

 780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

SEMIoTICS

Deliverable D4.2
SEMIoTICS Monitoring, Prediction and

Diagnosis Mechanisms (first draft)

Deliverable release date Initial 31.05.2019, revised 25.11.2019

Authors
1. Domenico Presenza (ENG)
2. Keven T. Kearney (ENG)
3. Christos Tzagkarakis (FORTH)
4. David Parra (UP)
5. Łukasz Ciechomski (BS)
6. Mirko Falchetto (ST)
7. Iason Somarakis (STS)

Responsible person Domenico Presenza (ENG)

Reviewed by Nikolaos Petroulakis (FORTH)

Approved by PTC Members (Vivek Kulkarni, Nikolaos Petroulakis, Ermin Sakic, Mirko
Falchetto, Domenico Presenza, Verikoukis Christos)

PCC Members (Vivek Kulkarni, Nikolaos Petroulakis, Verikoukis Christos,
Georgios Spanoudakis, Domenico Presenza, Danilo Pau, Joachim
Posegga, Darek Dober, Kostas Ramantas, Ulrich Hansen)

Status of the Document Final

Version 1.0 revised

Dissemination level Public

Ref. Ares(2019)7267621 - 25/11/2019

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D4.2 SEMIoTICS Monitoring, prediction and diagnosis mechanisms (first draft)

Dissemination level: Public

2

Table of Contents

1. Introduction .. 6

1.1. Addressed SEMIoTICS Requirements ... 6

1.2. Relations with other SEMIoTICS components .. 7

1.3. Methodology and document structure ... 9

1.4. PERT chart of SEMIoTICS .. 10

2. Monitoring management .. 11

2.1. Monitoring Management layer architecture ... 11

2.1.1. Business Event monitor Architecture ... 14

2.2. Cloud and IoT Platforms Monitoring Capabilities... 15

2.2.1. AWS IoT CORE ... 16

2.2.2. Azure IoT Suite .. 17

2.2.3. MindSphere .. 19

2.2.4. FIWARE Orion Context Broker .. 20

2.2.5. Monitoring OpenStack deployments .. 21

2.2.6. Linux-Based Computational Resource Monitoring ... 21

2.2.7. Monitoring the Network Layer .. 22

2.2.8. Monitoring Field Devices .. 22

2.3. Fusion of cross-layer monitoring data ... 23

2.3.1. PROTON .. 23

2.3.2. APACHE Flink CEP ... 23

2.4. Events Object Model ... 24

2.5. Query Object Model ... 27

2.6. Translation of SPDI patterns into monitoring policies .. 31

3. Predictive mechanisms .. 34

3.1. Regression techniques for the prediction at Edge/fog level .. 34

3.2. Deep Neural Network for prediction at Cloud Level... 34

3.3. Causal Networks ... 35

4. Diagnosis mechanisms .. 37

4.1. Computational resource abuse .. 37

4.2. Potential methods for IoT botnet attack detection ... 37

4.3. Anomaly detection using Long Short-Term Memory Recurrent Networks ... 44

4.4. Anomaly detection based on Generative Adversarial Networks .. 46

4.5. Visualization for the Diagnosis .. 46

5. Validation .. 48

5.1. Related Project Objectives and Key Performance Indicators (KPIs) ... 48

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D4.2 SEMIoTICS Monitoring, prediction and diagnosis mechanisms (first draft)

Dissemination level: Public

3

6. Conclusions ... 49

6.1. Open design questions ... 49

6.2. Implementation status and future work ... 50

7. References... 51

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D4.2 SEMIoTICS Monitoring, prediction and diagnosis mechanisms (first draft)

Dissemination level: Public

4

Acronym Definition

AE Auto Encoder

AI Artificial Intelligence

AWS Amazon Web Services

BPTT Back Propagation Through Time

CEP Complex Event Processor

CGNN Causal Generative Neural Network

DoA Description of Action

eBPF extended Berkley Packet Filter

ETC Event Triggered Causality

FPR False Positive Rate

GAN Generative Adversarial Network

GUI Graphical User Interface

IIoT Industrial Internet of Things

IoT Internet of Things

KPI Key Performance Indicator

LLDP Link Layer Discovery Protocol

LOOCV leave-out-one-device cross validation

LSTM Long-Short-Term-Memory network

MC Monitoring Component

MCU Micro Controller Unit

ML Machine Learning

NMS Network Management System

NSGI Next Generation Service Interface

ODL OpenDaylight

OF OpenFlow

OMP Orthogonal Matching Pursuit algorithm

PaaS Platform-as-a-Service

PO Pattern Orchestrator

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D4.2 SEMIoTICS Monitoring, prediction and diagnosis mechanisms (first draft)

Dissemination level: Public

5

QoS Quality of Service

RC Recipe Cooker

RNN Recurrent Neural Network

SDK Software Development Kit

SDN Software Defined Network

SNMP Simple Network Management Protocol

SNS Simple Notification Service

SPDI Security, Privacy, Dependability, Interoperability

SR Sparse Representation

SVDD Support Vector Data Description

TPR True Positive Rate

VM Virtual Machine

WoT Web of Things

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D4.2 SEMIoTICS Monitoring, prediction and diagnosis mechanisms (first draft)

Dissemination level: Public

6

1. INTRODUCTION

This deliverable presents the initial design of the SEMIoTICS Monitoring Component (MC) along with
algorithmic and technological options suitable for the implementation of its key functionalities.

The main objective of the MC is the fusion of intra- and cross-layer monitoring results generated by monitors
that may exist on the platforms of different smart objects and components of IoT applications in order to detect
violations of SPDI patterns and other conditions. Fusion of cross-layer monitoring data is necessary for
detecting specific types of attacks. In such cases, multi-sensor cross-layer data need to be fused in specific
ways to detect the attack.

To achieve the intra-layer and cross-layer monitoring objective, the design of the MC includes mechanisms to
connect the MC with different IoT platform and cloud monitors and smart object event captors.

Monitoring of SPDI patterns must be continuous in spite of the dynamicity of IoT applications (e.g. binding of
new smart objects and components). Therefore the design of the MC includes also mechanisms to dynamically
adapt the monitoring configuration (e.g. select an alternative event captor whenever one in use is no longer
available).

The MC offers also predictive and diagnostic mechanisms. The predictive mechanisms are needed to ensure
that the business applications or other components of the SEMIoTICS architecture can set up countermeasures
before the SPDI patterns are violated. The diagnostic mechanisms are needed to ensure the effectiveness of
the countermeasures by managing to correctly identify and resolve the sources of actual/potential SPDI
property violations. Both mechanisms rely on models generated using the information obtained from the
monitoring mechanism.

There is a mutual dependency between the monitoring mechanisms and the predictive/diagnostic mechanisms.
On one side the monitoring mechanisms provide the information (i.e. observations) enabling the production of
diagnosis and predictions. On the other side the predictive and diagnostic mechanisms provide the monitoring
mechanisms with those prediction and diagnosis capabilities enabling the proper adaptation of the monitoring
configurations and, hence, the continuous production of monitoring information.

1.1. Addressed SEMIoTICS Requirements

The following table shows which are the SEMIoTICS Requirements addressed by the Monitoring component
described in the present deliverable:

Req. ID Requirement Description How it is addressed by MC Section

R.GP.4 Detection of events requiring a QoS change
and triggering network reconfiguration need
by SPDI pattern

The MC allows detecting Network level
events thanks to the availability of
adapters able to capture the events
generated by the SDN Controller and
Virtual Infrastructure Manager (VIM).

2.2.7

R.P.4 A short data retention period MUST be
enforced and maintaining data for longer
than necessary avoided.

The MC uses Complex Event Processing
technology to aggregate data. In fact,
CEP technology allows detecting events
patterns directly in the stream of events
without the need to store the events in a
database for subsequent processing.

2.3

R9.4 The cloud platform SHALL to be able to
monitor the execution of an app, in particular
its interactions with other apps, the network
interface, and APIs.

The MC provides adapters that enable to
monitor the execution of apps by means of
the native monitoring capabilities of Cloud
and IoT platforms.

2.2

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D4.2 SEMIoTICS Monitoring, prediction and diagnosis mechanisms (first draft)

Dissemination level: Public

7

Req. ID Requirement Description How it is addressed by MC Section

R.BC.20 The backend layer must aggregate intra-
layer as well as inter-layer SPDI status
information to enable local and global
intelligence reasoning and adaptation.

The MC provides adapters to capture
events generated by the backend layer.
The MC aggregates events using CEP
technology. MC defines strategies to
translate SPDI pattern into monitoring
policies.

1.2
2.5
2.6

R.NL.13 The network layer must aggregate intra-
layer monitored information to enable local
intelligence reasoning and adaptation.

The MC provides adapters to capture
events generated by network layer. The
MC aggregates events using CEP
technology. MC defines strategies to
translate SPDI patterns into monitoring
policies.

1.2
2.5
2.6

R.FD.15 The field layer must aggregate intra-layer
monitored information to enable local
intelligence reasoning and adaptation.

The MC provides adapters to capture
events generated by field devices. The MC
aggregates events using CEP technology.
MC defines strategies to translate SPDI
pattern into monitoring policies.

1.2
2.5
2.6

R.UC2.10 The SEMIoTICS platform SHOULD allow
the SARA components (e.g. SARA Hubs) to
query and aggregate (e.g. to average) the
values of a resource (e.g. current measured
temperature) hosted by a group of field
devices. The SARA solution defines a group
of devices by specifying filtering criteria over
the set of registered devices.

The MC provides adapters to capture
events generated by field devices. The
Query language of the MC provides means
to express filtering conditions over the
sources of events.

2.2.8,
2.5

R.UC2.12 The SEMIoTICS platform SHOULD allow
SARA components to delegate to the
platform the computation of complex
functions over the data received by field
devices. These computations may result
either in the generation of higher-level
observation events (e.g. significant Patient
events abstracted form sensor data)
towards the ACS or in sensors configuration
parameters (including actuators command).

The MC provides adapters to capture
events generated by field devices.
Moreover, The Query language of the MC
provide business IoT applications (e.g.
SARA) with means to specify a high-level
observation event as the occurrence of a
specific pattern of events within the stream
of events generated by field devices.

2.2.8,
2.5

1.2. Relations with other SEMIoTICS components

The following UML component diagram shows the relations between the Monitoring Component and the other
components of the SEMIoTICS architecture. A complete description of the SEMIoTICS architecture and
components can be found in deliverable D2.4 - “SEMIoTICS high level architecture (Cycle 1)”.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D4.2 SEMIoTICS Monitoring, prediction and diagnosis mechanisms (first draft)

Dissemination level: Public

8

FIGURE 1: MONITORING COMPONENT IN SEMIOTICS

More specifically the Monitoring Components interacts with:

• Pattern Engine. Pattern Engine delegates monitoring tasks to the Monitoring Component by means of the
Query interface. Monitoring Components notifies detected events by means of the Event Consumer interface.
(see section 2.5)

• GUI. The Graphical User Interface may submit monitoring tasks to the Monitoring Component by means of
the Query interface. The GUI receives detected events by means of the Event Consumer interface. (section
2.5)

• Cloud Platforms (e.g. FIWARE Context Broker or MindSphere). The Monitoring Component is able to
consume events generated by specific cloud platform thanks to the availability of platform specific adapters.
(section 2.2)

• SDN Controller. The Monitoring Controller consumes network level events generated by the SDN Controller
and made available by the OpenDaylight (ODL) Cardinal plugin (or similar). (section 2.2.7)

• VIM: The Monitoring Controller consumes network level events generated by the OpenStack (Virtual
Infrastructure Manager) and made available via the Compute API. (section 2.2.5)

• Filed Devices. Monitoring Component aggregates events generated by Field Devices and made available via
the Web Of Things (WoT) interface. (section 2.2.8)

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D4.2 SEMIoTICS Monitoring, prediction and diagnosis mechanisms (first draft)

Dissemination level: Public

9

• Filed Monitoring Component (i.e. instances of the Monitoring Component deployed in the field (e.g. within
gateways). Monitoring Component consumes also events generated by Field Monitoring Components using
the Query interface (section 2.5).

1.3. Methodology and document structure

This deliverable D4.2 is the result of the joint effort by all contributing partners during the first part of the project.

The work proceeded along three directions:

• The design of the architecture of the SEMIoTICS Monitoring Component. The result of this thread is
presented in the section 2 - “Monitoring Management”

• The investigation and selection of the suitable approaches for prediction and diagnosis. The resulting
selection is presented in section 3 - “Predictive Mechanisms” and 4 - “Diagnosis Mechanisms”.

• The scouting and experimentation of the technologies (e.g. software libraries, services, datasets) enabling
the implementation of the SEMIoTICS Monitoring Component. The results of this thread of work informed the
architecture presented in section 2.

Bi-weekly meetings were run to keep aligned each partner about the work of the others, share results of
experimentations and take design decisions.

