-level) properties which, if satisfied by the ORCH’s activity

placeholders will guarantee the OP property.

Leveraging the above, a Drools rule expressing an SPDI pattern encodes 𝑂𝑅𝐶𝐻 ∧ 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠 ∧ 𝑂𝑃 ⇒ 𝐴𝑃𝑖 (𝑖 =
1, … , 𝑛), where 𝐴𝑃𝑖 are the AP properties required of the individual nodes bound to the activity placeholders of
the SPDI pattern. This is the opposite of the dependency relation proven in the pattern defined above (namely
𝐴𝑃 ⋀ 𝑂𝑅𝐶𝐻 ⋀ 𝐶𝑂𝑁𝐷𝐼𝑇𝐼𝑂𝑁𝑆 ⊨ 𝑂𝑃). Thus, this encoding allows the inference of the 𝐴𝑃𝑖 properties which, if
satisfied by the individual activities participating in the ORCH, guarantee the satisfaction of the ORCH-level
SPDI property of it, as encoded in the pattern. This satisfaction of the OP property allows for the design (but
also the adaptation at runtime) of the ORCH in a manner that preserves the ORCH-level SPDI property defined
in the pattern.

In Section 4 a first set of patterns is defined and for each, the corresponding representation in Drools is also
given.

7 http://docs.jboss.org/drools/release/7.16.0.Final/drools-docs/html_single/

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D4.1 SEMIoTICS SPDI Patterns (first draft)

Dissemination level: Public

46

3.6.2 SYSTEM ARCHITECTURE AND KEY COMPONENTS

The implementation of the IoT/IIoT service orchestrations as well as the SPDI approach in SEMIoTICS relies
on the presence of some key components in the framework’s architecture; these are detailed in the subsections
below.

3.6.2.1 ORCHESTRATION-ENABLING COMPONENTS

The key SEMIoTICS architectural components that handle data during workflow executions are described
below:

- Backend
o Recipe Cooker: Module responsible for cooking (creating) recipes providing high level

definitions of service workflows
o Backend Semantic Validator: Module responsible for providing semantic validation and

translation between different semantic models found in IoT environments.
o Security Module: Module responsible for granting access and necessary security checks at

the backend layer
o IoT Platforms: Different IoT platforms that SEMIoTICS is interfaced with, such as FIWARE

and MindSphere.
o Use case-specific Apps: The various backend applications pertinent to the specific use cases

(e.g. industrial applications for UC1, patient monitoring applications for UC2, and node
management applications for UC3)

o Web Services: Private and public cloud monolithic services that are part of the running
workflows.

- Network layer
o Network Service Functions: The different network service functions (e.g. load balancing,

firewall) running on the VIM.
o Switches: The switches that form the underlying network, including both hardware and virtual

programmable devices.
o SDN Controller: the controller(s) of the software defined network infrastructure

- Field Layer
o IoT Gateway: The IoT gateway, including its various modules, such as the semantics mediator,

semantic API etc.
o Field devices: The different field devices present in the SEMIoTICS deployments, such as the

various industrial and healthcare sensors and actuators, as well as their counterparts with
increased analytics capabilities defined in the context of UC3.

More specifically, as described above and can be seen in Figure 6, the components that handle data during
workflow executions are dispersed over the three different layers of SEMIoTICS architecture. The arrows of
the figure define the basic components that are involved in the data flows. We may consider as an example of
a data flow the following order of participated functional components:

1. Sensing Data are received by Sensors (or actuation commands to Actuators)
2. Processed transported through the Use Case Specific devices
3. Transformed and evaluated by the GW Semantic Mediator
4. Semantic integration into IoT semantic models by the Semantic API & Protocol Mediator
5. Forwarded traffic through the programmable by the SDN SEMIoTICS controller Switches
6. Forwarded traffic through the predefined service function chains if needed
7. Processed traffic is forwarded through the backend related components (i.e. web/cloud service)
8. Forwarded to the MindSphere Apps in case of Use Case 1 or through the FIWARE in Use Case 2
9. And finally, the use case apps are responsible to process the data

The same procedure can be followed starting from the step 9 and going to step 1 in case of an actuation
command.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D4.1 SEMIoTICS SPDI Patterns (first draft)

Dissemination level: Public

47

More details about the individual components can be found in the corresponding architecture deliverable, i.e.
Deliverable D2.4 - SEMIoTICS high level architecture (Cycle 1), where the first version of the SEMIoTICS

architecture and the included components are detailed. The pattern-specific modules in the architecture and
some initial sequence diagrams of their operation can be found in the subsection below.

FIGURE 6. SEMIOTICS ARCHITECTURE

3.6.2.2 PATTERN COMPONENTS

In addition to the components of the SEMIoTICS architecture enabling the implementation of IoT service
orchestrations (as defined in the previous subsection), pattern-related components are present in all layers of
the SEMIoTICS framework (see Figure 7), in line and towards realising the SEMIoTICS vision of embedded
intelligence across all layers of the IoT deployment.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D4.1 SEMIoTICS SPDI Patterns (first draft)

Dissemination level: Public

48

FIGURE 7. PATTERN MODULES WITHIN THE SEMIOTICS ARCHITECTURE

In more detail, these components are:

- (Backend) Pattern Orchestrator: Module featuring an underlying semantic reasoner able to
understand instantiated Recipes, as received from the Recipe Cooker module and transform them into
composition structures (orchestrations) to be used by architectural patterns to guarantee the required
properties. The Pattern Orchestrator is then responsible to pass said patterns to the corresponding
Pattern Modules (as defined in the Backend, Network and Field layers), selecting for each of them the
subset of these that refer to components under their control (e.g. passing Network -specific patterns to
the Pattern Module present in the SDN controller).

o Regarding the current implementation status, the first version of Pattern Orchestrator is created
using Java, ANTLR and Maven. A first set of Java classes has been created corresponding to
main components of the IoT orchestration system model. Moreover, a first version of ANTLR
parser recognises the given orchestration components and gRPC Protocol buffers are planned

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D4.1 SEMIoTICS SPDI Patterns (first draft)

Dissemination level: Public

49

to be used for the communication between the Pattern Orchestrator and the other Pattern-
related components.

- Backend Pattern Module: Features the pattern engine for the SEMIoTICS backend, along with
associated subcomponents (knowledge base, reasoning engine). It will enable the capability to insert,
modify, execute and retract patterns at design or at runtime in the backend; these interactions will
happen through the interfacing with the Pattern Orchestrator (see above), though additional interfaces
may be introduced to allow for more flexible deployment and adjustments if needed. Will be able reason
on the SPDI properties of aspects pertaining to the operation of the SEMIoTICS backend. Moreover,
at runtime the backend Pattern module may receive fact updates from the individual Pattern Modules
present at the lower layers (Network & Field), allowing it to have an up-to-date view of the SPDI state
of said layers and the corresponding components.

o Regarding the current implementation status, a first version of the Backend Pattern Module
has been created as a Maven project, using Java. In this first version, the installed Drools
Rules Engine will be used for the automated processing of SPDI patterns expressed as Drools
rules. The gRPC Protocol buffers are planned to be used for the communication between the
Backend Pattern Module and the other Pattern-related components.

- Network Pattern Module: Integrated in the SDN controller to enable the capability to inser t, modify,
execute and retract network-level patterns at design or at runtime. It will be supported by the integration
of all required dependencies within the network controller, as well as the interfaces allowing entities
that interact with the controller to be managed based on SPDI patterns at design and at runtime. It will
feature different subcomponents as required by the rule engine, such as the knowledge base, the core
engine and the compiler.

o Regarding the current implementation status, the Drools Rules Engine dependencies have
been included in the Maven project for the processing of Drools rules. The communication
towards Network Pattern Module can be achieved using exposed NBIs of the SDN controller.
These NBIs are REST RPCs that are defined utilizing the YANG model.

- Field Layer Pattern Module: Typically deployed on the IoT/IIoT gateway, able to host design patterns
as provided by the Pattern Orchestrator. Since the compute capabilities of the gateway can be limited,
the module will be able to host patterns in an executable form compared to the pattern rules as provided
in the other layers. The executable patterns will be able to guarantee SPDI properties locally based on
the data retrieved and processed by the monitoring module, the thing directory in the IoT gateway and
based on the interaction as well with other components in the field layer. Will store pattern executables
in a local knowledge base that will be updated by the pattern orchestrator as needed and requested.

o In terms of implementation, the Field Layer Pattern Module is a lightweight version of the
Backend Pattern Module. So the first version of the Field Layer Pattern Module will be based
on the current version of the Backend Pattern Module. Technologies that will be used include
Java, Maven, Drools Engine, gRPC Protocol Buffers.

3.7 Language Interpretation and Instantiation

Regarding the language interpretation, the EBNF grammar is used as input to an ANTLR4 lexer, parser and
listener. These programs manage to create for every orchestration activity, control flow operation and property
a Drools fact, i.e. an instance of the corresponding Java class. The Drools facts are then inserted in the
Knowledge base of Drools, a repository of all the application's knowledge definitions, in the three Pattern
Engines of SEMIoTICS. Sessions are created from the KnowledgeBase in which data can be inserted and
process instances started. A knowledge session is the way to interact with Drools and the core component to
fire Drools rules. Rules themselves are also hold in a knowledge session. The information that i s stored in the
KnowledgeBase is used for reasoning.

Figure 8 shows a simple orchestration along with its description using the IoT application language. As we can
see, the orchestration consists of two Placeholders, Camera and ObjectDetector, and a Link between them,
named L1. Moreover, they are in sequence (Sequence1), which means that the output of the former is
consumed as input by the latter.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D4.1 SEMIoTICS SPDI Patterns (first draft)

Dissemination level: Public

50

FIGURE 8: SIMPLE ORCHESTRATION EXAMPLE

During the first step of the translation of an IoT application orchestration to Drools facts the ANTLR4 lexer
recognizes keywords and transforms them in tokens. The created tokens are used by the ANTLR4 parser for
creating the logical structure, i.e. the parse tree.

