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1. INTRODUCTION 

This deliverable presents the initial design of the SEMIoTICS Monitoring Component (MC) along with 
algorithmic and technological options suitable for the implementation of its key functionalities. 

The main objective of the MC is the fusion of intra- and cross-layer monitoring results generated by monitors 
that may exist on the platforms of different smart objects and components of IoT applications in order to detect 
violations of SPDI patterns and other conditions. Fusion of cross-layer monitoring data is necessary for 
detecting specific types of attacks. In such cases, multi-sensor cross-layer data need to be fused in specific 
ways to detect the attack. 

To achieve the intra-layer and cross-layer monitoring objective, the design of the MC includes mechanisms to 
connect the MC with different IoT platform and cloud monitors and smart object event captors. 

Monitoring of SPDI patterns must be continuous in spite of the dynamicity of IoT applications (e.g. binding of 
new smart objects and components). Therefore the design of the MC includes also mechanisms to dynamically 
adapt the monitoring configuration (e.g. select an alternative event captor whenever one in use is no longer 
available). 

The MC offers also predictive and diagnostic mechanisms. The predictive mechanisms are needed to ensure 
that the business applications or other components of the SEMIoTICS architecture can set up countermeasures 
before the SPDI patterns are violated. The diagnostic mechanisms are needed to ensure the effectiveness of 
the countermeasures by managing to correctly identify and resolve the sources of actual/potential SPDI 
property violations. Both mechanisms rely on models generated using the information obtained from the 
monitoring mechanism.  

There is a mutual dependency between the monitoring mechanisms and the predictive/diagnostic mechanisms. 
On one side the monitoring mechanisms provide the information (i.e. observations) enabling the production of 
diagnosis and predictions. On the other side the predictive and diagnostic mechanisms provide the monitoring 
mechanisms with those prediction and diagnosis capabilities enabling the proper adaptation of the monitoring 
configurations and, hence, the continuous production of monitoring information. 

1.1. Addressed SEMIoTICS Requirements 
 

The following table shows which are the SEMIoTICS Requirements addressed by the Monitoring component 
described in the present deliverable: 

Req. ID Requirement Description How it is addressed by MC Section 

R.GP.4 Detection of events requiring a QoS change 
and triggering network reconfiguration need 
by SPDI pattern 

The MC allows detecting Network level 
events thanks to the availability of 
adapters able to capture the events 
generated by the SDN Controller and 
Virtual Infrastructure Manager (VIM). 

2.2.7 

R.P.4 A short data retention period MUST be 
enforced and maintaining data for longer 
than necessary avoided. 

The MC uses Complex Event Processing 
technology to aggregate data.  In fact, 
CEP technology allows detecting events 
patterns directly in the stream of events 
without the need to store the events in a 
database for subsequent processing. 

2.3 

R9.4 The cloud platform SHALL to be able to 
monitor the execution of an app, in particular 
its interactions with other apps, the network 
interface, and APIs. 

The MC provides adapters that enable to 
monitor the execution of apps by means of 
the native monitoring capabilities of Cloud 
and IoT platforms. 

2.2 
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Req. ID Requirement Description How it is addressed by MC Section 

R.BC.20 The backend layer must aggregate intra-
layer as well as inter-layer SPDI status 
information to enable local and global 
intelligence reasoning and adaptation. 

The MC provides adapters to capture 
events generated by the backend layer. 
The MC aggregates events using CEP 
technology. MC defines strategies to 
translate SPDI pattern into monitoring 
policies. 

1.2 
2.5 
2.6 

R.NL.13 The network layer must aggregate intra-
layer monitored information to enable local 
intelligence reasoning and adaptation. 

The MC provides adapters to capture 
events generated by network layer. The 
MC aggregates events using CEP 
technology. MC defines strategies to 
translate SPDI patterns into monitoring 
policies. 

1.2 
2.5 
2.6 

R.FD.15 The field layer must aggregate intra-layer 
monitored information to enable local 
intelligence reasoning and adaptation. 

The MC provides adapters to capture 
events generated by field devices. The MC 
aggregates events using CEP technology. 
MC defines strategies to translate SPDI 
pattern into monitoring policies. 

1.2 
2.5 
2.6 

R.UC2.10 The SEMIoTICS platform SHOULD allow 
the SARA components (e.g. SARA Hubs) to 
query and aggregate (e.g. to average) the 
values of a resource (e.g. current measured 
temperature) hosted by a group of field 
devices. The SARA solution defines a group 
of devices by specifying filtering criteria over 
the set of registered devices. 

The MC provides adapters to capture 
events generated by field devices. The 
Query language of the MC provides means 
to express filtering conditions over the 
sources of events. 

2.2.8, 
2.5 

R.UC2.12 The SEMIoTICS platform SHOULD allow 
SARA components to delegate to the 
platform the computation of complex 
functions over the data received by field 
devices. These computations may result 
either in the generation of higher-level 
observation events (e.g. significant Patient 
events abstracted form sensor data) 
towards the ACS or in sensors configuration 
parameters (including actuators command). 

The MC provides adapters to capture 
events generated by field devices. 
Moreover, The Query language of the MC 
provide business IoT applications (e.g. 
SARA) with means to specify a high-level 
observation event as the occurrence of a 
specific pattern of events within the stream 
of events generated by field devices. 

2.2.8, 
2.5 

 

1.2. Relations with other SEMIoTICS components 
 

The following UML component diagram shows the relations between the Monitoring Component and the other 
components of the SEMIoTICS architecture. A complete description of the SEMIoTICS architecture and 
components can be found in deliverable D2.4 - “SEMIoTICS high level architecture (Cycle 1)”. 
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FIGURE 1: MONITORING COMPONENT IN SEMIOTICS 

More specifically the Monitoring Components interacts with: 

• Pattern Engine. Pattern Engine delegates monitoring tasks to the Monitoring Component by means of the 
Query interface. Monitoring Components notifies detected events by means of the Event Consumer interface. 
(see section 2.5) 

• GUI. The Graphical User Interface may submit monitoring tasks to the Monitoring Component by means of 
the Query interface. The GUI receives detected events by means of the Event Consumer interface. (section 
2.5) 

• Cloud Platforms (e.g. FIWARE Context Broker or MindSphere). The Monitoring Component is able to 
consume events generated by specific cloud platform thanks to the availability of platform specific adapters. 
(section 2.2) 

• SDN Controller. The Monitoring Controller consumes network level events generated by the SDN Controller 
and made available by the OpenDaylight (ODL) Cardinal plugin (or similar). (section 2.2.7) 

• VIM: The Monitoring Controller consumes network level events generated by the OpenStack (Virtual 
Infrastructure Manager) and made available via the Compute API. (section 2.2.5)  

• Filed Devices. Monitoring Component aggregates events generated by Field Devices and made available via 
the Web Of Things (WoT) interface. (section 2.2.8) 
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• Filed Monitoring Component (i.e. instances of the Monitoring Component deployed in the field (e.g. within 
gateways). Monitoring Component consumes also events generated by Field Monitoring Components using 
the Query interface (section 2.5). 

1.3. Methodology and document structure 

This deliverable D4.2 is the result of the joint effort by all contributing partners during the first part of the project. 

The work proceeded along three directions: 

• The design of the architecture of the SEMIoTICS Monitoring Component. The result of this thread is 
presented in the section 2 - “Monitoring Management” 

• The investigation and selection of the suitable approaches for prediction and diagnosis. The resulting 
selection is presented in section 3 - “Predictive Mechanisms” and 4 - “Diagnosis Mechanisms”. 

• The scouting and experimentation of the technologies (e.g. software libraries, services, datasets) enabling 
the implementation of the SEMIoTICS Monitoring Component. The results of this thread of work informed the 
architecture presented in section 2. 

Bi-weekly meetings were run to keep aligned each partner about the work of the others, share results of 
experimentations and take design decisions. 

These meetings were devoted to discuss not only the design issues concerning Task 4.2 but also those faced 
by Task 4.3. This because, as already anticipated in the DoA of the project and further explained in this 
document, there is a dependency between the Monitoring Component developed in Task 4.2 and the 
Embedded Intelligence and local Analytics mechanisms provided by Task 4.3 and described in deliverable 
D4.3. 
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1.4. PERT chart of SEMIoTICS 

36 months Leader: SAG

31.12.202001.01.2018

WP1: Project Management

23 months Leader: ST-I

30.11.201901.01.2018

WP2: Requirements and Architecture for 
Smart Sensing and Smart Actuation

24 months Leader: SAG

30.04.202001.05.2018

WP3: Smart objects and networks

25 months Leader: FORTH

30.06.202001.06.2018

WP4: Pattern-driven smart behavior of 
IIoT with End-to-End Security and Privacy

24 months Leader: ENG

31.12.202001.01.2019

WP5: System Integration and Evaluation

36 months Leader: SAG

31.12.202001.01.2018

T1.1: Project coordination 36 months Leader: FORTH

31.12.202001.01.2018

T1.2: Project technical and innovation 
management

36 months Leader: SAG

31.12.202001.01.2018

T1.3: Coordination with EU programme 
level activities

3 months Leader: STS

31.03.201801.01.2018

T2.1: Analysis of emerging business and 
technical IoT value drivers

4 months Leader: SAG

30.04.201801.01.2018

T2.2: Specification of use case scenarios 
& applications and their requirements

4 months Leader: ST-I

30.06.201801.03.2018

T2.3: Specification of infrastructure 
requirements

18 months Leader: BS

31.12.201901.07.2018

T2.4: SEMIoTICS architecture design

22 months Leader: SAG

29.02.202001.05.2018

T3.1: Software defined Aggregation, 
Orchestration and cloud networks

22 months Leader: CTTC

29.02.202001.05.2018

T3.2: IIoT Network Function Virtualization

22 months Leader: SAG

29.02.202001.05.2018

T3.3: Semantics-based bootstrapping & 
interfacing

22 months Leader: STS

29.02.202001.05.2018

T3.4: Network-level semantic 
Interoperability

22 months Leader: IQU

30.04.202001.07.2018

T3.5: Implementation of Field-level 
middleware & networking toolbox

23 months Leader: STS

30.04.202001.06.2018

T4.1:Architectural SPDI patterns

22 months Leader: ENG

30.04.202001.07.2018

T4.2: Monitoring, prediction and 
diagnosis

22 months Leader: ST-I

30.04.202001.07.2018

T4.3: Embedded Intelligence and local 
analytics

22 months Leader: FORTH

30.04.202001.07.2018

T4.4: End-to-End Semantic 
Interoperability

22 months Leader: BS

30.06.202001.09.2018

T4.6: Implementation of SEMIoTICS 
backend API

22 months Leader: UP

30.04.202001.07.2018

T4.5: End-to-End Security and Privacy

5 months Leader: UP

31.10.201901.06.2019

T5.1: KPIs and Evaluation Methodology

15 months Leader: BS

31.08.202001.06.2019

T5.2: Software system integration

20 months Leader: IQU

31.08.202001.01.2019

T5.3: IIoT Infrastructure set-up and 
testing

13 months Leader: SAG

31.12.202001.12.2019

T5.4: Demonstration and validation of 
IWPC- Energy scenario

13 months Leader: ENG

31.12.202001.12.2019

T5.5: Demonstration and validation of 
SARA-Health scenario

13 months Leader: ST-I

31.12.202001.12.2019

T5.6: Demonstration and validation of 
IHES-Generic IoT scenario

36 months Leader: CTTC

31.12.202001.01.2018

T6.1: Impact Creation and Dissemination 31 months Leader: ENG

31.12.202001.06.2018

T6.2: Exploitation of results

24 months Leader: SAG

31.12.202001.01.2019

T6.3: Standardization
36 months Leader: CTTC

31.12.202001.01.2018

WP6: Impact, Dissemination and 
Standardization

 
Please note that the PERT chart is kept on task level for better readability.  
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2. MONITORING MANAGEMENT 

2.1. Monitoring Management layer architecture 

This section presents the overall architecture of the monitoring management layer. The SEMIoTICS monitoring 
component has two key functional requirements: 

• To generate specific messages in response to the reception of a set of messages generated by the 
components of an IoT application and matching some condition specified in the monitoring component by 
a client application (Monitoring requirement). 