These meetings were devoted to discuss not only the design issues concerning Task 4.2 but also those faced
by Task 4.3. This because, as already anticipated in the DoA of the project and further explained in this
document, there is a dependency between the Monitoring Component developed in Task 4.2 and the
Embedded Intelligence and local Analytics mechanisms provided by Task 4.3 and described in deliverable
D4.3.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D4.2 SEMIoTICS Monitoring, prediction and diagnosis mechanisms (first draft)

Dissemination level: Public

10

1.4. PERT chart of SEMIoTICS

36 months Leader: SAG

31.12.202001.01.2018

WP1: Project Management

23 months Leader: ST-I

30.11.201901.01.2018

WP2: Requirements and Architecture for
Smart Sensing and Smart Actuation

24 months Leader: SAG

30.04.202001.05.2018

WP3: Smart objects and networks

25 months Leader: FORTH

30.06.202001.06.2018

WP4: Pattern-driven smart behavior of
IIoT with End-to-End Security and Privacy

24 months Leader: ENG

31.12.202001.01.2019

WP5: System Integration and Evaluation

36 months Leader: SAG

31.12.202001.01.2018

T1.1: Project coordination 36 months Leader: FORTH

31.12.202001.01.2018

T1.2: Project technical and innovation
management

36 months Leader: SAG

31.12.202001.01.2018

T1.3: Coordination with EU programme
level activities

3 months Leader: STS

31.03.201801.01.2018

T2.1: Analysis of emerging business and
technical IoT value drivers

4 months Leader: SAG

30.04.201801.01.2018

T2.2: Specification of use case scenarios
& applications and their requirements

4 months Leader: ST-I

30.06.201801.03.2018

T2.3: Specification of infrastructure
requirements

18 months Leader: BS

31.12.201901.07.2018

T2.4: SEMIoTICS architecture design

22 months Leader: SAG

29.02.202001.05.2018

T3.1: Software defined Aggregation,
Orchestration and cloud networks

22 months Leader: CTTC

29.02.202001.05.2018

T3.2: IIoT Network Function Virtualization

22 months Leader: SAG

29.02.202001.05.2018

T3.3: Semantics-based bootstrapping &
interfacing

22 months Leader: STS

29.02.202001.05.2018

T3.4: Network-level semantic
Interoperability

22 months Leader: IQU

30.04.202001.07.2018

T3.5: Implementation of Field-level
middleware & networking toolbox

23 months Leader: STS

30.04.202001.06.2018

T4.1:Architectural SPDI patterns

22 months Leader: ENG

30.04.202001.07.2018

T4.2: Monitoring, prediction and
diagnosis

22 months Leader: ST-I

30.04.202001.07.2018

T4.3: Embedded Intelligence and local
analytics

22 months Leader: FORTH

30.04.202001.07.2018

T4.4: End-to-End Semantic
Interoperability

22 months Leader: BS

30.06.202001.09.2018

T4.6: Implementation of SEMIoTICS
backend API

22 months Leader: UP

30.04.202001.07.2018

T4.5: End-to-End Security and Privacy

5 months Leader: UP

31.10.201901.06.2019

T5.1: KPIs and Evaluation Methodology

15 months Leader: BS

31.08.202001.06.2019

T5.2: Software system integration

20 months Leader: IQU

31.08.202001.01.2019

T5.3: IIoT Infrastructure set-up and
testing

13 months Leader: SAG

31.12.202001.12.2019

T5.4: Demonstration and validation of
IWPC- Energy scenario

13 months Leader: ENG

31.12.202001.12.2019

T5.5: Demonstration and validation of
SARA-Health scenario

13 months Leader: ST-I

31.12.202001.12.2019

T5.6: Demonstration and validation of
IHES-Generic IoT scenario

36 months Leader: CTTC

31.12.202001.01.2018

T6.1: Impact Creation and Dissemination 31 months Leader: ENG

31.12.202001.06.2018

T6.2: Exploitation of results

24 months Leader: SAG

31.12.202001.01.2019

T6.3: Standardization
36 months Leader: CTTC

31.12.202001.01.2018

WP6: Impact, Dissemination and
Standardization

Please note that the PERT chart is kept on task level for better readability.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D4.2 SEMIoTICS Monitoring, prediction and diagnosis mechanisms (first draft)

Dissemination level: Public

11

2. MONITORING MANAGEMENT

2.1. Monitoring Management layer architecture

This section presents the overall architecture of the monitoring management layer. The SEMIoTICS monitoring
component has two key functional requirements:

• To generate specific messages in response to the reception of a set of messages generated by the
components of an IoT application and matching some condition specified in the monitoring component by
a client application (Monitoring requirement).

• To guarantee that the messages needed to decide whether to generate a message can be produced by
an IoT application and received by the monitoring component (Observability property).

The first of the two technical requirements listed above directly stems from the general SEMIoTICS platform
requirement R.GP.4 “Detection of events requiring a QoS change and triggering network reconfiguration need
by SPDI pattern” (see deliverable D2.3 - “Requirements specification of SEMIoTICS framework”). In fact, the
capacity of the monitoring component to detect and signal the occurrence of specific patterns of events allows
the components responsible for the enforcement of SPDI patterns (i.e. Pattern Engine) to delegate to the
monitoring component the monitoring task whilst retaining for itself the QoS change and reconfiguration.
Moreover, it also address the requirement R.UC2.10 - “The SEMIoTICS platform SHOULD allow the SARA
components (e.g. SARA Hubs) to query and aggregate (e.g. to average) the values of a resource (e.g. current
measured temperature) hosted by a group of field devices” and R.UC2.12 - “The SEMIoTICS platform SHOULD
allow SARA components to delegate to the platform the computation of complex functions over the data
received by field devices. These computations may result either in the generation of higher-level observation
events (e.g. significant Patient events abstracted form sensor data) towards the ACS or in sensors
configuration parameters (including actuators command).”

The second requirement, i.e. the ability to guarantee the generation of the monitoring events needed to serve
the monitoring tasks submitted by client applications, requires that the monitoring component is able to adapt
to the changing conditions that may occur in all layers (field/network/backend) of the monitored infrastructure.
To achieve this objective the monitoring component needs prediction and diagnosis capabilities. The
Monitoring component uses causal inference to make predictions and diagnosis. These inference capabilities
are enabled by the availability of a causal model learned from the observation of monitoring events generated
either by the queries submitted client application or by queries generated by the monitoring component itself
(self-monitoring queries).

The following picture presents the main required inputs and outputs of the SEMIoTICS monitoring component.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D4.2 SEMIoTICS Monitoring, prediction and diagnosis mechanisms (first draft)

Dissemination level: Public

12

FIGURE 2: MAIN INPUT AND OUTPUT OF THE MONITORING COMPONENT

In particular the Monitoring component receives as input:

• Low-level events: the messages generated by the computational nodes belonging to the three layers
identified by the SEMIoTICS architecture: field (e.g. sensors, gateways), network (e.g. routers) and cloud
(e.g. FIWARE cloud services, MindSphere services). These low-level events are generated by the
computational nodes by means of signaling mechanisms specific to the technology used to implement
a computational node. The possibility of the monitoring component to process events from the cloud, network
and field level directly address the requirement R9.4 - “The SEMIoTICS platform SHOULD allow SARA
components to delegate to the platform the computation of complex functions over the data received by field
devices. These computations may result either in the generation of higher-level observation events (e.g.
significant Patient events abstracted form sensor data) towards the ACS or in sensors configuration
parameters (including actuators command”

• High-level events definitions: the conditions stating whether a new event should be generated in response
of the reception of a set of low-level event.

The monitoring component emits as outputs:

• High-level events: the messages generated by the monitoring component itself in response to the reception
of a set of low-level events matching one of the events definitions.

• Configuration commands: messages requesting a specific configuration of the mechanisms used by the
computational nodes to generate the low-level events. The ability to issue these commands allows the
monitoring component to properly select and configure the signaling mechanisms needed for the monitoring
purpose.

Given the above schema it is worth to noting that low-level events serve two purposes:

• to decide whether to emit a high-level event

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D4.2 SEMIoTICS Monitoring, prediction and diagnosis mechanisms (first draft)

Dissemination level: Public

13

• to decide whether to request a reconfiguration of the signaling mechanisms used at the different levels (Field,
Network, Cloud)

Hence the Monitoring component can be decomposed in three main sub-components (Figure 3):

• Business Events Monitor responsible for matching low-level events against the conditions specified by the
High-level events definitions. We term Business Events the high-level events generated by the Business
Events Monitor and directed to a client application of the Monitoring component whilst we term Control Events
refer to those high-level events directed to the other components within the Monitoring component.

• Monitoring Controller responsible for configuring, observing and, if needed, reconfiguring both the signaling
mechanisms serving the Business Events Monitor and the Causal Model Identifier. The Monitor Controller
bases its decisions about configurations and observations on the (causal) model made available by the
Causal Model Identifier component (described below). Whenever needed the Monitoring Controller can adapt
the observation and, hence, fulfill the observability requirement thanks to the availability of this causal model.
As an example, based on the Causal Model the Monitoring Controller might decide that, in order to guarantee
that a type of high-level event is produced as requested by a client application, there is also the need to
monitor additional type of events. This decision will result in the submission of extra monitoring tasks to the
Business Events Monitor.

• Causal Model Identifier having the role to build the causal models. These models are created using as input
both the (Re)configuration commands emitted by the Monitoring Controller and the events generated by the
Business Event Monitor. The Causal models identified by this component are consumed by (i) the Monitoring
Controller to configure observations (see above) and (ii) the Business Event Monitor to infer events not
directly observable.

FIGURE 3: MAIN COMPONENTS AND DATA FLOW OF MONITORING

Given the context and aims described so far the design of the SEMIoTICS MC requires to fix:

• The technologies and languages made available by the different IoT platform to observe and control the IoT
applications at the Cloud/Network/Field level. These options are presented in section 2.2.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D4.2 SEMIoTICS Monitoring, prediction and diagnosis mechanisms (first draft)

Dissemination level: Public

14

• The technology for the processing of the low-level events once they are represented in a common format.
The most promising options are presented in section 2.3.

• The language used to define the high-level events in terms of the low-level events (i.e. the language to
express in a machine readable format rules like “the occurrence of three consecutive ‘failed login’ events
should produce the rise of an ‘account violation attempt' event). This language is presented in section 2.4.

• The content of the messages representing the high-level events generated by the Business Event Processor
and received by the client applications of the Monitoring component. This is presented in section 2.5

• The algorithms implemented by the Causal Model Identifier to identify the model needed by the Monitoring
Controller. The options are discussed in section 3.3.

• The prediction and diagnosis algorithms enabling the Monitor Controller to decide how to configure (or
reconfigure) the Business Event Monitor in order to comply with the requests received from its client
applications. Possible approaches are presented in section 3.2 and section 3.3.

2.1.1. BUSINESS EVENT MONITOR ARCHITECTURE

The central components of the Business Event Monitor (Fig.3) are a Complex Event Processor (section 2.3
explores candidate technologies available for the implementation of this component) and a collection of
Anomaly Detectors.

Anomaly Detectors are a collection of components specialized to detect anomalies in the flow of events
generated by Cloud/Network/Field nodes (Chapter 4 presents a set of algorithms suitable for this purpose).

Driven by the configurations and queries received from client components (e.g. Monitoring Controller) the
Complex Event Processor (CEP) processes the events received from the monitored nodes and produce the
high-level events defined by the client applications of the SEMIoTICS Monitoring Component.

The design choice to use CEP technology to process the events received from the monitored nodes is rooted
in the requirement R.P.4 - “A short data retention period MUST be enforced and maintaining data for longer
than necessary avoided”. In fact, CEP technology allows detecting events patterns directly in the stream of
events without the need to store the events in a database for subsequent processing.

It is worth mentioning here that the high-level events produced by the CEP can be divided in two broad
categories:

• Business events: generated in response to requests coming from clients of the Monitoring Component

• Management events: generated in response to requests coming from other components belonging to the
Monitoring component (e.g. the Monitoring Controller). These management events are needed to support the
adaption of the Monitoring Component. Management events may concern both changes of state of the
monitored nodes and measures of the performance of the Complex Event Processor.

Within the Business Event Monitor (Fig.3) an Event Signaler component is responsible:

• For translating the configuration commands received by the Event Monitor into the command messages
actually accepted by the nodes belonging to the monitored infrastructures.

• For translating the platform specific events generated by each node of the monitored infrastructure into the
format accepted by the Complex Events Processor.

Altogether the collection of event signalers within the Event Monitor acts as a communication bus between the
Event Monitor and the different platforms of IoT applications. An Event Signaler can reside either in the cloud
layer (e.g. within the same VM where the other components of the Monitoring Component reside) or in the filed

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D4.2 SEMIoTICS Monitoring, prediction and diagnosis mechanisms (first draft)

Dissemination level: Public

15

layer (e.g. within a SEMIoTICS gateway). In latter case, the events generated by Events Signalers can also
result from the aggregation of low-level events by means of algorithms executed locally within the field device.
The deliverable D4.3 - “Embedded Intelligence and local Analytics” of the SEMIoTICS project presents possible
events aggregation algorithms suitable to be executed in a constrained resources field device.

The Event Predictor component has the role to infer both future events and events not directly observable
from the cloud/net/field nodes (e.g. because of the lack of a suitable sensor). Section 3 (prediction
mechanisms) presents possible approaches for events prediction suitable to be implemented by the Event
Inference Engine.

The Event Predictor uses to Causal Model learned by the Causal Model Identifier to infer events not directly
observable through the Events Signalers. As an example, if causal model states that there is a causal
dependency between a light being turned on and someone entering a room the reasoner could infer the event
“someone entered room A12” upon the observation of the event “light switched on in room A12”. The Event
Predictor computes a likelihood for the inferred events. The likelihood value is conveyed to the Event
Consumers by means of the likelihood attribute of an event object type (see section 2.4). Inferred events can
be consumed either by external Events Consumers or by the Complex Event processor.

FIGURE 4: EVENTS MONITOR DATA FLOW

2.2. Cloud and IoT Platforms Monitoring Capabilities

This section describes the monitoring capabilities made available by third party Cloud and IoT platforms (e.g.
AWS, MindSphere).

Each subsection presents capabilities for both the observing and controlling made available through APIs by
a platform.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D4.2 SEMIoTICS Monitoring, prediction and diagnosis mechanisms (first draft)

Dissemination level: Public

16

The repertoire of platforms considered in this section is informed by result presented by deliverable D2.1 -
“Analysis of IoT Value Drivers” and by the technological choices envisaged by the main three use cases.

FIGURE 5: IOT PLATFORMS AND SEMIOTICS COMPONENTS

2.2.1. AWS IOT CORE

AWS IoT 1 is a collection of web-services offered by Amazon for managing bi-directional (secure)
communications between internet connected devices (sensors, actuators, embedded micro-controllers, smart
appliances, etc.) and applications hosted on the AWS Cloud. Applications can collect telemetry for data from
multiple devices, store and analyze this data, and provide users with remote control of the devices. More details
of the AWS IoT services can be found in 3.