Next, the ANTLR4 listener allows us to communicate with Drools every time a node in the parse tree is entered.
The listener takes information from the tokens and sends it to Drools. Drools then creates instances from the
corresponding Java classes and stores the received information at the class attributes.

During the last step, the created java instances are inserted as facts into the knowledge session. These Drools
facts are used by Drools rules, which are fired when a condition is met.

3.8 Language Expressiveness and Versioning

A key design choice early on in the project was to implement a language tailored to the intrinsic requirements
and characteristics of IoT environments. This was the result of considering the complex set of requirements of
the SEMIoTICS pattern language (see Section 2) and the gap analysis carried out on the existing SoTA
approaches (see subsection 3.1.1), and which led to definition of the elaborate system model presented in
subsection 3.2. The rationale and methodology behind the definition of said model, which is the source of the
associated language (see subsection 3.3), as well as the anticipation in the work programme that said language
will evolve throughout the runtime of the project (thus the provision of two deliverables with first and final
version of the language), eventually covering all use cases and a full se t of patterns covering all SPDI
properties and data state and connectivity options, provides significant guarantees that the end result (i.e.,
final version of the language) will provide all the needed expressive means to fully cover for the needs of the
project and the covered IoT environments.

Nevertheless, it is foreseen that in order to address additional domains (e.g., smart vehicles, smart agriculture),
the model will have to be extended to cover the devices and interactions intrinsic to each of the targeted
domains. This is not an obstacle and is supported by the (by design) extensible approach followed: the system
model is by design extensible and it is trivial to define additional classes and interactions. Following the same
techniques presented in the language definition process above, extensions to the model are transferred to the
language, enabling it to support additional expressive constructs, as needed. Thus, the language itself is also
volatile and adding more concepts to newer versions of the language can be done easily.

In terms of versioning, and while all typical file and software versioning tools can be used for that purpose,
care has to be taken when introducing new classes in the definition of relationships among old ones. Changing
any part of the older version and/or the relationships between the old classes can break backward compatibility
with previous versions of the language (and, thus, the associated reasoning). Nevertheless, even in cases
where this is needed, the only additional measure that the system owners have to take is to re-define the older
orchestrations and ensure that the reasoning engines at the different layers are updated with the new rules
and facts.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D4.1 SEMIoTICS SPDI Patterns (first draft)

Dissemination level: Public

51

4 PATTERN RULES
This section presents the first set of SEMIoTICS pattern rules, using the language and associated constructs
defined in the previous section. The Security properties of Confidentiality, Integrity and Availability are
analysed separately in the corresponding subsections below, as different types of property reasoning and
monitoring conditions need to be defined for each one of them.

4.1 Security

4.1.1 CONFIDENTIALITY

4.1.1.1 PATTERN DEFINITION

The preservation of Confidentiality requires that the disclosure of information happens only in an authorised
manner; i.e. non-authorised access to information should not be possible. Formal definitions of Confidentiality
are typically based on the concept of Information Flow (IF) [28], separating users in classes with different
access rights to the system’s information and distinguishing the information flows within the system according
the user classes they should be accessible to. Based on this concept, the Perfect Security Property (PSP) [29]
requires low-level users (i.e. a user with restricted access, in contrast to high-level users having full access)
who are only allowed to view public information, should not be able to determine anything concerning high -
level (confidential) information.

A sequential orchestration P with two activity placeholders, A and B, whereby B is executed after A, is depicted
in Figure 9. We assume that for each x in {P, A, B} the following hold:

• 𝐼𝑁𝑥 and 𝑂𝑈𝑇𝑥 are the sets of inputs and outputs of x, and 𝐸𝑥 = 𝐼𝑁𝑥 ∪ 𝑂𝑈𝑇𝑥;
• 𝑉𝑥 and 𝐶𝑋 are two disjoint subsets of 𝐸𝑥, portioning into public parts and confidential parts respectively.

Further conditions that define P, as depicted in Figure 9, include:

• The inputs of A are the inputs of the workflow P

• The inputs of B are the outputs of A

• The outputs of the orchestration P are the outputs of B

FIGURE 9. PSP ON A SEQUENTIAL SERVICE ORCHESTRATION

Based on the above, the SPDI pattern for preserving PSP (i.e. confidentiality) on the service orchestration P
can be defined as follows:

i. NP:

a. 𝑃𝑆𝑃(𝐴, 𝑉𝐴, 𝐶𝐴) 𝑎𝑛𝑑 𝑉𝐴 ⊆ 𝑉𝑃 𝑎𝑛𝑑 𝐶𝐴 ∩ 𝑉𝑃 = ⊘

b. 𝑃𝑆𝑃(𝐵, 𝑉𝐵, 𝐶𝐵) 𝑎𝑛𝑑 𝑉𝐵 ⊆ 𝑉𝑃 𝑎𝑛𝑑 𝐶𝐵 ∩ 𝑉𝑃 = ⊘

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D4.1 SEMIoTICS SPDI Patterns (first draft)

Dissemination level: Public

52

ii. OP:

a. 𝑆𝑒𝑐𝑅𝑒𝑞𝑃 = 𝑃𝑆𝑃(𝑃, 𝑉𝑃, 𝐶𝑃)

Interpreting the pattern above, and as proven in [30], PSP then holds on the orchestration P if, for all activity
placeholders x in {A, B}, the following are true:

a) 𝑉𝑋 ⊆ 𝑉𝑃; i.e. the actions of x that reveal public information are part of the actions of P that reveal public
information are part of the actions of P that reveal public information, and

b) 𝐶𝑋 ∩ 𝑉𝑃 = ⊘; i.e. the actions of x that reveal confidential information do not include any action of P
that reveal public information.

The above conditions are expressed as NP properties of the pattern and entail the PSP property on P, as
expressed in the OP part of the pattern.

Regarding Data State Coverage, this pattern covers all three states, in_transit, at_rest and in_processing.
Moreover, it refers to components that are within the SEMIoTICS platform.

4.1.1.2 PATTERN SPECIFICATION RULE

Based on the above, the confidentiality (PSP) pattern defined in subsection 0 can be represented in Drools as
shown in Table 7.

The when part of the rule specifies: the two activity placeholders A and B of the PSP pattern (variables $A and

$B on lines 3-4 and 5-6); the order in which $A and $B are executed (variable $ORCH on line 7) and the conditions

between the outputs of $A, and the inputs of $B as required by the PSP pattern (lines 7-9), and; the OP property

that can be guaranteed by applying the pattern, i.e. the PSP property in this case (variable $WP in lines 10-11).

Lines 3-9 are the specification of the ORCH part of the pattern.

The then part of the rule generates a security plan that includes the NP security properties that (if satisfied by

the activity placeholders that will be selected for the pattern’s ORCH) would lead to a ORCH satisfying the OP
(i.e. the PSP property). Based on the proof of the PSP property detailed earlier in this document, both of the
placeholders A and B should satisfy the PSP property; thus, PSP is defined as the NP property that both
placeholders should satisfy in lines 17 and 22, respectively. Moreover, the additional conditions defined earlier
(i.e. 𝑉𝐴 ⊆ 𝑉𝑃 𝑎𝑛𝑑 𝐶𝐴 ∩ 𝑉𝑃 = ⊘ for placeholder A and 𝑉𝐵 ⊆ 𝑉𝑃 𝑎𝑛𝑑 𝐶𝐵 ∩ 𝑉𝑃 = ⊘ for B are also added to the
corresponding NPs, as can be seen in lines 18-19 and 23-24, respectively.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D4.1 SEMIoTICS SPDI Patterns (first draft)

Dissemination level: Public

53

4.1.2 INTEGRITY

4.1.2.1 PATTERN DEFINITION

Data Integrity refers to the maintenance and assurance of the accuracy and consistency of data. Following the
definition in 4.1.1 A sequential orchestration P with two activity placeholders, A and B, whereby B is executed
after A, is depicted in Figure 9. We assume that for each x in {P, A, B} the following hold:

• 𝐼𝑁𝑥 and 𝑂𝑈𝑇𝑥 are the sets of inputs and outputs of x

• Dx(i) the data of x at the given time t

• Hash(i) are the cryptographic hash function result applied to data i

Further conditions that define P, as depicted in Figure 9, include:

• The inputs of A are the inputs of the orchestration P

• The inputs of B are the outputs of A

• The outputs of the orchestration P are the outputs of B

Based on the above, a pattern for preserving integrity for data that are at in processing and in transit on the
service orchestration P can be defined as follows:

• Hash(INP)=Hash(INA)

1. rule "PSP on Cascade"
2. when
3. $A: Placeholder($input : operation.inputs,
4. $intData : parameters.outputs)
5. $B: Placeholder(parameters.inputs == $intData,
6. $output : parameters.outputs)
7. $ORCH: Sequence(parameters.inputs == $inputs,
8. parameters.outputs == $outputs,
9. firstActivity == $A, secondActivity == $B)
10. $OP: Property(propertyName == "PSP",
11. subject == $ORCH, satisfied == false)
12. $SP: PropertyPlan (properties contains $OP)
13.then
14. PropertyPlan newPropertyPlan = new newPropertyPlan ($SP);
15. newPropertyPlan.removeProperty($OP);
16. Set V_P = $OP.getAttributesMap().get("V");
17. Property NP_A = new Property($OP, "PSP", $A);
18. NP_A.getAttributesMap().put("V", new Operation("subset", V_P));
19. NP_A.getAttributesMap().put("C", new Operation("subset", new

Operation("complement",V_P)));
20. newPropertyPlan.getProperty().add(NP_A);
21. insert(NP_A);
22. Property NP_B = new Property($OP, "PSP", $B);
23. NP_B.getAttributesMap().put("V", new Operation("subset", V_P));
24. NP_B.getAttributesMap().put("C", new Operation("subset", new

Operation("complement",V_P)));
25. newPropertyPlan.getProperties().add(NP_B);
26. insert(NP_B);
27. insert(newPropertyPlan);
28.end

TABLE 8. SPECIFICATION OF PSP PROPERTY VIA DROOLS

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D4.1 SEMIoTICS SPDI Patterns (first draft)

Dissemination level: Public

54

• Hash(OUTP)=Hash(OUTB)
• Hash(INB)=Hash(OUTA)

Interpreting the pattern above, we have for every data that is transmitted not only through datalinks but also
through inter process communication to evaluate that the data that an activity A sends to activity B are not by
any chance changed.