• To guarantee that the messages needed to decide whether to generate a message can be produced by 
an IoT application and received by the monitoring component (Observability property). 
 

The first of the two technical requirements listed above directly stems from the general SEMIoTICS platform 
requirement R.GP.4 “Detection of events requiring a QoS change and triggering network reconfiguration need 
by SPDI pattern” (see deliverable D2.3 - “Requirements specification of SEMIoTICS framework”). In fact, the 
capacity of the monitoring component to detect and signal the occurrence of specific patterns of events allows 
the components responsible for the enforcement of SPDI patterns (i.e. Pattern Engine) to delegate to the 
monitoring component the monitoring task whilst retaining for itself the QoS change and reconfiguration. 
Moreover, it also address the requirement R.UC2.10 - “The SEMIoTICS platform SHOULD allow the SARA 
components (e.g. SARA Hubs) to query and aggregate (e.g. to average) the values of a resource (e.g. current 
measured temperature) hosted by a group of field devices” and R.UC2.12 - “The SEMIoTICS platform SHOULD 
allow SARA components to delegate to the platform the computation of complex functions over the data 
received by field devices. These computations may result either in the generation of higher-level observation 
events (e.g. significant Patient events abstracted form sensor data) towards the ACS or in sensors 
configuration parameters (including actuators command).” 

The second requirement, i.e. the ability to guarantee the generation of the monitoring events needed to serve 
the monitoring tasks submitted by client applications, requires that the monitoring component is able to adapt 
to the changing conditions that may occur in all layers (field/network/backend) of the monitored infrastructure. 
To achieve this objective the monitoring component needs prediction and diagnosis capabilities. The 
Monitoring component uses causal inference to make predictions and diagnosis. These inference capabilities 
are enabled by the availability of a causal model learned from the observation of monitoring events generated 
either by the queries submitted client application or by queries generated by the monitoring component itself 
(self-monitoring queries). 

 
 

The following picture presents the main required inputs and outputs of the SEMIoTICS monitoring component. 
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FIGURE 2: MAIN INPUT AND OUTPUT OF THE MONITORING COMPONENT 

In particular the Monitoring component receives as input: 

• Low-level events: the messages generated by the computational nodes belonging to the three layers 
identified by the SEMIoTICS architecture: field (e.g. sensors, gateways), network (e.g. routers) and cloud 
(e.g. FIWARE cloud services, MindSphere services). These low-level events are generated by the 
computational nodes by means of signaling mechanisms specific to the technology used to implement 
a computational node. The possibility of the monitoring component to process events from the cloud, network 
and field level directly address the requirement R9.4 - “The SEMIoTICS platform SHOULD allow SARA 
components to delegate to the platform the computation of complex functions over the data received by field 
devices. These computations may result either in the generation of higher-level observation events (e.g. 
significant Patient events abstracted form sensor data) towards the ACS or in sensors configuration 
parameters (including actuators command” 

• High-level events definitions: the conditions stating whether a new event should be generated in response 
of the reception of a set of low-level event. 

The monitoring component emits as outputs: 

• High-level events: the messages generated by the monitoring component itself in response to the reception 
of a set of low-level events matching one of the events definitions. 

• Configuration commands: messages requesting a specific configuration of the mechanisms used by the 
computational nodes to generate the low-level events. The ability to issue these commands allows the 
monitoring component to properly select and configure the signaling mechanisms needed for the monitoring 
purpose. 

Given the above schema it is worth to noting that low-level events serve two purposes: 

• to decide whether to emit a high-level event 
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• to decide whether to request a reconfiguration of the signaling mechanisms used at the different levels (Field, 
Network, Cloud) 

Hence the Monitoring component can be decomposed in three main sub-components (Figure 3): 

• Business Events Monitor responsible for matching low-level events against the conditions specified by the 
High-level events definitions. We term Business Events the high-level events generated by the Business 
Events Monitor and directed to a client application of the Monitoring component whilst we term Control Events 
refer to those high-level events directed to the other components within the Monitoring component. 

• Monitoring Controller responsible for configuring, observing and, if needed, reconfiguring both the signaling 
mechanisms serving the Business Events Monitor and the Causal Model Identifier. The Monitor Controller 
bases its decisions about configurations and observations on the (causal) model made available by the 
Causal Model Identifier component (described below). Whenever needed the Monitoring Controller can adapt 
the observation and, hence, fulfill the observability requirement thanks to the availability of this causal model. 
As an example, based on the Causal Model the Monitoring Controller might decide that, in order to guarantee 
that a type of high-level event is produced as requested by a client application, there is also the need to 
monitor additional type of events. This decision will result in the submission of extra monitoring tasks to the 
Business Events Monitor. 

• Causal Model Identifier having the role to build the causal models. These models are created using as input 
both the (Re)configuration commands emitted by the Monitoring Controller and the events generated by the 
Business Event Monitor. The Causal models identified by this component are consumed by (i) the Monitoring 
Controller to configure observations (see above) and (ii) the Business Event Monitor to infer events not 
directly observable. 

 
FIGURE 3: MAIN COMPONENTS AND DATA FLOW OF MONITORING 

Given the context and aims described so far the design of the SEMIoTICS MC requires to fix: 

• The technologies and languages made available by the different IoT platform to observe and control the IoT 
applications at the Cloud/Network/Field level. These options are presented in section 2.2. 
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• The technology for the processing of the low-level events once they are represented in a common format. 
The most promising options are presented in section 2.3. 

• The language used to define the high-level events in terms of the low-level events (i.e. the language to 
express in a machine readable format rules like “the occurrence of three consecutive ‘failed login’ events 
should produce the rise of an ‘account violation attempt' event). This language is presented in section 2.4. 

• The content of the messages representing the high-level events generated by the Business Event Processor 
and received by the client applications of the Monitoring component. This is presented in section 2.5 

• The algorithms implemented by the Causal Model Identifier to identify the model needed by the Monitoring 
Controller. The options are discussed in section 3.3. 

• The prediction and diagnosis algorithms enabling the Monitor Controller to decide how to configure (or 
reconfigure) the Business Event Monitor in order to comply with the requests received from its client 
applications. Possible approaches are presented in section 3.2 and section 3.3. 

2.1.1. BUSINESS EVENT MONITOR ARCHITECTURE 

The central components of the Business Event Monitor (Fig.3) are a Complex Event Processor (section 2.3 
explores candidate technologies available for the implementation of this component) and a collection of 
Anomaly Detectors. 

Anomaly Detectors are a collection of components specialized to detect anomalies in the flow of events 
generated by Cloud/Network/Field nodes (Chapter 4 presents a set of algorithms suitable for this purpose). 

Driven by the configurations and queries received from client components (e.g. Monitoring Controller) the 
Complex Event Processor (CEP) processes the events received from the monitored nodes and produce the 
high-level events defined by the client applications of the SEMIoTICS Monitoring Component. 
 

The design choice to use CEP technology to process the events received from the monitored nodes is rooted 
in the requirement R.P.4 - “A short data retention period MUST be enforced and maintaining data for longer 
than necessary avoided”. In fact, CEP technology allows detecting events patterns directly in the stream of 
events without the need to store the events in a database for subsequent processing. 
 

It is worth mentioning here that the high-level events produced by the CEP can be divided in two broad 
categories: 

• Business events: generated in response to requests coming from clients of the Monitoring Component 

• Management events: generated in response to requests coming from other components belonging to the 
Monitoring component (e.g. the Monitoring Controller). These management events are needed to support the 
adaption of the Monitoring Component. Management events may concern both changes of state of the 
monitored nodes and measures of the performance of the Complex Event Processor. 

Within the Business Event Monitor (Fig.3) an Event Signaler component is responsible: 

• For translating the configuration commands received by the Event Monitor into the command messages 
actually accepted by the nodes belonging to the monitored infrastructures. 

• For translating the platform specific events generated by each node of the monitored infrastructure into the 
format accepted by the Complex Events Processor. 

Altogether the collection of event signalers within the Event Monitor acts as a communication bus between the 
Event Monitor and the different platforms of IoT applications. An Event Signaler can reside either in the cloud 
layer (e.g. within the same VM where the other components of the Monitoring Component reside) or in the filed 
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layer (e.g. within a SEMIoTICS gateway). In latter case, the events generated by Events Signalers can also 
result from the aggregation of low-level events by means of algorithms executed locally within the field device. 
The deliverable D4.3 - “Embedded Intelligence and local Analytics” of the SEMIoTICS project presents possible 
events aggregation algorithms suitable to be executed in a constrained resources field device.  

The Event Predictor component has the role to infer both future events and events not directly observable 
from the cloud/net/field nodes (e.g. because of the lack of a suitable sensor). Section 3 (prediction 
mechanisms) presents possible approaches for events prediction suitable to be implemented by the Event 
Inference Engine. 

The Event Predictor uses to Causal Model learned by the Causal Model Identifier to infer events not directly 
observable through the Events Signalers. As an example, if causal model states that there is a causal 
dependency between a light being turned on and someone entering a room the reasoner could infer the event 
“someone entered room A12” upon the observation of the event “light switched on in room A12”. The Event 
Predictor computes a likelihood for the inferred events. The likelihood value is conveyed to the Event 
Consumers by means of the likelihood attribute of an event object type (see section 2.4). Inferred events can 
be consumed either by external Events Consumers or by the Complex Event processor.  

 
FIGURE 4: EVENTS MONITOR DATA FLOW 

2.2. Cloud and IoT Platforms Monitoring Capabilities 

This section describes the monitoring capabilities made available by third party Cloud and IoT platforms (e.g. 
AWS, MindSphere). 

Each subsection presents capabilities for both the observing and controlling made available through APIs by 
a platform. 
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The repertoire of platforms considered in this section is informed by result presented by deliverable D2.1 - 
“Analysis of IoT Value Drivers” and by the technological choices envisaged by the main three use cases. 

 
FIGURE 5: IOT PLATFORMS AND SEMIOTICS COMPONENTS 

2.2.1. AWS IOT CORE 

AWS IoT 1 is a collection of web-services offered by Amazon for managing bi-directional (secure) 
communications between internet connected devices (sensors, actuators, embedded micro-controllers, smart 
appliances, etc.) and applications hosted on the AWS Cloud. Applications can collect telemetry for data from 
multiple devices, store and analyze this data, and provide users with remote control of the devices. More details 
of the AWS IoT services can be found in 3. 

AWS provides various tools, both automated and manual, for monitoring. The primary tool is Amazon ‘CloudWatch’ 
which “collects monitoring and operational data in the form of logs, metrics, and events, providing you with a unified 
view of AWS resources, applications and services that run on AWS”4. As indicated in the Figure 6, Amazon 
CloudWatch supports the collection of metrics & logs from AWS resources, dashboard and automated alert/alarm 
based monitoring, automated responses to alarms, and real-time analytics. 

                                                 
1 https://docs.aws.amazon.com/iot/latest/developerguide/what-is-aws-iot.html 

3 https://docs.aws.amazon.com/iot/latest/apireference/iot-api.pdf 

4  https://aws.amazon.com/cloudwatch/ 

https://docs.aws.amazon.com/iot/latest/developerguide/what-is-aws-iot.html
https://docs.aws.amazon.com/iot/latest/apireference/iot-api.pdf
https://aws.amazon.com/cloudwatch/
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FIGURE 6: AWS CLOUDWATCH5  

CloudWatch alarms can be defined to monitor specific metrics over a period of time and to perform one or more 
actions based on the value of the metric relative to a threshold. An ‘action’ is typically a notification sent to an 
Amazon Simple Notification Service7  (Amazon SNS) topic. CloudWatch services can be variously accessed 
through a dedicated console8, an AWS command line interface9, or using the CloudWatch APIs 10. 

The observable metrics for AWS IoT includes the following11: 

• Rule & rule action metrics - e.g. the number of messages published on a topic to which a rule is listening, 
and the success or failure of the actions triggered by the rule; 

• Message broker metrics - concerning the number and status of device & client connection requests, the 
messages published to different topics, and of subscriptions to these topics; 

• Device metrics - relating to device control messages (e.g. requests to modify a device’s state); 

• Device defender metrics - concerning the satisfaction or violation of security constraints. 