AWS provides various tools, both automated and manual, for monitoring. The primary tool is Amazon ‘CloudWatch’
which “collects monitoring and operational data in the form of logs, metrics, and events, providing you with a unified
view of AWS resources, applications and services that run on AWS”4. As indicated in the Figure 6, Amazon
CloudWatch supports the collection of metrics & logs from AWS resources, dashboard and automated alert/alarm
based monitoring, automated responses to alarms, and real-time analytics.

1 https://docs.aws.amazon.com/iot/latest/developerguide/what-is-aws-iot.html

3 https://docs.aws.amazon.com/iot/latest/apireference/iot-api.pdf

4 https://aws.amazon.com/cloudwatch/

https://docs.aws.amazon.com/iot/latest/developerguide/what-is-aws-iot.html
https://docs.aws.amazon.com/iot/latest/apireference/iot-api.pdf
https://aws.amazon.com/cloudwatch/

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D4.2 SEMIoTICS Monitoring, prediction and diagnosis mechanisms (first draft)

Dissemination level: Public

17

FIGURE 6: AWS CLOUDWATCH5

CloudWatch alarms can be defined to monitor specific metrics over a period of time and to perform one or more
actions based on the value of the metric relative to a threshold. An ‘action’ is typically a notification sent to an
Amazon Simple Notification Service7 (Amazon SNS) topic. CloudWatch services can be variously accessed
through a dedicated console8, an AWS command line interface9, or using the CloudWatch APIs 10.

The observable metrics for AWS IoT includes the following11:

• Rule & rule action metrics - e.g. the number of messages published on a topic to which a rule is listening,
and the success or failure of the actions triggered by the rule;

• Message broker metrics - concerning the number and status of device & client connection requests, the
messages published to different topics, and of subscriptions to these topics;

• Device metrics - relating to device control messages (e.g. requests to modify a device’s state);

• Device defender metrics - concerning the satisfaction or violation of security constraints.

CloudWatch APIs can be accessed also using SDKs available for various programming languages12.

2.2.2. AZURE IOT SUITE

The Azure IoT suite is Microsoft’s evolving solution for cloud-based IoT management. The suite consists of a
collection of services, including:

• Azure IoT Hub13: the core services for managing bi-directional (secure) communications between IoT
devices and cloud applications;

• Azure IoT Edge14: allows for typically cloud-side (and often computationally intensive) processes to be
deployed on edge devices - intended in particular for Azure’s ‘Machine Learning’ and ‘Cognitive’ services
(below);

• Azure Sphere: for secure communications with microcontroller (MCU) devices;

5 source: https://aws.amazon.com/it/cloudwatch/?nc2=type_a
7 https://aws.amazon.com/sns/
8 https://console.aws.amazon.com/cloudwatch/
9 https://aws.amazon.com/cli/
10 https://docs.aws.amazon.com/AmazonCloudWatch/latest/APIReference/Welcome.html
11 https://docs.aws.amazon.com/iot/latest/developerguide/metrics_dimensions.html
12 https://aws.amazon.com/tools/?nc1=h_ls
13 https://azure.microsoft.com/en-us/services/iot-hub/
14 https://azure.microsoft.com/en-us/services/iot-edge/

https://aws.amazon.com/it/cloudwatch/?nc2=type_a
https://aws.amazon.com/sns/
https://console.aws.amazon.com/cloudwatch/
https://aws.amazon.com/cli/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/APIReference/Welcome.html
https://docs.aws.amazon.com/iot/latest/developerguide/metrics_dimensions.html
https://aws.amazon.com/tools/?nc1=h_ls
https://azure.microsoft.com/en-us/services/iot-hub/
https://azure.microsoft.com/en-us/services/iot-edge/

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D4.2 SEMIoTICS Monitoring, prediction and diagnosis mechanisms (first draft)

Dissemination level: Public

18

• Azure Maps: various geo-spatial information services (maps, traffic, routing, etc.);

• Azure Time Series Insight: analytic functions for IoT time-series data;

• Azure Machine Learning (ML) Service: for training and deploying ML processes;

• Azure Cognitive Services: a range of services offering AI capabilities for knowledge, language, speech and
vision processing and for searching the internet (see: https://azure.microsoft.com/en-us/services/cognitive-
services/);

• Azure Digital Twins: for modelling and reasoning about the physical-spatial relationships between people,
places and devices.

For monitoring purposes, the Azure IoT suite includes REST-based APIs with capabilities similar to those
described for Amazon Cloudwatch (above) - namely, for:

• Observing device metrics (e.g. sensor values);

• Controlling the routing of metric data and diagnostic logs;

• searching events in device activity logs;

• defining and managing rule-based alerts, and corresponding alert-triggered actions;

Details of the monitoring APIs can be found at https://docs.microsoft.com/en-us/rest/api/monitor/, while more
general information on the Azure IoT suite is available from https://azure.microsoft.com/en-us/overview/iot/ .
SDKs are available for a variety of languages and platforms15.

Events generated by Azure IoT Hub can be also consumed via Azure Event Grid. Azure Event Grid allows to
build applications with event-based architectures. Using Azure Event Grid it is possible define filters to route
specific events to different endpoints, multicast to multiple endpoints, and make sure that events are reliably
delivered. Figure 6 shows some of the possible event sources and handlers for Azure Event Grid. WebHook
can be used for handling events. The WebHook doesn't need to be hosted in Azure to handle events. Event
Grid only supports HTTPS WebHook endpoints. Event Grid provides SDKs that enable to programmatically
manage resources and post events16.

15 https://github.com/Azure/azure-iot-sdks
16 https://docs.microsoft.com/en-us/azure/event-grid/sdk-overview

https://azure.microsoft.com/en-us/services/cognitive-services/
https://azure.microsoft.com/en-us/services/cognitive-services/
https://docs.microsoft.com/en-us/rest/api/monitor/
https://azure.microsoft.com/en-us/overview/iot/
https://github.com/Azure/azure-iot-sdks
https://docs.microsoft.com/en-us/azure/event-grid/sdk-overview

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D4.2 SEMIoTICS Monitoring, prediction and diagnosis mechanisms (first draft)

Dissemination level: Public

19

FIGURE 7: AZURE EVENT GRID SOURCES AND HANDLERS

2.2.3. MINDSPHERE

MindSphere17 is Siemens’ cloud-based, open IoT ‘operating system’ comprising (among other things) various
device and enterprise system connectivity protocols and analytics tools in a dedicated development
environment (built primarily over Siemens’ open Platform-as-a-Service (PaaS) capabilities, but also including
access to Amazon’s AWS and Microsoft’s Azure cloud platforms - see above). The development environment
is a browser-based graphical ‘work flow editor’ (see fig 7) called ‘Visual Flow Editor’, that allows users to
manage the connections between IoT devices and cloud applications, to create rules and key performance
indicators (KPIs), and to define actions (such as email notifications) in case of rule violations (i.e. exceeding
KPI thresholds)

17 https://new.siemens.com/global/en/products/software/mindsphere.html

https://new.siemens.com/global/en/products/software/mindsphere.html

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D4.2 SEMIoTICS Monitoring, prediction and diagnosis mechanisms (first draft)

Dissemination level: Public

20

FIGURE 8: MINDSPHERE VISUAL FLOW EDITOR18

The Visual Flow Editor is constructed over the MindSphere’s services20 which include APIs for connecting to
IoT devices, monitoring events and sending notifications, and for building and executing dataflow21.

A more limited client-side Java SDK22 is also offered, which includes IoT device and event management and
analytics, but without the dataflow capabilities. The events-related Java clients include (REST-based) APIs for:

• Event Management23 - supporting the creation, querying and modification of events.

• Event Analytics24 - which supports the analysis of event logs to identify specific sequences of events, and/or
count the number of events matching a specific pattern.

2.2.4. FIWARE ORION CONTEXT BROKER

The FIWARE Orion Context Broker25 is the reference implementation for the core FIWARE ‘Next Generation
Service Interface’ (NGSI) specification, which defines a REST API for managing the lifecycle (updates, queries,
registrations & subscriptions) of “context” information. The term “context” here, originates in the domain of
smart-cities26 and essentially denotes an embedded device, or ‘thing’ in the IoT sense (e.g. an embedded

18 https://www.dex.siemens.com/mindsphere/solution-packages/connect-and-monitor
20 https://developer.mindsphere.io/apis/index.html
21 https://developer.mindsphere.io/apis/advanced-dataflowengine/api-dataflowengine-overview.html
22 https://developer.mindsphere.io/resources/mindsphere-sdk-java/index.html
23 https://developer.mindsphere.io/resources/mindsphere-sdk-java/apidocs/MindSphere_EventManagement.html
24 https://developer.mindsphere.io/resources/mindsphere-sdk-java/apidocs/MindSphere_EventAnalytics.html
25 https://fiware-orion.readthedocs.io/en/master/index.html#welcome-to-orion-context-broker
26 https://www.fiware.org/community/smart-cities/

https://www.dex.siemens.com/mindsphere/solution-packages/connect-and-monitor
https://developer.mindsphere.io/apis/index.html
https://developer.mindsphere.io/apis/advanced-dataflowengine/api-dataflowengine-overview.html
https://developer.mindsphere.io/resources/mindsphere-sdk-java/index.html
https://developer.mindsphere.io/resources/mindsphere-sdk-java/apidocs/MindSphere_EventManagement.html
https://developer.mindsphere.io/resources/mindsphere-sdk-java/apidocs/MindSphere_EventAnalytics.html
https://fiware-orion.readthedocs.io/en/master/index.html#welcome-to-orion-context-broker
https://www.fiware.org/community/smart-cities/

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D4.2 SEMIoTICS Monitoring, prediction and diagnosis mechanisms (first draft)

Dissemination level: Public

21

temperature sensor supplies ‘contextual’ information, in this case about the temperature of the environment).
The Orion Context Broker supports the registration of IoT devices (as ‘context entities’), management of their
state (through context updates) and push/pull notification of state changes (through context queries &
subscriptions).

The FIWARE NGSI (version 2)27 standard offers no monitoring capabilities beyond the basic ability to query
device state and receive device state change notifications.

2.2.5. MONITORING OPENSTACK DEPLOYMENTS

As already described in D3.2 “Network Functions Virtualization for IoT (first draft)”, SEMIoTICS will use
OpenStack for the NFV orchestration. As a result, we could integrate monitoring capabilities in SEMIoTICS to
ensure availability of resources in this level. In other words, SEMIoTICS can measure that each Virtual Machine
(VM) has enough computational resources to keep functioning. Particularly, we can measure the CPU,
memory, and disk consumption for each VM using several approaches.

First of all, there are a number of ways to collect this information from OpenStack. For one, it is possible to rely
on the command line interface of the administrator to obtain average values of the computational resources28.
However, since this information needs to be transformed in low-level events, it is better to obtain it in a machine-
readable format. This can be done by relying on OpenStack APIs, or by installing a software component in the
host.

OpenStack has a diverse API through the Compute API29 which allows users to query diverse metrics for VMs.
Thus, it is possible to obtain information on resource consumption for all hypervisors, for one particular
hypervisor-level, or even for one particular server. We plan to collect the most fine-grained information, through
the OpenStack API, to assess whether there is a potential risk for the availability of the platform30.

OpenStack deployments generate notifications whenever a significant change of state occurs. Notification
messages are published via the message queuing services supporting inter-process communication in
OpenStack. RabbitMQ is a typical technology employed to implement message queuing services within
OpenStack.

The notifications published by OpenStack can be made available to the SEMIoTICS monitoring component
implementing an Event Signaler that consumes the messages published by OpenStack, creates the
corresponding messages in the SEMIoTICS event format and forward them to the Complex Event Processor
(see section 2.1.1). This pattern is followed, for example, by StackTach a tool that can be used for debugging
and performance monitoring of OpenStack deployments31.

2.2.6. LINUX-BASED COMPUTATIONAL RESOURCE MONITORING

In addition to the computational resource monitoring tools provided by Nova in OpenStack, there are also
monitoring tools available for in-host to ensure availability of computational resources. These tools can be used
within OpenStack VMs, e.g., if the API from NOVA, or the intercepting the events from the RabbitMQ
component in OpenStack, is not feasible for any technical reason. Additionally, these approaches have a
significant advantage over using only OpenStack because these approaches could also be deployed at the
field or backend level to enhance monitoring capabilities.

27 http://fiware.github.io/specifications/ngsiv2/stable/

28 https://docs.openstack.org/nova/pike/admin/common/nova-show-usage-statistics-for-hosts-instances.html

29 https://developer.openstack.org/api-ref/compute/

30 The server diagnostics API can potentially deliver CPU, memory, and networking usage information. The diagnostics

API can be found at: https://developer.openstack.org/api-ref/compute/?expanded=show-server-diagnostics-detail

31 https://stacktach.readthedocs.io/en/latest/intro.html

http://fiware.github.io/specifications/ngsiv2/stable/
https://docs.openstack.org/nova/pike/admin/common/nova-show-usage-statistics-for-hosts-instances.html
https://developer.openstack.org/api-ref/compute/
https://developer.openstack.org/api-ref/compute/?expanded=show-server-diagnostics-detail
https://stacktach.readthedocs.io/en/latest/intro.html

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D4.2 SEMIoTICS Monitoring, prediction and diagnosis mechanisms (first draft)

Dissemination level: Public

22

We consider two main approaches depending on the granularity needed for the monitoring of in-host events
related to computational resource use. On the one hand, we could use the set of tools called BEATS32. BEATS
are single-purpose elements that send data to a monitoring infrastructure based on ElasticSearch 33 .
Specifically, for the case of computational resource monitoring, there is a metric BEAT module measuring CPU,
networking and storage information34. On the other hand, we could monitor Linux kernel functions to assess
the performance of the operating system. This can be done using tools such as SystemTap35 or by using or
implementing tools based on extended Berkley Packet Filter (eBPF) to monitor kernel events36. BEATS and
the Linux kernel monitoring have advantages and challenges that need to be further assessed in the project.
Particularly, the metrics BEATS component is available for a wide range of operating systems37, but provides
coarse-grained data. On the contrary, monitoring the OS kernel provides specific monitoring capabilities to
profile the OS, but it is only available for particular versions of the Linux kernel, and it may require specific
versions of the OS.