Moreover, based on the above specification we can define a generic pattern for integrity at data at rest as the
following:

Hash(Dx(i))=Hash(Dx(i-1))

Which means that whenever we check data at rest those data must not be changed.

Regarding Data State Coverage, this pattern covers all three states, in_transit, at_rest and in_processing.
Moreover, it can be used for verifying integrity property of components that are within the SEMIoTICS platform.

4.1.2.2 PATTERN SPECIFICATION RULE

The specification rule of the above patterns in Drools is shown in Table 8 and Table 9, respectively. Specifically,
for the Integrity At Rest rule (Table 9), it specifies the data of the activity that are we check at line 3. Then in
line 4 we define a special activity that becomes true every n seconds and forces the drools engine to run the
then part of the rule. At line 12 we calculate the hash checksum of the data and we retrieve the checksum that
it is already stored and those must be true since the data are at rest.

1. rule "Integrity"
2. when
3. $A: Placeholder($input : operation.inputs,
4. $intData : parameters.outputs)
5. $B: Placeholder(parameters.inputs == $intData,
6. $output : parameters.outputs)
7. $ORCH: Link(firstActivity == $A, secondActivity == $B)
8. $OP: Req(propertyName == "Integrity",
9. subject == $ORCH, satisfied == false)
10. $SP: PropertyPlan (properties contains $OP)
11.then
12. PropertyPlan newPropertyPlan = new PropertyPlan($SP);
13. newPropertyPlan.removeRequirement($OP);
14. Req Hash1 = new Req($OP,

"equality",sha512($A.input),sha512(operation.input));
15. newPropertyPlan.getProperties().add(Hash1);
16. insert(Hash1);
17. Req Hash2 = new Req($OP,

"equality",sha512($A.output),sha512($B.inputs));
18. newPropertyPlan.getProperties().add(Hash2);
19. insert(Hash2);
20. Req Hash3 = new Req($OP,

"equality",sha512($B.output),sha512(operation.inputs));
21. newPropertyPlan.getProperties().add(Hash3);
22. insert(Hash3);
23. insert(newPropertyPlan);
24.end

TABLE 9. SPECIFICATION OF INTEGRITY PROPERTY VIA DROOLS

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D4.1 SEMIoTICS SPDI Patterns (first draft)

Dissemination level: Public

55

4.1.3 AVAILABILITY

4.1.3.1 PATTERN DEFINITION

According to [31], availability is defined as “readiness for correct system service”; a service is deemed to be
correct if it implements the specified system function. Readiness of a system in this definition means that if
some agent invokes an operation to access some information or use a resource, it will eventually receive a
correct response to the request.

Regarding Data State Coverage, this pattern covers two states, at_rest and in_processing. Moreover, it refers
to both platform connectivity cases, among components that are within the SEMIoTICS platform or across IoT
platforms.

4.1.3.2 PATTERN SPECIFICATION RULE

1. rule "IntegrityAtRest"
2. when
3. $A: Placeholder($intData : datastore.Data)
4. $T: Timer(time.Interval(“Default time interval”))
5. $ORCH: Check(firstActivity == $A, secondActivity == $T)
6. $OP: Req(propertyName == "Integrity",
7. subject == $ORCH, satisfied == false)
8. $SP: PropertyPlan (properties contains $OP)
9. then
10. PropertyPlan newPropertyPlan = new PropertyPlan($SP);
11. newPropertyPlan.removeRequirement($OP);
12. Req Hash1 = new Req($OP,

"equality",sha512(&intData),datastore.StoredHash($A));
13. newPropertyPlan.getProperties().add(Hash1);
14. insert(Hash1);
15. insert(newPropertyPlan);
16.end

TABLE 10. SPECIFICATION OF INTEGRITY AT REST PROPERTY VIA DROOLS

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D4.1 SEMIoTICS SPDI Patterns (first draft)

Dissemination level: Public

56

The specification of the Availability pattern in Drools is provided in Table 10 below. The rule checks at default
time intervals that the response of the Activity is within the predefined time constrains.

4.2 Privacy

4.2.1 PATTERN DEFINITION

4.2.1.1 CONSENT

Due to GDPR constrains, patterns should be developed in order for SEMIoTICS to be GDPR compliant. One
of the constrains that need to be considered is for the user to give her consent on their data to be used.

On a simple service composition as the below depicted on Figure 10 we make the following assumptions

• 𝐼𝑁𝐴 and 𝑂𝑈𝑇𝐴 are the sets of inputs and outputs of A

• 𝐷x Are the data which belong to owner X

• C is a set of users who have agreed their data can be processed and stored

FIGURE 10 PRIVACY ON A SIMPLE SERVICE COMPOSITION

1. rule "Availability"
2. when
3. $A: Placeholder($input : operation.inputs,
4. output : parameters.outputs)
5. $T: Timer(time.Interval(“Default time interval”))
6. $ORCH: Check($A,$T)
7. $OP: Req(propertyName == "Availability", subject == $ORCH,

satisfied == false)
8. $SP: PropertyPlan (properties contains $OP)
9. then
10. PropertyPlan newPropertyPlan = new PropertyPlan($SP);
11. newPropertyPlan.removeRequirement($OP);
12. Req Hash1 = new Req($OP,"ResponseTime",$A, ”Default response

time”);
13. newPropertyPlan.getProperties().add(Hash1);
14. insert(Hash1);
15. insert(newPropertyPlan);
16.end
17.

TABLE 11. SPECIFICATION OF AVAILABILITY PROPERTY VIA DROOLS

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D4.1 SEMIoTICS SPDI Patterns (first draft)

Dissemination level: Public

57

Then in order to be able to able to create every service composition the following pattern should be applied

INP = DA where A ⊆C

This means that for every service composition we must first check that the beholder of the data has agreed to
this composition can process them.

Regarding data state coverage, this pattern covers two states, at_rest and in_processing. Moreover, it refers
to components that are within the SEMIoTICS platform.

4.2.1.2 IDENTIFIABILITY

In order to guarantee privacy not only components that form the service should be checked for privacy but also
their composition. At each layer of composition, the data union that the layer produces should be evaluated.
As an example, consider the composition of a service of two components.

FIGURE 11. PRIVACY PATTERN EXAMPLE

Let us assume that for each x in {A, B, C}

• OUTX are the sets of outputs of x

• INX are the sets of inputs of x

• EX=INX ∪ OUTX

• VX and CX are two disjoint subsets of EX which partition it into public parts VX and confidential parts CX

• L is a corpus of sets that are pre-defined that expose privacy

Then in order the composition to satisfy the privacy requirements, the following properties must hold:

a. VA ∩ L =⌀

b. VB ∩ L =⌀
c. VC ∩ L =⌀

Moreover, when data are at rest (i.e. in storage) we should take precautions that:

d. (VA ∪ VB ∪ VC) ∩ L =⌀

Still, the following properties should also hold:

e. (VA ∪ VB) ⊆ VC

f. (VA ∪ VB) ∩ CC =⌀

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D4.1 SEMIoTICS SPDI Patterns (first draft)

Dissemination level: Public

58

As an example, let us assume that there are two components A and B that we want to use to create a service
C. Moreover, a set L that exposes users privacy is L={(name, location), (name, medical_condition)}; i.e., we
do not want a service that exposes a person’s name along with her location and/or her medical conditions.

Component A publicly sends the user’s ID, environmental temperature and location, while component B
publicly sends the user’s name, user’s ID and the humidity of the environment

In this case, Req(A, Privacy) is validated as True (since OUTA ∩ L =⌀), and also Req(B, Privacy) is validated

as True (since OUTB ∩ L =⌀).

Nevertheless, the composition of A and B to form C, as in FIGURE 11, creates:

OUTC= OUTA∪OUTB = {userID, temperature, location, UserName, humidity}

This means that OUTC ∩ L = {name, location}, which is not empty; thus, the composition of those 2 services is
not viable, as it violates the privacy pattern rule and creates a privacy leak.

Regarding data state coverage, this pattern covers two states, at_rest and in_processing . Moreover, it refers
to components that are within the SEMIoTICS platform.

4.2.2 PATTERN SPECIFICATION RULE

4.2.2.1 CONSENT

Based on the approach presented in subsection 3.3, a representation of our pattern in our pattern language
can be defined as:

0. ORCH “Consent”
1. Activity(_a)
2. AP_1(“UserConsensus”,_a, pattern)
3. OP(GDPR_Consensus, subject == “Consent”, satisfied == false)
4. Pattern rule: AP_1 ➔ OP

1. ORCH “Consent”
2. Placeholder (A1, (PlaceholderActivity, PlaceholderDescription))
3. Property (UserConsensus, A1, required, (pattern-based, pattern), ?, at_rest)
4. Property (GDPRConsensus, “Consent”, required, (pattern-based, PR1), ?, end_to_end)
5. Pattern rule (PR1: UserConsensus -> GDPRConsensus

This pattern can be then translated to a drools engine compatible pattern as the following:

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D4.1 SEMIoTICS SPDI Patterns (first draft)

Dissemination level: Public

59

4.2.2.2 IDENTIFIABILITY

Following a similar approach, the pattern definition on our language could be:

0. ORCH “Identifiability”
1. Activity(_a)
2. Activity(_b)
3. Merge(_a,_b)
4. AP_1(“Identifiability”,_a, certificate)
5. AP_2(“Identifiability”,_b, certificate)
6. AP_3(“Identifiability”,dataMerge(_a,_b), patern)
7. OP(Identifiability, subject == “Identifiability”, satisfied == false)
8. Pattern rule: AP_1,AP_2,AP_3 ➔ OP

1. ORCH “Identifiability”
2. Placeholder (A1, (PlaceholderActivity, PlaceholderDescription))
3. Placeholder (A2, (PlaceholderActivity, PlaceholderDescription))
4. Merge (A1, A2)
5. Link (L1, A1, A2)
6. Property (Identifiability1, A1, required, (certificate, interface), ?, in_processing)
7. Property (Identifiability2, L1, required, (pattern-based, pattern), ?, in_processing)
8. Property (Identifiability3, A2, required, (certificate, interface), ?, in_processing)
9. Property (Identifiability4, “Identifiability”, required, (pattern-based, PR1), ?, end_to_end)
10. Pattern rule: (PR1: Identifiability1, Identifiability4, Identifiability3 ➔ Identifiability4)

This pattern can be then translated to a drools engine compatible pattern as the following:

1. rule "Consent"
2. when
3. $A: Placeholder($input : operation.inputs,

$output:operation.output)
4. $ORCH: Single(parameters.inputs == $input,
5. parameters.outputs == $output)
6. $OP: Property(propertyName == "UserConsenus",
7. subject == $ORCH, satisfied == false)
8. $SP: PropertyPlan(properties contains $OP)
9. then
10. PropertyPlan newPropertyPlan = new PropertyPlan ($SP);
11. newPropertyPlan.removeProperty($OP);

12. insert(newPropertyPlan);
13.end
14.

