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ACRONYMS TABLE 

Acronym Definition 

AI Artificial Intelligence 

ANN Artificial Neural Network 

ARIMA Autoregressive Integrated Moving Average 

ASC Audio Scene Classification 

AWS Amazon Web Services 

BLE Bluetooth Low Energy 

CDT Change Detection Test 

CNN Convolutional Neural Network 

CPU Central Processing Unit 

DCNN Deep Convolutional Neural Network 

DL Deep Learning 

DR Dynamic Reservoir 

DSP Digital Signal Processor 

DTC Deep Temporal Clustering 

ESN Echo State Network 

FW Firmware 

GPU Graphics Processing Unit 

GRNN Generalized Regression Neural Network 

HAR Human Activity Recognition 

HW HardWare 

IHES Intelligent Heterogeneous Embedded Sensors 

IMU Inertial Measurement Unit 

IIoT Industrial Internet of Things 

IoT Internet of Things 

KWS KeyWord Spotting 

LA Local Analytics 

LIDAR LIght Detection And Ranging 

LSTM Long Short Term Memory 

MCU Micro Controller Unit 
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MHz Mega Hertz (unit of frequency) 

ML Machine Learning 

NPU Neural Network Processing Unit 

RBML Rule Based Machine Learning 

RGB-D Red Green Blue Depth (images) 

RNN Recurrent Neural Network 

SARA Socially Assistive Robotic Solution for Ambient assisted living 

SAS Self-Adaptation System 

SoC System on Chip 

SOTA State Of The Art  

SVM Support Vector Machine 

SW SoftWare 

UCx Use Case x 
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1. INTRODUCTION 
This deliverable is the first output of Task 4.3 – “Embedded Intelligence and local analytics” and, as such, it 
focuses on the building blocks required for introducing embedded intelligence at the IIoT/IoT Field Device 
Level. More specifically, it aims to provide an initial definition of Local Analytics (LA) embedded mechanisms, 
so as to enable semi-autonomic local reaction/adaptation within IIoT/IoT devices. This deliverable exploit part 
of the work done on D4.2, where a preliminary analysis of the concepts related to analytics has been identified 
and defined. In D4.2 this initial research has been exploited to identify promising analytics algorithms 
deployable at all levels of the architecture, with the specific goal of identifying the most relevant ones to be 
used for defining the monitoring component of the architecture. On the other hand, the initial research done in 
this deliverable D4.3 identifies a subset of those algorithms, addressing time series processing from sensing 
data, suitable for a real lightweight deployment at the Field Device level on very constrained devices. The main 
outcomes of this deliverable will be used to identify the initial set of algorithms that will be fully characterized 
in D4.10 as part of the Local Embedded Analytics Component. 

 

The content of this deliverable is organized in order to provide a clear overview and promising approaches 
existing todays in literature or as common practices for local analytics algorithms. An overview of them are 
thus provided on section 2 and 3 of the deliverables with the intent to have a complete overview of today’s 
technical landscape in order to identify the subset of algorithms and tools that could be mapped into 
SEMIoTICS framework. Thus, not all of them will be integrated as part of the SEMIoTICS components but only 
the ones that are presented in subsections 2.3 and 3.4.  

 

To present all the above, the deliverable is organized as follows: 

• Section 2 introduces and provides an overview of the envisaged approach in SEMIoTICS for what 
concerns the “Local Embedded Analytics”, with a short definition and a declaration of the main 
motivations and technical analysis that allows to define this key component of the project at the 
consortium level.  

• Section 3 focuses more specifically on Artificial Intelligence (AI) and Machine Learning (ML) algorithms. 
ML algorithms are a subset of all local analytics algorithms adopted within SEMIoTICS. Differently from 
hand-crafted approaches, AI/ML algorithms require specific development policies and supporting tools. 
Thus, this section specifies in more detail the intended scenario together with a preliminary introduction 
of a typical ML algorithm development and deployment workflow using Deep Learning tools, from a 
perspective of the specific challenges about the deployment at Field Device level. Regarding the DL 
tools, an exhaustive overview of the same is provided in this deliverable: only a subset of them will be 
adopted and sponsored in SEMIoTICS as key components that facilitates the integration of proper 
AI/ML solutions into the reference framework. Also depending on the specific use case scenario 
involved, a tool is more suitable for adoption than another one: the final selection will be provided in 
D4.10 after proper development and deployment will be consolidated. 

• Finally, Section 4 derives the conclusions of the deliverable, the current implementation status and the 
next planned steps. 
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1.1. PERT chart of SEMIoTICS 

36 months Leader: SAG

31.12.202001.01.2018

WP1: Project Management

23 months Leader: ST-I

30.11.201901.01.2018

WP2: Requirements and Architecture for 
Smart Sensing and Smart Actuation

24 months Leader: SAG

30.04.202001.05.2018

WP3: Smart objects and networks

25 months Leader: FORTH

30.06.202001.06.2018

WP4: Pattern-driven smart behavior of 
IIoT with End-to-End Security and Privacy

24 months Leader: ENG

31.12.202001.01.2019

WP5: System Integration and Evaluation

36 months Leader: SAG

31.12.202001.01.2018

T1.1: Project coordination 36 months Leader: FORTH

31.12.202001.01.2018

T1.2: Project technical and innovation 
management

36 months Leader: SAG

31.12.202001.01.2018

T1.3: Coordination with EU programme 
level activities

3 months Leader: STS

31.03.201801.01.2018

T2.1: Analysis of emerging business and 
technical IoT value drivers

4 months Leader: SAG

30.04.201801.01.2018

T2.2: Specification of use case scenarios 
& applications and their requirements

4 months Leader: ST-I

30.06.201801.03.2018

T2.3: Specification of infrastructure 
requirements

18 months Leader: BS

31.12.201901.07.2018

T2.4: SEMIoTICS architecture design

22 months Leader: SAG

29.02.202001.05.2018

T3.1: Software defined Aggregation, 
Orchestration and cloud networks

22 months Leader: CTTC

29.02.202001.05.2018

T3.2: IIoT Network Function Virtualization

22 months Leader: SAG

29.02.202001.05.2018

T3.3: Semantics-based bootstrapping & 
interfacing

22 months Leader: STS

29.02.202001.05.2018

T3.4: Network-level semantic 
Interoperability

22 months Leader: IQU

30.04.202001.07.2018

T3.5: Implementation of Field-level 
middleware & networking toolbox

23 months Leader: STS

30.04.202001.06.2018

T4.1:Architectural SPDI patterns

22 months Leader: ENG

30.04.202001.07.2018

T4.2: Monitoring, prediction and 
diagnosis

22 months Leader: ST-I

30.04.202001.07.2018

T4.3: Embedded Intelligence and local 
analytics

22 months Leader: FORTH

30.04.202001.07.2018

T4.4: End-to-End Semantic 
Interoperability

22 months Leader: BS

30.06.202001.09.2018

T4.6: Implementation of SEMIoTICS 
backend API

22 months Leader: UP

30.04.202001.07.2018

T4.5: End-to-End Security and Privacy

5 months Leader: UP

31.10.201901.06.2019

T5.1: KPIs and Evaluation Methodology

15 months Leader: BS

31.08.202001.06.2019

T5.2: Software system integration

20 months Leader: IQU

31.08.202001.01.2019

T5.3: IIoT Infrastructure set-up and 
testing

13 months Leader: SAG

31.12.202001.12.2019

T5.4: Demonstration and validation of 
IWPC- Energy scenario

13 months Leader: ENG

31.12.202001.12.2019

T5.5: Demonstration and validation of 
SARA-Health scenario

13 months Leader: ST-I

31.12.202001.12.2019

T5.6: Demonstration and validation of 
IHES-Generic IoT scenario

36 months Leader: CTTC

31.12.202001.01.2018

T6.1: Impact Creation and Dissemination 31 months Leader: ENG

31.12.202001.06.2018

T6.2: Exploitation of results

24 months Leader: SAG

31.12.202001.01.2019

T6.3: Standardization
36 months Leader: CTTC

31.12.202001.01.2018

WP6: Impact, Dissemination and 
Standardization

 
Please note that the PERT chart is kept on task level for better readability. 
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2. EMBEDDED INTELLIGENCE IN IOT/IIOT ENVIRONMENTS 

2.1. The SEMIoTICS Embedded Intelligence vision 

A key goal of the SEMIoTICS project is to provide a reference infrastructure for supporting multi-layered 
Embedded Intelligence. This means that at each layer of the SEMIoTICS architecture there are specific 
components (see D2.4 – SEMIoTICS Architecture for further details) where embedded intelligence algorithms 
will be deployed. These components will export coherent APIs, specific at each logical level of the architecture, 
in order to make those algorithms available to other components of the architecture. Several algorithms will be 
implemented during the project’s lifespan; embedded intelligence will be demonstrated by covering different 
implementation scenarios exploiting the use cases defined in D2.2 – SEMIoTICS usage scenarios and 
requirements – in compliance with the requirements defined in D2.3. In Figure 1 the generic approach 
envisaged within the SEMIoTICS framework is visualised. In this context, this deliverable focuses on the 
specific task of deploying Embedded Intelligence at the IoT/IIoT Field Devices level. Part of the analytics 
processing is done also at IoT/IIoT Gateway in SEMIoTICS, mainly for supporting monitoring of the SEMIoTICS 
Field Devices, but also part of the analytics that could not be deployed at lowers level of the architecture. 
Please refer to D4.2 for additional details about these implementation details at IoT/IIoT Gateway level. 