2.2.7. MONITORING THE NETWORK LAYER

The SEMIoTICS SDN Controller (SSC) represents the centralized intelligence, as a function, in network which
possesses the view on mappings of Virtual Tenant Networks, Application Services (formulated as connectivity
patterns) to underlying physical topologies, as well as on the device capabilities and resources [D3.1].

The SDN controller used in SEMIoTICS is OpenDaylight (ODL) that provides the user more programmatic
control over the infrastructure: managing OpenFlow (OF) capable switches. OF is a communications protocol
that empowers a network switch or router to access the forwarding plane over the network.

Using ODL is possible not only to control the resources, but also to monitor and to set some rules. Three
components of the high level architecture of38 are relevant, for the monitoring:

• Statistics Manager is responsible for collecting statistics and status from attached OpenFlow switches
and storing them into the operational data store for applications’ use.

• Topology Manager is responsible for discovering the OpenFlow topology using Link Layer Discovery
Protocol (LLDP) and putting them into the operational data store for applications’ use.

• Forwarding Rules Manager is on the “top level” of OpenFlow module, it exposes the OF functionality to
controller apps and it provides the app-level API. Its main entity is that manages the OpenFlow switch
inventory and the configuration (programming) of flows in switches. It also reconciles user configuration
with network state discovered by the OpenFlow plugin.

Cardinal is the plugin that allows ODL to be a monitoring service. Cardinal enables ODL and the underlying
SDN to be remotely monitored by deployed Network Management Systems (NMS) or Analytics suite. NMS is
a viable approach to provide the system that monitors and controls remote (and managed) devices located
throughout the network, using for example Simple Network Management Protocol (SNMP, the basic protocol).

Cardinal, support SNMP requests, as REST GET, to enable SDN Applications to retrieve ODL diagnostics
data.

2.2.8. MONITORING FIELD DEVICES

32 https://www.elastic.co/products/beats
33 ElasticSearch is available as an open source component here: https://www.elastic.co/products/elasticsearch
34 https://www.elastic.co/guide/en/beats/metricbeat/current/metricbeat-module-system.html
35 https://sourceware.org/systemtap/
36 https://github.com/iovisor/bcc
37 https://www.elastic.co/support/matrix
38 https://docs.opendaylight.org/projects/openflowplugin/en/latest/users/architecture.html

https://www.elastic.co/products/beats
https://www.elastic.co/products/elasticsearch
https://www.elastic.co/guide/en/beats/metricbeat/current/metricbeat-module-system.html)
https://sourceware.org/systemtap/
https://github.com/iovisor/bcc
https://www.elastic.co/support/matrix
https://docs.opendaylight.org/projects/openflowplugin/en/latest/users/architecture.html

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D4.2 SEMIoTICS Monitoring, prediction and diagnosis mechanisms (first draft)

Dissemination level: Public

23

For the monitoring of field devices the SEMIoTICS monitoring component will rely on the mechanisms provided
by the Web of Things (WoT) architecture39.

A Thing Description is a central building block in the Web of Things (WoT). It describes the metadata and
interfaces of Things, where a Thing is an abstraction of a physical or virtual entity that provides interactions to,
and participates in, the Web of Things40.

A Property41 is a variable of a Web Thing and it represents the internal state of a WoT. The clients can subscribe
to Properties to receive a notification message when specific conditions are met (e.g. one or more value
changes) and this condition has to be set a priori. In the same way, it is possible to monitor the field devices
by subscribing to an event; i.e. monitoring an interval of values.

2.3. Fusion of cross-layer monitoring data

This section will explore the candidate platform enabling the cross-layer data fusion.

Each section describes a specific platform. Each description will emphasize the pro and cons of its integration
within the architecture presented in section 2.1.

2.3.1. PROTON

PROTON42 (Proactive Technology Online) is an open source complex event processing engine developed also
as part of FIWARE. PROTON allows to detect patterns of raw events from various types of data sources (e.g.
RESTful services). The PROTON API allows to define custom adapters43.

Complex events can be determined and processed using a data flow programming paradigm.

Events are processed through event processing networks. The PROTON API allows adding additional custom
operators.

2.3.2. APACHE FLINK CEP

Apache Flink44 is a distributed processing engine for stateful computations over event data streams (both
unbounded - i.e. potentially unending - and bounded). Applications are parallelized into possibly thousands of
tasks that are distributed and concurrently executed in a cluster - such that an application can leverage virtually
unlimited amounts of CPUs, main memory, disk and network IO. Flink requires compute resources in order to
execute applications and integrates with common cluster resource managers such as Hadoop YARN, Apache
Mesos and Kubernetes. All communications to submit or control applications are via REST calls.

Applications per se are written in Java. The code below is a short ‘hello world’ example45 that receives a stream
of Wikipedia edit events and counts the number of bytes that each user edits within a given (5 second) window
of time.

public class WikipediaAnalysis {

 public static void main(String[] args) throws Exception {

39 https://www.w3.org/TR/2019/CR-wot-architecture-20190516/
40 https://www.w3.org/TR/wot-thing-description/#introduction
41 http://model.webofthings.io/#terminology
42 https://github.com/ishkin/Proton
43

https://github.com/ishkin/Proton/tree/master/IBM%20Proactive%20Technology%20Online/ProtonJ2SE/src/c

om/ibm/hrl/proton/adapters
44 https://flink.apache.org/flink-architecture.html
45 taken from: https://ci.apache.org/projects/flink/flink-docs-release-1.8/tutorials/datastream_api.html

https://www.w3.org/TR/2019/CR-wot-architecture-20190516/
https://www.w3.org/TR/wot-thing-description/#introduction
http://model.webofthings.io/#terminology
https://github.com/ishkin/Proton
https://github.com/ishkin/Proton/tree/master/IBM%20Proactive%20Technology%20Online/ProtonJ2SE/src/com/ibm/hrl/proton/adapters
https://github.com/ishkin/Proton/tree/master/IBM%20Proactive%20Technology%20Online/ProtonJ2SE/src/com/ibm/hrl/proton/adapters
https://flink.apache.org/flink-architecture.html
https://ci.apache.org/projects/flink/flink-docs-release-1.8/tutorials/datastream_api.html

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D4.2 SEMIoTICS Monitoring, prediction and diagnosis mechanisms (first draft)

Dissemination level: Public

24

 StreamExecutionEnvironment see = StreamExecutionEnvironment.getExecutionEnvironment();

 DataStream<WikipediaEditEvent> edits = see.addSource(new WikipediaEditsSource());

 KeyedStream<WikipediaEditEvent, String> keyedEdits = edits

 .keyBy(new KeySelector<WikipediaEditEvent, String>() {

 @Override

 public String getKey(WikipediaEditEvent event) {

 return event.getUser();

 }

 });

 DataStream<Tuple2<String, Long>> result = keyedEdits

 .timeWindow(Time.seconds(5))

 .fold(new Tuple2<>("", 0L), new FoldFunction<WikipediaEditEvent, Tuple2<String, Long>>() {

 @Override

 public Tuple2<String, Long> fold(Tuple2<String, Long> acc, WikipediaEditEvent event) {

 acc.f0 = event.getUser();

 acc.f1 += event.getByteDiff();

 return acc;

 }

 });

 result.print();

 see.execute();

 }

}

Flink supports complex event processing though the FlinkCEP46 library. FlinkCEP provides APIs to describe
patterns of events and to specify actions to undertake what a sequence of events matches a pattern.

2.4. Events Object Model

This section introduces the object model for the messages produced by the monitoring component (MC) and
consumed either by the MC internal components or clients of the MC.

The Monitoring Components produces two types of events:

• Base Event used to represent in a common format the events produced by the various IoT cloud platforms
(e.g. Azure, MindSphere) and the various layers (e.g. Network, Filed) of the SEMIoTICS infrastructure. The
events of this type are produced by the Event Signalers.

• High Level Event produced by the Complex Event Processor whenever a sequence of events (of type
Common Format Event) matches one of the queries submitted to the Monitoring Component

Figure 6 shows the object model for both types of events.

46 https://ci.apache.org/projects/flink/flink-docs-stable/dev/libs/cep.html

https://ci.apache.org/projects/flink/flink-docs-stable/dev/libs/cep.html

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D4.2 SEMIoTICS Monitoring, prediction and diagnosis mechanisms (first draft)

Dissemination level: Public

25

FIGURE 9: SEMIOTICS EVENT OBJECT MODEL

The BaseEvent class describes the events generated by event signalers and defines the following attributes:

Attribute Type Description

type String The type of the event

id String The primary identifier for the event.

source ComponentIdentification The component in which the original event/action takes
place.

reporter ComponentIdentification The component that generated the event.

creationTime String The date-time when the event generated.

severity Integer The perceived severity of the status the event is describing
with respect to the application that reports the event.

sequenceNumber Integer A source-defined number that allows to identify the order in
which events have been generated.

payload Any The observed or computed data that correspond to the event.

The ComponentIdentification class describes a component generating or reporting an event:

Attribute Type Description

location String Specifies the physical address that correspond to the location
of a component.

locationType LocationType Specifies the format and meaning of the values in the
location property. E.g IPv4, IPv6, hostname, devicename

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D4.2 SEMIoTICS Monitoring, prediction and diagnosis mechanisms (first draft)

Dissemination level: Public

26

Attribute Type Description

application String The name of the application

executionEnvironment String The immediate environment that an application is running in.
E.g. MindSphere

componentId String Specifies the logical identity of a component

componentIdType String Specifies the format and meaning of the values in the
compoenentId property.

The HighLevelEvent class describes the events generated by the complex event processor and defines the

following attributes:

Attribute Type Description

queryID String The identifier of the query that caused the creation of the
event

patternName String The name of the matched pattern

contributingEvents BaseEvent[1..n] Sequence of events matching the pattern

For the representation of both event types (Base and HighLevel) the MC uses as basis the format being defined
by CloudEvents47. CloudEvents is an ongoing initiative aimed to define a vendor-neutral specification for
defining the format of event in order to ease event declaration and delivery across services, event routers and
tracing systems. Current version of the specification is 0.2 48 and a set of SDKs is available for various
programming languages (e.g. Java, Python). The current version of CloudEvents specifications define the
following attributes49:

• type: the type of the event

• specversion: the version of the CloudEvents specification which the event uses.

• source: the event producer.

• id: identifier of the event

• time: timestamp of when the event happened

• schemaurl: a link to the schema that the data attribute adheres to

• contenttype: content type of the data attribute value

• data: the event payload

47 https://cloudevents.io
48 https://github.com/cloudevents/spec
49 https://github.com/cloudevents/spec/blob/v0.2/spec.md

https://cloudevents.io/
https://github.com/cloudevents/spec
https://github.com/cloudevents/spec/blob/v0.2/spec.md

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D4.2 SEMIoTICS Monitoring, prediction and diagnosis mechanisms (first draft)

Dissemination level: Public

27

The following table shows the mapping between the information defined by the SEMIoTICS Events Object
Model and the CloudEvents format:

CloudEvents SEMIoTICS

type type

source source.location

id id

time creationTime

In order to be able to represent all the source and reporter information defined by the Events Object Model the
Monitoring Component defines CloudEvent extensions50.

The values of the attributes of the HighLevelEvent class are transported as payload of a CloudEvent i.e. by
means of the data attribute.

2.5. Query Object Model

This section presents the object model of the queries accepted by the Monitoring component and utilized by
its client applications to define the high-level events that should be produced as result of the monitoring activity.

50 https://github.com/cloudevents/spec/blob/master/primer.md#cloudevent-attribute-extensions

https://github.com/cloudevents/spec/blob/master/primer.md#cloudevent-attribute-extensions

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D4.2 SEMIoTICS Monitoring, prediction and diagnosis mechanisms (first draft)

Dissemination level: Public

28

FIGURE 10: QUERIES OBJECT MODEL

A Query object specifies which are the high-level events to be generated and the consumers of those events. A

query has a validity period and a set of QoS requirements (e.g. Availability>0).

Attribute Type Description

id String identifier of the query

validityPeriod ValidityPeriod Period of validity of the query

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D4.2 SEMIoTICS Monitoring, prediction and diagnosis mechanisms (first draft)

Dissemination level: Public

29

Attribute Type Description

qos QoSExp[1..n] QoS requirements that should be fulfilled by the execution of
the query

eventsPatterns EventsPatternExp[1..n] The patterns that have to be matched by the query

listeners Service[1..n] Endpoints that should be notified whenever a pattern is
matched

A QoS object describes a QoS requirement

Attribute Type Description

attribute QoSAttribute The QoS attribute (e.g. Availability)

op RelOp relational operator (e.g. <, = , >=)

threshold Real threshold value for the attribute

An EventType object describes which is the pattern of events that has to be detected, the source of the events

and the name of the type of the generated event.

Attribute Type Description

name String Name of the type of the event to be generated when the
pattern is matched

eventsPattern EventsPatternExp the pattern to be matched

input EventsSource The source of events to monitor

An EventsPatternExp describes a pattern of events as a list of conditions (simple or composite) that have to be

matched, in the order specified in the list, by the events generated by an event source. The conditions in the list
are combined according to a contiguity condition. Possible types of contiguity are:

• strict: next matching event is the immediate next of the matched event

• relaxed: interleaving events are allowed between the matched event and the next matching event

• non-deterministic relaxed: interleaving matches are allowed between the matched event and the next
matching event

• not-next: the matched event should not be immediately followed by the rest of the pattern

• not-followed-by: the matched event should not be followed by the rest of the pattern

Attribute Type Description

name String name of the pattern

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D4.2 SEMIoTICS Monitoring, prediction and diagnosis mechanisms (first draft)

Dissemination level: Public

30

Attribute Type Description

condition EventCondition The condition that has to be satisfied by an event

windowTime Time The maximum time gap between the first and the last
matching event.

minTime int Minimum number of events that have to match the condition.

maxTime int Maximum number of events that have to match the condition

optional boolean This attribute specifies whether the condition if optional for
the matching of overall pattern.

greedy boolean Specifies whether the condition has to be matched only by a
pattern of by as many events as possible.

next EventsPatternExp the next condition defining the overall pattern

contiguityCondition ContiguityCondition Specify the continuity condition between the event matching
the condition and the event matching the next condition in the
pattern.

untilCondition EventCondition The condition specifying when to stop accepting events in the
pattern

An EventCondition object describes a condition that should be matched by an event. There are two possible types

of event conditions: SimpleCondition and CompositeCondition.