TABLE 12. SPECIFICATION OF GDPR CONSENT VIA DROOLS

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D4.1 SEMIoTICS SPDI Patterns (first draft)

Dissemination level: Public

60

4.3 Dependability

4.3.1 PATTERN DEFINITION

Dependability typically refers to the provision of expected service, towards task accomplishment in a reliable
and trustworthy manner, and it entails reliability, safety, availability and security [32]. Nevertheless, the concept
of security is covered separately above (see subsection 4.1), and in modern computer engineering, security is
considered to encompass availability (along with confidentiality and integrity). Therefore, in the context of this
work, Dependability properties will mainly focus on reliability, fault tolerance and safety aspects.

In order to guarantee end-to-end dependability properties, suitable component orchestrations on the different
SEMIoTICS layers should be found in order to guarantee the required dependability property. If this does not
exist, the substitution or the addition of current components with other atomic ones or orchestrations is required
in order to guarantee dependability. This is also related to the components and the topology of the composition.

However, it should be noted that the composition of two components which preserve a dependability property
does not necessarily guarantee that the composition will also preserve the same property. In addition, if a
composition guarantees the conditions of a property, the atomic components may not preserve the property.
As an example, let’s consider a sequential (AND) composition of two components:

C → C1 ∧ C2

If a required property should be guaranteed by the C, the subcomponents C 1 and C2 should satisfy the
condition:

Property (C, Category) → Property (C1, Category) ∧ Property (C2, Category)

If there are no atomic components to guarantee the required property a recursive procedure is used in which
successive (sub-) orchestrations are generated until the atomic components bound to them satisfy the required
properties. The decomposition can be analysed as follows:

1. rule "Identifiability"
2. when
3. $A: Placeholder($output_A: Activity.output)
4. $B: Placeholder($output_B: Activity.output)
5. $ORCH: Merge($A, $B)
6. $OP: Property(propertyName == "Identifiability",
7. subject == $ORCH, satisfied == false)
8. $SP: PropertyPlan(propeties contains $OP)
9. then
10. PropertyPlan newPropertyPlan = new PropertyPlan($SP);
11. newPropertyPlan.removeProperty($OP);

12. Property NP_A = new Property($OP, "Identifiability", $A);

13. Property NP_B = new Property($OP, "Identifiability", $B);

14. insert(NP_A)

15. insert(NP_B)
16. insert(newPropertyPlan);
17.end

TABLE 13. SPECIFICATION OF GDPR IDENTIFIABILITY VIA DROOLS

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D4.1 SEMIoTICS SPDI Patterns (first draft)

Dissemination level: Public

61

Property (C, Category) → Property (C1, Category) ∧ Property (C2, Category) →

(Property (C11, Category) ∧ Property (C12, Category))

∧ (Property (C21, Category) ∧ Property (C22, Category))

…until components C11, C12, C21, C22 that satisfy the required property Pro are found

On the other hand, the multi-choice (OR) composition of two components can be expressed as follows:

C → C1 ⋁ C2 → Property (C, Category) → Property (C1, Category) ⋁ Property (C2, Category)

The above procedures can be used to satisfy not only for dependability, but also for all the other SEMIoTICS
property requirements.

Moreover, certain dependability properties will need to hold at the component level to enable the E2E
properties to be achieved. One of the most important issues for a system designer is to validate system
dependability of components as a critical condition for the design of complex network infrastructures and
identify the weakest components in order to replace, redesign and find alternative solutions. System
dependability properties such as reliability and availability depend on component’s arrangements. Stepwise
decomposition can be used to recursively build network topologies using forward or de-orchestrations using
backward chaining respectively, as depicted in Figure 12.

FIGURE 12 STEPWISE DECOMPOSITION

The two basic arrangements which we are focused on are components in series and in parallel. Other
arrangements can include parallel-series, k-out-of-n or non-series-parallel systems. More specifically, for
components in series, the reliability (or availability) for probabilistic models, quickly decreases as the number
of components increases. In a serial system a single failure results in entire assembly or system failure. The
addition of new components in series decreases the reliability (or availability) of system. Components in series
may have arrangements either following the sequence or parallel-split workflow patterns. This occurs because
a failure of a single component will result the failure of the system. Reliability (or availability) of systems in
series can be defined as follows:

Definition 1. Let C={C1,C2,...Cn} be a number of components in series and R1, R2,...,Rn be the reliability of
each component, then the component composition C will have reliability r equal to:

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D4.1 SEMIoTICS SPDI Patterns (first draft)

Dissemination level: Public

62

R=∏ (𝑅𝑘)𝑛
𝑘=1

In components in parallel, the reliability (or availability) of the system exists only when at least one component
is functional. The reliability of the system is the 1 minus the probability that all fail. In parallel components, all
redundant units’ failure causes system failure. Thus, the addition of components in parallel increases the
reliability of the subsystem. We may associate the multi-choice pattern as a parallel arrangement because the
failure of a single component does not cause system failure. Reliability of components in parallel can be defined
as follows:

Definition 2. Let C = {C1,C2,...Cn} be a number of components in parallel and R = {R1,R2,···,Rn} be the reliability
of each component, then the parallel component composition C will have reliability R:

R=1-∏ (1 − 𝑅𝑘)𝑛
𝑘=1

In case of arithmetic models such as latency for availability, the following approaches can be used:

1) For components in series (sequential): 𝐴 = ∑ 𝐴𝑘
𝑛
𝑘=1

2) For components in parallel (multi-choice): 𝐴 = 𝑚𝑖𝑛{𝐴1, 𝐴2, … , 𝐴𝑛}
3) For components in parallel (parallel split): 𝐴 = 𝑚𝑎𝑥 {𝐴1, 𝐴2, … , 𝐴𝑛}

Where A is the total system availability and Aκ for k=1:n.

For the SEMIoTICS IoT applications that require end-to-end dependability, a vertical cross layer component
composition in series can be defined.

As far as data state coverage is considered, the Dependability pattern covers the in_transit data state.
Moreover, it refers to components that are within the SEMIoTICS platform.

4.3.2 PATTERN SPECIFICATION RULE

Reliability pattern can be expressed as rules in Drools production rules. They encode orchestrations in Drools
corresponding to the structure of the logical reliability arrangements. It also specifies rules that dictate the
properties that the constituent components must have.

R(t) = Prob(Comp is fully functioning in [0,t])

metric to measure the Reliability of the composition.

We may consider two activities A and B having specific source operation inputs and outputs and reliability r1
and r2 respectively. The composition of the two activities will be described as a new activity with reliability R
based on the components’ arrangement. For the component composition in series, the control flow describes
the serial arrangement of the components based on the sequence workflow pattern. The data flow defines that
the outputs of the activity A will be the inputs of component B. In addition, the reliability property guaranteed
by a serial component composition is equal to R = R1 · R2. Therefore, the guaranteed reliability property R
should satisfy the required reliability property Rreq ≤ R. The encoded pattern in Drools is depicted in Table 13.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D4.1 SEMIoTICS SPDI Patterns (first draft)

Dissemination level: Public

63

4.4 Interoperability

As discussed in Section 2.4, four levels of interoperability are considered in SEMIoTICS: technological,
syntactic, semantic and organizational interoperability. An approach towards a pattern rule definition for these
cases is detailed below.

As far as data state coverage is considered, the set of interoperability patterns covers all three data states,
in_transit, at_rest and in_processing. Moreover, all of them may refer to components that are within the
SEMIoTICS platform or across different IoT platforms.