 

 
FIGURE 1: MULTI-LAYERED INTELLIGENCE IN SEMIOTICS 

 

In SEMIoTICS “embedded intelligence” corresponds to the generic aspects dealing with the definition of the 
features / infrastructure / algorithms set / supporting tools implementing the concepts referring to the local 
analytics (see next section for further details). In this deliverable, we will cover these aspects focusing on the 
challenges and implications of porting this kind of functionalities at the IIoT/IoT Field device level. We will use 
the term “Local Embedded Intelligence” and “Local Analytics” to refer to this level of the SEMIoTICS 
architecture. 

 

 

 

2.2. IIoT/IoT Field Devices Local Analytics 
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There are 150 billion embedded processors in the world, which is more than twenty for everyone on Earth and 
the growth rate is 20% annually, with no signs of slowdown (see Figure 2). The fundamental concern of the 
Internet of Things (IoTs) is that the majority of the actual embedded devices are not really connected to any 
network and it is unlikely that they ever will be, at least more than intermittently. This sounds like a paradox, 
but the majority of the devices do not need either persistent connection to the network, because it is not strictly 
required, or not feasible at all for many battery powered tasks. What these devices really need is to become 
smarter and able to locally process incoming data to extract relevant features from them. A good example are 
the wearable devices used for health monitoring or fitness activities. The main constraint embedded devices 
face is energy and communication. Wiring them into power units or connecting them with a reliable wireless 
connection is hard or impossible in most environments. The maintenance burden of replacing batteries quickly 
becomes unmanageable as the number of devices increases. The only way for the number of devices to keep 

increasing is if they have batteries that last a very long time, or if they can use energy harvesting (like solar 
cells from indoor lighting). 
 

Constraining energy aims to keep energy usage at the milliwatt level or even lower. This is essential to give a 
long time of continuous use on a reasonably small and cheap battery, or alternatively, it is within the range of 
a decent energy harvesting system like ambient solar. In addition, anything involving radio takes a lot of energy, 
far more than one milliwatt in most cases. Even when low power radio devices are available1, they are so 
simple designed that it is not possible to do any kind of local processing. Transmitting bits of information, even 
with protocols like Bluetooth Low Energy (BLE), a wireless point-to-point protocol specifically designed for low 
power devices, is in the tens to hundreds of milliwatts in the best-case scenarios and comparatively short range 
(typically 10 meters). The efficiency of radio transmission does not seem to be improving dramatically over 
time either; there seem to be some tough obstacles imposed by physics that make improvements hard. If a 
system uses Wi-Fi the power consumption challenge is just dramatically exacerbated. 

Capturing data through sensors and process them locally does not suffer from the same problem. There are 
microphones, accelerometers and even image sensors that operate well below a milliwatt, even down to tens 
of microwatts. The same is true for general Microprocessors and Digital Signal Processors (DSPs) that can 

                                                 
1 http://zolertia.sourceforge.net/wiki/images/e/e8/Z1_RevC_Datasheet.pdf  

FIGURE 2: FIGURE 2 IIOT/IOT CONNECTED DEVICES GROWTH1 

http://zolertia.sourceforge.net/wiki/images/e/e8/Z1_RevC_Datasheet.pdf
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process tens or hundreds of millions of calculations for under a milliwatt, even with existing technologies, and 
much more efficient low-energy accelerators are on the horizon. Therefore, most data captured by sensors in 
the embedded world is just being discarded, without being analysed at all. This is the point where SEMIoTICS, 
developing the concept of multi-layered intelligence, aims at bringing a novel approach and skills to analyse 
such data in an intelligent supervised 2 /unsupervised 3  new way that fits into embedded low power micro 
controllers. The key rationale supporting the multi layered intelligence is the simple observation that the 
bottleneck of a massive scalable IIoT/IoT distributed system is not on the local processing of sensed data, but 
actually on the transmission of those data to the upper levels of the architecture. As long as the connected 
devices number will grow, current mainstream approaches to (remote) data processing will not be sustainable 
in terms of infrastructure and power needs. SEMIoTICS will demonstrate the effectiveness of this new local 
analytics driven approach in a relevant use case scenario as part of WP5 activities. These local analytics will 
also support and complement another key aspect of SEMIoTICS that is the pattern driven approach: this 
approach means (also) to avoid, e.g., to propagate un-necessary raw data from sensors and optionally to 
propagate some relevant event generated as result of local data-reduction algorithms instead. This flow is 
coherent with the pattern approach followed in SEMIoTICS and is represented briefly in Figure 3 below. This 
figure shows a typical complete Local Analytics data/event flow processing where at IIoT/IoT Field Devices 
data are processed to produce and transmit relevant events (saving power) to IIoT/IoT Gateway. These events 
are then further elaborated at that level (e.g., by exploiting data correlations to analyse data dependencies 
between nodes). Finally, further events (e.g., the data dependencies graph) may be sent to the Backend/Cloud 
level where further data aggregation, clustering, analytics could be performed. This is shortly a simplified 
example of multi layered intelligence.  

 

 
FIGURE 3: SEMIOTICS LOCAL ANALYTICS FLOW 

 

In SEMIoTICS, Local Analytics (LA) algorithms will be in general mapped as specific components with a clear 
API interface to exploit their functionalities and services. Therefore, D4.3 focuses on local embedded 
intelligence as mentioned above. Thus, the LA algorithms considered here will be directly mapped as close as 
possible to the data source (i.e., the sensor). As a result, we assume that the data processing takes place 
directly on MCU powered Field Devices or at the local IIoT/IoT Gateway. Specific characteristics and features 
of the deployment platform must be taken into consideration, where we consider specific legacy HW/SW as 
well: coherently, multiple dedicated components will be implemented and tested. 

 

One of the envisaged scenarios is to demonstrate LA considering a real-time scheme, and to focus its use on 
the processing of data streams, where: 

 

                                                 
2 https://en.wikipedia.org/wiki/Supervised_learning 
3 https://en.wikipedia.org/wiki/Unsupervised_learning 

https://en.wikipedia.org/wiki/Supervised_learning
https://en.wikipedia.org/wiki/Unsupervised_learning
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• Typical inputs are data from sensors. In SEMIoTICS, we consider data streams provided by slow time 
varying environmental sensors (i.e., temperature/pressure/humidity/lighting) or high-varying inertial 
sensors (i.e., accelerometer, gyroscope, etc.).  

• Typical outputs are data that depend on the adopted algorithmic procedures. For example, clustering 
algorithms usually compute on a given cluster set the probability that a given input belongs to the n-th 
cluster. Predictive AI/ML models instead predict the input at time N by observing W samples acquired 
at times [N-1...N-W-1]. Generalizing, under a wide range of conditions, it could be observed that the 
outputs may be seen as a sort of derived time series compacting input data. ML/LA algorithms could 
be seen as virtual sensors that generate data (at lower rates vs physical sensors), and thus can be 
considered as equivalent to any other type of dummy raw data sensor within the SEMIoTICS 
architecture. 

• In some cases, the deployment of a physical component depends, as previously stated, on the 
boundaries imposed by the specific platform and on legacy middleware dependencies.   

• For sensor data stream processing, the SEMIoTICS approach is the one inspired by data reduction 
techniques where sensors (attached to field devices) are not directly connected to the backend layer, 
and never stream raw readings to that layer. Instead, they are locally connected to other intra-layer 
components on the same level. Interoperability is ensured by proper definitions of northbound / 
southbound inter-layer interfaces and routed through a controlled pattern driven design. 

 

2.3. IIoT/IoT Field Devices Semi-Automatic Local Adaptation 

One major objective in SEMIoTICS is to enable the concepts of multi-layered distributed intelligence. The main 
reasons motivating this need have been already discussed in the previous section. Here, we further analyze 
the details on how SEMIoTICS will accomplish this multi-layered intelligence concept. Multi-layered intelligence 
means that at all levels of SEMIoTICS, there are specific actors/components that implement some sort of smart 
analytics to achieve a particular task. Thus, in SEMIoTICS, the embedded analytics is functional to implement 
the concept of multi-layered intelligence. In general, embedded analytics will generally implement some sort 
of smart data reduction mechanism to make the architecture more scalable and reliable. In this respect, we 
envisage the need to use different types of algorithms and methods to implement a generic approach for 
handling the multi-layered intelligence. We identified three different families of algorithms that will be shortly 
described in the following subsections and they will be detailed more in the next deliverable cycle. 