A SimpleCondition describe the constraints on the properties of an event (see 2.4).

Attribute Type Description

type String Name of the type of the event

likelihood Percentage A percentage representing the likelihood of the event. The
value is less than 100% if the event was not directly observed
and inferred using the other observations.

payload Any The event payload

sourceCondition ComponentCondition The conditions on the source of the event

reporterCondition ComponentCondition The conditions on the component reporting the event

A CompositeCondition describe a logical combination of EventConditions.

Attribute Type Description

operator LogicalOperator The combining operator (AND, OR)

nestedCondition EventCondition[1..n] The conditions being combined through the operator

The following expression (in a naive/pseudo syntax) illustrates the use of the object model (above):

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D4.2 SEMIoTICS Monitoring, prediction and diagnosis mechanisms (first draft)

Dissemination level: Public

31

NOTIFY TO http://127.0.0.1/listener

FROM ts=http://127.0.0.1/sensors/temperature/0

EVENTS

‘Cold’ IF ts.value<18 && ts.liklihood > 0.5

‘Warm’ OTHERWISE

STARTING FROM 01/11/2018 UNTIL 30/03/2019

WITH Availability > 0.5

Informally, this expression conveys a request that:

• the monitoring component should notify the client http://127.0.0.1/listener either an event of type ‘Cold’ if the
value of the temperature sensor http://127.0.0.1/sensors/temperature/0 is below 18 with a likelihood of at
least 0.5 or an event of type ‘Warm’ in all the other cases

• the monitoring task should occur from November 1st, 2018 until March 30th, 2019 with an uptime of at least
50%

2.6. Translation of SPDI patterns into monitoring policies

SEMIoTICS follows a pattern-driven approach in managing IoT/IIoT deployments, with SPDI properties’
verification, as detailed in deliverable D4.1. There are 4 verification means that can be used for said SPDI
properties: testing, certificate, pattern-based and monitoring. The latter, in specific, is of particular interest in the
context of Task 4.2.

In more detail, the Pattern Orchestrator (PO) component receives instantiated Recipes (i.e. definitions of IoT
orchestrations) from the Recipe Cooker (RC) component, and transforms them to a machine processable format
(Drools), then transmitting them to the Pattern Engines at the various layers. In the context of this translation, the
PO will be also responsible to match the SPDI properties required to the monitoring capabilities of the specific
components selected to instantiate the designed workflows.

Following the example that is described in D4.1, Section 6.1, we have the following recipe:

http://127.0.0.1/listener
http://127.0.0.1/sensors/temperature/0
http://127.0.0.1/listener
http://127.0.0.1/sensors/temperature/0

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D4.2 SEMIoTICS Monitoring, prediction and diagnosis mechanisms (first draft)

Dissemination level: Public

32

FIGURE 11: INSTANTIATED RECIPE (TOP) AND WORKFLOW (BOTTOM)

The RC translates the above instantiated Recipe to a Pattern Language-compatible representation (as defined
in D4.1) before transmitting it to the PO, providing a representation as follows:

1. ORCH “Seq2”

2. Placeholder (Placeholder1, (Vibration Analysis Activity, Vibration Analysis Description))

3. Placeholder (Placeholder2, (Monitoring Alarm Activity, Monitoring Alarm Description))

4. Sequence (Placeholder1, Placeholder2)

5. Link (Link1, Vibration Analysis, Monitoring Alarm)

6. Property (AP_1, Placeholder1, required, (certificate, interface), confidentiality, in_processing)

7. Property (AP_2, Link1, required, (pattern, “PSPpattern”), confidentiality, in_transit)

8. Property (AP_3, Placeholder2, required, (monitoring, interface), confidentiality, at_rest)

9. Property (OP, “Seq2”, required, (pattern-based, “PR1”), confidentiality, end_to_end)

10. Pattern rule: (PR1: AP_1, AP_2, AP_3 → OP)

In addition to the above, the PO will also consider all of the SPDI-related metadata available in the involved
components’ Thing Descriptions (described in D3.3, Section 3.4). Then as showcased in Query Object Model
a policy example could be:

NOTIFY TO http://127.0.0.1/listener

FROM placeholder2=http://127.0.0.1/sensors/monitoringANDAlarm/9

EVENTS

‘Valid’ IF placeholder2.confidentiality==1

http://127.0.0.1/listener
http://127.0.0.1/sensors/monitoringANDAlarm/0

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D4.2 SEMIoTICS Monitoring, prediction and diagnosis mechanisms (first draft)

Dissemination level: Public

33

‘invalid’ OTHERWISE

STARTING FROM 01/11/2018 UNTIL 30/03/2019

The above policy checks that the Monitoring Alarm sensor has enabled confidentiality. Any status updates
regarding the monitoring of the specific property defined above will have to be transmitted to the Pattern Engine
responsible for monitoring the specific component (e.g., Field Pattern Engine if the component is at field layer).
The Pattern Engine can then use this incoming monitoring events to reason about the status of the
Confidentiality property, which is the focus in this example.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D4.2 SEMIoTICS Monitoring, prediction and diagnosis mechanisms (first draft)

Dissemination level: Public

34

3. PREDICTIVE MECHANISMS

Modern IoT/IIoT infrastructures typically include thousands of IoT devices which generate a massive amount
of data. The capability of data processing and analysis both in near real-time and off-line fashion allows for the
discovery of information that has significant impact on the whole infrastructure in terms of security, system’s
health status, policy guarantees etc., and thus it is crucial to combine edge/fog computing with big data and
cloud computing in an efficient manner. Edge/fog computing provides fast near real-time analytics while the
plethora of storage and computing resources in the cloud/back-end system can be exploited to carry out
computationally intensive tasks. In edge/fog computing scheme data-in-motion (streaming data, time series
data etc.) are collected from IoT sources and they are integrated towards highly sophisticated analytics
processes that deliver timely decision-making or short-term prediction. Long-term prediction and decision
making can be performed at the cloud since data gathered from the lower IoT infrastructure level and stored
for computationally intensive and data-hangry tasks. Below, we provide a brief overview of edge/fog-level
predictive mechanisms and cloud/back-end oriented predictive algorithms.

3.1. Regression techniques for the prediction at Edge/fog level

In the current section, a general description of the edge/fog-level predictive algorithms is provided. We assume
that we collect continuous valued data used within a supervised learning framework to predict future outcomes
which is a task referred as regression. The simplest regression form can be considered when there is a linear
relationship between two variables for example between the quantity measured by an IoT device/sensor and
time, and thus we want to estimate a trend of the data points by formulating a model based on existing data.
Linear regression is used to fit a straight line usually computed based on linear least squares method. However,
in some cases data collected in an edge/fog computing environment may be highly correlated or have
collinearity, which can lead the model towards being more susceptible to overfitting. One possible way to
alleviate this issue is to use kernel ridge regression [41]. It is a technique that combines the ridge regression
model, i.e., linear least squares using l2-norm regularization, with the kernel trick (use of a nonlinear function
to transform the data into a higher dimensional space that computations and data modeling can be efficiently
performed), in order to learn a linear function in the space induced by the kernel and the data.

Support Vector Regression [3] is another method similar to the kernel ridge regression in that it uses the kernel
trick, but has some basic differences such as an ε-insensitive loss function (instead of a squared loss function
as in linear regression) is used. Support vector regression uses a subset of the training data for inference,
since the cost function for building the model ignores any training data not close to the model prediction. Based
on various simulations in the literature, support vector regression has been observed that its training procedure
is longer as compared to kernel ridge regression, but it is faster at providing predictions due to learning a
sparse model. This can be very important in practical applications when we are interested in real-time
predictions.

In addition, random forests [6] constitute an ensemble model belonging to the decision-tree class of machine
learning algorithms and can also be used for regression by fitting a number of decision trees to various
subsamples of the dataset that are then averaged to improve accuracy and reduce overfitting (a process known
as bagging). Random forests are also able to use the same model for both regression and classification tasks
and they have the ability to learn features that are most important from a set of features from the training set.

Another technique that can be applied for regression/prediction purposes is the Gaussian processes method
which computes the outputs probabilistically assuming a Gaussian distribution for approximating a set of
functions (processes) in a high-dimensional space [28]. It is assumed that there exists a mapping of
independent to dependent variables which cannot be sufficiently captured by a single Gaussian process.
Gaussian processes method also uses lazy learning, which delays generalization about training data until after
a query has been made which finds a local approximation for each query.

3.2. Deep Neural Network for prediction at Cloud Level

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D4.2 SEMIoTICS Monitoring, prediction and diagnosis mechanisms (first draft)

Dissemination level: Public

35

Cloud-based resources can be exploited towards long-term predictive mechanisms based on historical data
saved in the cloud. For that reason, “data-hungry” methods such as deep learning can be applied. In specific,
a deep neural network is the core part of the deep learning scheme since has multiple hidden layers between
the input and output layers in order to model complicated nonlinear data relationships. Using a large amount
of training data (which usually are labeled data) the parameters in a deep neural network can be efficiently and
accurately trained to extract complex features from a large amount of data. Recurrent neural networks (RNNs)
[16] have been developed to tackle the issue of inter-dependencies between successive samples/data with
various length. The input to an RNN consists of both the current sample and the previous observed sample,
and thus the output of an RNN at time step t-1 affects the output at time step t. Each neuron is equipped with
a feedback loop that returns the current output as an input for the next step, where this structure models each
neuron’s internal memory that keeps the information of the computations from the previous input. To train the
network, an extension of the backpropagation algorithm, called backpropagation-through-time, is used, where
its core concept is a technique called unrolling the RNN, such that we come up with a feed-forward network
over time spans. Since the focus is given on cloud-based resources, deeper RNN [26] architectures can be
applied to enhance the predictive performance.

Long-short-term-memory networks (LSTMs) [16] is an extension of RNNs. LSTM uses the concept of gates for
its units, each computing a value between 0 and 1 based on their input. In addition to a feedback loop to store
the information, each neuron in LSTM (also called a memory cell) has a multiplicative forget gate, read gate,
and write gate. These gates are introduced to control the access to memory cells and to prevent them from
perturbation by irrelevant inputs. An important difference between LSTMs and RNNs is that LSTM units utilize
forget gates to actively control the cell states and ensure they do not degrade. The gates can use sigmoid or
tanh as their activation function. In fact, these activation functions cause the problem of vanishing gradient
during backpropagation in the training phase of other models using them. By learning what data to remember
in LSTMs, stored computations in the memory cells are not distorted over time. Backpropagation-through-time
is a common method for training the network to minimize the error. When data is characterized by a long
dependency in time, LSTM models perform better than RNN models.

3.3. Causal Networks

As stated in section 2.1 one of the objectives of the SEMIoTICS MC is to generate the high-level business
events as defined by client applications and in spite of the dynamicity of the underlying computing
infrastructure.

To achieve this objective there is the need of means to predict the effects of, intentional or unintentional,
changes on the computing infrastructure used to generate the raw events that are the basis for the events
aggregation process performed by the MC (see section 2.3).

Causal prediction mechanisms are algorithms that rely on causal structures to predict the effects of
changes/interventions on a system.

Causal networks are a typical example of causal structure used for that purpose. A Causal Network is a directed
acyclic graph in which nodes represent domain variables, edges represents causal relationship between
variables (i.e. a change on the “source” variable cause a change in the “sink” variable) [33]. In a Causal Network
each node has associated probabilities: prior probability for nodes without incoming edges and conditional
probability for nodes with one or more incoming edges [10].

The SEMIoTICS Monitoring Component constructs causal models using prior knowledge of IoT application
(e.g., which components are connected and thus, causally affecting which other components). A possible
source for this initial knowledge are the SPDI patterns: in the example presented in section 2.6 the pattern
ORCH Seq2 allows to derive that there is a causal relation between the “alarm” events generated by the
“Monitoring Alarm” process and the events generated by the “Vibration Analysis” process.

Subsequently, since the structure and the parameters of a causal network can be learned from data [29], these
models are refined using causal discovery (causal learning) algorithms (e.g., [36][33]).

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D4.2 SEMIoTICS Monitoring, prediction and diagnosis mechanisms (first draft)

Dissemination level: Public

36

During the last years, several algorithms have been proposed to recover causal network from observational
data (e.g. [5], [13],[18])

TETRAD51 [27] is a suite of tools that make efficient causal modeling and discovery (CMD) algorithms from Big
Data available on a variety of platforms and environments. The suite uses a common set of CMD algorithms
implemented as a Java library. The TETRAD codebase is publically available and it is released under the GNU
GPL v. 2 license.

More recently [17] proposed the use of Causal Generative Neural Networks (CGNNs) to learn causal models
from observational data.

[1] addresses the challenges related to fast causal inference over event streams and real-time prediction of
effects from events.

[38] presents a new method called Event Triggered Causality (ETC) that can determine causal relationships
between observed events within time series data from very different sensors.

Because of their focus on causal inference over discrete event streams and Big Data this last two works are
particularly relevant from the point of view of the development of the SEMIoTICS Monitoring Component (see
section 2.1).

51 http://www.phil.cmu.edu/tetrad/

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D4.2 SEMIoTICS Monitoring, prediction and diagnosis mechanisms (first draft)

Dissemination level: Public

37

4. DIAGNOSIS MECHANISMS

4.1. Computational resource abuse

In the scope of this task, we will use the data sources described in Sections 2.2.5 and/or 2.2.6 to detect possible
computational resource abuse scenarios for different components deployed in SEMIoTICS.