CloudWatch APIs can be accessed also using SDKs available for various programming languages12. 

2.2.2. AZURE IOT SUITE 

The Azure IoT suite is Microsoft’s evolving solution for cloud-based IoT management. The suite consists of a 
collection of services, including:  

• Azure IoT Hub13: the core services for managing bi-directional (secure) communications between IoT 
devices and cloud applications; 

• Azure IoT Edge14: allows for typically cloud-side (and often computationally intensive) processes to be 
deployed on edge devices - intended in particular for Azure’s ‘Machine Learning’ and ‘Cognitive’ services 
(below); 

• Azure Sphere: for secure communications with microcontroller (MCU) devices; 

                                                 
5 source: https://aws.amazon.com/it/cloudwatch/?nc2=type_a  
7 https://aws.amazon.com/sns/  
8 https://console.aws.amazon.com/cloudwatch/  
9 https://aws.amazon.com/cli/  
10 https://docs.aws.amazon.com/AmazonCloudWatch/latest/APIReference/Welcome.html   
11 https://docs.aws.amazon.com/iot/latest/developerguide/metrics_dimensions.html  
12 https://aws.amazon.com/tools/?nc1=h_ls  
13 https://azure.microsoft.com/en-us/services/iot-hub/  
14 https://azure.microsoft.com/en-us/services/iot-edge/ 

https://aws.amazon.com/it/cloudwatch/?nc2=type_a
https://aws.amazon.com/sns/
https://console.aws.amazon.com/cloudwatch/
https://aws.amazon.com/cli/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/APIReference/Welcome.html
https://docs.aws.amazon.com/iot/latest/developerguide/metrics_dimensions.html
https://aws.amazon.com/tools/?nc1=h_ls
https://azure.microsoft.com/en-us/services/iot-hub/
https://azure.microsoft.com/en-us/services/iot-edge/
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• Azure Maps: various geo-spatial information services (maps, traffic, routing, etc.); 

• Azure Time Series Insight: analytic functions for IoT time-series data; 

• Azure Machine Learning (ML) Service: for training and deploying ML processes; 

• Azure Cognitive Services: a range of services offering AI capabilities for knowledge, language, speech and 
vision processing and for searching the internet (see: https://azure.microsoft.com/en-us/services/cognitive-
services/ ); 

• Azure Digital Twins: for modelling and reasoning about the physical-spatial relationships between people, 
places and devices.   

For monitoring purposes, the Azure IoT suite includes REST-based APIs with capabilities similar to those 
described for Amazon Cloudwatch (above) - namely, for: 

• Observing device metrics (e.g. sensor values); 

• Controlling the routing of metric data and diagnostic logs; 

• searching events in device activity logs; 

• defining and managing rule-based alerts, and corresponding alert-triggered actions; 

Details of the monitoring APIs can be found at https://docs.microsoft.com/en-us/rest/api/monitor/, while more 
general information on the Azure IoT suite is available from https://azure.microsoft.com/en-us/overview/iot/ . 
SDKs are available for a variety of languages and platforms15. 

Events generated by Azure IoT Hub can be also consumed via Azure Event Grid. Azure Event Grid allows to 
build applications with event-based architectures. Using Azure Event Grid it is possible define filters to route 
specific events to different endpoints, multicast to multiple endpoints, and make sure that events are reliably 
delivered. Figure 6 shows some of the possible event sources and handlers for Azure Event Grid. WebHook 
can be used for handling events. The WebHook doesn't need to be hosted in Azure to handle events. Event 
Grid only supports HTTPS WebHook endpoints. Event Grid provides SDKs that enable to programmatically 
manage resources and post events16. 

                                                 
15 https://github.com/Azure/azure-iot-sdks  
16 https://docs.microsoft.com/en-us/azure/event-grid/sdk-overview  

https://azure.microsoft.com/en-us/services/cognitive-services/
https://azure.microsoft.com/en-us/services/cognitive-services/
https://docs.microsoft.com/en-us/rest/api/monitor/
https://azure.microsoft.com/en-us/overview/iot/
https://github.com/Azure/azure-iot-sdks
https://docs.microsoft.com/en-us/azure/event-grid/sdk-overview
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FIGURE 7: AZURE EVENT GRID SOURCES AND HANDLERS 

2.2.3. MINDSPHERE 

MindSphere17 is Siemens’ cloud-based, open IoT ‘operating system’ comprising (among other things) various 
device and enterprise system connectivity protocols and analytics tools in a dedicated development 
environment (built primarily over Siemens’ open Platform-as-a-Service (PaaS) capabilities, but also including 
access to Amazon’s AWS and Microsoft’s Azure cloud platforms - see above). The development environment 
is a browser-based graphical ‘work flow editor’ (see fig 7) called ‘Visual Flow Editor’, that allows users to 
manage the connections between IoT devices and cloud applications, to create rules and key performance 
indicators (KPIs), and to define actions (such as email notifications) in case of rule violations (i.e. exceeding 
KPI thresholds) 

                                                 
17  https://new.siemens.com/global/en/products/software/mindsphere.html 

https://new.siemens.com/global/en/products/software/mindsphere.html
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FIGURE 8: MINDSPHERE VISUAL FLOW EDITOR18 

The Visual Flow Editor is constructed over the MindSphere’s services20 which include APIs for connecting to 
IoT devices, monitoring events and sending notifications, and for building and executing dataflow21.  

A more limited client-side Java SDK22 is also offered, which includes IoT device and event management and 
analytics, but without the dataflow capabilities. The events-related Java clients include (REST-based) APIs for: 

• Event Management23 - supporting the creation, querying and modification of events. 

• Event Analytics24 - which supports the analysis of event logs to identify specific sequences of events, and/or 
count the number of events matching a specific pattern. 

2.2.4. FIWARE ORION CONTEXT BROKER 

The FIWARE Orion Context Broker25 is the reference implementation for the core FIWARE ‘Next Generation 
Service Interface’ (NGSI) specification, which defines a REST API for managing the lifecycle (updates, queries, 
registrations & subscriptions) of “context” information. The term “context” here, originates in the domain of 
smart-cities26 and essentially denotes an embedded device, or ‘thing’ in the IoT sense (e.g. an embedded 

                                                 
18  https://www.dex.siemens.com/mindsphere/solution-packages/connect-and-monitor 
20  https://developer.mindsphere.io/apis/index.html 
21 https://developer.mindsphere.io/apis/advanced-dataflowengine/api-dataflowengine-overview.html  
22  https://developer.mindsphere.io/resources/mindsphere-sdk-java/index.html  
23 https://developer.mindsphere.io/resources/mindsphere-sdk-java/apidocs/MindSphere_EventManagement.html  
24 https://developer.mindsphere.io/resources/mindsphere-sdk-java/apidocs/MindSphere_EventAnalytics.html  
25 https://fiware-orion.readthedocs.io/en/master/index.html#welcome-to-orion-context-broker  
26 https://www.fiware.org/community/smart-cities/  

 

https://www.dex.siemens.com/mindsphere/solution-packages/connect-and-monitor
https://developer.mindsphere.io/apis/index.html
https://developer.mindsphere.io/apis/advanced-dataflowengine/api-dataflowengine-overview.html
https://developer.mindsphere.io/resources/mindsphere-sdk-java/index.html
https://developer.mindsphere.io/resources/mindsphere-sdk-java/apidocs/MindSphere_EventManagement.html
https://developer.mindsphere.io/resources/mindsphere-sdk-java/apidocs/MindSphere_EventAnalytics.html
https://fiware-orion.readthedocs.io/en/master/index.html#welcome-to-orion-context-broker
https://www.fiware.org/community/smart-cities/
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temperature sensor supplies ‘contextual’ information, in this case about the temperature of the environment). 
The Orion Context Broker supports the registration of IoT devices (as ‘context entities’), management of their 
state (through context updates) and push/pull notification of state changes (through context queries & 
subscriptions). 

The FIWARE NGSI (version 2)27 standard offers no monitoring capabilities beyond the basic ability to query 
device state and receive device state change notifications. 

2.2.5. MONITORING OPENSTACK DEPLOYMENTS 

As already described in D3.2 “Network Functions Virtualization for IoT (first draft)”, SEMIoTICS will use 
OpenStack for the NFV orchestration. As a result, we could integrate monitoring capabilities in SEMIoTICS to 
ensure availability of resources in this level. In other words, SEMIoTICS can measure that each Virtual Machine 
(VM) has enough computational resources to keep functioning. Particularly, we can measure the CPU, 
memory, and disk consumption for each VM using several approaches.  

First of all, there are a number of ways to collect this information from OpenStack. For one, it is possible to rely 
on the command line interface of the administrator to obtain average values of the computational resources28. 
However, since this information needs to be transformed in low-level events, it is better to obtain it in a machine-
readable format. This can be done by relying on OpenStack APIs, or by installing a software component in the 
host.  

OpenStack has a diverse API through the Compute API29 which allows users to query diverse metrics for VMs. 
Thus, it is possible to obtain information on resource consumption for all hypervisors, for one particular 
hypervisor-level, or even for one particular server. We plan to collect the most fine-grained information, through 
the OpenStack API, to assess whether there is a potential risk for the availability of the platform30. 

OpenStack deployments generate notifications whenever a significant change of state occurs. Notification 
messages are published via the message queuing services supporting inter-process communication in 
OpenStack. RabbitMQ is a typical technology employed to implement message queuing services within 
OpenStack.  

The notifications published by OpenStack can be made available to the SEMIoTICS monitoring component 
implementing an Event Signaler that consumes the messages published by OpenStack, creates the 
corresponding messages in the SEMIoTICS event format and forward them to the Complex Event Processor 
(see section 2.1.1). This pattern is followed, for example, by StackTach a tool that can be used for debugging 
and performance monitoring of OpenStack deployments31. 

2.2.6. LINUX-BASED COMPUTATIONAL RESOURCE MONITORING 

In addition to the computational resource monitoring tools provided by Nova in OpenStack, there are also 
monitoring tools available for in-host to ensure availability of computational resources. These tools can be used 
within OpenStack VMs, e.g., if the API from NOVA, or the intercepting the events from the RabbitMQ 
component in OpenStack, is not feasible for any technical reason. Additionally, these approaches have a 
significant advantage over using only OpenStack because these approaches could also be deployed at the 
field or backend level to enhance monitoring capabilities. 

                                                 
27 http://fiware.github.io/specifications/ngsiv2/stable/  

28 https://docs.openstack.org/nova/pike/admin/common/nova-show-usage-statistics-for-hosts-instances.html 

29 https://developer.openstack.org/api-ref/compute/  

30 The server diagnostics API can potentially deliver CPU, memory, and networking usage information. The diagnostics 

API can be found at:  https://developer.openstack.org/api-ref/compute/?expanded=show-server-diagnostics-detail  

31 https://stacktach.readthedocs.io/en/latest/intro.html 

 

http://fiware.github.io/specifications/ngsiv2/stable/
https://docs.openstack.org/nova/pike/admin/common/nova-show-usage-statistics-for-hosts-instances.html
https://developer.openstack.org/api-ref/compute/
https://developer.openstack.org/api-ref/compute/?expanded=show-server-diagnostics-detail
https://stacktach.readthedocs.io/en/latest/intro.html
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We consider two main approaches depending on the granularity needed for the monitoring of in-host events 
related to computational resource use. On the one hand, we could use the set of tools called BEATS32. BEATS 
are single-purpose elements that send data to a monitoring infrastructure based on ElasticSearch 33 . 
Specifically, for the case of computational resource monitoring, there is a metric BEAT module measuring CPU, 
networking and storage information34. On the other hand, we could monitor Linux kernel functions to assess 
the performance of the operating system. This can be done using tools such as SystemTap35 or by using or 
implementing tools based on extended Berkley Packet Filter (eBPF) to monitor kernel events36. BEATS and 
the Linux kernel monitoring have advantages and challenges that need to be further assessed in the project. 
Particularly, the metrics BEATS component is available for a wide range of operating systems37, but provides 
coarse-grained data. On the contrary, monitoring the OS kernel provides specific monitoring capabilities to 
profile the OS, but it is only available for particular versions of the Linux kernel, and it may require specific 
versions of the OS.  