4.4.1 PATTERN DEFINITION

4.4.1.1 TECHNOLOGICAL INTEROPERABILITY

Definitions:

 C := the set of all instantiated components

 TA:= A set of technological attributes

C1,C2 ⊆ C , where C1 ≠ C2

CiTA ⊆ TA := technological attributes of Ci

TMD:= Technological mediator, Mediator which connects to components with various technological
attributes

Lemma 1: If C1,C2 are at the same domain and C1TA ∩ C2TA ≠ ⌀ then C1 and C2 are directly technological
interoperable

1. rule "Serial Reliable Composition"
2. when
3. $A: Placeholder($input : operation.inputs, $intData: parameters.outputs,
4. $r1:= reliabilityValue)
5. $B: Placeholder(parameters.inputs == $intData, $output: parameters.outputs,
6. $r2:= reliabilityValue)
7. $ORCH: Sequence(parameters.inputs:= $input, parameters.outputs == $output,
8. firstActivity == $A, secondActivity == $B)
9. $OP: Property(subject:= $ORCH, propertyName== “Reliability",
10. $rel:= propertyValue, $rel<= $r1*$r2, satisfied == false)
11. $SP: PropertyPlan(property contains $OP)
12.then
13. PropertyPlan newPropertyPlan = new PropertyPlan($SP);
14. newPropertyPlan.removeProperty($OP);
15. Property NP_A = new Property($OP, "Reliability", $A);
16. newPropertyPlan.getProperty().add(NP_A);
17. insert(NP_A);
18. Property NP_B = new Property($OP, "Reliability", $B);
19. newPropertyPlan.getProperties().add(NP_B);
20. insert(NP_B);
21. insert(newPropertyPlan);
22. modify($OP){satisfied=true};
23.end

TABLE 14. VERIFICATION OF SEQUENTIAL RELIABILITY VIA DROOLS

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D4.1 SEMIoTICS SPDI Patterns (first draft)

Dissemination level: Public

64

Lemma 2: If C1,C2 are on different domain but are both direct technological interoperable with TMD FIGURE
13 then C1,C2 are indirect technological interoperable

FIGURE 13 COMPONENTS TECHNOLOGICAL DOMAINS

Lemma 3: If C1,C2 are direct or indirect technological interoperable then C1,C2 are technological interoperable

4.4.1.2 SYNTACTIC INTEROPERABILITY

Definitions :

 C := the set of all instantiated ingredients/activities

 PR:= A set of protocols

C1,C2 ⊆ C , where C1 ≠ C2

CiPR ⊆ PR := protocols supported by Ci

SMD:= Syntactic mediator, Mediator which connects to components with various protocols

Lemma 1: If C1,C2 are technologically interoperable and C1PR ∩ C2PR ≠ ⌀ then C1 and C2 are directly syntactical
interoperable

Lemma 2: If C1,C2 are technologically interoperable and are both direct syntactical interoperable with SMD
FIGURE 14 then C1,C2 are indirect syntactical interoperable

FIGURE 14 SYNTACTICAL INTEROPERABILITY DIAGRAM

Lemma 3: If C1,C2 are direct or indirect syntactical interoperable then C1,C2 are syntactical interoperable.

4.4.1.3 SEMANTIC INTEROPERABILITY

Definitions :

 C := the set of all instantiated components

 MDL:= A set of models

C1,C2 ⊆ C , where C1 ≠ C2

CiMDL ⊆ MDL := semantic models used by Ci

SB:= Semantic broker, Broker defined in Section 2.4

Lemma 1: If C1,C2 are syntactic interoperable and C1MDL ∩ C2MDL ≠ ⌀ then C1 and C2 are directly semantic
interoperable

Lemma 2: If C1,C2 are syntactic interoperable and are both direct semantic interoperable with SMD FIGURE
14 then C1,C2 are indirect semantic interoperable

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D4.1 SEMIoTICS SPDI Patterns (first draft)

Dissemination level: Public

65

FIGURE 15 SEMANTIC INTEROPERABILITY DIAGRAM

Lemma 3: If C1,C2 are direct or indirect semantic interoperable then C1,C2 are semantic interoperable

4.4.2 PATTERN SPECIFICATION RULE

Using the above detailed pattern we can define our interoperability patterns as follows.

1. WF “technical-interoperability”
2. Placeholder (A1, (PlaceholderActivity, PlaceholderDescription))
3. Placeholder (A2, (PlaceholderActivity, PlaceholderDescription))
4. Placeholder (TMD, (PlaceholderActivity,”technological mediator”))
5. Link (L1, A1, A2)
6. Link (L2, A1, TMD)
7. Link (L3, A2, TMD
8. Property (conn1, L1, required, (pattern-based, pattern),” technical-interoperability” , in_processing)
9. Property (conn2, L2, required, (pattern-based, pattern),” technical-interoperability” , in_processing)
10. Property (conn2, L3, required, (pattern-based, pattern),” technical-interoperability” , in_processing)
11. Property (conn4, “technical-interoperability”, required, (pattern-based, PR1),”technical-

interoperability”, end_to_end)
12. Pattern rule: (PR1: conn1 || (conn2, conn3) ➔ conn4)

1. WF “syntactic-interoperability”
2. Placeholder (A1, (PlaceholderActivity, PlaceholderDescription))
3. Placeholder (A2, (PlaceholderActivity, PlaceholderDescription))
4. Placeholder (SMD, (PlaceholderActivity,”syntactic mediator”))
5. Link (L1, A1, A2)
6. Link (L2, A1, SMD)
7. Link (L3, A2, SMD
8. Property (conn0, L1, required, (pattern-based, pattern),” technical-interoperability” , in_processing)
9. Property (conn1, L1, required, (pattern-based, pattern),” syntactic-interoperability” , in_processing)
10. Property (conn2, L2, required, (pattern-based, pattern),” syntactic-interoperability” , in_processing)
11. Property (conn2, L3, required, (pattern-based, pattern),” syntactic-interoperability” , in_processing)
12. Property (conn4, “syntactic-interoperability”, required, (pattern-based, PR1),”syntactic-

interoperability”, end_to_end)
13. Pattern rule: (PR1: (conn0,conn1) || (conn0,conn2, conn3) ➔ conn4)

1. WF “semantic-interoperability”
2. Placeholder (A1, (PlaceholderActivity, PlaceholderDescription))
3. Placeholder (A2, (PlaceholderActivity, PlaceholderDescription))
4. Placeholder (SB, (PlaceholderActivity,”Semantic Broker”))
5. Link (L1, A1, A2)
6. Link (L2, A1, SB)
7. Link (L3, A2, SB
8. Property (conn0, L1, required, (pattern-based, pattern),” syntactic-interoperability” , in_processing)
9. Property (conn1, L1, required, (pattern-based, pattern),” semantic-interoperability” , in_processing)
10. Property (conn2, L2, required, (pattern-based, pattern),” semantic -interoperability” , in_processing)

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D4.1 SEMIoTICS SPDI Patterns (first draft)

Dissemination level: Public

66

11. Property (conn2, L3, required, (pattern-based, pattern),” semantic -interoperability” , in_processing)
12. Property (conn4, “semantic-interoperability”, required, (pattern-based, PR1),” semantic-

interoperability”, end_to_end)
13. Pattern rule: (PR1: (conn0,conn1) || (conn0,conn2, conn3) ➔ conn4)

Moreover, the specification in Drools is shown in Table 14.

4.5 Pattern Summary

Aggregating the above first set of patterns presented in this deliverable, Table 16 presents the coverage that
this first set of patterns offers in terms of the considered properties, data states and platform connectivity cases
covered.

TABLE 16. SUMMARY OF 1ST SET OF SPDI PATTERNS AND THEIR COVERAGE

Pattern
Property Data State Coverage Platform

Connectivity
Security

Priv. Depend. Interop. QoS In

Transit
At

Rest
In

Processing Within Across
Name Conf. Int. Avail.

1. rule "Interoperability"
2. when
3. $A: Placeholder($input : operation.inputs,
4. $intData : parameters.outputs)
5. $B: Placeholder(parameters.inputs == $intData,
6. $output : parameters.outputs)
7. $ORCH: Link(firstActivity == $A, secondActivity == $B)
8. $OP: Req(propertyName == "Interoperability",
9. subject == $ORCH, satisfied == false)
10. $SP: PropertyPlan (properties contains $OP)
11.then
12. PropertyPlan newPropertyPlan = new PropertyPlan($SP);
13. newPropertyPlan.removeRequirement($OP);
14.
15. Req Technological = new Req($OP,"Technological",ORCH);
16. newPropertyPlan.getProperties().add(Technological);
17. insert(Technological);
18. Req Syntactic = new Req($OP,"Syntactic",ORCH);
19. newPropertyPlan.getProperties().add(Syntactic);
20. insert(Syntactic);
21. Req Semantic = new Req($OP,"Semantic",ORCH);
22. newPropertyPlan.getProperties().add(Semantic);
23. insert(Semantic);
24. insert(newPropertyPlan);
25.end

TABLE 15. SPECIFICATION OF INTEROPERABILITY VIA DROOLS

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D4.1 SEMIoTICS SPDI Patterns (first draft)

Dissemination level: Public

67

1 Perfect Security

Property (PSP)
    

2
Sequential

Orchestration

Integrity
     

3 Readiness     

4 Consent    

5 Identifiability    

6 Serial Reliability   

7 Parallel

Reliability   

8 Technical

Interoperability     

9 Syntactic

Interoperability     

10 Semantic

Interoperability    

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D4.1 SEMIoTICS SPDI Patterns (first draft)

Dissemination level: Public

68

5 IOT SERVICE ORCHESTRATION
The materialization of the Internet of Things is done nowadays by various IoT platforms, offering devices and
services (IoT offerings). This is a world where applications are distributed and realized by the interoperations
among services, in order to become more capable and powerful. The next logical step towards the facilitation
of the usage of IoT offerings is their composition. As a result, we need a language to express how composing
parts of IoT applications are put together in a workflow. Our choice is the IoT Recipe model (see D3.4, Section
3.3.2), which allows the aggregation of IoT offerings based on semantic composition rules. The tool -kit that
accompanies the Recipe model includes a lightweight graphical tool that eases the creation of Recipes as
composition of offerings. What follows is the instantiation of the Recipe and the automatic production of
executable application code.

Regarding the description of a workflow in details, the IoT Recipe model is quite expressive. Its core structure
shares many characteristics with BPMN 2.0, the global standard for business processes. First of all, the Task
of BPMN corresponds to the Ingredient of the Recipe model. A Task is an atomic Activity, a work that cannot
be broken down to a finer level of detail. An Ingredient corresponds to data or a function offered by a provider.
Then, in BPMN we have the concept of Sub-process that can be opened up to show its internal details. This
is also offered by Recipe model since a Recipe is an offering. That means that Sub-recipes are supported.
Moreover, Recipe Patterns correspond to BPMN Gateways. Gateways are responsible for the control of the
Process flow and are separated in different types (Exclusive, Inclusive, Parallel, Event -Based). Recipe
Patterns are also Ingredients and are used for the expression of the conditions under which Ingredients
connect. The list of the Recipe Patterns types includes If -Then, If-Then-Else, Sequence, Conjunction,
Disjunction, Negation, Iterate, Repeat-until, Repeat-while, Split, Unordered list, Choice and Split-Join. Finally,
in BPMN there is the concept of Event, something that happens during the Process and affects the flow. Events
make event-driven processes possible. The concept of Event was not present in the first version of Recipe
model. However, an extension allowed the support of for asynchronous, event-based offerings composition. A
detailed presentation of the aforementioned model is available in Section 5.1 below.