First of all, monitoring and processing information about computational resources use should detect naive
programming errors such as the case where Spotify was allegedly sending several hundreds of Gigabytes of
unrequested data to their users due to a programming mistake52. Second, attackers may be inclined to abuse
the computational resources from machines to make a financial profit. For example, in February 2018 Google’s
DoubleClick service was abused by attackers to distribute advertising abusing the computational resources of
visitors from visitors obtaining the advertisement to execute crypto-currency mining53.

As a result, we will explore how to detect when applications are using more computational resources than
expected. To this end, we will evaluate the feasibility of an approach based on coarse-grained data, e.g., using
information of server-wide CPU and memory consumption, versus monitoring more fine-grained sources of
information, e.g., system calls monitoring.

4.2. Potential methods for IoT botnet attack detection

The technology of IoT has emerged during the last years as a milestone in advancing the concept of Internet
networking towards connecting data, users and “things” (usually dubbed as IoT devices, too) in a seamless
fashion. IoT technology is based on three pillars: highly heterogeneous and distributed IoT devices data are
captured through a gateway and are immediately accessible to a wide range of applications via a secure
networking infrastructure. The type of IoT applications span from smart homes, smart cities and wearables to
energy management, predictive maintenance, automotive driving, etc. However, the rapidly growing use and
realization of IoT-based technology comes at the cost of resolving significant business and technical
impediments as reflected in dynamicity, scalability and heterogeneity and end-to-end security/privacy. More
specific, a dynamically adaptive behavior is followed at the IoT infrastructure, at the IoT applications and at the
IoT devices, and thus there is a great need for promoting a (semi)-automatic behavior within all IoT layers. This
gives rise to the pursuit of high scalability properties from the network layers as well as from the IoT
infrastructure. In addition, enhanced heterogeneous behavior as a result of the extensive use and
interconnection of a large volume of diverse IoT devices should be addressed through the concept of efficient
semantic interoperability within IoT applications and platforms. End-to-end security is also a very crucial issue
since IoT devices, IoT applications and their enabling platforms could be vulnerable to security attacks.

As a result, it is very crucial to propose a diagnosis mechanism for instant IoT botnet attack detection and the
minimization of their impacts by immediate isolation of compromised IoT devices located at the edge of the IoT
infrastructure. Due to limited computational capabilities which govern the edge IoT devices, we are strongly
interested in providing an algorithmic procedure which uses as small as possible amount of training and testing
data towards implementing an accurate IoT botnet attack detector. Next we describe a novel diagnosis
technique proposed by FORTH partners under the SEMIoTICS framework [39], where the fundamental
assumption is that there is no prior knowledge of malicious IoT network traffic data during the training
procedure. The novelty is twofold. Firstly, a reconstruction error thresholding rule based on sparse
representation is employed for IoT botnet attack detection assuming that only a very limited amount of both
training and testing data is used to deal with low computational constraints as well as with fast reaction.
Secondly, a greedy sparse recovery algorithm, dubbed as orthogonal matching pursuit [37], is adopted since
it involves tuning of only two hyper-parameters, i.e. the thresholding constant and the sparse representation
level.

52 https://www.telegraph.co.uk/technology/2016/11/11/spotify-bug-killing-hard-drives-with-gigabytes-of-junk-data-user/
53 https://blog.trendmicro.com/trendlabs-security-intelligence/malvertising-campaign-abuses-googles-doubleclick-to-deliver-

cryptocurrency-miners/

https://www.telegraph.co.uk/technology/2016/11/11/spotify-bug-killing-hard-drives-with-gigabytes-of-junk-data-user/
https://blog.trendmicro.com/trendlabs-security-intelligence/malvertising-campaign-abuses-googles-doubleclick-to-deliver-cryptocurrency-miners/
https://blog.trendmicro.com/trendlabs-security-intelligence/malvertising-campaign-abuses-googles-doubleclick-to-deliver-cryptocurrency-miners/

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D4.2 SEMIoTICS Monitoring, prediction and diagnosis mechanisms (first draft)

Dissemination level: Public

38

Let us assume that statistical features are extracted from IoT traffic data. Usually, the features correspond to
statistical metrics reflecting the IoT traffic flow characteristics. Assuming that that IoT network consists of S IoT
devices, Figure 11 depicts the concatenation process of each features’ matrix, where each column corresponds
to a feature vector. As it is shown in Figure 11, the focus is given on IoT botnet attack detection at the gateway,
where the IoT traffic data is collected and further analyzed in order to detect any malicious behavior originating
from a compromised IoT device. As a result, the use of real-data for performance evaluation is of paramount
importance. Here, we use the N-BaIoT dataset which corresponds to real IoT traffic data gathered from nine
commercial IoT devices and can be found in 54.

The N-BaIoT dataset contains the features extracted from raw IoT network traffic data. More specific, whenever
a packet arrives, a behavioral snapshot of the protocols and hosts that transmitted each packet is obtained.
Each snapshot corresponds to the packet’s contextual information as reflected in 115 statistical features, i.e.,
the arrival of each packet invokes the extraction of 23 statistical features from five time windows (100ms,
500ms, 1.5sec, 10sec and 1min), and then five 23-dimensional vectors from each window are concatenated
into a single 115-dimensional vector (we will use the term instance hereafter). During the performance
evaluation we use malicious instances obtained during a BASHLITE botnet attack. More specific, we use data
based on three categories of BASHLITE attack: (I) Scan: scanning the network for vulnerable devices, (II) Junk:
sending spam data, and (III) COMBO: sending spam data and opening a connection to a specified IP address
and port. The interested reader is referred to [25] for more details on feature extraction. For the sake of clarity,
it is important to notice that the uploaded N-BaIoT dataset1 includes a different amount of benign instances
(see Table I) other than mentioned in [25]. As a result, during the performance evaluation we use the benign
data captured from eight IoT devices as mentioned in the third column in Table I.

FIGURE 12: STRUCTURE OF FEATURES EXTRACTED FROM RAW IOT TRAFFIC DAT

54 http://archive.ics.uci.edu/ml/datasets/detection_of_IoT_botnet_attacks_N_BaIoT

http://archive.ics.uci.edu/ml/datasets/detection_of_IoT_botnet_attacks_N_BaIoT

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D4.2 SEMIoTICS Monitoring, prediction and diagnosis mechanisms (first draft)

Dissemination level: Public

39

TABLE I – COMMERCIAL IOT DEVICES USED TO CAPTURE THE BENIGN INSTANCES. THE THIRD

COLUMN CONTAINS THE ACTUAL NUMBER OF UPLOADED BENIGN INSTANCES

Now, let us assume that S is the total number of IoT devices in the IoT network, and for each IoT device, a

matrix 𝑉𝑖 is constructed based on the benign instances extracted from the i-th IoT device as

𝑽𝑖 = ൣ𝒗𝑖,1, 𝒗𝑖,2,⋯ ,𝒗𝑖,𝑛𝑖൧ ∈ ℝ𝑑×𝑛𝑖 , 𝑖 = 1,⋯ ,𝑆 , where the column vector 𝒗𝑖,𝑗 denotes the j-th d-dimensional

instance of the IoT device, and 𝑛𝑖 is the number of benign training instances for the i-th IoT device. The total

number of benign instances is 𝑁 = 𝑛1 + 𝑛2 +⋯+ 𝑛𝑆.

The ultimate goal of the described diagnosis mechanism is to detect whether the observed IoT network traffic

data corresponds to benign or malicious behaviour given an observed instance 𝒙𝑡 ∈ ℝ𝑑×1
. Let us assume that

𝒙𝑡 is an instance extracted from the i-th IoT device. We are interested in deducing if it is benign, emitted from

a “healthy” IoT device, or not. The instance 𝒙𝑡 can be expressed as a linear combination of the benign training

instances associated with the i-th IoT device as seen in Figure 12, where the vector 𝒄𝑖 = ൛𝑐𝑖,𝑗ൟ𝑗=1
𝑛𝑖

 is the vector

containing the representation coefficients of 𝒙𝑡 in the terms of the columns of 𝑽𝑖. The overall data matrix 𝑽

contains the instances corresponding to the benign data captured from all IoT devices and can be defined as

the concatenation of all benign data matrices 𝑽𝑖, 𝑖 = 1,⋯ , 𝑆.

FIGURE 13: SPARSE REPRESENTATION OF AN OBSERVED IOT TRAFFIC INSTANCE

As it is obvious from the right part of Figure 12, 𝒙𝑡 can be sparsely expressed in terms of the overall benign

training data matrix 𝑽 , namely 𝒙𝑡 = 𝑽𝒄 with 𝒄 = ൣ0,⋯ ,0, 𝑐𝑖,1, 𝑐𝑖,2, ⋯ , 𝑐𝑖,𝑛𝑖 , 0,⋯ ,0൧
𝑇
∈ ℝ𝑁×1 denoting the

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D4.2 SEMIoTICS Monitoring, prediction and diagnosis mechanisms (first draft)

Dissemination level: Public

40

coefficients vector called sparse code, whose elements are all zero except those associated with the i-th IoT

device. Given the overall data matrix 𝑽 and the test instance 𝒙𝑡, the following optimization problem can be
solved through the orthogonal matching pursuit (OMP) algorithm in order to obtain an estimate of the sparse

code 𝒄

,

where ԡ∙ԡ2 denotes the L2-norm, ԡ∙ԡ0 is the L0-(pseudo)norm which is defined as the number of non-zero

elements of a given vector and 𝜏 denotes the sparsity level of the estimated sparse code 𝒄
^
. Given 𝒙𝑡 and 𝑽,

the sparse code 𝒄 can be estimated via the orthogonal matching pursuit (OMP) algorithm which is an iterative

low-computational constrained method.

The basic assumption is that if the test instance 𝒙𝑡 (captured, e.g., from the i-th IoT device) corresponds to

benign traffic behavior, we expect the reconstruction error ቛ𝒙𝑡 −𝑽𝒄
^
ቛ
2
 to achieve a low value since the indices

of the non-zero entries of 𝒄
^
 will correspond to those columns of 𝑽 associated with the i-th IoT device. On the

contrary, we expect a high reconstruction error ቛ𝒙𝑡 −𝑽𝒄
^
ቛ
2
 when 𝒙𝑡 corresponds to unseen malicious traffic

behavior as the estimated sparse code 𝒄
^

cannot be sparsely expressed in terms of 𝑽, since malicious IoT traffic

information is not included in the overall matrix 𝑽. As a result, the botnet attack detection rule can be written
as

,

where 𝜃 is the decision threshold. The decision threshold is estimated given the overall data matrix 𝑽

containing only benign instances collected from all IoT devices.

It is very important to find the best combination of hyper-parameters 𝜏 and 𝜃 based only on benign instances

collected from all IoT devices. Here, we adopt the concept of proxy outliers to compensate for lacking malicious
instances during the threshold’s estimation and OMP hyper-parameter tuning. The basic assumption is that if
the sparse codes are computed only on benign instances, some of the reconstruction errors might attain large

values. As a result, choosing the maximum reconstruction error as the threshold 𝜃 to identify botnet attacks

could lead in accepting most of the malicious instances as benign. The concept of quartiles comes at the rescue
to remove a small amount of proxy outliers (corresponding to large reconstruction errors) present in the benign
instances. It is adapted to sparse codes estimation in order to tighten the threshold of the reconstruction error.
First, the sparse codes of all benign training instances are computed, and then the reconstruction error of each
training instance is estimated. Given the reconstruction errors of all training benign instances, the lower quartile

(𝑄1), the upper quartile (𝑄3) and the interquartile range (𝐼𝑄𝑅 = 𝑄3 −𝑄1) is computed. An instance 𝒙𝑡 is

qualified as an outlier of the benign class, if

,

where 𝜌 is the rejection rate reflecting the percentage of benign instances that are within the non-extreme

limits. Based on the previous formula, the extreme values of reconstruction error that represents spurious

training instances can be removed and a threshold 𝜃 is set as the maximum of the remaining reconstruction

errors. The best value of 𝜌 can be found through cross-validation to remove a small fraction of the benign

training instances. More details on the main steps of the proposed approach towards estimating the decision
threshold based only on benign training instances and tuning the hyper-parameters can be found in our
published work in [39].

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D4.2 SEMIoTICS Monitoring, prediction and diagnosis mechanisms (first draft)

Dissemination level: Public

41

As it is mentioned above, the main goal of the sparse representation approach is the efficient and fast IoT
botnet attack detection. Towards this direction, we examine a real-life scenario using only one test instance

𝒙𝑡 ∈ ℝ115×1
 in order to detect the IoT network traffic behaviour as fast as possible in a reliable manner. Let us

consider that 𝒙𝑡 can be decomposed into five subvectors of the form 𝒙𝑡
1,⋯ , 𝒙𝑡

5 with each subvector 𝒙𝑡
𝑤 ∈ ℝ23×1

reflecting the 23 statistical features from five time windows, 100ms (w = 1), 500ms (w = 2), 1.5sec (w = 3),
10sec (w = 4) and 1min (w = 5), respectively. Now, the sparse optimization problem is solved for each subvector

𝒙𝑡
𝑤 with𝑤 = 1,… ,𝑊, as follows

,

where 𝑽𝑤 ∈ ℝ23×𝑁
 corresponds to the overall benign data matrix of the w-th time window, and we end up with

a set of five sparse codes 𝒄
^1

, … , 𝒄
^5

. Next, five reconstruction errors of the form ብ𝒙𝑡
𝑤 −𝑽𝑤𝒄

^𝑤

ብ
2

 (for 𝑤 =

1,… ,𝑊) are computed leading to five decision functions of the form 𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 ቀ𝑽𝑤𝒄
^
𝑤ቁ. The final decision

about the existence or not of a botnet attack detection is given via a majority voting scheme which acts as an

ensemble learning type of algorithm. It is obvious that a different decision threshold 𝜃𝑤 is separately computed

for each matrix 𝑽𝑤
.