2.2.7. MONITORING THE NETWORK LAYER 

The SEMIoTICS SDN Controller (SSC) represents the centralized intelligence, as a function, in network which 
possesses the view on mappings of Virtual Tenant Networks, Application Services (formulated as connectivity 
patterns) to underlying physical topologies, as well as on the device capabilities and resources [D3.1].  

The SDN controller used in SEMIoTICS is OpenDaylight (ODL) that provides the user more programmatic 
control over the infrastructure: managing OpenFlow (OF) capable switches. OF is a communications protocol 
that empowers a network switch or router to access the forwarding plane over the network. 

Using ODL is possible not only to control the resources, but also to monitor and to set some rules. Three 
components of the high level architecture of38 are relevant, for the monitoring: 

• Statistics Manager is responsible for collecting statistics and status from attached OpenFlow switches 
and storing them into the operational data store for applications’ use.  

• Topology Manager is responsible for discovering the OpenFlow topology using Link Layer Discovery 
Protocol (LLDP) and putting them into the operational data store for applications’ use.  

• Forwarding Rules Manager is on the “top level” of OpenFlow module, it exposes the OF functionality to 
controller apps and it provides the app-level API. Its main entity is that manages the OpenFlow switch 
inventory and the configuration (programming) of flows in switches. It also reconciles user configuration 
with network state discovered by the OpenFlow plugin. 

Cardinal is the plugin that allows ODL to be a monitoring service. Cardinal enables ODL and the underlying 
SDN to be remotely monitored by deployed Network Management Systems (NMS) or Analytics suite. NMS is 
a viable approach to provide the system that monitors and controls remote (and managed) devices located 
throughout the network, using for example Simple Network Management Protocol (SNMP, the basic protocol).  

Cardinal, support SNMP requests, as REST GET, to enable SDN Applications to retrieve ODL diagnostics 
data. 

 

2.2.8. MONITORING FIELD DEVICES 

                                                 
32 https://www.elastic.co/products/beats  
33 ElasticSearch is available as an open source component here: https://www.elastic.co/products/elasticsearch 
34 https://www.elastic.co/guide/en/beats/metricbeat/current/metricbeat-module-system.html 
35 https://sourceware.org/systemtap/ 
36 https://github.com/iovisor/bcc 
37 https://www.elastic.co/support/matrix 
38 https://docs.opendaylight.org/projects/openflowplugin/en/latest/users/architecture.html  

 

https://www.elastic.co/products/beats
https://www.elastic.co/products/elasticsearch
https://www.elastic.co/guide/en/beats/metricbeat/current/metricbeat-module-system.html)
https://sourceware.org/systemtap/
https://github.com/iovisor/bcc
https://www.elastic.co/support/matrix
https://docs.opendaylight.org/projects/openflowplugin/en/latest/users/architecture.html
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For the monitoring of field devices the SEMIoTICS monitoring component will rely on the mechanisms provided 
by the Web of Things (WoT) architecture39. 

A Thing Description is a central building block in the Web of Things (WoT). It describes the metadata and 
interfaces of Things, where a Thing is an abstraction of a physical or virtual entity that provides interactions to, 
and participates in, the Web of Things40. 

A Property41 is a variable of a Web Thing and it represents the internal state of a WoT. The clients can subscribe 
to Properties to receive a notification message when specific conditions are met (e.g. one or more value 
changes) and this condition has to be set a priori. In the same way, it is possible to monitor the field devices 
by subscribing to an event; i.e. monitoring an interval of values. 

2.3. Fusion of cross-layer monitoring data 

This section will explore the candidate platform enabling the cross-layer data fusion. 

Each section describes a specific platform. Each description will emphasize the pro and cons of its integration 
within the architecture presented in section 2.1. 

2.3.1. PROTON 

PROTON42 (Proactive Technology Online) is an open source complex event processing engine developed also 
as part of FIWARE. PROTON allows to detect patterns of raw events from various types of data sources (e.g. 
RESTful services). The PROTON API allows to define custom adapters43.  

Complex events can be determined and processed using a data flow programming paradigm. 

Events are processed through event processing networks. The PROTON API allows adding additional custom 
operators. 

2.3.2. APACHE FLINK CEP 

Apache Flink44 is a distributed processing engine for stateful computations over event data streams (both 
unbounded - i.e. potentially unending - and bounded). Applications are parallelized into possibly thousands of 
tasks that are distributed and concurrently executed in a cluster - such that an application can leverage virtually 
unlimited amounts of CPUs, main memory, disk and network IO. Flink requires compute resources in order to 
execute applications and integrates with common cluster resource managers such as Hadoop YARN, Apache 
Mesos and Kubernetes. All communications to submit or control applications are via REST calls. 

Applications per se are written in Java. The code below is a short ‘hello world’ example45 that receives a stream 
of Wikipedia edit events and counts the number of bytes that each user edits within a given (5 second) window 
of time.  

public class WikipediaAnalysis { 

 

  public static void main(String[] args) throws Exception { 

                                                 
39 https://www.w3.org/TR/2019/CR-wot-architecture-20190516/  
40 https://www.w3.org/TR/wot-thing-description/#introduction  
41 http://model.webofthings.io/#terminology  
42 https://github.com/ishkin/Proton  
43 

https://github.com/ishkin/Proton/tree/master/IBM%20Proactive%20Technology%20Online/ProtonJ2SE/src/c

om/ibm/hrl/proton/adapters  
44 https://flink.apache.org/flink-architecture.html  
45 taken from: https://ci.apache.org/projects/flink/flink-docs-release-1.8/tutorials/datastream_api.html   

https://www.w3.org/TR/2019/CR-wot-architecture-20190516/
https://www.w3.org/TR/wot-thing-description/#introduction
http://model.webofthings.io/#terminology
https://github.com/ishkin/Proton
https://github.com/ishkin/Proton/tree/master/IBM%20Proactive%20Technology%20Online/ProtonJ2SE/src/com/ibm/hrl/proton/adapters
https://github.com/ishkin/Proton/tree/master/IBM%20Proactive%20Technology%20Online/ProtonJ2SE/src/com/ibm/hrl/proton/adapters
https://flink.apache.org/flink-architecture.html
https://ci.apache.org/projects/flink/flink-docs-release-1.8/tutorials/datastream_api.html
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    StreamExecutionEnvironment see = StreamExecutionEnvironment.getExecutionEnvironment(); 

 

    DataStream<WikipediaEditEvent> edits = see.addSource(new WikipediaEditsSource()); 

 

    KeyedStream<WikipediaEditEvent, String> keyedEdits = edits 

      .keyBy(new KeySelector<WikipediaEditEvent, String>() { 

        @Override 

        public String getKey(WikipediaEditEvent event) { 

          return event.getUser(); 

        } 

      }); 

 

    DataStream<Tuple2<String, Long>> result = keyedEdits 

      .timeWindow(Time.seconds(5)) 

      .fold(new Tuple2<>("", 0L), new FoldFunction<WikipediaEditEvent, Tuple2<String, Long>>() { 

        @Override 

        public Tuple2<String, Long> fold(Tuple2<String, Long> acc, WikipediaEditEvent event) { 

          acc.f0 = event.getUser(); 

          acc.f1 += event.getByteDiff(); 

          return acc; 

        } 

      }); 

 

    result.print(); 

 

    see.execute(); 

  } 

} 

Flink supports complex event processing though the FlinkCEP46 library. FlinkCEP provides APIs to describe 
patterns of events and to specify actions to undertake what a sequence of events matches a pattern. 

2.4. Events Object Model 

This section introduces the object model for the messages produced by the monitoring component (MC) and 
consumed either by the MC internal components or clients of the MC. 

The Monitoring Components produces two types of events: 

• Base Event used to represent in a common format the events produced by the various IoT cloud platforms 
(e.g. Azure, MindSphere) and the various layers (e.g. Network, Filed) of the SEMIoTICS infrastructure. The 
events of this type are produced by the Event Signalers. 

• High Level Event produced by the Complex Event Processor whenever a sequence of events (of type 
Common Format Event) matches one of the queries submitted to the Monitoring Component 

Figure 6 shows the object model for both types of events.  

                                                 
46 https://ci.apache.org/projects/flink/flink-docs-stable/dev/libs/cep.html 

https://ci.apache.org/projects/flink/flink-docs-stable/dev/libs/cep.html
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FIGURE 9: SEMIOTICS EVENT OBJECT MODEL 

The BaseEvent class describes the events generated by event signalers and defines the following attributes: 

Attribute Type Description 

type String The type of the event 

id String The primary identifier for the event. 

source ComponentIdentification The component in which the original event/action takes 
place. 

reporter ComponentIdentification The component that generated the event. 

creationTime String The date-time when the event generated. 

severity Integer The perceived severity of the status the event is describing 
with respect to the application that reports the event. 

sequenceNumber Integer A source-defined number that allows to identify the order in 
which events have been generated. 

payload Any The observed or computed data that correspond to the event. 

 

The ComponentIdentification class describes a component generating or reporting an event: 

Attribute Type Description 

location String Specifies the physical address that correspond to the location 
of a component. 

locationType LocationType Specifies the format and meaning of the values in the 
location property. E.g IPv4, IPv6, hostname, devicename 
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Attribute Type Description 

application String The name of the application 

executionEnvironment String The immediate environment that an application is running in. 
E.g. MindSphere 

componentId String Specifies the logical identity of a component 

componentIdType String Specifies the format and meaning of the values in the 
compoenentId property. 

 

The HighLevelEvent class describes the events generated by the complex event processor and defines the 

following attributes: 

Attribute Type Description 

queryID String The identifier of the query that caused the creation of the 
event 

patternName String The name of the matched pattern 

contributingEvents BaseEvent[1..n] Sequence of events matching the pattern 

 

For the representation of both event types (Base and HighLevel) the MC uses as basis the format being defined 
by CloudEvents47. CloudEvents is an ongoing initiative aimed to define a vendor-neutral specification for 
defining the format of event in order to ease event declaration and delivery across services, event routers and 
tracing systems. Current version of the specification is 0.2 48  and a set of SDKs is available for various 
programming languages (e.g. Java, Python). The current version of CloudEvents specifications define the 
following attributes49: 

• type: the type of the event 

• specversion: the version of the CloudEvents specification which the event uses. 

• source: the event producer. 

• id: identifier of the event 

• time: timestamp of when the event happened 

• schemaurl: a link to the schema that the data attribute adheres to 

• contenttype: content type of the data attribute value 

• data: the event payload 

                                                 
47 https://cloudevents.io  
48 https://github.com/cloudevents/spec  
49 https://github.com/cloudevents/spec/blob/v0.2/spec.md  

https://cloudevents.io/
https://github.com/cloudevents/spec
https://github.com/cloudevents/spec/blob/v0.2/spec.md
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The following table shows the mapping between the information defined by the SEMIoTICS Events Object 
Model and the CloudEvents format: 

CloudEvents SEMIoTICS 

type type 

source source.location 

id id 

time creationTime 

 

In order to be able to represent all the source and reporter information defined by the Events Object Model the 
Monitoring Component defines CloudEvent extensions50. 

The values of the attributes of the HighLevelEvent class are transported as payload of a CloudEvent i.e. by 
means of the data attribute. 

2.5. Query Object Model 

This section presents the object model of the queries accepted by the Monitoring component and utilized by 
its client applications to define the high-level events that should be produced as result of the monitoring activity.  

                                                 
50 https://github.com/cloudevents/spec/blob/master/primer.md#cloudevent-attribute-extensions  

https://github.com/cloudevents/spec/blob/master/primer.md#cloudevent-attribute-extensions
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FIGURE 10: QUERIES OBJECT MODEL 

A Query object specifies which are the high-level events to be generated and the consumers of those events. A 

query has a validity period and a set of QoS requirements (e.g. Availability>0). 