 

The type of algorithms under evaluation within the SEMIoTICS framework can be divided into two categories: 
statistical methods and Machine Learning (ML) / Artificial Intelligence (AI) methods. There is the misleading 
perception and confidence that AI algorithms could often (if not always) solve any kind of problem, no matter 
what the intended use is for: processing, classification, regression, prediction, etc. This is not the case, since 
AI, like any other technology field, has both its own pros and cons: depending on the specific application and 
requirements, an AI algorithm could be an oversized solution when a simpler (and faster) solution can be 
implemented using valid alternatives. Moreover, DL and ML methods are not applicable everywhere; a few of 
drawbacks that these algorithms have are shortly mentioned below: 

 

• Inference latency: In some applications the latency requirements for a single inference are close or 
below millisecond time: depending on the target platform, not many convolutions are feasible in this 
short time. In those cases, simpler linear or autoregressive models offers a proper alternative (and 
often they are still a good solution for the problem). 

• Outcome reproducibility: Deep learning algorithms sometimes have a stochastic behaviour: putting 
them to work in real-life, the same DL model trained twice on the same data may converge to the same 
overall loss and quality metrics but behave differently on real input data. In some systems, e.g. in 
automotive or avionics domains, unpredictable behaviour of your model because of a retraining is not 
recommended. 

• Learning complexity: The more coefficients are required to train, the more (labelled) data are needed 
for training a good model: a big neural network generally needs more training samples to converge 
than a simple linear model. A related problem is also the dimensionality of the data: more and more 
features need to be represented in the model and usually this impact on the sparsity of the data 
representation, since in general a higher dimensional space tends to become sparse as well. The final 
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consequence is that the number of parameters to be trained heavily impacts the needed training data 
size (usually an exponential growth). 

• (Good) Legacy algorithms: There is already a number of non-deep learning models that are available, 
already tested and fully working. Even if the trend today is to apply deep learning everywhere, 
rethinking AI powered solutions for well solved problems can end-up in a lot of resources and time 
waste. 

 

 

2.3.1. STATISTICAL METHODS 

Statistical methods try to analyse relations from observed data. Observed data in the scope of this deliverable 
are focused on IIoT/IoT device lightweight algorithms, with a generic time variant signal that comes from a 
sensing node. Having a set of sensed data acquired from a set of sensors, an interesting objective could be to 
estimate a set of statements (i.e. relations) regarding the data between the measured variables in order to 
correlate them: usually, a generic graph representation is used as typical outputs of these kind of algorithms. 
In SEMIoTICS, we will try to shape those algorithms by evaluating them in real world conditions, thus on 
realistic data. 

 

A fundamental concept within the embedded intelligence framework is the use of statistical based methods 
that are used for prediction. In the case of time series, where data is gathered from various IIoT/IoT 
devices/sensors, the task of predicting the future behaviour of the observed time series is very important, 
especially in cases such as predictive maintenance (e.g. predicting a machine temperature etc.). For that 
reason, statistical techniques such as autoregressive models can be applied in this direction. More specific, 
the Auto-Regressive Integrated Moving Average (ARIMA) model is the most basic method used to model time 
series data for prediction/forecasting, in such a way that: 

• a pattern of growth/decline in the data is accounted for (auto-regressive part) 

• the rate of change of the growth/decline in the data is accounted for (integrated part) 

• noise between consecutive time points is accounted for (moving average part) 

 

ARIMA models4 are typically expressed like ARIMA(p,d,q) in the bibliography, with the three terms p, d, and q 
defined as follows: 

• p denotes the number of preceding (lagging) time series values that have to be added/subtracted 
to the time series, so as to make better predictions based on local periods of growth/decline in the 
observed data. This captures the autoregressive nature of ARIMA 

• d corresponds to the number of times the data have to be differenced (by differencing the time 
series we can enforce stationarity to an initially non-stationary series) to produce a stationary 
series (i.e., a time series that has a constant mean over time). This captures the integrated nature 
of ARIMA. If d=0, this means that our data do not tend to go up/down in the long term (i.e., the 
model is already stationary). If d is 1, then it means that the data are going up/down linearly. If d 
is 2, then it means that the data are going up/down exponentially. 

• q represents the number of preceding/lagging values for the error term that are added/subtracted 
to the time series. This captures the moving average part of ARIMA. 

 

Besides, within the statistical analysis framework, correlation can be used, which is any statistical association 
between two random variables. There are several metrics measuring the degree of correlation. The most 
common is the Pearson correlation coefficient, which is sensitive only to a linear relationship between two 
variables (which may be present even when one variable is a nonlinear function of the other). Mutual 
information can also be applied to measure dependence between two variables. 

 

2.3.2. MACHINE LEARNING (ML) – ARTIFICIAL INTELLIGENCE (AI) METHODS 

One of the fundamental challenges of IIoT/IoT technology nowadays is the efficient and robust implementation 
of AI/ML algorithms in light of an embedded intelligence framework. Typically, AI/ML algorithms use large 
amount of training (offline labelled) data and virtually unlimited resources to perform the 
learning/prediction/classification etc. tasks. As a result, it is very important to focus on AI/ML algorithmic 

                                                 
4 https://otexts.com/fpp2/arima.html 

https://otexts.com/fpp2/arima.html
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techniques that exploit the limited data directly collected via the IIoT/IoT devices/sensors without the need of 
transmitting further data or information to the upper IIoT/IoT infrastructure levels. In the current section, we 
provide a brief literature review about available algorithmic solutions that could be applied within the embedded 
intelligence SEMIoTICS framework, forming a roadmap for our potential research work (as well as practical 
implementation work) on that subject. 

 

More specifically, in [1] a tree-based algorithm is developed for efficient inference on IIoT/IoT devices having 
limited resources (e.g., 2KB RAM and 32KB read-only flash). The algorithm maintains prediction accuracy 
while minimizing model size and prediction costs by developing a tree model which learns a single, shallow, 
sparse tree with powerful nodes. Moreover, all data are sparsely projected into a low-dimensional space in 
which the tree is learnt and joint learning of all tree and projection parameters is performed. In [2] the authors 
introduce a compressed and accurate K-Nearest Neighbours algorithm for devices with limited storage. 

The described approach is inspired by k-Nearest Neighbours but has several orders of magnitudes less storage 
and prediction complexity: a small number of prototypes is learnt to represent the entire training set, and then 
a sparse low dimensional projection of data is performed. Finally, joint discriminative learning of the projection 
and the prototypes with an explicit model size constraint is carried out. 

 

Deep neural networks have been implemented to run on embedded devices by reducing redundancy in their 
parameters: in [3], the authors study techniques for reducing the number of free parameters in neural networks 
by exploiting the fact that the weights in learned networks tend to be structured. Additionally, neural network 
compression techniques such as quantization and encoding are presented in [4], where the authors introduce 
the “Deep Compression” scheme to compress the neural networks without affecting accuracy. The idea is that 
“Deep Compression” operates by pruning the unimportant connections, quantizing the network using weight 
sharing, and then applying Huffman coding. 

 

In [5], the concept of “BinaryConnect” is proposed: it is a method consisting on a deep neural network training 
procedure with binary weights during the forward and backward passes, while retaining precision of the stored 
weights in which gradients are accumulated. Binary weights, i.e., weights which are constrained to only two 
possible values (e.g. -1 or 1), can bring great benefits to specialized deep learning hardware by replacing many 
multiply-accumulate operations with simple accumulations, as multipliers are the most space and power-hungry 
components of a digital implementation of neural networks. The authors in [6] describe the “HashedNets” 
architecture that exploits the inherent redundancy in neural networks to achieve a drastic reduction in model 
size. The proposed approach uses a low-cost hash function to randomly group connection weights into hash 
buckets, and all connections within the same hash bucket share a single parameter value. These parameters 
are tuned to adjust to the proposed neural network weight sharing architecture using the standard back-
propagation process during training.  

 

“LightNNs” framework is proposed in [7], which modifies the computation logic of conventional deep neural 
networks by making reasonable approximations, and replacing the multipliers with more energy-efficient 
operators involving only one shift or limited shift-and-add operations. In addition, the “LightNNs” approach also 
reduces weight storage, thereby decreasing the energy for memory accesses. In [8], the authors consider the 
task of building compact deep learning pipelines suitable for deployment on storage and power constrained 
mobile devices. They propose a unified framework to learn a broad family of structured parameter matrices 
that are characterized by the notion of low displacement rank. The proposed structured transforms admit fast 
function and gradient evaluation, and they span a rich range of parameter sharing configurations whose 
statistical modelling capacity can be explicitly tuned along a continuum from structured to unstructured. In [9] 
the authors describe the design, realization and full integration of a ML algorithm on a simple NXP sensor 
board typical of IIoT/IoT systems. The ML process relies upon on a Gaussian mixture model that uses the 
expectation-maximization algorithm with the minimum description length criterion. The implemented algorithm 
is based on a probabilistic model generated on the NXP board that characterizes the statistical features of 
sensor measurements in real time. 