Although Recipe model is quite capable to describe IoT workflows, some extensions are necessary in order to
for us to achieve application orchestrations that guarantee SPDI properties. First of all, we need to be able to
describe Links of the network level. The attributes of a Link are described in Section 3.3. Furthermore,
Ingredients must be extended to include information about their SPDI properties. Only QoS constraints are
offered at the moment. Finally, monitoring capabilities should be added to Ingredients that will provide the
evidence for the presence of the SPDI and QoS properties.

5.1 Recipe-driven IoT Application Workflow definition

In this section8, we present an extension of the IoT Recipe model (D3.4, Section 3.3.2), which allows the
description of IoT application workflows. We add the ability to specify QoS requirements within the model. This
can be utilized by user interfaces for IoT application developers to enable the expression of QoS requirements
in a simplified manner at the application layer. We aim to translate these user-defined QoS requirements then
into concrete SPDI patterns that define a specific SDN/NFV configuration. Using the recipe model here has
the advantage of facilitating the IoT application development and will make IoT applications more reliable as
networking QoS constraints can be integrated more easily.

8 This section is based on a paper currently under review for publication at the EUCNC conference
(https://www.eucnc.eu).

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D4.1 SEMIoTICS SPDI Patterns (first draft)

Dissemination level: Public

69

FIGURE 16. THE RECIPE MODEL

In previous work [26], [1] we have presented a model to define abstract IoT orchestrations as recipes. In this
model, shown in Figure 16, a recipe is a template for a workflow of interactions between multiple ingredients,
i.e., devices or services. When a recipe is instantiated, ingredients are replaced with concrete things, described
with their own respective Thing Description. A draft for a user interface (UI) for the specification of recipes can
be seen in Figure 17. Besides the workflow of the recipe, QoS constraints and SPDI patterns can be defined
on the interactions.

The user of this tool would be typically an IoT application developer. This user wants to focus on the logic of
the application flow. Specifically, the user does not have to have expertise in configuring the network and
physical connections between the involved IoT devices. The benefit of the recipe approach is that these
configurations are automatically done by the tool and the underlying technologies.

In the example, the UI has been used to define a recipe that combines multiple services of devices within a
wind turbine (microphone, accelerometer and anemometer) with the purpose of sending out alarms in case of
severe conditions (i.e., detected noise, motion and winds) are above a threshold. The abstract service
composition and associated constraints are first defined in the UI. The composition and graph are then
translated to concrete configurations.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D4.1 SEMIoTICS SPDI Patterns (first draft)

Dissemination level: Public

70

FIGURE 17. EXAMPLE USER INTERFACE TO DEFINE RECIPES

In Figure 18, the sequence of creating and instantiating a recipe is depicted. First, the recipe creation phase
takes place. This is independent of the later instantiation phase and can also be done by a different user.

1. At startup, the Recipe Cooker tool requests the capabilities of all available things on the network from
the Thing Directory on the backend. These capabilities are reported back to the Recipe Cooker in the
Thing Description format. Besides the syntax and semantics of inputs and outputs, the Thing
Description defines general capabilities (e.g., resolution of a camera).

2. Next, the user defines the recipe (i.e., the application flow including if/else and for -loops) and specifies
the expected capabilities (selected from the downloaded thing capabilities) of ingredients, such as
input and output data types. The user utilizes the Recipe Cooker tool for this specification.

Second, the recipe instantiation phase takes place. This phase can be conducted by a different user and could
potentially happen at a much later point in time.

1. The user starts by selecting a recipe that reflects as a template the workflow he wants to implement in
his site. Therefore, the Recipe Cooker requests all semantically matching things (for the ingredients of
the selected recipe) from the Thing Directory. The computational complexity of this matching process
(simple subsumption reasoning) was tested in our previous work [26]. It scales well enough, on a
machine with 8GB RAM and 2.4 GHz i5 intel processor, it results in a computation time of one second
being broken at about 650 recipes. The system scales quadratically in the number of recipes, but with
low constant factors. Thereby, the closed world assumption is held here: the knowledge base is known
to be complete, since the Thing Directory is held up-to-date by design of our multi-layer architecture.

2. Next, the user can select a concrete thing for each ingredient. This manual step, conducted by the user
(application developer), ensures the proper selection of suitable activities in the application
composition. The activities in this composition are the matching and selected things retrieved from the
Thing Directory. They are described using the Thing Description (TD) model and format defined by the
W3C Thing Description specification.

3. Then, the user triggers the deployment of the recipe instance. Therefore, the recipe instance is
transmitted to the Pattern Orchestrator in the format of a so-called Recipe Runtime Configuration
(RRC). The RRC is then translated into:

a. network pattern (i.e., configurations of the SDN controller as Drools rules)

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D4.1 SEMIoTICS SPDI Patterns (first draft)

Dissemination level: Public

71

b. interaction descriptors for each involved thing; which are then uploaded to the Semantic API
of the Gateway to which the thing belongs.

4. If the network configuration and the interaction configuration were successful, the RRC is stored as
“active” in the Recipe Cooker and the successful deployment is displayed to the user (or an error is
displayed otherwise).

FIGURE 18: SEQUENCE OF DEFINING AND DEPLOYING A RECIPE

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D4.1 SEMIoTICS SPDI Patterns (first draft)

Dissemination level: Public

72

6 RECIPES & PATTERNS INTEGRATION
The integration of the Recipes approach detailed in section 5 above, with the SEMIoTICS SPDI patterns will
enable the user-friendly, abstract definition of IoT service orchestrations, with the SPDI guarantees provided
by the patterns. In more detail, the encoding of the dependencies will allow the verification that a specific
SEMIoTICS service workflow, as defined in the associated Recipe, satisfies certain SPDI properties, but also
the generation (and adaptation) of a workflow in a manner that guarantees the satisfaction of the needed SPDI
properties

For integrating the user-friendly abstraction for IoT service orchestration provided by Recipes, the activity-
based IoT orchestration model followed for Pattern definition, as detailed in Section 3, is mapped to the
ingredient-based view of Recipes.

In more detail, Recipes are mapped to Workflows (i.e. orchestrations of activities), and similarly, the individual
atomic building blocks are also mapped, i.e. ingredients are mapped to activities. A simple example o f this is
depicted in Figure 19, showing a simple Recipe involving two ingredients and a Workflow involving two
activities that matches said Recipe.

FIGURE 19. A SIMPLE RECIPE (LEFT) AND A MATCHING WORKFLOW PATTERN (RIGHT)

The same match can happen in cases of more complex Recipes, whereby existing Recipes are used as
ingredients to new, more complex recipes, since these can be mapped to sub-Workflows. An example of this
mapping for a complex Recipe consisting of two ingredients, the second of which is another recipe, is depicted
in Figure 20. The various Recipe parameters such as requirements, constraints, properties and orchestration
details are also mapped to the corresponding elements in the workflow view.

FIGURE 20. A COMPLEX RECIPE (LEFT) AND A WORKFLOW PATTERN MATCHING SAID RECIPE
(RIGHT)

Upon Recipe instantiation, the descriptions and characteristics of the specific offerings selected provide the
necessary information needed to model the actual workflow, and are passed over from Thing Descriptions’ of

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D4.1 SEMIoTICS SPDI Patterns (first draft)

Dissemination level: Public

73

the offerings to the various variables and placeholders present in the equivalent Workflow representation. For
the Recipe shown in Figure 20, this transformation is visualised in Figure 21.

FIGURE 21. INSTATIATION OF RECIPE, REPLACING INGREDIENTS WITH SELECTED OFFERINGS
(LEFT) AND INSTANTIATION OF WORKFLOW, REPLACING ACTIVITY PLACEHOLDERS WITH ACTUAL

ACTIVITIES (RIGHT)

The sequence diagrams for the interactions between the corresponding components of the SEMIoTICS
architecture at design time and at runtime are depicted in Figure 22 and Figure 23 respectively. More
specifically, Figure 22 shows the instantiation phase, where, following the Recipe definition and instantiation,
via the Recipe Cooker module, the SPDI and QoS properties of the Recipe that are defined for the specific
workflow are translated into the equivalent Pattern rules. These are in turn stored at the Pattern Global
Repository and, via the Pattern Orchestrator, are sent to the Pattern Repositories residing in the lower layers
(i.e. network and field), with each of those receiving the set of rules that pertains to the operation of the specific
layer. At runtime (Figure 23), the Pattern Engines at each layer are responsible for retrieving, reasoning upon
and updating the rules and facts stored on their local repositories, based on inputs they constantly receive
from the Monitoring elements available at the various components at their layers that participate in the
workflow. In the case of the Network and Field layers, any updates must be also relayed back at the Global
repository, in order to allow it to have an up-to-date view of the state of the system at the various layers.

FIGURE 22. INSTANTIATION OF PATTERN COMPONENTS ACROSS LAYERS

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D4.1 SEMIoTICS SPDI Patterns (first draft)

Dissemination level: Public

74

FIGURE 23. RUNTIME DIAGRAM OF PATTERN COMPONENTS

6.1 Application Example

To demonstrate the use of the concepts and constructs defined in the above sections, as well as the Recipes
& Patterns integration, a simple application example will be sketched in this subsection. In more detail, the
scenario considered is depicted in Figure 24, with key aspects detailed below:

• Scenario: SEMIoTICS-enhanced Wind Park IIoT deployment

• Interaction: Data captured by IIoT accelerometer sensor on Wind Turbine is relayed to IIoT gateway
for vibration analytics, and the output of the analytics is relayed to the backend for monitoring and
alarm purposes.