Attribute Type Description 

id String identifier of the query 

validityPeriod ValidityPeriod Period of validity of the query 
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Attribute Type Description 

qos QoSExp[1..n] QoS requirements that should be fulfilled by the execution of 
the query 

eventsPatterns EventsPatternExp[1..n] The patterns that have to be matched by the query 

listeners Service[1..n] Endpoints that should be notified whenever a pattern is 
matched 

 

A QoS object describes a QoS requirement 

Attribute Type Description 

attribute QoSAttribute The QoS attribute (e.g. Availability) 

op RelOp relational operator (e.g. <, = , >=) 

threshold Real threshold value for the attribute 

 

An EventType object describes which is the pattern of events that has to be detected, the  source of the events 

and the name of the type of the generated event. 

Attribute Type Description 

name String Name of the type of the event to be generated when the 
pattern is matched 

eventsPattern EventsPatternExp the pattern to be matched 

input EventsSource The source of events to monitor 

 

An EventsPatternExp describes a pattern of events as a list of conditions (simple or composite) that have to be 

matched, in the order specified in the list, by the events generated by an event source. The conditions in the list 
are combined according to a contiguity condition. Possible types of contiguity are: 

• strict: next matching event is the immediate next of the matched event 

• relaxed: interleaving events are allowed between the matched event and the next matching event 

• non-deterministic relaxed: interleaving matches are allowed between the matched event and the next 
matching event 

• not-next: the matched event should not be immediately followed by the rest of the pattern 

• not-followed-by: the matched event should not be followed by the rest of the pattern 

Attribute Type Description 

name String name of the pattern 
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Attribute Type Description 

condition EventCondition The condition that has to be satisfied by an event 

windowTime Time The maximum time gap between the first and the last 
matching event. 

minTime int Minimum number of events that have to match the condition. 

maxTime int Maximum number of events that have to match the condition  

optional boolean This attribute specifies whether the condition if optional for 
the matching of overall pattern. 

greedy boolean Specifies whether the condition has to be matched only by a 
pattern of by as many events as possible. 

next EventsPatternExp the next condition defining the overall pattern 

contiguityCondition ContiguityCondition Specify the continuity condition between the event matching 
the condition and the event matching the next condition in the 
pattern. 

untilCondition EventCondition The condition specifying when to stop accepting events in the 
pattern 

 

An EventCondition object describes a condition that should be matched by an event. There are two possible types 

of event conditions: SimpleCondition and CompositeCondition.  

A SimpleCondition describe the constraints on the properties of an event (see 2.4). 

Attribute Type Description 

type String Name of the type of the event 

likelihood Percentage A percentage representing the likelihood of the event. The 
value is less than 100% if the event was not directly observed 
and inferred using the other observations.  

payload Any The event payload 

sourceCondition ComponentCondition The conditions on the source of the event 

reporterCondition ComponentCondition The conditions on the component reporting the event 

 

A CompositeCondition describe a logical combination of EventConditions. 

Attribute Type Description 

operator LogicalOperator The combining operator (AND, OR) 

nestedCondition EventCondition[1..n] The conditions being combined through the operator 

 

The following expression (in a naive/pseudo syntax) illustrates the use of the object model (above): 
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NOTIFY TO http://127.0.0.1/listener 

FROM ts=http://127.0.0.1/sensors/temperature/0 

EVENTS 

‘Cold’ IF ts.value<18 && ts.liklihood > 0.5 

‘Warm’ OTHERWISE 

STARTING FROM 01/11/2018 UNTIL 30/03/2019 

WITH Availability > 0.5 

Informally, this expression conveys a request that:  

• the monitoring component should notify the client http://127.0.0.1/listener either an event of type ‘Cold’ if the 
value of the temperature sensor http://127.0.0.1/sensors/temperature/0 is below 18 with a likelihood of at 
least 0.5 or an event of type ‘Warm’ in all the other cases 

• the monitoring task should occur from November 1st, 2018 until March 30th, 2019 with an uptime of at least 
50% 

2.6. Translation of SPDI patterns into monitoring policies 

SEMIoTICS follows a pattern-driven approach in managing IoT/IIoT deployments, with SPDI properties’ 
verification, as detailed in deliverable D4.1. There are 4 verification means that can be used for said SPDI 
properties: testing, certificate, pattern-based and monitoring. The latter, in specific, is of particular interest in the 
context of Task 4.2.  

In more detail, the Pattern Orchestrator (PO) component receives instantiated Recipes (i.e. definitions of IoT 
orchestrations) from the Recipe Cooker (RC) component, and transforms them to a machine processable format 
(Drools), then transmitting them to the Pattern Engines at the various layers. In the context of this translation, the 
PO will be also responsible to match the SPDI properties required to the monitoring capabilities of the specific 
components selected to instantiate the designed workflows.  

Following the example that is described in D4.1, Section 6.1, we have the following recipe: 

http://127.0.0.1/listener
http://127.0.0.1/sensors/temperature/0
http://127.0.0.1/listener
http://127.0.0.1/sensors/temperature/0
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FIGURE 11: INSTANTIATED RECIPE (TOP) AND WORKFLOW (BOTTOM) 

The RC translates the above instantiated Recipe to a Pattern Language-compatible representation (as defined 
in D4.1) before transmitting it to the PO, providing a representation as follows: 

1. ORCH “Seq2” 

2. Placeholder (Placeholder1, (Vibration Analysis Activity, Vibration Analysis Description)) 

3. Placeholder (Placeholder2, (Monitoring Alarm Activity, Monitoring Alarm Description)) 

4. Sequence (Placeholder1, Placeholder2) 

5. Link (Link1, Vibration Analysis, Monitoring Alarm) 

6. Property (AP_1, Placeholder1, required, (certificate, interface), confidentiality, in_processing) 

7. Property (AP_2, Link1, required, (pattern, “PSPpattern”), confidentiality, in_transit) 

8. Property (AP_3, Placeholder2, required, (monitoring, interface), confidentiality, at_rest) 

9. Property (OP, “Seq2”, required, (pattern-based, “PR1”), confidentiality, end_to_end) 

10. Pattern rule: (PR1: AP_1, AP_2, AP_3 → OP) 

In addition to the above, the PO will also consider all of the SPDI-related metadata available in the involved 
components’ Thing Descriptions (described in D3.3, Section 3.4). Then as showcased in Query Object Model 
a policy example could be:  

NOTIFY TO http://127.0.0.1/listener 

FROM placeholder2=http://127.0.0.1/sensors/monitoringANDAlarm/9 

EVENTS 

‘Valid’ IF placeholder2.confidentiality==1 

http://127.0.0.1/listener
http://127.0.0.1/sensors/monitoringANDAlarm/0
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‘invalid’ OTHERWISE 

STARTING FROM 01/11/2018 UNTIL 30/03/2019 

The above policy checks that the Monitoring Alarm sensor has enabled confidentiality. Any status updates 
regarding the monitoring of the specific property defined above will have to be transmitted to the Pattern Engine 
responsible for monitoring the specific component (e.g., Field Pattern Engine if the component is at field layer). 
The Pattern Engine can then use this incoming monitoring events to reason about the status of the 
Confidentiality property, which is the focus in this example. 



780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017 

Deliverable D4.2 SEMIoTICS Monitoring, prediction and diagnosis mechanisms (first draft) 

Dissemination level: Public 
 

 

34 

3. PREDICTIVE MECHANISMS 

Modern IoT/IIoT infrastructures typically include thousands of IoT devices which generate a massive amount 
of data. The capability of data processing and analysis both in near real-time and off-line fashion allows for the 
discovery of information that has significant impact on the whole infrastructure in terms of security, system’s 
health status, policy guarantees etc., and thus it is crucial to combine edge/fog computing with big data and 
cloud computing in an efficient manner. Edge/fog computing provides fast near real-time analytics while the 
plethora of storage and computing resources in the cloud/back-end system can be exploited to carry out 
computationally intensive tasks. In edge/fog computing scheme data-in-motion (streaming data, time series 
data etc.) are collected from IoT sources and they are integrated towards highly sophisticated analytics 
processes that deliver timely decision-making or short-term prediction. Long-term prediction and decision 
making can be performed at the cloud since data gathered from the lower IoT infrastructure level and stored 
for computationally intensive and data-hangry tasks. Below, we provide a brief overview of edge/fog-level 
predictive mechanisms and cloud/back-end oriented predictive algorithms. 

3.1. Regression techniques for the prediction at Edge/fog level 

In the current section, a general description of the edge/fog-level predictive algorithms is provided. We assume 
that we collect continuous valued data used within a supervised learning framework to predict future outcomes 
which is a task referred as regression. The simplest regression form can be considered when there is a linear 
relationship between two variables for example between the quantity measured by an IoT device/sensor and 
time, and thus we want to estimate a trend of the data points by formulating a model based on existing data. 
Linear regression is used to fit a straight line usually computed based on linear least squares method. However, 
in some cases data collected in an edge/fog computing environment may be highly correlated or have 
collinearity, which can lead the model towards being more susceptible to overfitting. One possible way to 
alleviate this issue is to use kernel ridge regression [41]. It is a technique that combines the ridge regression 
model, i.e., linear least squares using l2-norm regularization, with the kernel trick (use of a nonlinear function 
to transform the data into a higher dimensional space that computations and data modeling can be efficiently 
performed), in order to learn a linear function in the space induced by the kernel and the data. 

Support Vector Regression [3] is another method similar to the kernel ridge regression in that it uses the kernel 
trick, but has some basic differences such as an ε-insensitive loss function (instead of a squared loss function 
as in linear regression) is used. Support vector regression uses a subset of the training data for inference, 
since the cost function for building the model ignores any training data not close to the model prediction. Based 
on various simulations in the literature, support vector regression has been observed that its training procedure 
is longer as compared to kernel ridge regression, but it is faster at providing predictions due to learning a 
sparse model. This can be very important in practical applications when we are interested in real-time 
predictions. 

In addition, random forests [6] constitute an ensemble model belonging to the decision-tree class of machine 
learning algorithms and can also be used for regression by fitting a number of decision trees to various 
subsamples of the dataset that are then averaged to improve accuracy and reduce overfitting (a process known 
as bagging). Random forests are also able to use the same model for both regression and classification tasks 
and they have the ability to learn features that are most important from a set of features from the training set. 

Another technique that can be applied for regression/prediction purposes is the Gaussian processes method 
which computes the outputs probabilistically assuming a Gaussian distribution for approximating a set of 
functions (processes) in a high-dimensional space [28]. It is assumed that there exists a mapping of 
independent to dependent variables which cannot be sufficiently captured by a single Gaussian process. 
Gaussian processes method also uses lazy learning, which delays generalization about training data until after 
a query has been made which finds a local approximation for each query. 

3.2. Deep Neural Network for prediction at Cloud Level 
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Cloud-based resources can be exploited towards long-term predictive mechanisms based on historical data 
saved in the cloud. For that reason, “data-hungry” methods such as deep learning can be applied. In specific, 
a deep neural network is the core part of the deep learning scheme since has multiple hidden layers between 
the input and output layers in order to model complicated nonlinear data relationships. Using a large amount 
of training data (which usually are labeled data) the parameters in a deep neural network can be efficiently and 
accurately trained to extract complex features from a large amount of data. Recurrent neural networks (RNNs) 
[16] have been developed to tackle the issue of inter-dependencies between successive samples/data with 
various length. The input to an RNN consists of both the current sample and the previous observed sample, 
and thus the output of an RNN at time step t-1 affects the output at time step t. Each neuron is equipped with 
a feedback loop that returns the current output as an input for the next step, where this structure models each 
neuron’s internal memory that keeps the information of the computations from the previous input. To train the 
network, an extension of the backpropagation algorithm, called backpropagation-through-time, is used, where 
its core concept is a technique called unrolling the RNN, such that we come up with a feed-forward network 
over time spans. Since the focus is given on cloud-based resources, deeper RNN [26] architectures can be 
applied to enhance the predictive performance. 