 

CMSIS-NN (see [10]) embodies efficiently Neural Network Kernels for ARM Cortex-M CPUs into a library. This 
is a software library with a collection of efficient neural network kernels developed by ARM to maximize the 
performance and minimize the memory footprint of neural networks on Cortex-M processor cores. The library 
is divided into a number of functions, each covering a specific category: Neural Network Convolution, Neural 
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Network Activation, Fully connected Layers, Neural Network Pooling, Softmax and Neural Network Support 
Functions. The library has separate functions for operating on different weight and activation data types 
including 8-bit integers (q7_t) and 16-bit integers (q15_t). The description of the kernels is included in the 
function documentation. The implementation details are also described in the published paper [10]. 

 

Tinn5 (Tiny Neural Network) is a 200-line dependency-free neural network library written in C99 and uses no 
more than the C standard library. Tinn is meant for embedded systems. The concept is to train a model on a 
powerful desktop and load it on a microcontroller and use the analog-to-digital converter to predict real time 
events. Tinn can be multi-threaded. 

 

e-AI6 from Renesas is a development environment and an effective tool to embed Artificial Neural Networks 
(ANN) into an MCU/MPU after off-line learning. There are some difficulties in implementing a learned model 
on an MCU/MPU.  Main reasons are: lack of Python language native support that is not compatible with optimal 
ROM/RAM management on MCU/MPU devices. So, there is a well-established trend where Python is used as 
a description language in many AI frameworks, while the control program of the MCU is usually written in 
C/C++. The e-AI development environment solves these problems and makes it possible to implement the 
learned ANN on an MCU/MPU in conformance with C/C++ projects.  

 

TensorFlow7 Lite is an experimental framework Google is sponsoring to derive a “tiny” framework specifically 
designed for micro controllers, which involves four major steps: create or find a (lightweight) model architecture, 
train a model off-line, convert the model, write code to run inference. This is a flow conceived by Google to 
achieve AI inference at the edge by exploiting the constrained resources of an MCU with few Kbytes of memory 
available. It is an interesting experiment, not yet mature nor widely adopted: it has still some limitation on 
managing optimal memory allocation and schedule for the mapped NN model, and in particular the last step 
still required hand-written code for actual mapping of the model on target MCU. In this respect the 
STM32Cube.AI tool presented in section 3.3.6 offers more advanced features, e.g. the automatic generation 
of the NN model code already integrated into CubeMX middleware software.  

 

2.3.3. IIOT/IOT FIELD DEVICES UNSUPERVISED LOCAL ANALYTICS 

A major contribution in consolidating these local embedded analytics approaches, addressing real life 
problems, will be provided by all three major use cases identified in D2.2 within SEMIoTICS and the 
requirements described in the D2.3, but a strong emphasis on this specific aspect will be given by the IHES 
demonstrator. This embedded engineered system will be deployed at the field device level by defining a set of 
specific lightweight algorithms deployable on heavily constrained STM32 MCUs devices (D2.3-Table8-
R.UC3.3). These algorithms will be wrapped as a dedicated “Local Embedded Analytics” component, in order 
to provide a validated example of an appliance in the IIoT/IoT domain. This system will provide advanced 
enabling technologies and system libraries to implement semi-automatic unsupervised local adaption, 
borrowing some concept from these research domains. A self-adaptive system (SAS) is a system able to adapt 
its behaviour and / or structure in reference to changes in the system itself and/or its operating environment, 
in an autonomous way (D2.3-Table1-R.GP.4). 

 
 

All the algorithms used in the proposed Local Embedded Analytics and for the semi-automatic unsupervised 
local adaption of STM32 device are based on the requirements specified in D2.3. This section shortly 
summarizes these requirements. The STM32 MCUs devices should embed sensors, obtain data and process 
this raw data using statistical methods and ML algorithms. This approach aims to minimize the traffic of raw 
data if favour of a communication triggered by events. This must be based on secure and well-known 
communication protocol that allow the association of new devices to the network and the communication 
between the analytics devices and the IIoT/IoT Gateway. For a better understanding and a detailed 
explanation of all the requirements, consider reading section 2 and 3.3 of D2.3 

In particular, these mechanisms will be implemented close to the sensing devices (i.e., a set of smart MCUs 
equipped with communication capabilities), taking advantage of the ability to autonomously detect changes in 

                                                 
5 https://github.com/glouw/tinn 
6 https://www.renesas.com/eu/en/solutions/key-technology/e-ai/about.html 
7 https://www.tensorflow.org/lite/microcontrollers/get_started 

https://github.com/glouw/tinn
https://www.renesas.com/eu/en/solutions/key-technology/e-ai/about.html
https://www.tensorflow.org/lite/microcontrollers/get_started
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the real-time acquired data streams, e.g., induced by faults affecting sensors and actuators or sensed in a 
time-variant environment. The majority of the Local Embedded Algorithms adopted in SEMIoTICS will be 
derived from a novel signal processing design methodology together with an embedded resource-constrained 
technological implementation affecting the sensor acquisitions in groups of heterogeneous sensing nodes. 

This methodology requires: 

 

1. Online learning of the signal model using a minimal number of samples (D2.3-Table8-
R.UC3.8). 

2. Apply the learnt model to compute a residual signal using input samples and predictions 
(D2.3-Table8-R.UC3.4). 

3. Design a model-free change detection test applied to residual signal (D2.3-Table8-
R.UC3.5). 

4. Design a change-point method to validate the detected change (D2.3-Table8-R.UC3.5). 

 

A technological implementation of the proposed methodology encompassing linear predictive models, 
autoregressive models, specifically designed AI/ML nonlinear predictive algorithms (see section 3.4.1 for 
further details) and some specific tailored change detection algorithms with a chained validation phase to 
mitigate false positive changes are currently under design and initial mock-up functional implementation. The 
final definition, specific deployment, testing and the precise set of algorithms adopted in a single MCU unit will 
be detailed later in D4.10, which is the final draft of this deliverable. This generic data streams processing 
pipeline will be completely mapped on ST MCU STM32 devices as a dedicated C library exposing dedicated 
APIs as part of the activities related to the UC3 demo scenario. 

 

This mapping demonstrates how it is possible to implement an efficient yet generic data reduction flow at a 
single MCU processor, keeping advanced functionalities yet providing way better energy consumption figures 
thanks to the low data rate communication flow. Moreover, some AI algorithm (see next section 3 for further 
details) will also be included as part of the running FW on the device to demonstrate that on this kind of tiny 
devices it is possible under specific assumptions to map a ML algorithm when it is carefully designed and 
implemented. The high detection accuracy together with the low computational load and memory occupation 
makes the proposed methodology (and its technological implementation) well suited for self-adaptive smart AI-
powered sensing nodes employing low-cost high-volume micro controllers widely adopted in the mass market 
for the Internet of Things. A generic overview of the component functional architecture in a single MCU device 
is shown in Figure 4.    

 

 
FIGURE 4: LOCAL LEARNING / ADAPTATION ALGORITHMS - IHES NODE 
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The IHES system represents the actual technological implementation of a novel methodology specifically 
defined for detecting changes affecting the sensor acquisitions in units of IIoT/IoT Intelligent Nodes. This 
methodology has been conceived to detect changes at the sensor level or close to them, increasing 
responsiveness, scalability and allowing the nodes to detect faults in the sensors or time-variance in the 
environment, without requiring any a-priori information nor assumption about the environment under inspection. 

 

The novelty of the proposed methodology applied to low-cost resource constrained micro controllers, both in 
terms of computational power and integrated RAM and ROM memories, resides in the joint use of: 

 

• A learning mechanism to build the predictive model describing the sensor data stream over time. 

 

• A model-free (i.e. threshold-free) change-detection mechanism to inspect changes in the acquired data 
stream. By “threshold-free” we mean algorithms that are able to estimates by themselves relevant 
thresholds as part of the online (predictive) model estimation phase. Thus, the thresholds are still part 
of the processing, but they are not more hard-coded as part of the algorithm definition as it happens 
normally.   

 

The whole processing pipeline could be represented as a state machine composed by initialization / learning 
and runtime modes operating over a shared global context. The online learning step relies on an initial change-
free training sequence of samples acquired by the sensor. Once the learning phase over a relatively small 
sliding time-window has been completed, the discrepancy between the value measured by the sensor and the 
one estimated by the predictive model (the residual) running on micro controller is calculated. The residual can 
be modelled as an independent and identically distributed random variable and it is thus suitable for further 
processing by some sort of Change Detection Test (CDT) Analysis algorithm. Once the change has been 
detected by the model-free (i.e. non-parametric) CDT, the Change-Point Method (CPM) comes into play.  The 
goal of this step is to reduce the occurrence of false positive detections. CPMs are statistical hypothesis tests 
operating on a fixed data with the goal to verify whether the data sequence contains a change-point, i.e., a 
time instant after which the data-generating process changes its probability density function. When the 
presence of the change is confirmed this method also provides an estimate of the time instant the change 
occurred, which is a very important metadata needed to aggregate different changes from the same device or 
inter-device in order to cluster them together (D2.3-Table8-R.UC3.17). A similar approach for the change 
detection can be seen in the paper [11] introducing the Support Vector Method for detecting changes in a given 
set of data. This kind of method seems very promising since it is in line with Vapnik's principle that states “to 
never to solve a problem which is more general than the one we actually need to solve as an intermediate 
step”. 