In this section, the IoT botnet attack detection performance of the proposed sparse representation (SR) method
based on majority voting is compared against a single hidden layer autoencoder (AE), where the N-BaIoT dataset
(see Table I) was used during the evaluation process. For each IoT device we randomly select 100, 300 and 500
benign instances from the first half of each dataset to estimate the decision threshold and perform the tuning of the
hyper-parameters following a 3-fold (CV = 3) cross-validation process, where 𝜏 is varied from 𝑇 = {5,10,15,20,30}
and 𝜌 is varied from 𝑃 = {0.01,0.5,1,2,3}. For the AE hyper-parameters tuning we followed a similar strategy based
on an AE reconstruction error-oriented decision threshold estimation and hyper-parameters tuning, where the
number of epochs is fixed and equal to 50, while the number of nodes in the hidden layer is varied from
{20,30,40,50,60}. As a result, both SR and AE have one hyper-parameter, the sparsity level and the number of
nodes, respectively.

Here, an off-the-shelf AE implementation (http://www.mathworks.com/help/nnet/ref/trainautoencoder.html) was
used, where ‘KerneScale’ parameter was set to ‘auto’ and ‘Standardize’ to ‘true’, while the rest of the parameters
were kept to default values.

The evaluation results on IoT botnet attack detection are reported in the form of a confusion matrix as shown in
Table II, where TP indicates the quantity of malicious instances correctly detected, TN shows the quantity of benign
instances correctly detected, FN indicates the quantity of malicious instances incorrectly detected, and FP denotes
the quantity of benign instances incorrectly detected. Here, we calculated the following metrics based on the
confusion matrix in order to assess the performance of the proposed framework: (I) Positive Predictive Value (PPV)
which indicates the proportion of correctly detected malicious instances in the total instances detected as malicious,
(II) Sensitivity (detection rate) which shows the proportion of correctly detected malicious instances in the total
number of actual malicious instances, (III) F1-score corresponding to the harmonic mean of PPV and sensitivity,
(IV) Accuracy (ACC) denoting the fraction of correctly detected instances in total detected instances.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D4.2 SEMIoTICS Monitoring, prediction and diagnosis mechanisms (first draft)

Dissemination level: Public

42

TABLE II – CONFUSION MATRIX CORRESPONDING TO THE EVALUATION RESULTS ON IOT BOTNET

ATTACK DETECTION

To evaluate the performance of the two methods, we performed five Monte Carlo runs. During each Monte Carlo
run we followed a leave-one-out-device-out cross validation (LOOCV) strategy, where benign instances from S-1
IoT devices were used for tuning and threshold estimation, while the current (under testing) IoT device’s benign
and malicious instances were used for testing/evaluation purposes. This procedure was repeated S times and the
total average performance metrics over all IoT devices, and all Monte Carlo runs are reported. This evaluation is
IoT device independent and shows the generalization capabilities as the IoT device which is being tested is not
included in the tuning procedure.

During the evaluation process, we used 100, 300 and 500 left-out benign instances (see LOOCV description in the
previous paragraph), respectively, for testing as well as 200 malicious instances randomly selected from each IoT
device’s COMBO malicious dataset (1600 malicious testing instances in total). In the case of Scan botnet attack we
used 200, 600 and 1000 randomly selected instances from each IoT device’s malicious Scan dataset (1600, 4800
and 8000 malicious testing instances in total during each evaluation scenario). It is important to notice that we used
the malicious instances obtained from the eight IoT devices used during the tuning process (see Table I). Figure 14
shows the results corresponding to the Scan botnet attack and Figure 15 corresponds to the COMBO botnet attack
results. In all figures, the subscripts in the legend names indicate the number of benign instances per IoT device
used during the hyper-parameters tuning and the decision threshold estimation process. The vertical black lines
indicate the error bars since each experimental scenario is performed five (Monte Carlo runs) by S = 8 (total number
of IoT devices) times.

It is obvious that the proposed SR method achieves superior performance in light of Sensitivity, F1-score and ACC,
while the AE technique achieves slightly better results in terms of PPV. That means that SR is robust in accurately
detecting both malicious and normal behaviour in the IoT network (the Sensitivity, F1-score and ACC error bars
corresponding to AE are wider as compared to the SR method’s error bars). Besides, the time complexity between
SR and AE is comparable and low (due to space limitation, a more thorough computation cost investigation will be
provided in a future publication), and thus SR can be applied for accurate and fast IoT botnet attack detection.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D4.2 SEMIoTICS Monitoring, prediction and diagnosis mechanisms (first draft)

Dissemination level: Public

43

FIGURE 14: TPR AND FPR FOR SCAN BOTNET ATTACK

FIGURE 15: TPR AND FPR FOR COMBO BOTNET ATTACK

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D4.2 SEMIoTICS Monitoring, prediction and diagnosis mechanisms (first draft)

Dissemination level: Public

44

4.3. Anomaly detection using Long Short-Term Memory Recurrent Networks

In many tasks, prediction is dependent on past samples such that, in addition to classifying individual samples,
we also need to analyze the sequences of inputs. In such applications, a feed-forward neural network is not
applicable since it assumes no dependency between input and output layers. Recurrent neural networks
(RNNs) have been developed to address this issue in sequential (e.g., speech or text) or time-series problems
(sensor data) with various length.

RNN is a deep learning architecture of an artificial neural network where connections between units form a
directed circle. Thus, it can be seen as multiple copies of the same network each passing a message to a
successor, giving RNN the ability to connect previous information to the current task.

The input to an RNN consists of both the current sample and the previous observed sample. In other words,
the output of an RNN at time step t−1 affects the output at time step t. Each neuron is equipped with a feedback
loop that returns the current output as an input for the next step. This structure can be expressed in such way
that each neuron in an RNN has an internal memory that keeps the information of the computations from the
previous input. To train the network, an extension of the backpropagation algorithm, called Backpropagation
Through Time (BPTT) [42], is used. Due to the existence of cycles on the neurons, we cannot use the standard
backpropagation here that is used in conventional neural networks, since it works based on error derivation
with respect to the weight in their upper layer, while we do not have a stacked layer model in RNNs. The core
of BPTT algorithm is a technique called unrolling the RNN, such that we come up with a feed-forward network
over time spans. Figure 16 depicts the structure of an RNN and unrolled concept.

FIGURE 16: RNN UNROLLED- A TAKES AN INPUT XT AND OUTPUTS A VALUE HT [51]

But what if what if we need to “remember” information further back forming a longer dependency, see Figure
17. In theory, RNNs are capable of handling such “long-term dependencies” but in practice, practice they are
not capable of modeling such type of dependencies. The problem was explored in depth by Hockreiter [19] and
Bengio [4] and a solution was introduced by the former in 1997 that was able of overcoming this problem; the
long-short-term-memory (LSTM) network.

FIGURE 17: LONG DEPENDENCY PROBLEM [51]

LSTM uses the concept of gates for its units, each computing a value between 0 and 1 based on their input. In
addition to a feedback loop to store the information, each neuron in LSTM (also called a memory cell) has a
multiplicative forget gate, read gate, and write gate. These gates are introduced to control the access to memory
cells and to prevent them from perturbation by irrelevant inputs. When the forget gate is active, the neuron
writes its data into itself. When the forget gate is turned off by sending a 0, the neuron forgets its last content.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D4.2 SEMIoTICS Monitoring, prediction and diagnosis mechanisms (first draft)

Dissemination level: Public

45

When the write gate is set to 1, other connected neurons can write to that neuron. If the read gate is set to 1,
the connected neurons can read the content of the neuron. Figure 18 depicts this structure. An important
difference of LSTMs compared to RNNs is that LSTM units utilize forget gates to actively control the cell states
and ensure they do not degrade. The gates can use sigmoid or tanh as their activation function. In fact, these
activation functions cause the problem of vanishing gradient during backpropagation in the training phase of
other models using them. By learning what data to remember in LSTMs, stored computations in the memory
cells are not distorted over time. BPTT is a common method for training the network to minimize the error. The
architectural difference of RNN and LSTM can be depicted in Figure 18.

FIGURE 18: RNN VS LSTM [9]

The application of LSTM for intrusion detection is proposed by Ralf C. Staudemeyer [34], where they model
the KDD Cup 99 challenge dataset as time series data to train a LSTM network in a supervised manner;
outperforming all other algorithms [32] used in the challenge. They also found that because LSTM can look
back in time and correlate with past information they excel when training to identify high frequency attacks
(e.g., DoS attacks and network probes) as these traffics generate a high volume of successive connections.
Another study that supports and outperform the above is this of Jihyun Kim et al [20] that also trained upon the
KDD Cup 1999 dataset but improve its model performance by fine-tuning its hyperparameters (e.g., learning
rate, number of hidden layers etc.). A different application of the LSTM using the RMSprop optimizer trained
the model on the more modern CIDDS-001 dataset and achieved reasonable results performing better than
traditional support vector machine (SVM), multilayer perceptron (MLP), and Naïve Bayes techniques for a multi-
classification problem [2]. Finally, LSTM have also been proved to be highly effective when employed in an
unsupervised manner with the authors of this study [14] combining it with Support Vector Data Description
(SVDD) and One Class Support Vector Machines (OC-SVM) algorithms obtaining great results against
conventional methods over real and simulated datasets.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D4.2 SEMIoTICS Monitoring, prediction and diagnosis mechanisms (first draft)

Dissemination level: Public

46

Implementing the LSTM architecture for intrusion detection can utilizing Keras56 a high-level neural networks
API, written in Python and capable of running on top of Google’s TensorFlow57. Also, for expediting the training
process we could use a workstation running CUDA framework for GPU acceleration [7][35]. Finally, we should
use libraries that enable pre-processing, include evaluation metrics and provide visualization means, such as
Skikit-learn, Pandas, Numpy and matplotlib. In terms of the model’s configuration and inspired from the
aforementioned studies, we should consider training the model with various hyper parameter values (e.g.,
learning rates of 0.01,0.1, 0.5), using different optimizers (e.g., Adam [21], rmsporop, SGD [31]) and loss
functions depending on the task (i.e., binary cross entropy, categorical cross entropy [8]). Finally, considering
we are employing a supervised approach we need data to train such model, thus we should examine specific
datasets such as CIDDS-001 [40] and NSL-KDD [30].

To summarize, given the work already done in the field we believe that LSTM is a very promising approach for
intrusion detection in the scope of SEMIOTICS.

4.4. Anomaly detection based on Generative Adversarial Networks

Recently, diagnosis mechanisms (e.g. time-series anomaly detection [23], attack detection [43]) can be
performed using the concept of generative adversarial networks (GANs) [15]. GANs consist of two neural
networks, namely the generative and discriminative networks, which work together to produce synthetic and
high-quality data. The former network (dubbed as the generator) is in charge of generating new data after it
learns the data distribution from a training dataset. The latter network (termed as the discriminator) performs
discrimination between real data (coming from training data) and fake input data (coming from the generator).
The generative network is optimized to produce input data that is deceiving for the discriminator (i.e., data that
the discriminator cannot easily distinguish whether it is fake or real). In other words, the generative network is
competing with an adversary discriminative network. The objective function in GANs is based on minimax
games, such that one network tries to maximize the value function and the other network wants to minimize it.
In each step of this imaginary game, the generator, willing to fool the discriminator, plays by producing a sample
data from random noise. On the other hand, the discriminator receives several real data examples from the
training set along with the samples from the generator. Its task is then to discriminate real and fake data. The
discriminator is considered to perform satisfactorily if its classifications are correct. The generator also is
performing well if its examples have fooled the discriminator. Both discriminator and generator parameters then
are updated to be ready for the next round of the game. The discriminator’s output helps the generator to
optimize its generated data for the next round.

4.5. Visualization for the Diagnosis

This section describes how Graphical User Interface (GUI) will be used to give meaningful insights into the
platform. Visualization can be helpful when it comes to monitoring, as by giving insights, it can ease
development/debugging of infrastructure behavior, as well as positively affect end-user experience.

A lot of different kinds of widgets can be used for the diagnosis. Here are few of them:

• Graphs showing statistics of the processed events

• Monitors of SPDI patterns abuses

• Lists of alarms filtered by the priority levels of issues [warning/minor/major/critical]

• Lists of reconfiguration commands for the particular component / part of the framework

• Computing resources monitors

56 https://keras.io
57 https://www.tensorflow.org/

https://keras.io/
https://www.tensorflow.org/

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D4.2 SEMIoTICS Monitoring, prediction and diagnosis mechanisms (first draft)

Dissemination level: Public

47

The necessary monitoring graphs and meaningful dashboards will be created based on generic widgets which
are to be delivered. Assuming that the components will give the API to the last portion of events, the layer of
presentation can be based on these data. That means the additional storage of historical data is required for
each of components.

There are some tools describe above that already give insights into to the cloud platform or to Kubernetes cluster
itself such us AWS Cloudwatch, Azure IoT Suite, MindSphere tools or Kubernetes Web UI Dashboard58. The set
of necessary widgets, and therefore set of suitable tools, is to be established based on:

• what information will be exposed by Monitoring Component

• what will be generally visualized within the framework

• what are use case specific requirements.

After gaining all requirements, at least one of the following approaches is to be selected:

• GUI that communicates through the API with an external application

• GUI that loads the view itself from the external application

• GUI dedicated to a given backend application.

More information about GUI approach is to be found in D4.6. deliverable.

58 https://kubernetes.io/docs/tasks/access-application-cluster/web-ui-dashboard/

https://kubernetes.io/docs/tasks/access-application-cluster/web-ui-dashboard/

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D4.2 SEMIoTICS Monitoring, prediction and diagnosis mechanisms (first draft)

Dissemination level: Public

48

5. VALIDATION

This chapter summarizes the validation features of SEMIoTICS that are related with the semantic interoperability
and the various topics that are covered in this deliverable.

5.1. Related Project Objectives and Key Performance Indicators (KPIs)

The objectives of the related T4.2 (as per DoA) and their mapping to D4.2 content is summarized in the following
table.

T4.2 Objectives D4.2 Chapter

A monitor management layer, able to connect with different IoT platform and cloud monitors
and smart object event captors.

2.1

The monitoring management layer will support adaptation based on matching of
dynamically evolving monitoring requirements with dynamically evolving available monitoring
capabilities.