Long-short-term-memory networks (LSTMs) [16] is an extension of RNNs. LSTM uses the concept of gates for 
its units, each computing a value between 0 and 1 based on their input. In addition to a feedback loop to store 
the information, each neuron in LSTM (also called a memory cell) has a multiplicative forget gate, read gate, 
and write gate. These gates are introduced to control the access to memory cells and to prevent them from 
perturbation by irrelevant inputs. An important difference between LSTMs and RNNs is that LSTM units utilize 
forget gates to actively control the cell states and ensure they do not degrade. The gates can use sigmoid or 
tanh as their activation function. In fact, these activation functions cause the problem of vanishing gradient 
during backpropagation in the training phase of other models using them. By learning what data to remember 
in LSTMs, stored computations in the memory cells are not distorted over time. Backpropagation-through-time 
is a common method for training the network to minimize the error. When data is characterized by a long 
dependency in time, LSTM models perform better than RNN models. 

3.3. Causal Networks 

As stated in section 2.1 one of the objectives of the SEMIoTICS MC is to generate the high-level business 
events as defined by client applications and in spite of the dynamicity of the underlying computing 
infrastructure. 

To achieve this objective there is the need of means to predict the effects of, intentional or unintentional, 
changes on the computing infrastructure used to generate the raw events that are the basis for the events 
aggregation process performed by the MC (see section 2.3). 

Causal prediction mechanisms are algorithms that rely on causal structures to predict the effects of 
changes/interventions on a system. 

Causal networks are a typical example of causal structure used for that purpose. A Causal Network is a directed 
acyclic graph in which nodes represent domain variables, edges represents causal relationship between 
variables (i.e. a change on the “source” variable cause a change in the “sink” variable) [33]. In a Causal Network 
each node has associated probabilities: prior probability for nodes without incoming edges and conditional 
probability for nodes with one or more incoming edges [10]. 

The SEMIoTICS Monitoring Component constructs causal models using prior knowledge of IoT application 
(e.g., which components are connected and thus, causally affecting which other components). A possible 
source for this initial knowledge are the SPDI patterns: in the example presented in section 2.6 the pattern 
ORCH Seq2 allows to derive that there is a causal relation between the “alarm” events generated by the 
“Monitoring Alarm” process and the events generated by the “Vibration Analysis” process. 

Subsequently, since the structure and the parameters of a causal network can be learned from data [29], these 
models are refined using causal discovery (causal learning) algorithms (e.g., [36][33]). 
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During the last years, several algorithms have been proposed to recover causal network from observational 
data (e.g. [5], [13],[18]) 

TETRAD51 [27] is a suite of tools that make efficient causal modeling and discovery (CMD) algorithms from Big 
Data available on a variety of platforms and environments. The suite uses a common set of CMD algorithms 
implemented as a Java library.  The TETRAD codebase is publically available and it is released under the GNU 
GPL v. 2 license. 

More recently [17] proposed the use of Causal Generative Neural Networks (CGNNs) to learn causal models 
from observational data. 

[1] addresses the challenges related to fast causal inference over event streams and real-time prediction of 
effects from events. 

[38] presents a new method called Event Triggered Causality (ETC) that can determine causal relationships 
between observed events within time series data from very different sensors. 

Because of their focus on causal inference over discrete event streams and Big Data this last two works are 
particularly relevant from the point of view of the development of the SEMIoTICS Monitoring Component (see 
section 2.1). 

                                                 
51 http://www.phil.cmu.edu/tetrad/ 
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4. DIAGNOSIS MECHANISMS  

4.1. Computational resource abuse 

In the scope of this task, we will use the data sources described in Sections 2.2.5 and/or 2.2.6 to detect possible 
computational resource abuse scenarios for different components deployed in SEMIoTICS.  

First of all, monitoring and processing information about computational resources use should detect naive 
programming errors such as the case where Spotify was allegedly sending several hundreds of Gigabytes of 
unrequested data to their users due to a programming mistake52. Second, attackers may be inclined to abuse 
the computational resources from machines to make a financial profit. For example, in February 2018 Google’s 
DoubleClick service was abused by attackers to distribute advertising abusing the computational resources of 
visitors from visitors obtaining the advertisement to execute crypto-currency mining53.  

As a result, we will explore how to detect when applications are using more computational resources than 
expected. To this end, we will evaluate the feasibility of an approach based on coarse-grained data, e.g., using 
information of server-wide CPU and memory consumption, versus monitoring more fine-grained sources of 
information, e.g., system calls monitoring. 

4.2. Potential methods for IoT botnet attack detection 

The technology of IoT has emerged during the last years as a milestone in advancing the concept of Internet 
networking towards connecting data, users and “things” (usually dubbed as IoT devices, too) in a seamless 
fashion. IoT technology is based on three pillars: highly heterogeneous and distributed IoT devices data are 
captured through a gateway and are immediately accessible to a wide range of applications via a secure 
networking infrastructure. The type of IoT applications span from smart homes, smart cities and wearables to 
energy management, predictive maintenance, automotive driving, etc. However, the rapidly growing use and 
realization of IoT-based technology comes at the cost of resolving significant business and technical 
impediments as reflected in dynamicity, scalability and heterogeneity and end-to-end security/privacy. More 
specific, a dynamically adaptive behavior is followed at the IoT infrastructure, at the IoT applications and at the 
IoT devices, and thus there is a great need for promoting a (semi)-automatic behavior within all IoT layers. This 
gives rise to the pursuit of high scalability properties from the network layers as well as from the IoT 
infrastructure. In addition, enhanced heterogeneous behavior as a result of the extensive use and 
interconnection of a large volume of diverse IoT devices should be addressed through the concept of efficient 
semantic interoperability within IoT applications and platforms. End-to-end security is also a very crucial issue 
since IoT devices, IoT applications and their enabling platforms could be vulnerable to security attacks. 

As a result, it is very crucial to propose a diagnosis mechanism for instant IoT botnet attack detection and the 
minimization of their impacts by immediate isolation of compromised IoT devices located at the edge of the IoT 
infrastructure. Due to limited computational capabilities which govern the edge IoT devices, we are strongly 
interested in providing an algorithmic procedure which uses as small as possible amount of training and testing 
data towards implementing an accurate IoT botnet attack detector. Next we describe a novel diagnosis 
technique proposed by FORTH partners under the SEMIoTICS framework [39], where the fundamental 
assumption is that there is no prior knowledge of malicious IoT network traffic data during the training 
procedure. The novelty is twofold. Firstly, a reconstruction error thresholding rule based on sparse 
representation is employed for IoT botnet attack detection assuming that only a very limited amount of both 
training and testing data is used to deal with low computational constraints as well as with fast reaction. 
Secondly, a greedy sparse recovery algorithm, dubbed as orthogonal matching pursuit [37], is adopted since 
it involves tuning of only two hyper-parameters, i.e. the thresholding constant and the sparse representation 
level. 

                                                 
52 https://www.telegraph.co.uk/technology/2016/11/11/spotify-bug-killing-hard-drives-with-gigabytes-of-junk-data-user/ 
53 https://blog.trendmicro.com/trendlabs-security-intelligence/malvertising-campaign-abuses-googles-doubleclick-to-deliver-

cryptocurrency-miners/ 

https://www.telegraph.co.uk/technology/2016/11/11/spotify-bug-killing-hard-drives-with-gigabytes-of-junk-data-user/
https://blog.trendmicro.com/trendlabs-security-intelligence/malvertising-campaign-abuses-googles-doubleclick-to-deliver-cryptocurrency-miners/
https://blog.trendmicro.com/trendlabs-security-intelligence/malvertising-campaign-abuses-googles-doubleclick-to-deliver-cryptocurrency-miners/
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Let us assume that statistical features are extracted from IoT traffic data. Usually, the features correspond to 
statistical metrics reflecting the IoT traffic flow characteristics. Assuming that that IoT network consists of S IoT 
devices, Figure 11 depicts the concatenation process of each features’ matrix, where each column corresponds 
to a feature vector. As it is shown in Figure 11, the focus is given on IoT botnet attack detection at the gateway, 
where the IoT traffic data is collected and further analyzed in order to detect any malicious behavior originating 
from a compromised IoT device. As a result, the use of real-data for performance evaluation is of paramount 
importance. Here, we use the N-BaIoT dataset which corresponds to real IoT traffic data gathered from nine 
commercial IoT devices and can be found in 54. 

The N-BaIoT dataset contains the features extracted from raw IoT network traffic data. More specific, whenever 
a packet arrives, a behavioral snapshot of the protocols and hosts that transmitted each packet is obtained. 
Each snapshot corresponds to the packet’s contextual information as reflected in 115 statistical features, i.e., 
the arrival of each packet invokes the extraction of 23 statistical features from five time windows (100ms, 
500ms, 1.5sec, 10sec and 1min), and then five 23-dimensional vectors from each window are concatenated 
into a single 115-dimensional vector (we will use the term instance hereafter). During the performance 
evaluation we use malicious instances obtained during a BASHLITE botnet attack. More specific, we use data 
based on three categories of BASHLITE attack: (I) Scan: scanning the network for vulnerable devices, (II) Junk: 
sending spam data, and (III) COMBO: sending spam data and opening a connection to a specified IP address 
and port. The interested reader is referred to [25] for more details on feature extraction. For the sake of clarity, 
it is important to notice that the uploaded N-BaIoT dataset1 includes a different amount of benign instances 
(see Table I) other than mentioned in [25]. As a result, during the performance evaluation we use the benign 
data captured from eight IoT devices as mentioned in the third column in Table I. 

 

 
FIGURE 12: STRUCTURE OF FEATURES EXTRACTED FROM RAW IOT TRAFFIC DAT 

                                                 

54 http://archive.ics.uci.edu/ml/datasets/detection_of_IoT_botnet_attacks_N_BaIoT 
 

http://archive.ics.uci.edu/ml/datasets/detection_of_IoT_botnet_attacks_N_BaIoT
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TABLE I – COMMERCIAL IOT DEVICES USED TO CAPTURE THE BENIGN INSTANCES. THE THIRD 

COLUMN CONTAINS THE ACTUAL NUMBER OF UPLOADED BENIGN INSTANCES 

Now, let us assume that S is the total number of IoT devices in the IoT network, and for each IoT device, a 

matrix 𝑉𝑖 is constructed based on the benign instances extracted from the i-th IoT device as 

𝑽𝑖 = ൣ𝒗𝑖,1, 𝒗𝑖,2,⋯ ,𝒗𝑖,𝑛𝑖൧ ∈ ℝ𝑑×𝑛𝑖 , 𝑖 = 1,⋯ ,𝑆 , where the column vector 𝒗𝑖,𝑗  denotes the j-th d-dimensional 

instance of the IoT device, and 𝑛𝑖 is the number of benign training instances for the i-th IoT device. The total 

number of benign instances is 𝑁 = 𝑛1 + 𝑛2 +⋯+ 𝑛𝑆. 

The ultimate goal of the described diagnosis mechanism is to detect whether the observed IoT network traffic 

data corresponds to benign or malicious behaviour given an observed instance 𝒙𝑡 ∈ ℝ𝑑×1
. Let us assume that 

𝒙𝑡 is an instance extracted from the i-th IoT device. We are interested in deducing if it is benign, emitted from 

a “healthy” IoT device, or not. The instance 𝒙𝑡 can be expressed as a linear combination of the benign training 

instances associated with the i-th IoT device as seen in Figure 12, where the vector 𝒄𝑖 = ൛𝑐𝑖,𝑗ൟ𝑗=1
𝑛𝑖

 is the vector 

containing the representation coefficients of 𝒙𝑡 in the terms of the columns of 𝑽𝑖. The overall data matrix 𝑽 

contains the instances corresponding to the benign data captured from all IoT devices and can be defined as 

the concatenation of all benign data matrices 𝑽𝑖, 𝑖 = 1,⋯ , 𝑆. 