 

 

2.3.4. IIOT/IOT FIELD DEVICES SUPERVISED LOCAL ANALYTICS 

This subsection presents supervised clustering algorithms suitable for IIoT/IoT Field Devices. In particular, the 
focus is on algorithms that can be applied to evaluate gait data acquired by inertial sensors like accelerometers 
and gyroscopes. This focus is motivated by the fact that gait analysis is one of the key functionalities provided 
by the SARA e-health use case. In general, gait analysis can be used for health monitoring or to verify the 
efficiency of rehabilitation and to evaluate surgeries’ success. The acquisition of different kinds of kinematic 
gait data can be used for different purposes: measuring joint angles, determination of gait events (e.g. initial 
contact, end contact) and determination of spatiotemporal parameters (e.g. stride time, gait velocity), clustering 
of subjects into different groups (e.g. pathological, healthy, fatigued) based on their gait characteristics. 
Instance-based regression methods such as Generalized Regression Neural Network (GRNN) and k-nearest 
neighbours (k-NN) can be used to estimate joint angles during gait using inertial data [12]. Support Vector 
Machines can be used to classify fatigue and non-fatigue gait of healthy subjects using data collected from an 
Inertial Measurement Unit (IMU) situated at the sternum during fatigue and no-fatigue walking conditions [13]. 
Support Vector Machines can also be used to classify symmetric and asymmetric gait patterns using RGB-D 
data collected from a camera on board of a Robotic Walker [14]. In this paper, a Support Vector Machine (SVM) 
was trained according to the strategy “one-against-all,” using a soft margin (cost) parameter set to 1.0. The 
chosen kernel is the cubic kernel. Multilayer perceptron neural networks can be used to cluster pathological 
and healthy gaits into groups using data recorded from with an accelerometer placed at the lower back [15]. 
Multilayer perceptron neural networks can be implemented using FPGA technology [16].  The current 
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availability of low-cost FPGA technology like MicroZed8 or Vidor9  boards make this option suitable for a gait 
analysis system placed on board of the Robotic Rollator, one of the field devices part of the solution developed 
by SARA use case in SEMIoTICS (UC2).  

                                                 
8 http://zedboard.org/product/microzed 
9 https://store.arduino.cc/mkr-vidor-4000 

http://zedboard.org/product/microzed
https://store.arduino.cc/mkr-vidor-4000
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3. AI ALGORITHMS FOR EMBEDDED INTELLIGENCE 

3.1. AI Algorithms in SEMIoTICS 

AI algorithms and more specifically the “Deep Learning” approach is becoming increasingly popular throughout 
the world of technology. Artificial Neural Networks are at the core of Deep Learning methods. They are not 
new but they became more popular in the mid-2000s after Hinton and Salakhutdinov published in 2006 a paper 
[17] explaining how we could train a multi-layered feed-forward neural network one layer at a time. From their 
introduction (in the modern form) in the mid ’80s, they needed around 30 years to become mainstream, as 
computers were not powerful enough and companies didn’t have large amounts of data to train them. Examples 
of the ANN approach related to the ML can be found in Figure 5. 

 

 

More precisely, looking at Figure 6. AI could be defined as a superset of all the studies where machines mimic 
the cognitive capabilities of humans. Typical examples are: interaction with the environment, knowledge 
representation and perception, learning, computer vision, speech recognition, problem solving, etc. AI is a 
heterogeneous topic that involves difference knowledge domains such as computer science, statistics, 
mathematics, etc.  

 

ML is a sub-branch of AI: it is the field of computer science that gives computers the ability to learn without 
being explicitly programmed. It consists of algorithms that can learn and make predictions on data: such 
algorithms train on past examples to build and estimate models. ML usually is employed where traditional 
programming is unfeasible. If trained properly, it should work on new cases.  

 

 

Some typical approaches to ML are: 

 

FIGURE 5: ANN APPROACH RELATED TO THE ML 
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• Decision Tree Learning 

 

• Clustering 

 

• Classification     

 

• Rule based learning 

 

• Deep Learning 

 

 
FIGURE 6: ARTIFICIAL INTELLIGENCE DOMAINS CLASSIFICATION 

 

Decision tree learning is an approach aiming at estimating a model that can learn to predict discrete or 
continuous outputs by answering a set of simple questions based on the values of the input features it receives. 
As its name suggests, it is a tree-like graph with nodes representing the places where we need to take a 
decision / answer to a question; edges represent the answers to the question (usually it is a Yes/No answer, 
thus the tree is represented as a generic binary tree). The leaves represent the actual output or class label. 
They are used in non-linear decision-making processes, allowing at local nodes to expose them on surface, as 
simpler linear decision processes. Learning a decision tree from a dataset means to grow it by deciding which 
features to choose and what conditions to use for splitting the samples, along with knowing when to stop. 

 

Clustering algorithms are useful for the detection of similarities. ML clustering algorithms do not require labels 
to detect similarities, so they do not need annotated datasets during the learning phase. For this reason, 
clustering algorithms are referred also as unsupervised learning. In the real world, unlabelled data are the 
majority of data and they are freely available (think e.g. about a sensor monitoring an environment). One law 
of ML is: the more training data are used, the more accurate our algorithm we expect to be. Therefore, 
unsupervised learning has the potential to produce highly accurate models: given a set of data observations 
(i.e., data points), we can use a clustering algorithm to classify each data point into a specific group. In theory, 
data points that “are similar” will lay in the same group (a group is a set of observed data points with similar 
properties and/or features); by contrary data points in different groups should have highly dissimilar properties 
and/or features. 

 

A classification algorithm instead, depends upon labelled datasets: that is, the knowledge dataset used to train 
the network is properly labelled to allow the network during training to learn the correlation between labels and 
data. This is known as supervised learning. Typical application fields are to detect faces, recognize facial 
expressions, identification of objects in images, recognition of gestures in videos, detection of voices, 
transcription of speech to text, etc. Any label / class that humans can generate, any outcome that is relevant 
to solve a specific problem which correlates to data, can be used to train a neural network. 
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In a classification problem, the idea is to predict the target class by analysing a labelled training dataset 
(i.e. a set of known observations). The goal of a classification algorithm is to find proper boundaries for each 
target class, in order to determine the class of unseen new observations and provide a correct class prediction 
probability for each possible class. 

 

Rule-based machine learning (RBML) methods encompass any machine learning approach that identifies, 
learns, or evolves a predefined set of rules, where each rule specifies a subset of the input space. RBML uses 
partitioning methods for identifying subgroups of samples contained within the given training dataset. RBML 
methods are specializations of generic learning classifier systems [18], association rule learning [19] and 
artificial immune systems [20]. 

 

Finally, Deep Learning (DL) can be considered as a technique inspired by the human brain. It is said to be 
“Deep” because of the large number of layers and parameters, thus a lot of annotated data are required. The 
technology behind Deep Learning is a Neural Network composed by multiple layers stacked together. One of 
the fundamental practical challenge is to understand the exact information extracted by each layer. Each stack 
of neurons extracts higher level information, so that at the end they can recognize very complex patterns. Some 
experts are sometimes sceptical of this model because, even though it is based on well-known mathematical 
equations, we know little on the reasons why the defined deep neural network ultimately works. 

This is a historical change in computer science. Before ANN, humans thought they were the best at designing 
code and rules, but now they have to accept that machines can beat them even in devising an algorithm. 
Machines programmed to recognize patterns with Deep Learning beat the old “Hand-Crafted-Rule-Based” 
algorithms. 

3.2. AI Algorithms and the IIoT/IoT Local Analytics Revolution 

Until few years ago, ANN and ML techniques were used only on the Cloud (i.e. Google Search or 
Facebook/Pinterest run ANNs/ML algorithms to identify user interests and propose news or ads). However, 
more recently they have been ported on automotive head units, industry 4.0 plants, smart building management 
systems and even drones or robots. This trend is going to spread further within the IIoT/IoT ecosystem and so 
every object will become not only “Smart” but “AI-Smart”. In particular, CNN will be of a paramount importance 
within the next years for the local analytics in IoT and IIoT domains, as the number of physically connected 
devices are going to exponentially grow to billions of connected devices in next 30 years as discussed in 
Section 2.2. 

 

Once a neural network has been designed for a particular application, that network is ready to be trained, that 
is, the process of learning the network parameters weights. There are two approaches to training - supervised 
and unsupervised learning. Supervised learning requires a mechanism to give to the network the desired output 
either by manually "grading" the network's performance or by providing the desired outputs expected from the 
inputs. Usually, large annotated datasets are required for proper supervised learning. Unsupervised learning 
requires the network to make sense of the inputs without human help nor any a-priori knowledge on particular 
instances of the provided inputs. In SEMIoTICS, we plan to use both approaches to address different use case 
scenarios. The first approach usually is more suitable for classification problems whereas the latter usually is 
more indicated for self-learning appliances from time variant data streams to anomaly detection.  