• SPDI Property required: End-to-end confidentiality

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D4.1 SEMIoTICS SPDI Patterns (first draft)

Dissemination level: Public

75

FIGURE 24. EXAMPLE OF IIOT APPLICATION

6.1.1 DESIGN

The design of the “Windturbine Vibration Monitoring” Recipe implementing the above scenario is depicted in
Figure 25, with ingredients “Vibration Analytics” and “Monitoring & Alarm”, as well as the Confidentiality
property covering the whole Recipe. The matching Workflow would be a simple sequential workflow with two
activities, much like the one shown on the right side of Figure 19.

FIGURE 25. THE WINDTURBINE VIBRATION MONITORING RECIPE

6.1.2 INSTANTIATION

When instantiating the above-defined Recipe, the appropriate offerings are selected to implement the desired
process; e.g., the “Vibration Analytics Offering #1” offering is selected to implement the “Vibration Analytics”
ingredient. Thus, the instantiated version of the recipe of Figure 25 is shown in Figure 26 (top) with the workflow
view equivalent also appearing on the same figure (bottom). In the latter, the activity placeholders are replaced
with specific activities (“Vibration Analysis” and “Monitoring Alarm”, respectively), with specifics on their

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D4.1 SEMIoTICS SPDI Patterns (first draft)

Dissemination level: Public

76

characteristics (e.g., inputs/outputs), as well as the end-to-end confidentiality property defined in the Recipe,
which is now also broken down to individual properties for the two activities and the link between them.

FIGURE 26. INSTANTIATED RECIPE (TOP) AND WORKFLOW (BOTTOM)

Using the language defined in subsection 3.3, the above workflow can be formally described as follows:

0. ORCH “Seq2”
1. Placeholder (Placeholder1, (Vibration Analysis Activity, Vibration Analysis Description))
2. Placeholder (Placeholder2, (Monitoring Alarm Activity, Monitoring Alarm Description))
3. Sequence (Placeholder1, Placeholder2)
4. Link (Link1, Vibration Analysis, Monitoring Alarm)
5. Property (AP_1, Placeholder1, required, (certificate, interface), confidentiality, in_processing)
6. Property (AP_2, Link1, required, (pattern, “PSPpattern”), confidentiality, in_transit)
7. Property (AP_3, Placeholder2, required, (monitoring, interface), confidentiality, at_rest)
8. Property (OP, “Seq2”, required, (pattern-based, “PR1”), confidentiality, end_to_end)
9. Pattern rule: (PR1: AP_1, AP_2, AP_3 → OP)

A visualisation of the above rule for the specific scenario discussed, whereby the end-to-end confidentiality
property of the workflow has to be evaluated by checking the individual AP (and if these hold, then the OP
holds), is visualised in Figure 27 below.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D4.1 SEMIoTICS SPDI Patterns (first draft)

Dissemination level: Public

77

FIGURE 27. VISUALISATION OF SAMPLE APPLICATION, DEPICTING INDIVIDUAL AP

6.1.3 DEPLOYMENT

In Figure 28 the steps of the next phase, i.e. the system deployment, are shown, following the generic process
detailed in subsection 3.6.2.2.

FIGURE 28. SYSTEM DEPLOYMENT PHASE

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D4.1 SEMIoTICS SPDI Patterns (first draft)

Dissemination level: Public

78

In more detail, following the transfer of the instantiation specifics from the Recipes plane to the Workflow
pattern plane, the rules for the individual properties are stored on the Pattern Global Repository and then
relayed by the Pattern Orchestrator to the pertinent layers for monitoring and verification; i.e. AP_1, at the IIoT
gateway, AP_2 to the SDN Controller, while AP_3 only stays at the backend.

6.1.4 RUNTIME

At runtime, the individual SDN pattern engines collect monitoring data from the corresponding interfaces
defined for each property at the specific layer’s components, reason on collected data and trigger adaptation
actions if needed. Changes in the system state related to the monitored properties are stored as new facts or
trigger updates in the stored facts in the corresponding Pattern repositories; for the network and field pattern
engines, these are also transferred to the backend repository, to enable it to have an up-to-date global view of
the SPDI state of the whole deployment. This process, again based on the generic scheme defined in
subsection 3.6.2.2, is shown in Figure 29.

FIGURE 29. SYSTEM RUNTIME MONITORING AND ADAPTAT

6.2 Pattern-driven Orchestration Adaptations

Two different types of pattern-driven orchestration adaptations are envisioned: i) at design-time, and ii) at
runtime.

When changes are imposed to the IoT service orchestration in order for an SPDI or QoS orchestra tion property
to be valid at design-time, these changes must be communicated back where the description of the
orchestration has been created (in this case, the Recipe Cooker component). The final destination of the
changes is the end user that needs to confirm them. As soon as the said changes have been accepted by the
user (or automatically accepted based on a set of predefined user preferences), the new, updated IoT service
orchestration is deployed. Such a change could be the replacement of a component with another component
(or a combination of components; e.g. when a device fails to comply to certain properties, such as because of
an expired certification) or even the addition of an extra component into the orchestration to make sure that
two services in sequence are interoperable (e.g., a semantic mediator; alterations at the output of the first
service are undertaken by the extra component, thus constituting it compatible with the input of the second
service).

On the other hand, when the imposed changes have to be done at runtime, there is no need to be
communicated back to the end user. In this case, the best fitted change is chosen and the needed actions are
taken, however the end user is not informed. For example, let’s assume that the IoT service orchestration in
question has a Camera component. If, for a reason, the Camera becomes unavailable, another component
from the IoT repository with the same functionality and the same SPDI/QoS properties is selected to replace
the one that has become unavailable. In that way the initial property of the whole orchestration, before the
unavailability event, is not affected and continues to hold. Nevertheless, informing the backend orchestration

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D4.1 SEMIoTICS SPDI Patterns (first draft)

Dissemination level: Public

79

component (i.e. Recipe Cooker) may be needed in this case for visualization purposes, to ensure that the GUI
depicts an up-to-date orchestration state.

6.3 Use-case driven Scenarios

In addition to the above generic example demonstrating the use of the integrated pattern -driven IoT
orchestration approach, the subsections below present three scenarios focusing on the use cases considered
in SEMIoTICS. These scenarios will form the basis for demonstrators of these building blocks, to be presented
as the implementation matures.

6.3.1 USE CASE 1

In Figure 30 a topology is depicted that corresponds to use case 1, and more s. In this topology a Camera that
is connected on a Raspberry Pi captures a video that is sent through a switch to a second Rasp berry Pi. On
the second Raspberry a video player is deployed, which depicts the captured video. On this orchestration
patterns can be leveraged to monitor and ensure at the network level that certain QoS properties are
maintained in terms of bandwidth to ensure the uninterrupted and smooth video playback. In that context, the
application designer will be able to specify through the Recipe Cooker GUI the desired QoS properties, these
will be translated to patterns and relayed to the corresponding Pattern Eng ine (in this case the Pattern Engine
embedder into the SDN Controller) for monitoring and enforcement, per the process described in subsection
6.1.

FIGURE 30: USE CASE 1 ORCHESTRATION

Such an orchestration could be described using the IoT pattern language as:

0. ORCH “QoSBandwidth”
1. Softwarecomponent("Camera"),
2. Property("Prop0", required, qosbandwidth, "11400000.0", in_processing, "Camera", true),
3. Softwarecomponent("VideoPlayer"),
4. Property("Prop1", required, qosbandwidth, "11400000.0", in_processing, "VideoPlayer", true),
5. Link("Link1", "Camera", "VideoPlayer"),
6. Property("Prop2", required, qosbandwidth, "11400000.0", in_transit, "Link1", true),
7. Sequence("Seq1", "Camera", "VideoPlayer", "Link1"),
8. Property("Prop3", required, qosbandwidth, "50000", end_to_end, "Seq1", false)
9. Pattern rule: (PR1: Prop0, Prop1, Prop2 → Prop3)

6.3.2 USE CASE 2

In Figure 31 an orchestration is depicted that corresponds to the use of a chain of network service functions
used in the context use case 2 (healthcare scenario). Grouping them based on the different traffic types
involved in the use case, five different service chains are designed:

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D4.1 SEMIoTICS SPDI Patterns (first draft)

Dissemination level: Public

80

• Chain 1 – Mobile Phone: Firewall -> DPI -> IDS -> Output

• Chain 2 – Robotic Rolator: Firewall -> IDS -> Load Balancer -> Output

• Chain 3 – Smart Home: Firewall -> IDS -> Output

• Chain 4 – Robot: Firewall -> Load Balancer -> Output

• Chain 5 - Malicious: Firewall -> Honeypot

In this case, patterns can be leveraged to reason about the different SPDI and QoS properties of the different
chains, since each of the different security service functions (e.g., IDS) provide different guarantees and other
functions (e.g., load balancer) provide QoS-related guarantess. For the sake of brevity, and without loss of
generality, as these scenarios will be defined and demonstrated further in future deliverables when the
implementation of all involved components is mature, we focus on the first chain: the mobile phone of a patient
sends an output to the doctor, through three software components to guarantee the security property of their
communication. The three software components that compose the said chain are: i) Firewall; ii) Data Packet
Inspection and iii) Intrusion Detection System.