 
FIGURE 13: SPARSE REPRESENTATION OF AN OBSERVED IOT TRAFFIC INSTANCE 

As it is obvious from the right part of Figure 12, 𝒙𝑡 can be sparsely expressed in terms of the overall benign 

training data matrix 𝑽 , namely 𝒙𝑡 = 𝑽𝒄  with 𝒄 = ൣ0,⋯ ,0, 𝑐𝑖,1, 𝑐𝑖,2, ⋯ , 𝑐𝑖,𝑛𝑖 , 0,⋯ ,0൧
𝑇
∈ ℝ𝑁×1  denoting the 
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coefficients vector called sparse code, whose elements are all zero except those associated with the i-th IoT 

device. Given the overall data matrix 𝑽 and the test instance 𝒙𝑡, the following optimization problem can be 
solved through the orthogonal matching pursuit (OMP) algorithm in order to obtain an estimate of the sparse 

code 𝒄 

, 

where ԡ∙ԡ2 denotes the L2-norm, ԡ∙ԡ0 is the L0-(pseudo)norm which is defined as the number of non-zero 

elements of a given vector and 𝜏 denotes the sparsity level of the estimated sparse code 𝒄
^
. Given 𝒙𝑡 and 𝑽, 

the sparse code 𝒄 can be estimated via the orthogonal matching pursuit (OMP) algorithm which is an iterative 

low-computational constrained method. 

The basic assumption is that if the test instance 𝒙𝑡 (captured, e.g., from the i-th IoT device) corresponds to 

benign traffic behavior, we expect the reconstruction error ቛ𝒙𝑡 −𝑽𝒄
^
ቛ
2
 to achieve a low value since the indices 

of the non-zero entries of 𝒄
^
 will correspond to those columns of 𝑽 associated with the i-th IoT device. On the 

contrary, we expect a high reconstruction error ቛ𝒙𝑡 −𝑽𝒄
^
ቛ
2
 when 𝒙𝑡 corresponds to unseen malicious traffic 

behavior as the estimated sparse code 𝒄
^

cannot be sparsely expressed in terms of 𝑽, since malicious IoT traffic 

information is not included in the overall matrix 𝑽. As a result, the botnet attack detection rule can be written 
as 

, 

where 𝜃  is the decision threshold. The decision threshold is estimated given the overall data matrix 𝑽 

containing only benign instances collected from all IoT devices. 

It is very important to find the best combination of hyper-parameters 𝜏 and 𝜃 based only on benign instances 

collected from all IoT devices. Here, we adopt the concept of proxy outliers to compensate for lacking malicious 
instances during the threshold’s estimation and OMP hyper-parameter tuning. The basic assumption is that if 
the sparse codes are computed only on benign instances, some of the reconstruction errors might attain large 

values. As a result, choosing the maximum reconstruction error as the threshold 𝜃 to identify botnet attacks 

could lead in accepting most of the malicious instances as benign. The concept of quartiles comes at the rescue 
to remove a small amount of proxy outliers (corresponding to large reconstruction errors) present in the benign 
instances. It is adapted to sparse codes estimation in order to tighten the threshold of the reconstruction error. 
First, the sparse codes of all benign training instances are computed, and then the reconstruction error of each 
training instance is estimated. Given the reconstruction errors of all training benign instances, the lower quartile 

(𝑄1), the upper quartile (𝑄3) and the interquartile range (𝐼𝑄𝑅 = 𝑄3 −𝑄1) is computed. An instance 𝒙𝑡 is 

qualified as an outlier of the benign class, if 

, 

where 𝜌 is the rejection rate reflecting the percentage of benign instances that are within the non-extreme 

limits. Based on the previous formula, the extreme values of reconstruction error that represents spurious 

training instances can be removed and a threshold 𝜃 is set as the maximum of the remaining reconstruction 

errors. The best value of 𝜌 can be found through cross-validation to remove a small fraction of the benign 

training instances. More details on the main steps of the proposed approach towards estimating the decision 
threshold based only on benign training instances and tuning the hyper-parameters can be found in our 
published work in [39]. 
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As it is mentioned above, the main goal of the sparse representation approach is the efficient and fast IoT 
botnet attack detection. Towards this direction, we examine a real-life scenario using only one test instance 

𝒙𝑡 ∈ ℝ115×1
 in order to detect the IoT network traffic behaviour as fast as possible in a reliable manner. Let us 

consider that 𝒙𝑡 can be decomposed into five subvectors of the form 𝒙𝑡
1,⋯ , 𝒙𝑡

5 with each subvector 𝒙𝑡
𝑤 ∈ ℝ23×1

 

reflecting the 23 statistical features from five time windows, 100ms (w = 1), 500ms (w = 2), 1.5sec (w = 3), 
10sec (w = 4) and 1min (w = 5), respectively. Now, the sparse optimization problem is solved for each subvector 

𝒙𝑡
𝑤 with𝑤 = 1,… ,𝑊, as follows 

, 

where 𝑽𝑤 ∈ ℝ23×𝑁
 corresponds to the overall benign data matrix of the w-th time window, and we end up with 

a set of five sparse codes 𝒄
^1

, … , 𝒄
^5

. Next, five reconstruction errors of the form ብ𝒙𝑡
𝑤 −𝑽𝑤𝒄

^𝑤

ብ
2

 (for 𝑤 =

1,… ,𝑊) are computed leading to five decision functions of the form 𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 ቀ𝑽𝑤𝒄
^
𝑤ቁ. The final decision 

about the existence or not of a botnet attack detection is given via a majority voting scheme which acts as an 

ensemble learning type of algorithm. It is obvious that a different decision threshold 𝜃𝑤 is separately computed 

for each matrix 𝑽𝑤
. 

In this section, the IoT botnet attack detection performance of the proposed sparse representation (SR) method 
based on majority voting is compared against a single hidden layer autoencoder (AE), where the N-BaIoT dataset 
(see Table I) was used during the evaluation process. For each IoT device we randomly select 100, 300 and 500 
benign instances from the first half of each dataset to estimate the decision threshold and perform the tuning of the 
hyper-parameters following a 3-fold (CV = 3) cross-validation process, where 𝜏 is varied from 𝑇 = {5,10,15,20,30} 
and 𝜌 is varied from 𝑃 = {0.01,0.5,1,2,3}. For the AE hyper-parameters tuning we followed a similar strategy based 
on an AE reconstruction error-oriented decision threshold estimation and hyper-parameters tuning, where the 
number of epochs is fixed and equal to 50, while the number of nodes in the hidden layer is varied from 
{20,30,40,50,60}. As a result, both SR and AE have one hyper-parameter, the sparsity level and the number of 
nodes, respectively.  

Here, an off-the-shelf AE implementation (http://www.mathworks.com/help/nnet/ref/trainautoencoder.html) was 
used, where ‘KerneScale’ parameter was set to ‘auto’ and ‘Standardize’ to ‘true’, while the rest of the parameters 
were kept to default values. 

The evaluation results on IoT botnet attack detection are reported in the form of a confusion matrix as shown in 
Table II, where TP indicates the quantity of malicious instances correctly detected, TN shows the quantity of benign 
instances correctly detected, FN indicates the quantity of malicious instances incorrectly detected, and FP denotes 
the quantity of benign instances incorrectly detected. Here, we calculated the following metrics based on the 
confusion matrix in order to assess the performance of the proposed framework: (I) Positive Predictive Value (PPV) 
which indicates the proportion of correctly detected malicious instances in the total instances detected as malicious, 
(II) Sensitivity (detection rate) which shows the proportion of correctly detected malicious instances in the total 
number of actual malicious instances, (III) F1-score corresponding to the harmonic mean of PPV and sensitivity, 
(IV) Accuracy (ACC) denoting the fraction of correctly detected instances in total detected instances. 
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TABLE II – CONFUSION MATRIX CORRESPONDING TO THE EVALUATION RESULTS ON IOT BOTNET 

ATTACK DETECTION 

To evaluate the performance of the two methods, we performed five Monte Carlo runs. During each Monte Carlo 
run we followed a leave-one-out-device-out cross validation (LOOCV) strategy, where benign instances from S-1 
IoT devices were used for tuning and threshold estimation, while the current (under testing) IoT device’s benign 
and malicious instances were used for testing/evaluation purposes. This procedure was repeated S times and the 
total average performance metrics over all IoT devices, and all Monte Carlo runs are reported. This evaluation is 
IoT device independent and shows the generalization capabilities as the IoT device which is being tested is not 
included in the tuning procedure. 

During the evaluation process, we used 100, 300 and 500 left-out benign instances (see LOOCV description in the 
previous paragraph), respectively, for testing as well as 200 malicious instances randomly selected from each IoT 
device’s COMBO malicious dataset (1600 malicious testing instances in total). In the case of Scan botnet attack we 
used 200, 600 and 1000 randomly selected instances from each IoT device’s malicious Scan dataset (1600, 4800 
and 8000 malicious testing instances in total during each evaluation scenario). It is important to notice that we used 
the malicious instances obtained from the eight IoT devices used during the tuning process (see Table I). Figure 14 
shows the results corresponding to the Scan botnet attack and Figure 15 corresponds to the COMBO botnet attack 
results. In all figures, the subscripts in the legend names indicate the number of benign instances per IoT device 
used during the hyper-parameters tuning and the decision threshold estimation process. The vertical black lines 
indicate the error bars since each experimental scenario is performed five (Monte Carlo runs) by S = 8 (total number 
of IoT devices) times. 

It is obvious that the proposed SR method achieves superior performance in light of Sensitivity, F1-score and ACC, 
while the AE technique achieves slightly better results in terms of PPV. That means that SR is robust in accurately 
detecting both malicious and normal behaviour in the IoT network (the Sensitivity, F1-score and ACC error bars 
corresponding to AE are wider as compared to the SR method’s error bars). Besides, the time complexity between 
SR and AE is comparable and low (due to space limitation, a more thorough computation cost investigation will be 
provided in a future publication), and thus SR can be applied for accurate and fast IoT botnet attack detection. 
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FIGURE 14: TPR AND FPR FOR SCAN BOTNET ATTACK 

 

 
FIGURE 15: TPR AND FPR FOR COMBO BOTNET ATTACK 
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4.3. Anomaly detection using Long Short-Term Memory Recurrent Networks 

In many tasks, prediction is dependent on past samples such that, in addition to classifying individual samples, 
we also need to analyze the sequences of inputs. In such applications, a feed-forward neural network is not 
applicable since it assumes no dependency between input and output layers. Recurrent neural networks 
(RNNs) have been developed to address this issue in sequential (e.g., speech or text) or time-series problems 
(sensor data) with various length. 

RNN is a deep learning architecture of an artificial neural network where connections between units form a 
directed circle. Thus, it can be seen as multiple copies of the same network each passing a message to a 
successor, giving RNN the ability to connect previous information to the current task. 

The input to an RNN consists of both the current sample and the previous observed sample. In other words, 
the output of an RNN at time step t−1 affects the output at time step t. Each neuron is equipped with a feedback 
loop that returns the current output as an input for the next step. This structure can be expressed in such way 
that each neuron in an RNN has an internal memory that keeps the information of the computations from the 
previous input. To train the network, an extension of the backpropagation algorithm, called Backpropagation 
Through Time (BPTT) [42], is used. Due to the existence of cycles on the neurons, we cannot use the standard 
backpropagation here that is used in conventional neural networks, since it works based on error derivation 
with respect to the weight in their upper layer, while we do not have a stacked layer model in RNNs. The core 
of BPTT algorithm is a technique called unrolling the RNN, such that we come up with a feed-forward network 
over time spans. Figure 16 depicts the structure of an RNN and unrolled concept.  

 
FIGURE 16: RNN UNROLLED- A TAKES AN INPUT XT AND OUTPUTS A VALUE HT [51] 

But what if what if we need to “remember” information further back forming a longer dependency, see Figure 
17. In theory, RNNs are capable of handling such “long-term dependencies” but in practice, practice they are 
not capable of modeling such type of dependencies. The problem was explored in depth by Hockreiter [19] and 
Bengio [4] and a solution was introduced by the former in 1997 that was able of overcoming this problem; the 
long-short-term-memory (LSTM) network.  