 

There are various ways to define a neural network architecture and to train it with specific (annotated) data in 
order to perform a specific task. Several DL tools has been developed in the past decade and they are widely 
available as open source tools: Theano10 (University of Montreal) and Caffe11 (University of Berkeley) are the 
oldest libraries and frameworks available to design and train neural network. In the last couple of years, they 

                                                 
10 Theano DL Tool - http://www.deeplearning.net/software/theano/ 
11 Caffe DL Tool - https://caffe.berkeleyvision.org/ 

 

http://www.deeplearning.net/software/theano/
https://caffe.berkeleyvision.org/
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have been flanked and surpassed in term of features and usability by other libraries/frameworks such as 
Keras12, TensorFlow13 (Google), CNTK14 (Microsoft), MxNet15 (Amazon), Matlab AI Toolbox16, PyTorch, etc. 

Neural Networks outperform solutions for people/environment behaviour understanding and for modelling the 
outside world. The availability of large annotated datasets from one side, and the IoT revolution on the other, 
has made available new business opportunities and markets where AI enabled IoT devices are appearing and 
becoming “Smart”. 

 

Several Companies, ranging from Google to Facebook or from Amazon to Mobileye and Nvidia, are investing 
to provide affordable neural network solutions for various applications. With the advent of IoT, it is not 
convenient to delegate all system intelligence to the Cloud or to centralize the system brain in a computationally 
intensive, hugely power dissipating central units (CPUs), requiring more and more bandwidth to exchange data 
with the edge devices. “AI-Smart enabled” IoT devices allow filtering and processing data close to the source 
(i.e. the sensors) and off-load an important part of the processing from central units/cloud, also decreasing the 
required data transmission bandwidth and improving system scalability and responsiveness. This trend is 
already confirmed by Intel, a primary company for Cloud based services, which is now relying on the Movidius 
IC solution17 for Image/Video analysis based on CNN solutions, in order to offload the Cloud servers of more 
and more storage/computational power demanding processing required by the new applications. 

  

Clearly, at this early stage of research applied specifically to IoT devices, not all CNNs could be ported to such 
memory / power / computation limited devices. As a simple example, CNNs for image processing are actually 
beyond the computational capabilities of any IIoT/IoT device based on simple MCU cores running in the range 
of tens of MHz (80 to 400 MHz Typically) with ROM/RAM sizes typically in the range 512 Kbytes/128 Kbytes. 
But there are some other application domains where ML algorithms could still play an important role as depicted 
in Figure 7. 

 

 
FIGURE 7: FIGURE 7 AI SOLUTIONS VS APPLICATION REQUIREMENTS18 

 

 

In SEMIoTICS, we are interested in investigating the feasibility of deploying the low end of appliances depicted 
in Figure 7 as part of the Embedded Local Analytics Component. There are several reasons that motivates it. 
The main one is that we are focusing on the deployment on low power microcontroller IIoT/IoT nodes: this kind 
of devices are usually very limited in the available memory (few Mbytes maximum) and computational power 
(tens on MHz typically) and they are not (yet) equipped with any dedicated HW to accelerate AI/ML algorithms. 
Moreover, they are usually not equipped with any kind of vision camera since usually they are used to control 

                                                 
12 Keras DL Tool - https://keras.io/ 
13 TensorFlow DL Tool - https://www.tensorflow.org/tutorials 
14 CNTK DL Tool - https://github.com/Microsoft/CNTK 
15 MxNet DL Tool - https://mxnet.apache.org/ 
16 Matlab AI Toolbox - https://www.mathworks.com/campaigns/offers/ai-with-matlab.html 
17 Intel Movidius IC - https://www.movidius.com/ 
18 STM32 solutions for Artificial Neural Networks - https://www.st.com/content/st_com/en/stm32-ann.html 

https://keras.io/
https://www.tensorflow.org/tutorials
https://github.com/Microsoft/CNTK
https://mxnet.apache.org/
https://www.mathworks.com/campaigns/offers/ai-with-matlab.html
https://www.movidius.com/
https://www.st.com/content/st_com/en/stm32-ann.html
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physical actuators or process data from simple sensors. So, they usually have plenty of environmental 
(temperature, humidity, etc.) and inertial sensor (mainly accelerometers); some devices include also 
microphones for simple audio applications and processing tasks. Addressing these potential applications 
allows to anticipate the needs and problematics of mapping these algorithms in real life scenarios, while still 
using a pure software-based solution even on these simple nodes and anticipate on a real embedded system 
the edge computing paradigm. In fact, sensor analysis for simple tasks (e.g. predictive modelling, activity 
recognition, etc.) or some audio application (e.g. keyword spotting) could be addressed using “tiny”, specifically 
derived, AI/ML algorithms, where a simpler topology is defined from scratch, or by pruning complex NN models: 
these tiny models are composed by less layers, supporting a limited set of parameters. This simplified network 
topology requires smaller annotated databases in order to be trained, lighter training procedures and less 
memory usage by the final deployed models. A final aspect that allows this node level AI mapping is the general 
observation that AI/ML algorithms tends to have a peculiar “asymmetry”: they usually require powerful facilities 
(PCs, Server farms) to collect data and to train the models, but once trained, the trained model (the inference 
algorithm) is usually lightweight and simpler to run. The fact is that the first step is done during algorithm 
development, offline, whereas actually only the inference algorithm derived from the trained model runs in the 
final target device. Also, it is interesting to note that depending on the specific scenario, AI/ML algorithms could 
address a task with higher accuracy and less computational and memory complexity figures compared to 
similar traditional designed algorithms as it is debated in [21]. Finally, another motivation for AI/ML algorithms 
in SEMIoTICS is that they effectively compress the information that has to be transmitted to the backend cloud. 
This decreases the load to the network and the cloud servers and may end up conserving battery power. 
Although this is counter-intuitive, microcontrollers may need less battery power for AI/ML algorithms which 
considerably compresses information, than the transceiver chip would need to transmit the uncompressed, raw 
data to the backend. 
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3.3.   Deep Learning Tools 

Deep Learning Tools20 are tools designed to support all phases of AI/ML algorithms, from the initial conception 
up to the final platform deployment. They are used by ML Engineers or Data Scientists to analyse data, train 
models, validate them, and, in some of them (e.g. TensorFlow), deploy them in production. 

They aim at making the development of machine learning algorithms fast, easy, friendly (not restricted to only 
data scientists and mathematics) and to some extent, also interoperable. 

 

• Fast: Good tools can automate each step in the applied machine learning process. This means that 
the time from the initial idea, the prototyping phase and the final platform deployment is greatly 
shortened. The alternative is to implement each capability yourself by hand-crafted code from the high-
level model description. This can take significantly longer than choosing an off-the-shelf tool. 

 

• Easy: You can spend your time choosing the good tools instead of researching and implementing 
techniques for your desired AI network model. The alternative is that you have to be an expert in every 
step of the (math) process in order to implement it. This requires research, experimentation in order to 
understand the techniques, and a higher level of engineering to ensure the method is implemented 
efficiently and with no bugs. 

 

• Friendly: There is a lower barrier for beginners to get good results. You can use the extra time to get 
better results or to work on more projects. The alternative is that you will spend most of your time 
building your tools rather than on getting the desired results. 

 

• Interoperable: not all tools are good for supporting all phases of the algorithm development. Some 
tools are very helpful in training the algorithm, others are more optimized for the deployment on specific 
platforms, and so on. Thus, an emerging need, not yet fully addressed but clearly understood, is that 
a good tool should allow seamless interoperability with other tools so that each phase can be carried 
out using the most convenient tool, according to the specific stakeholder’s needs.  

 

Interoperability is not yet a consolidated feature in today’s tools: most of them are incompatible with each other. 
The community hasn’t converged on standard formats and interfaces, and thus integrating tools across the 
entire workflow can be a very time-consuming task. Moreover, deployment is quite a tricky problem by itself on 
AI/ML tools: it means to be able ideally in no time and without any additional effort to put your newly designed 
and trained AI/ML algorithms in production by making them run on the final target platform device. This is usually 
referred as the runtime environment of an AI/ML tool. For example, IIoT/IoT services such as Amazon AWS and 
Microsoft Azure offer powerful proprietary runtime environments as remote services for ML algorithm 
deployment where the algorithms are often physically mapped on hardware accelerated GPUs and adapted to 
support this new computation intensive task. Ideally, a well-designed tool should support fast, efficient 
deployment on a heterogeneous set of platforms without involving the developer in dealing with specific platform 
boundaries or characteristics. This aspect has been mainly addressed today by virtualizing AI/ML algorithm 
deployment using powerful centralized datacentres facilities or mixed CPUs/GPUs architectures, and it comes 
at a cost: even higher complexity of the virtualization infrastructure, higher memory requirements and increased 
latencies in producing the expected results. 