FIGURE 31: USE CASE 2 ORCHESTRATION

Such an orchestration could be described using the IoT pattern language as:

0. ORCH “Security”
1. Placeholder(“MobilePhone”, "macaddress", "activityaddress"),
2. Softwarecomponent ("Firewall"),
3. Link("Link1", “MobilePhone”, "Firewall"),
4. Sequence(“Seq1”, “MobilePhone”, "Firewall", “Link1”),
5. Softwarecomponent ("DPI"),
6. Link("Link2", "Seq1", "DPI"),
7. Sequence(“Seq2”, "Seq1", "DPI", “Link2”),
8. Softwarecomponent ("IDS"),
9. Link("Link3", "Seq2", "IDS"),
10. Sequence(“Seq3”, "Seq2", "IDS", “Link3”),
11. Placeholder ("Doctor"),
12. Link("Link4", "Seq3", "Doctor"),
13. Sequence(“Seq4”, "Seq3", "Doctor", “Link4”),
14. Property("Prop0", required, security, "1", end_to_end, "Seq4", false)

6.3.3 USE CASE 3

In Figure 32 a topology is depicted that corresponds to use case 2, and more specifically distributed vibration
monitoring for earthquake detection. In this scenario, we consider that a Gateway is connected with two
vibration sensors, which are identical. At any time, only one of them is up and running and the other one is
idle, for redundancy in the monitoring. This redundant topology can be modelled and monitored as the
Dependability property, through the appropriately defined pattern rule. Therefore, the infrastructure owner will
be able to monitor in real-time the dependability status of her deployment, potential ly triggering adaptations
(e.g., the replacement of one sensor with its redundant mirror).

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D4.1 SEMIoTICS SPDI Patterns (first draft)

Dissemination level: Public

81

FIGURE 32: USE CASE 2 TOPOLOGY

Such an orchestration could be described using the IoT pattern language as:

0. ORCH “Dependability”
1. Iotsensor ("VibrationSensor1", "activityaddress", "activityport"),
2. Iotsensor ("VibrationSensor2", "activityaddress", "activityport"),
3. Iotgateway ("Gateway", "activityaddress", "activityport"),
4. Link("Link1", "VibrationSensor1", "Gateway"),
5. Link("Link2", "VibrationSensor2", "Gateway"),
6. Merge("Merge1", "VibrationSensor1", "VibrationSensor2", "Gateway", "Link1", "Link2"),
7. Property("Prop0", required, dependability, "1", end_to_end, "Merge1", false)

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D4.1 SEMIoTICS SPDI Patterns (first draft)

Dissemination level: Public

82

7 CONCLUSION
This deliverable, being the main output of Task 4.1 (“Architectural SPDI Patterns”) presented the requirements,
design process and the first take on the specification of the SEMIoTICS SPDI pattern language.

Furthermore, discussion on the design process covered the service-orchestration level integration to be
followed with the Recipes approach was discussed, guiding the implementation that will take place in the next
stages of the project.

Finally, leveraging said language, a first set of SPDI patterns is also provided, defining them from both a formal,
workflow-based perspective, as well as their machine-processable representation in Drools.

Through these efforts, the deliverable directly addresses the first key objective of WP4, which is to: “Define a
language for specifying machine interpretable SPDI patterns and develop patterns encoding horizontal and
vertical ways of composing parts of IoT applications that can evidently guarantee SPDI properties across
heterogeneous smart objects and components from all layers of the IoT application implementation stack.”

While the work presented herein fully addresses the definition of the language, it only provides part of the
patterns needed in SEMIoTICS. Thus, and in line with the work programme of the project, the next iteration of
the deliverable, D4.8 – “SEMIoTICS SPDI Patterns (final)”, will provide the final version of the SEMIoTICS
pattern language, with refinements that may be introduced as the implementation progresses. Moreover, the
D4.8 will include the full set of SPDI patterns developed in the project (at least 36 in total), as well as the
testing and validation results in applied usage scenarios. The latter will include the results of static verification
of SPDI properties, as well as confirmation of the automated processing of said patterns.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D4.1 SEMIoTICS SPDI Patterns (first draft)

Dissemination level: Public

83

REFERENCES
[1] A. Lukacs, "What Is Privacy ? the History and Definition of Privacy," p. 256–265, 2017.
[2] M. Dennedy et al., "The Privacy Engineer’s Manifesto: Getting from Policy to Code to QA to Value," Apress,

p. 400, 2014.
[3] E. Union, "Regulation 2016/679 of the European parliament and the Council of the European Union," Off.

J. Eur. Communities, vol. 2014, p. 1–88, 1995.
[4] I. C. Office, "Anonymisation: managing data protection code of practice," Inf. Comm. Off., p. 106, 2012.
[5] P. Ohm, "Broken Promises of Privacy: Responding to the Surprising Failure of Anonymization," UCLA Law

Rev., vol. 57, p. 1701–1777, 2010.
[6] ISO/IEC 27018, 2014. [Online]. Available: http://www.iso27001security.com/html/27018.html.
[7] ISO/IEC 29100:2011, 1996. [Online]. Available: https://www.iso.org/obp/ui/#iso:std:iso-iec:29100:ed-

1:v1:en.
[8] CDC, "HIPAA Privacy Rule and Public Health Guidance from CDC and the U . S . Department depar," vol.

52, p. 24, 2003.
[9] W. Al-mawee, "Privacy and Security Issues in IoT Healthcare Applications for the Disabled Users a

Survey," 2012.
[10] M. F. Mushtaq, S. Jamel, A. H. Disina, Z. A. Pindar, N. S. A. Shakir, and M. M. Deris, "A Survey on the

Cryptographic Encryption Algorithms," Int. J. Adv. Comput. Sci. Appl., vol. 8, p. 333–344, 2017.
[11] W. Arthur, D. Challener, and K. Goldman, "A Practical Guide to TPM 2.0," Statew. Agric. L. Use Baseline,

p. 375, 2015.
[12] J. Laprie, "Dependable computing and fault-tolerance," in Digest of Papers FTCS-15, 1985.
[13] A. Geraci, F. Katki, L. McMonegal, B. Meyer, J. Lane, P. Wilson, J. Radatz, M. Yee, H. Porteous, and F.

Springsteel, "IEEE standard computer dictionary: Compilation of IEEE standard computer glossaries,"
1991.

[14] P. Park, P. Di Marco, C. Fischione, and K. Johansson, "Modeling and optimization of the ieee 802.15. 4
protocol for reliable and timely communications," Parallel and Distributed Systems, vol. 24, 2013.

[15] Jue Chen, Jinbang Chen, Fei Xu, Min Yin, and Wei Zhang, "When Software Defined Networks Meet Fault
Tolerance: A Survey," Springer International Publishing, p. 351–368, 2015.

[16] AFUL G., "Definition: Interoperability.," 2018. [Online]. Available: http://interoperability -definition.info/en/.
[Accessed 20 August 2018].

[17] Kiljander J. e. a., "Semantic interoperability architecture for pervasive computing and Internet of Things,"
IEEE Access, vol. 2, pp. 856-873, 2014.

[18] Haslhofer, B. and Klas, W., "A survey of techniques for achieving metadata interoperability," ACM
Computing Surveys, vol. 42, pp. 1-37, 2010.

[19] Bröring, Arne & Schmid, Stefan & Schindhelm, Corina-Kim & Khelil, Abdelmajid & Kabisch, Sebastian &
Kramer, Denis & Phuoc, Danh & Mitic, Jelena & Anicic, Darko & Teniente, Ernest. (2017). Enabling IoT
Ecosystems through Platform Interoperability. IEEE Software. 34. 54-61. 10.1109/MS.2017.2. P. Barnaghi,
W. Wang, C.A. Henson and K. Taylor, "Semantics for the Internet of Things: Early Progress and Back to
the Future. International Journal on Semantic Web & Information Systems," International journal on
Semantic Web and information systems, 2012.

[20] Barnaghi, Payam & Wang, Wei & Henson, Cory & TAYLOR, KERRY. (2012). Semantics for the Internet of
Things: Early Progress and Back to the Future. International Journal on Semantic Web & Information
Systems. 8. 10.4018/jswis.2012010101.

[21] T. Baker, M. Asim, H. Tawfik, B. Aldawsari and R. Buyya, "An energy-aware service composition algorithm
for multiple cloud-based IoT applications," Journal of Network and Computer Applications, pp. 96-108,
2017.

[22] Z. Zhou, D. Zhao, L. Lui and P. C. K. Hung, "Energy-aware composition for wireless sensor networks as a
service," Future Generation Computer Systems, pp. 299-310, 2018.

[23] O. Alsaryrah, I. Mashal and T. Chung, "Energy-Aware Services Composition for Internet of Things," in
IEEE 4th World Forum on Internet of Things, Singapore, 2018.

[24] A.Urbieta, A. Gonzalez-Beltran, S. B. Mokhtar, M. A. Hossain and L. Capra, "Adaptive and context-aware
service composition for IoT-based smart cities," Future Generation Computer Systems, pp. 262-274, 2017.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D4.1 SEMIoTICS SPDI Patterns (first draft)

Dissemination level: Public

84

[25] L. Chen and C. Englund, "Choreographing Services for Smart Cities: Smart Traffic Demonstration," in IEEE
85th Vehicular Technology Conference (VTC Spring), Sydney, 2017.

[26] J. Seeger, R. A. Deshmukh and A. Broring, "Running Distributed and Dynamic IoT Choreographies," in
Global IoT Summit (GIoTS), Bilbao, 2018.

[27] Forgy C., "Rete: A Fast Algorithm for the Many Pattern/Many Object Pattern Match Problem," Artificial
Intelligence, vol. 19, p. 17–37, 1982.

[28] DENNING D. E., "A lattice model of secure information flow," Communications of the ACM, vol. 19, pp.
236-243, 1976.

[29] Zakinthinos, A., and Lee, E. S, "A general theory of security properties," in IEEE Symposium on Security
and Privacy, 1997.

[30] Maidi M., "The common fragment of CTL and LTL.," in Foundations of Computer Science, 2000.
[31] Avizienis A., Laprie J-C., Randell B., "Fundamental Concepts of Dependability," in LAAS-CNRS, 2001.
[32] Laprie J. C. et al., "Dependability: Basic Concepts and Terminology," in Springer -Verlag, ISBN, 1992.
[33] Thuluva, A.S., A. Bröring, G.P. Medagoda Hettige Don, D. Anicic & J. Seeger, "Recipes for IoT

Applications," in Proceedings of the 7th International Conference on the Internet of Things (IoT 2017),
2017.