 
FIGURE 17: LONG DEPENDENCY PROBLEM [51] 

LSTM uses the concept of gates for its units, each computing a value between 0 and 1 based on their input. In 
addition to a feedback loop to store the information, each neuron in LSTM (also called a memory cell) has a 
multiplicative forget gate, read gate, and write gate. These gates are introduced to control the access to memory 
cells and to prevent them from perturbation by irrelevant inputs. When the forget gate is active, the neuron 
writes its data into itself. When the forget gate is turned off by sending a 0, the neuron forgets its last content. 
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When the write gate is set to 1, other connected neurons can write to that neuron. If the read gate is set to 1, 
the connected neurons can read the content of the neuron. Figure 18 depicts this structure. An important 
difference of LSTMs compared to RNNs is that LSTM units utilize forget gates to actively control the cell states 
and ensure they do not degrade. The gates can use sigmoid or tanh as their activation function. In fact, these 
activation functions cause the problem of vanishing gradient during backpropagation in the training phase of 
other models using them. By learning what data to remember in LSTMs, stored computations in the memory 
cells are not distorted over time. BPTT is a common method for training the network to minimize the error. The 
architectural difference of RNN and LSTM can be depicted in Figure 18.  

 

  

 
FIGURE 18: RNN VS LSTM [9] 

The application of LSTM for intrusion detection is proposed by Ralf C. Staudemeyer [34], where they model 
the KDD Cup 99 challenge dataset as time series data to train a LSTM network in a supervised manner; 
outperforming all other algorithms [32] used in the challenge. They also found that because LSTM can look 
back in time and correlate with past information they excel when training to identify high frequency attacks 
(e.g., DoS attacks and network probes) as these traffics generate a high volume of successive connections. 
Another study that supports and outperform the above is this of Jihyun Kim et al [20] that also trained upon the 
KDD Cup 1999 dataset but improve its model performance by fine-tuning its hyperparameters (e.g., learning 
rate, number of hidden layers etc.). A different application of the LSTM  using the RMSprop optimizer trained 
the model on the more modern CIDDS-001 dataset and achieved reasonable results performing better than 
traditional support vector machine (SVM), multilayer perceptron (MLP), and Naïve Bayes techniques for a multi-
classification problem [2].  Finally, LSTM have also been proved to be highly effective when employed in an 
unsupervised manner with the authors of this study [14] combining it with Support Vector Data Description 
(SVDD) and One Class Support Vector Machines (OC-SVM) algorithms obtaining great results against 
conventional methods over real and simulated datasets. 
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Implementing the LSTM architecture for intrusion detection can utilizing Keras56 a high-level neural networks 
API, written in Python and capable of running on top of Google’s TensorFlow57. Also, for expediting the training 
process we could use a workstation running CUDA framework for GPU acceleration [7][35]. Finally, we should 
use libraries that enable pre-processing, include evaluation metrics and provide visualization means, such as 
Skikit-learn, Pandas, Numpy and matplotlib. In terms of the model’s configuration and inspired from the 
aforementioned studies, we should consider training the model with various hyper parameter values (e.g., 
learning rates of 0.01,0.1, 0.5), using different optimizers (e.g., Adam [21], rmsporop, SGD [31]) and loss 
functions depending on the task (i.e., binary cross entropy, categorical cross entropy [8]). Finally, considering 
we are employing a supervised approach we need data to train such model, thus we should examine specific 
datasets such as CIDDS-001 [40] and NSL-KDD [30]. 

To summarize, given the work already done in the field we believe that LSTM is a very promising approach for 
intrusion detection in the scope of SEMIOTICS. 

4.4. Anomaly detection based on Generative Adversarial Networks 

Recently, diagnosis mechanisms (e.g. time-series anomaly detection [23], attack detection [43]) can be 
performed using the concept of generative adversarial networks (GANs) [15]. GANs consist of two neural 
networks, namely the generative and discriminative networks, which work together to produce synthetic and 
high-quality data. The former network (dubbed as the generator) is in charge of generating new data after it 
learns the data distribution from a training dataset. The latter network (termed as the discriminator) performs 
discrimination between real data (coming from training data) and fake input data (coming from the generator). 
The generative network is optimized to produce input data that is deceiving for the discriminator (i.e., data that 
the discriminator cannot easily distinguish whether it is fake or real). In other words, the generative network is 
competing with an adversary discriminative network. The objective function in GANs is based on minimax 
games, such that one network tries to maximize the value function and the other network wants to minimize it. 
In each step of this imaginary game, the generator, willing to fool the discriminator, plays by producing a sample 
data from random noise. On the other hand, the discriminator receives several real data examples from the 
training set along with the samples from the generator. Its task is then to discriminate real and fake data. The 
discriminator is considered to perform satisfactorily if its classifications are correct. The generator also is 
performing well if its examples have fooled the discriminator. Both discriminator and generator parameters then 
are updated to be ready for the next round of the game. The discriminator’s output helps the generator to 
optimize its generated data for the next round. 

4.5.  Visualization for the Diagnosis 

This section describes how Graphical User Interface (GUI) will be used to give meaningful insights into the 
platform. Visualization can be helpful when it comes to monitoring, as by giving insights, it can ease 
development/debugging of infrastructure behavior, as well as positively affect end-user experience.  

A lot of different kinds of widgets can be used for the diagnosis. Here are few of them: 

• Graphs showing statistics of the processed events 

• Monitors of SPDI patterns abuses 

• Lists of alarms filtered by the priority levels of issues [warning/minor/major/critical]  

• Lists of reconfiguration commands for the particular component / part of the framework  

• Computing resources monitors 

                                                 
56 https://keras.io  
57 https://www.tensorflow.org/  

https://keras.io/
https://www.tensorflow.org/
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The necessary monitoring graphs and meaningful dashboards will be created based on generic widgets which 
are to be delivered. Assuming that the components will give the API to the last portion of events, the layer of 
presentation can be based on these data. That means the additional storage of historical data is required for 
each of components.  

There are some tools describe above that already give insights into to the cloud platform or to Kubernetes cluster 
itself such us AWS Cloudwatch, Azure IoT Suite, MindSphere tools or Kubernetes Web UI Dashboard58. The set 
of necessary widgets, and therefore set of suitable tools, is to be established based on: 

• what information will be exposed by Monitoring Component  

• what will be generally visualized within the framework  

• what are use case specific requirements. 

After gaining all requirements, at least one of the following approaches is to be selected: 

• GUI that communicates through the API with an external application 

• GUI that loads the view itself from the external application  

• GUI dedicated to a given backend application. 

More information about GUI approach is to be found in D4.6. deliverable. 

                                                 
58 https://kubernetes.io/docs/tasks/access-application-cluster/web-ui-dashboard/  

https://kubernetes.io/docs/tasks/access-application-cluster/web-ui-dashboard/
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5. VALIDATION 
 

This chapter summarizes the validation features of SEMIoTICS that are related with the semantic interoperability 
and the various topics that are covered in this deliverable. 

5.1. Related Project Objectives and Key Performance Indicators (KPIs) 

The objectives of the related T4.2 (as per DoA) and their mapping to D4.2 content is summarized in the following 
table. 

T4.2 Objectives D4.2 Chapter 

A monitor management layer, able to connect with different IoT platform and cloud monitors 
and smart object event captors. 

2.1 

The monitoring management layer will support adaptation based on matching of 
dynamically evolving monitoring requirements with dynamically evolving available monitoring 
capabilities. 

2.1.1 

Generic predictive and diagnostic mechanisms, utilising the information obtained from the 
monitoring mechanisms. 3, 

4 

Adaptation of existing methods for causal modelling, causal discovery, and causal inference 
in IoT large-scale applications for predictive modelling, anomaly detection, and diagnosis 

3.3 

 

The overall deliverable constitutes the initial contribution towards fulfilling the project’s requirements regarding 
SEMIOTIC’s objective 3 (Development of dynamically and self-adaptable monitoring mechanisms supporting 
integrated and predictive monitoring of smart objects of all layers of the IoT implementation stack in a scalable 
manner.) and the relevant KPI 3.1 (Delivery of a monitoring management layer for: (a) generating monitoring 
strategies for different checks and configurations of monitors available in the 3 targeted IoT platform, (b) fusing 
results of these 3 IoT platform monitors, and (c) performing predictive monitoring with an aimed accuracy of 
80% on average) and KPI 3.2 (Delivery of a generic monitoring language capable of defining platform agnostic 
monitoring conditions (as part of SPDI patterns), correlations of different IoT platform events that are necessary 
for this, and predictive monitoring checks.). 
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6. CONCLUSIONS 

One of the specific objectives of the SEMIoTICS project is the development of dynamically and self-adaptable 
monitoring mechanisms supporting integrated and predictive monitoring of smart objects of all layers of the IoT 
implementation stack in a scalable manner. 

This deliverable presented the initial design of the SEMIoTICS Monitoring Component (MC) along with 
algorithmic and technological options suitable for the implementation of its key functionalities. 

The concrete conditions monitored by the SEMIoTICS Monitoring Component (MC) are derived by the Pattern 
Orchestrator component starting from the recipes received by the Recipe Cooker. 

The software architecture of the Monitoring Component includes a Controller sub-component for (i) checking 
the monitorability of such conditions across different IoT platforms and creating optimal monitoring strategies 
for this purpose, (ii) configuring automatically the monitors of IoT enabling platforms as required for different 
monitoring strategies. 

Moreover, the software architecture of the Monitoring Component includes specific components (Event 
Signalers) having the role to translate the events generated by the different IoT/IIoT platforms (e.g. AWS, 
MindSphere) and software layers (e.g. network, filed) into a common event format enabling the integration of 
monitoring results generated by the various IIoT platforms and layers of the IoT implementation stack. The IoT 
platforms considered in this deliverable are: Amazon Web Services, Microsoft Azure, Siemens MindSphere, 
FIWARE.  

OpenStack Nova and BEATS tools can be used for the monitoring respectively of OpenStack instances and 
the Linux kernel. The common event format will be based on the CloudEvents format.  

Apache Flink and FIWARE Proton are the two options that will be experimented for the implementation of the 
Complex Event Processor responsible for the integration of events represented in the CloudEvents format. 

Continuous uninterrupted monitoring requires that the Monitoring component has self-adapting capabilities. 
These capabilities require that the Monitoring component is able to predict future states of the monitoring 
configurations and to identify (diagnose) the root causes of those state changes that inhibits the monitoring. 

This deliverable identify Causal Networks as an approach for reasoning about the discrete events accounting 
for the state changes of the monitoring infrastructure. 

For what the continuous domain is concerned the Deep Neural Networks are identified as a suitable approach 
for reasoning at the cloud level. At the Field layer an approach based on regression techniques is indicated as 
more appropriate. 

The deliverable also presents approaches to identify specific anomalies and attacks. Abuses of computational 
resources can be dealt by observing CPU, memory consumption and system calls. Anomalies can be detected 
using Long-Short-Term-Memory networks and Generative Adversarial Networks as well. 

6.1. Open design questions 
 

This deliverable, along with the overall design of the Monitoring Component, has presented a number of 
enabling technologies and approaches suitable for its implementation. At month 17 of the project (date of 
release of this deliverable) the following design questions are open: 

• Which is the most suitable CEP technology to be integrated into the SEMIoTICS Monitoring Component? 

• Is CloudEvents format rich enough to carry the information needed by the SEMIoTICS Monitoring 
Component? 

• Is the monitoring language presented in this deliverable rich enough to fulfill the monitoring requirement of 
the Pattern Orchestrator? 
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• Which are the signalers, among those described in section, more valuable for the SEMIoTICS platform and 
use cases that need to be delivered with the final version of the monitoring component? 

The design questions listed above will be answered through the development of prototypes. The answers to 
the open design questions for the monitoring component will be reported in deliverable D4.9. 

6.2. Implementation status and future work 
 

The design, technologies and algorithmic approaches presented by this document represent the basis for the 
development of the first version of the Monitoring Component. The experience gained with the development 
and utilization of the first version of the Monitoring Component will inform the final design of the SEMIoTICS 
Monitoring, prediction and diagnosis mechanisms. This final design will be presented in the deliverable D4.9. 

The development process of Monitoring Component has the following milestones: 

• M7: start of design activity and technology scouting.  

• M12: start of development (coding) of the monitoring framework and components described in section 2.1 

• M24: release of the first version of the API, integration with one CEP, adapters for FIWARE platform and 
WOT devices. 

• M28: release of the second version including, in addition to the bug fixing and optimization of the 
functionalities of the previous version, the prediction and diagnosis mechanisms based on Causal Networks 
and the other approaches presented in chapters 3 and 4.  
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