 

Recently, there is a trend in defining lightweight, limited runtime environments for embedded devices (e.g. the 
TensorFlow Lite runtime21), but they are still addressing the high side of those domain: usually the deployment 
is feasible as a suboptimal mapping relying on the availability of a platform housing powerful (embedded) 
multicore CPUs and GPUs like the ARM CortexA SoC. This runtime-virtualized environment-driven approach is 
clearly not suitable for the very constrained IIoT/IoT domain (i.e. mainly the MCUs domain). Moreover, there is 
not yet a consolidated standard approach for the deployment of those algorithms at this level of the 
infrastructure. In this respect, the SEMIoTICS project is aiming at defining a proper methodology and 
development flow for allowing fast deployment of lightweight ML algorithms at the IIoT/IoT Field Devices level 
equipped with low power MCUs. Further details are provided in section 3.3.6. 

                                                 
20 https://en.wikipedia.org/wiki/Comparison_of_deep-learning_software 
21 https://www.tensorflow.org/lite 
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Anyhow, it is clear that the mainstream approach for developing AI/ML algorithms today is to rely on some DL 
tools for helping the whole development cycle of an algorithm or part of it. Over the past decade several AI/ML 
tools have been developed as open source software. Only few of them survive today and there seems to be a 
trend now where ML researchers, engineers, students and hobbyist tend to converge on three of them: Google 
TensorFlow, Keras and Facebook Pytorch as reported in Figure 8. 

 

 
FIGURE 8: FIGURE 8 DEEP LEARNING TOOLS POPULARITY22 

 

There are plenty of best-practice, tutorials and documentation on the web to start using any kind of DL tool. 
Abstracting from a specific tool, usually the steps required to develop (and deploy) a ML algorithm could be 
summarized in: 

 

1. Data collection [22]: proper datasets usage is of paramount importance in the ML field. For supervised 
learning they need to be additionally annotated, whereas with unsupervised algorithms they need not 
to be. Anyhow, even if not annotated they could be indeed costly to produce. A good dataset heavily 
impacts the accuracy of final algorithms since the network model is able to learn (and generalize) only 
from what it has observed. Feeding poor (or not relevant) data to a ML model during training often 
achieves a lower performance.  

2. Data pre-processing and conditioning: pre-processing is another important step: it is not always the 
case that the desired ML algorithm receives as input the original data. In some cases (e.g. in audio / 
inertial processing) some pre-processing algorithm should be designed in order to transform the input 
data in a more convenient data representation. Typical examples are, for audio processing, the Fourier 
transform, and for inertial sensor, the gravity factor removal. These transformations are usually done 
to simplify the NN model by providing good conditioned data.  

3. Network model definition: this step, together with the subsequent network training constitutes the 
heart of an ML algorithm. Defining a network model means to identify (based on some heuristics) the 
best set of basic layers and their concatenation (a network could be mathematically represented as a 
generic connected graph) in order to address the problem in a simple yet accurate way. This is usually 
referred as the identification of the right network topology and can be performed by experimentation 
through iterations of the training and optimization phases 4) and 5).  

4. Network model training: once the topology is defined, the parameter set need to be sized as well: 
complex models and tasks usually map to larger parameter sets and increased model complexity, but 
higher accuracy, whereas small parameter sets mean in general lower accuracy but also “lighter” final 

                                                 
22 www.kdnuggets.com/2018/09/deep-learning-framework-power-scores-2018.html 
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inference loads. Since the “accuracy” of a network depends on the specific task (e.g. an autopilot 
algorithm for a real plane deserves a far higher accuracy than the one used in a flight simulator) there 
is always a trade-off between algorithm complexity and accuracy. Once the parameters have been 
defined for a given model topology the actual training phase may happen. During this phase the 
algorithm starts to learn the task it is designed for: it needs labelled data if the algorithm is a supervised 
one, or annotated set of data samples for an unsupervised one. No matter if a dataset is annotated or 
not, it is a good practice to partition it in two parts: data used for the training (“training set”) and data 
used for the algorithm evaluation “validation set” (see step 6). This is very intuitive to explain: an 
algorithm should never be tested using inputs that have been used for training it, otherwise it may be 
not able to “generalize” (i.e., to recognize unknown inputs when applied in a real-life environment).  

5. Network model optimization: once the topology and the parameters have been tuned and identified 
as part of a successful training procedure, the model needs to be deployed on a real working 
environment. Since all devices have limited resources, including the most powerful ones, there are 
further steps to transform the original model representation into the actual deployed model. This is 
where the overall deployment phase plays a key role in order to ensure the algorithm works in real life 
situations, with optimal performances. There are several optimizations that could be actually 
implemented during deployment. They are specific to the model topology and platform design. Some 
common optimizations consist on parameters compression by any kind of scalar or vector quantization, 
internal network layers remapping as result of lowering procedures that are platform dependent, 
various parameters pruning techniques24, etc. 

6. Network model platform deployment: this step is the most critical one from the performance 
perspective. It is typically a task that is highly platform dependent. The optimized model, with 
compressed parameters, is mapped to the target platform. Usually, this deployment on cloud-based 
services is highly automated and straightforward to be implemented: a runtime environment is usually 
available on the target that provides an abstraction from the actual available HW. The optimized 
mapped model, translated into a representation that the runtime can understand and run, is uploaded 
and instantiated in the real working environment. For example, the runtime hides implementation 
details regarding the actual mapping of the HW: the same NN runtime model may run efficiently on a 
GPU on a device A or on a NPU HW on a device B without any difference. However, in the case of 
limited resource devices (Gateway and IIoT/IoT MCUs nodes) it is not possible to have such runtime 
environment because this level of abstraction introduces several inefficiencies in the system: it could 
happen that the resources spent to run the model are more than the ones required by the ML algorithm 
itself. Moreover, on MCU devices a runtime is not feasible at all since it is not possible to handle or 
schedule any kind of dynamic memory allocation (required by a runtime): everything must be statically 
sized during compilation time for higher efficiency. 

7. Network model evaluation: the final step of the process. The deployed model is fed, while running, 
with real data and its accuracy and performances are assessed to verify they conform to the 
requirements set for the use case in real life conditions. 

 

The first steps mentioned above (roughly from 2 to 4) have been supported and they are available already on 
the majority of the most widely adopted tools. However, the last part of the development flow is supported only 
on specific platforms / equipment supplied with a runtime facility. This is the case for almost all web services 
provided by Amazon or Microsoft at the Cloud level, but moving towards the leaves of the Cloud Infrastructure, 
i.e., to the local gateways or single node devices, no clever and integrated deployment flow is available today. 
In most cases, data scientists and ML engineers have still to hand-write and port their solutions to the physical 
devices. Thus, the deployment flow is always critical on IoT constrained devices, with no standard process or 
guidelines or tools to support it, even if it is a task that could be abstracted since it is not really related to the 
ML algorithms by themselves, but it is more platform bound. This abstract deployment flow has been 
conveniently represented in Figure 9, where it is clear that it could be somehow generalized and (partially) 
automated. The next subsections will shortly introduce each one of the main DL tools that are available online 
with a short summary of their more relevant features. In particular, in the last subsection the STM32 Cube.AI 
tool is presented: it is under investigation the possibility to use this tool in SEMIoTICS to support the deployment 
of ML algorithms on ST MCUs IoT sensing node devices, enabling distributed local embedded analytics at the 
field device level (D2.3-Table8-R.UC3.6). Parallel to the deployment of the local analytics on ST MCUs IoT 
sensing node, STM32 Cube.AI tool could be updated to support the selected ML algorithm. 

                                                 
24 https://jacobgil.github.io/deeplearning/pruning-deep-learning 
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FIGURE 9: DEEP LEARNING TOOLS DEPLOYMENT FLOW 

 

3.3.1. KERAS AND TENSORFLOW 

TensorFlow is a free software library focused on machine learning created by Google. Initially released under 
the Apache 2.0 open-source license, TensorFlow was originally developed by engineers and researchers of 
the Google Brain Team, mainly for internal use. TensorFlow is currently used by Google for research and 
production purposes. TensorFlow is considered the first serious implementation of a framework focused on 
deep learning. It can run on multiple CPUs and GPUs and it is available on 64-bit Linux, macOS, Windows, 
and mobile computing platforms including Android and iOS. 

 

At a high level, TensorFlow is a Python library that allows users to express arbitrary computations as a data 
flow graph. Nodes in this graph represent mathematical operations, whereas edges represent data that is 
communicated from one node to another. Data in TensorFlow are represented as tensors, which are 
multidimensional arrays. Although this framework for thinking about computation is valuable in many different 
fields, TensorFlow is primarily used for deep learning in practice and in research. It supports backend HW 
acceleration on dedicated GPUs or NPUs. 

 

Keras is a high-level Python neural network API, supporting runtime backend environments such as 
TensorFlow, CNTK, or Theano. It was developed with a focus on enabling fast experimentation of ML 
algorithms. Keras has been designed with these goals in mind: User friendliness (usable friendly APIs, 
Modularity (a NN model is expressed by a graph plugging fully configurable NN layers together), Extensibility 
(new layer modules could be defined in Python) and Python oriented (NN models are defined in Python and 
data processing could exploit other Python data science packages). 