2.1.1

Generic predictive and diagnostic mechanisms, utilising the information obtained from the
monitoring mechanisms. 3,

4

Adaptation of existing methods for causal modelling, causal discovery, and causal inference
in IoT large-scale applications for predictive modelling, anomaly detection, and diagnosis

3.3

The overall deliverable constitutes the initial contribution towards fulfilling the project’s requirements regarding
SEMIOTIC’s objective 3 (Development of dynamically and self-adaptable monitoring mechanisms supporting
integrated and predictive monitoring of smart objects of all layers of the IoT implementation stack in a scalable
manner.) and the relevant KPI 3.1 (Delivery of a monitoring management layer for: (a) generating monitoring
strategies for different checks and configurations of monitors available in the 3 targeted IoT platform, (b) fusing
results of these 3 IoT platform monitors, and (c) performing predictive monitoring with an aimed accuracy of
80% on average) and KPI 3.2 (Delivery of a generic monitoring language capable of defining platform agnostic
monitoring conditions (as part of SPDI patterns), correlations of different IoT platform events that are necessary
for this, and predictive monitoring checks.).

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D4.2 SEMIoTICS Monitoring, prediction and diagnosis mechanisms (first draft)

Dissemination level: Public

49

6. CONCLUSIONS

One of the specific objectives of the SEMIoTICS project is the development of dynamically and self-adaptable
monitoring mechanisms supporting integrated and predictive monitoring of smart objects of all layers of the IoT
implementation stack in a scalable manner.

This deliverable presented the initial design of the SEMIoTICS Monitoring Component (MC) along with
algorithmic and technological options suitable for the implementation of its key functionalities.

The concrete conditions monitored by the SEMIoTICS Monitoring Component (MC) are derived by the Pattern
Orchestrator component starting from the recipes received by the Recipe Cooker.

The software architecture of the Monitoring Component includes a Controller sub-component for (i) checking
the monitorability of such conditions across different IoT platforms and creating optimal monitoring strategies
for this purpose, (ii) configuring automatically the monitors of IoT enabling platforms as required for different
monitoring strategies.

Moreover, the software architecture of the Monitoring Component includes specific components (Event
Signalers) having the role to translate the events generated by the different IoT/IIoT platforms (e.g. AWS,
MindSphere) and software layers (e.g. network, filed) into a common event format enabling the integration of
monitoring results generated by the various IIoT platforms and layers of the IoT implementation stack. The IoT
platforms considered in this deliverable are: Amazon Web Services, Microsoft Azure, Siemens MindSphere,
FIWARE.

OpenStack Nova and BEATS tools can be used for the monitoring respectively of OpenStack instances and
the Linux kernel. The common event format will be based on the CloudEvents format.

Apache Flink and FIWARE Proton are the two options that will be experimented for the implementation of the
Complex Event Processor responsible for the integration of events represented in the CloudEvents format.

Continuous uninterrupted monitoring requires that the Monitoring component has self-adapting capabilities.
These capabilities require that the Monitoring component is able to predict future states of the monitoring
configurations and to identify (diagnose) the root causes of those state changes that inhibits the monitoring.

This deliverable identify Causal Networks as an approach for reasoning about the discrete events accounting
for the state changes of the monitoring infrastructure.

For what the continuous domain is concerned the Deep Neural Networks are identified as a suitable approach
for reasoning at the cloud level. At the Field layer an approach based on regression techniques is indicated as
more appropriate.

The deliverable also presents approaches to identify specific anomalies and attacks. Abuses of computational
resources can be dealt by observing CPU, memory consumption and system calls. Anomalies can be detected
using Long-Short-Term-Memory networks and Generative Adversarial Networks as well.

6.1. Open design questions

This deliverable, along with the overall design of the Monitoring Component, has presented a number of
enabling technologies and approaches suitable for its implementation. At month 17 of the project (date of
release of this deliverable) the following design questions are open:

• Which is the most suitable CEP technology to be integrated into the SEMIoTICS Monitoring Component?

• Is CloudEvents format rich enough to carry the information needed by the SEMIoTICS Monitoring
Component?

• Is the monitoring language presented in this deliverable rich enough to fulfill the monitoring requirement of
the Pattern Orchestrator?

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D4.2 SEMIoTICS Monitoring, prediction and diagnosis mechanisms (first draft)

Dissemination level: Public

50

• Which are the signalers, among those described in section, more valuable for the SEMIoTICS platform and
use cases that need to be delivered with the final version of the monitoring component?

The design questions listed above will be answered through the development of prototypes. The answers to
the open design questions for the monitoring component will be reported in deliverable D4.9.

6.2. Implementation status and future work

The design, technologies and algorithmic approaches presented by this document represent the basis for the
development of the first version of the Monitoring Component. The experience gained with the development
and utilization of the first version of the Monitoring Component will inform the final design of the SEMIoTICS
Monitoring, prediction and diagnosis mechanisms. This final design will be presented in the deliverable D4.9.

The development process of Monitoring Component has the following milestones:

• M7: start of design activity and technology scouting.

• M12: start of development (coding) of the monitoring framework and components described in section 2.1

• M24: release of the first version of the API, integration with one CEP, adapters for FIWARE platform and
WOT devices.

• M28: release of the second version including, in addition to the bug fixing and optimization of the
functionalities of the previous version, the prediction and diagnosis mechanisms based on Causal Networks
and the other approaches presented in chapters 3 and 4.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D4.2 SEMIoTICS Monitoring, prediction and diagnosis mechanisms (first draft)

Dissemination level: Public

51

7. REFERENCES

[1] Acharya, Saurav, "Causal modeling and prediction over event streams”, Graduate College Dissertations
and Theses, Paper 286, 2014.

[2] Althubiti, S. A., Jones, E. M., & Roy, K. (2019). LSTM for Anomaly-Based Network IntrusionDetection. 2018
28th International Telecommunication Networks and Applications Conference, ITNAC 2018, 1–3.
https://doi.org/10.1109/ATNAC.2018.8615300

[3] D. Basak, S. Pal, and D. C. Patranabis, “Support vector regression,” Neural Information Processing-Letters
and Reviews, vol. 11, no. 10, pp.203–224, 2007.

[4] Bengio (1994) 1994 Learning long-term dependencies with gradient descent is difficult. (n.d.).
https://doi.org/10.1109/72.279181

[5] Borchani, H., Chaouachi, M., and Ben Amor, N. (2007). Learning causal bayesian net- works from
incomplete observational data and interventions. In Proceedings of the 9th European Conference on
Symbolic and Quantitative Approaches to Reasoning with Uncertainty, ECSQARU ’07, pages 17–29,
Berlin, Heidelberg. Springer-Verlag

[6] L. Breiman, “Random forests,” in Machine Learning, vol.45, no.1, pp.5—32, 2001.

[7] Buck, I., Foley, T., Horn, D., Sugerman, J., Fatahalian, K., Houston, M., & Hanrahan, P. (2004). Brook for
GPUs. ACM SIGGRAPH 2004 Papers on - SIGGRAPH ’04, 777. https://doi.org/10.1145/1186562.1015800

[8] Loss Functions in Artificial Neural Networks | Isaac Changhau.” [Online]. Available:
https://isaacchanghau.github.io/2017/06/07/Loss-Functions-in-Artificial-Neural-Networks/

[9] Understanding LSTM Networks -- colah’s blog.” [Online]. Available: https://colah.github.io/posts/2015-08-
Understanding-LSTMs/.

[10] G. Cooper, “Computational Complexity of probabilistic inference using Bayesian belief networks (research
note),” Mach. Learn., vol. 42, no. 2–3,

[11] SEMIoTICS Project, “Software defined programmability for IoT devices (first draft)”, Deliverable D3.1, 2018

[12] SEMIoTICS Project, “Network Functions Virtualization for IoT (first draft)”, Deliverable D3.2, 2018

[13] Ellis, B. and Wong, W. H. (2008). Learning causal Bayesian network structures from experimental data.
Journal of the American Statistical Association, 103(482):778–789.

[14] Ergen, T., Mirza, A. H., & Kozat, S. S. (2017). Unsupervised and Semi-supervised Anomaly Detection with
LSTM Neural Networks. 1–12. Retrieved from http://arxiv.org/abs/1710.09207

[15] I. Goodfellow et al., “Generative adversarial nets,” in Proc. Adv. Neural Inf. Process. Syst., 2014, pp. 2672–
2680.

[16] I. Goodfellow, Y. Bengio, and A. Courville, “Deep Learning,” MIT Press, 2016,
http://www.deeplearningbook.org.

[17] O. Goudet, D. Kalainathan, P. Caillou, I. Guyon, D. Lopez-Paz, and M. Sebag, “Causal Generative Neural
Networks,” 2017.

[18] Heckerman, D. (1995). A Bayesian approach to learning causal networks. In Proceedings of the Eleventh
conference on Uncertainty in artificial intelligence, UAI’95, pages 285–295, San Francisco, CA, USA.
Morgan Kaufmann Publishers Inc.

[19] Hockreiter (1991) Sepp Hochreiter. Untersuchungen zu dynamischen neuronalen Netzen. Diploma thesis,
TU Munich, 1991.

[20] Kim, J. (n.d.). 1994 Learning long-term dependencies with gradient descent is difficult.
https://doi.org/10.1109/72.279181

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D4.2 SEMIoTICS Monitoring, prediction and diagnosis mechanisms (first draft)

Dissemination level: Public

52

[21] D. P. Kingma and J. L. Ba, “ADAM: A METHOD FOR STOCHASTIC OPTIMIZATION.”

[22] Li, G. and Leong, T.-Y. (2009). Active learning for causal bayesian network structure with non-symmetrical
entropy. In Proceedings of the 13th Pacific-Asia Conference on Advances in Knowledge Discovery and
Data Mining, PAKDD ’09, pages 290–301, Berlin, Heidelberg. Springer-Verlag.

[23] D. Li, D. Chen, L. Shi, B. Jin, J. Goh, and S.-K. Ng, “MAD-GAN: Multivariate Anomaly Detection for Time
Series Data with Generative Adversarial Networks,” in arXiv:1901.04997, 2019.

[24] Meganck, S., Leray, P., and Manderick, B. (2006). Learning causal bayesian networks from observations
and experiments: a decision theoretic approach. In Proceedings of the Third international conference on
Modeling Decisions for Artificial Intelligence, MDAI’06, pages 58–69, Berlin, Heidelberg. Springer-Verlag.

[25] Y. Meidan, M. Bohadana, Y. Mathov, Y. Mirsky, D. Breitenbacher, A. Shabtai, and Y. Elovici, “N-BaIoT:
Network-based detection of IoT botnet attacks using deep autoencoders,” in IEEE Pervasive Computing,
vol. 17, no. 3, pp. 12–22, Jul-Sep 2018

[26] R. Pascanu, C. Gulcehre, K. Cho, and Y. Bengio, “How to Construct Deep Recurrent Neural Networks,” in
International Conference on Learning Representations, April 2014.

[27] J. D. Ramsey and D. Malinsky, “Comparing the Performance of Graphical Structure Learning Algorithms
with TETRAD,” 2016.

[28] C. E. Rasmussen and C. K. Williams, “Gaussian processes for machine learning,” MIT press Cambridge,
vol. 1., 2006.

[29] Rebane G, Pearl J, ""The Recovery of Causal Poly-trees from Statistical Data"". Proceedings, 3rd
Workshop on Uncertainty in AI. Seattle, WA. pp. 222–228, 1987"

[30] D. a. M. S. Revathi, “A Detailed Analysis on NSL-KDD Dataset Using Various Machine Learning
Techniques for Intrusion Detection,” Int. J. Eng. Res. Technol., vol. 2, no. 12, pp. 1848–1853, 2013

[31] S. Ruder, “An overview of gradient descent optimization algorithms *.”

[32] M. Sabhnani and G. Serpen. “Application of machine learning algorithms to KDD intrusion detection dataset
within misuse detection context". InInternational conference on machine learning, models, technologies
and applications (MLMTA), pp. 209{215.CSREA Press, 2003.

[33] P. Spirtes, C. Glymour, and R. Scheines, Causation, Prediction, and Search. 2001. 2nd Edition.

[34] R. C. Staudemeyer, “Applying long short-term memory recurrent neural networks to intrusion detection,”
2015.

[35] J. E. Stone, J. C. Phillips, P. L. Freddolino, D. J. Hardy, L. G. Trabuco, and K. Schulten, “Accelerating
molecular modeling applications with graphics processors,” J. Comput. Chem., vol. 28, no. 16, pp. 2618–
2640, Dec. 2007.

[36] S. Triantafillou and I. Tsamardinos, Constraint-based Causal Discovery from Multiple Interventions over
Overlapping Variable Sets, 2015, v16

[37] J. A. Tropp and A. C. Gilbert, “Signal recovery from random measurements via orthogonal matching
pursuit,” IEEE Trans. on Information Theory, vol. 53(12), pp. 4655–4666, December 2007

[38] B. D. Tyler, “Event-Triggered Causality: A Causality Detection Tool for Big Data,” 2018.

[39] C. Tzagkarakis, N. Petroulakis, and S. Ioannidis, “Botnet Attack Detection at the IoT Edge Based on Sparse
Representation,” 2019 Global Internet of Things Summit (GIoTS), Aarhus, Denmark, 2019

[40] Verma, Abhishek, and Virender Ranga. "Statistical analysis of CIDDS-001 dataset for Network Intrusion
Detection Systems using Distance-based Machine Learning." Procedia Computer Science 125 (2018): 709-
716."

[41] V. Vovk, “Kernel ridge regression,” in Empirical Inference, Springer, pp. 105--116, 2013.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D4.2 SEMIoTICS Monitoring, prediction and diagnosis mechanisms (first draft)

Dissemination level: Public

53

[42] P. J. Werbos, “Backpropagation through time: what it does and how to do it,” Proc. IEEE, vol. 78, no. 10,
pp. 1550–1560, 1990.

[43] C. Yin, Y. Zhu, S. Liu, J. Fei and H. Zhang, "An enhancing framework for botnet detection using generative
adversarial networks," 2018 International Conference on Artificial Intelligence and Big Data (ICAIBD),
Chengdu, 2018, pp. 228-234.