 

3.3.2. MICROSOFT CNTK 

CNTK stands for (Microsoft) Cognitive Toolkit. It is an open-source toolkit, hosted in GitHub since 2012, for 
commercial-grade distributed deep learning. It represents NN models as directed computational graphs: the 
supported network topologies are DCNN, RNN, and LSTM. CNTK has support for GPU acceleration. It could 
be used as a support library embedded in any Python, C# or C++ application or it could be used alone by 
defining models using its own model description language (BrainScript). It is the backbone of the Azure 
Machine Learning Cloud Services and the Cortana Windows OS assistant. CNTK supports backend HW 
acceleration on dedicated GPUs. 

 

3.3.3. AMAZON MXNET 

MXNET is hosted by Apache and it is used by Amazon. It is the sixth most popular deep learning library used 
in 2018. It is the core technology used in Amazon AWS Cloud Services. It has several features supporting 
commercial grade distributed deep learning: device placement (it can specify where the actual NN model will 
run), multiple GPU training for increased scalability, etc. MXNET is a framework designed for accelerating 
generic numerical computations, but its specific focus is on accelerating NN models. For this purpose, it offers 
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a wide set of optimized predefined NN layers. MXNET automates common workflows, so standard neural 
networks can be expressed concisely in just a few lines of code. 

 

3.3.4. THEANO AND CAFFE 

In 2007 the University of Montreal released Theano, which is the oldest widely adopted Python deep learning 
framework. During the last ten years it has lost much of its popularity and no major releases are planned, but 
the open source community still offers support and updates for it. 

Caffe is probably the most widely used, C written deep learning tool and it is developed by Berkeley University 
(AI research group). It offers a convenient Python wrapper interface, but the core of the tool is entirely written 
in C. This has become over time a bottleneck for tool usability. It is known as the first tool used by Google in 
2012 to develop the AlexNet 2012 DCNN Model. Caffe is released under the BSD 2-Clause license, but today 
less and less developers are using it. 

 

3.3.5. MATLAB AI TOOLBOX 

The Deep Learning Toolbox provides a framework for designing and implementing deep neural networks with 
algorithms, pre-trained models, and applications. The user can run convolutional neural networks (ConvNets, 
CNNs, etc.) and long short-term memory (LSTM) networks to perform classification and regression on images, 
time-series, and text data. For small training sets, the toolbox can perform transfer learning with pre-trained 
deep network models (including SqueezeNet, Inception-v3, ResNet-101, GoogLeNet, and VGG-19) and 
models imported from TensorFlow, Keras and Caffe. To speed up training on large datasets, the toolbox can 
distribute computations and data across multicore processors and GPUs on the desktop in a parallel processing 
fashion, or scale up to clusters and clouds, including Amazon EC2 P2, P3, and G3 GPU instances. 

Specifically, we developed a Matlab implementation for IIoT/IoT diagnosis within an IIoT/IoT botnet attack 
detection framework (see in D4.2 for more algorithmic details). In terms of neural networks, we applied an auto 
encoder as developed in this Matlab auto encoder example25. 

 

3.3.6. STM32CUBE.AI TOOL FOR AI DEPLOYMENT ON IOT FIELD DEVICES 

The STM32Cube.AI 26  plugin is an AI extension plugin for the STMicroelectronics STM32CubeMX Tool, 
supporting a wide set of STM32 Microcontrollers based on the 32-bit ARM® Cortex®-M architectures. 
STM32Cube.AI is an automatic tool to generate optimized C library code for STM32 MCUs from pre-trained 
neural networks. It guarantees interoperability with state-of-the-art Deep Learning Frameworks: this framework 
makes it is possible to deploy Artificial Neural Networks (ANN) and in particular Convolutional Neural Networks 
(CNN) networks to any STM32 MCU powered board. 

 

Nowadays, AI, ML and DL are mostly confined in the cloud, where unlimited computing resources seems to be 
available and evolving tirelessly. Systems with centralized intelligence are poorly scalable, slowly responsive, 
they require high power consumption, and they consume large communications bandwidth in the typical 
IIoT/IoT scenario exploiting hundreds of billions of sensors (Figure 2). On the contrary, moving to distributed 
intelligence systems with AI-enabled sensor nodes will provide higher scalability, lower latencies, optimized 
overall power consumption, more security and privacy. 

 

Moreover, artificial neural networks can be used to classify signals or predict events from data provided by 
motion and vibration sensors, environmental sensors, microphones and other sensors, with higher accuracy 
than conventional hand-crafted signal processing. But not all neural networks require powerful GPUs or 
complex SoCs with HW accelerators: neural networks can be implemented in SW on microcontrollers to be 
used efficiently in various applications. Automatic deploy of any pre-trained neural network developed with off-
the-shelf Deep Learning frameworks (such as Keras, Caffe, Lasagne, etc.) to IIoT/IoT sensor nodes is now 
fast and easy using the new STM32Cube.AI. 

 

In fact, the tool generates automatically optimized code to be used in STM32 microcontroller-powered 
intelligent devices at the edge, on the nodes, to be used in various IoT applications such as smart building, 
industrial, wellness, robotics and consumer products. The STM32Cube.AI plugin tool takes the pre-trained 

                                                 
25 Matlab auto encoder - https://www.mathworks.com/help/deeplearning/ref/trainautoencoder.html 
26 STM32Cube.AI - https://www.st.com/en/embedded-software/x-cube-ai.html 
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neural network model, developed by the user exploiting one of the most popular off-the-shelf neural networks 
DL design tools, and then it automatically generates an optimized neural network C code library to run on the 
STM32’powered platform of choice as bare metal FW, giving the ability to test the defined deep learning 
solution on the field in a very fast and efficient fashion. 

 

It offers a user-friendly semi-automatized support in developing AI solutions, assuming they are trained on 
resource unconstrained servers, but targeting resource constrained STM32 MCUs. The STM32Cube.AI tool 
offers support for fast conversion of pre-trained neural networks into a memory efficient (ROM and RAM) and 
computationally (CPU cycles) fast optimized C NN library model. 

In particular: 

 

• The STM32Cube.AI architecture supports existing widely used DL tools and emerging technologies 
(such as Keras13, TensorFlow14, Caffe12, Theano11, etc.) 

 

• The process from neural network model description to the related embedded SW (i.e. STM32 C Code 
FW) will be the most automatic possible 

 

Stakeholders for this tool will be IoT AI-enabled developers, which can require a specific solution (for instance 
for Human Activity Recognition) to be retrained easily on annotated proprietary data and optionally having the 
possibility to optimize specific memory requirements without paying a noticeable accuracy penalty loss. These 
companies can be any vendor of AI-Smart devices. Then, in presence of an automatic ANN porting tool onto 
ST platforms, companies having a specific know-how on Neural Networks, developing their own solutions and 
requiring to import their ANN description in one of the most important DL frameworks, can benefit from the tool. 

The STM32Cube.AI tool can be used to easily deploy customer’s solutions on specific ST platforms, such as 

X-Nucleo Boards27, BlueCoin28 or SensorTile29 development boards. The solution will need to address ST 
users that have already experience in deep learning and want to port their own solutions on ST platforms and 
customers that wants to exploit off-the-shelf solutions for their specific target applications. In particular, DL in 
SW on MCU can target many applications based on inertial sensors and audio processing such as Human 
Activity Recognition (HAR), Audio Scene Classification (ASC) or KeyWord Spotting (KWS), providing better 
support for fast deployment of these AI/ML learning models. 

                                                 
27 https://www.st.com/en/evaluation-tools/nucleo-f401re.html 
28 https://www.st.com/en/evaluation-tools/steval-bcnkt01v1.html 
29 https://www.st.com/en/evaluation-tools/steval-stlkt01v1.html 

 FIGURE 10: FIGURE 10 CUBE.AI TOOL PLUGIN 
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3.4. IIoT/IoT Field Devices AI Algorithms 

In the previous subsections, a collective description of some algorithmic approaches, from SOTA analysis, has 
been presented: they were about regression models and embedded intelligence, and the support tools that 
could facilitate their design. In the following sub-sections, a presentation of some more specific algorithms, 
centred on the definition of the SEMIoTICS UCs, as declared in D2.2, is provided. These algorithms will be the 
basis forming the initial version of the Local Embedded Analytics Component. As a result of the next 
deployment and implementation activities (planned during the cycle 2 and cycle 3 interactions), this D4.3 SOTA 
analysis on algorithms and DL tools will allow to extend/combine new algorithmic ideas that may be needed to 
complete the UC definition. The result of these activities with a detailed reporting of the final algorithmic set 
adopted will be reported in the final draft of this deliverable (i.e. D4.10). This methodology is useful to provide 
assessed feedbacks during the implementation phase about the flexibility of the SEMIoTICS framework to 
accommodate new algorithms at the Field Device level architecture: one of the objectives claimed by the 
project.  

 

An important subset of AI/ML algorithms, implemented as part of the Local Embedded Analytics component at 
the Field Device level, will be used to support the SEMIoTICS scenarios UC2 and UC3. A formal definition of 
the methodologies on which they rely on has been anticipated into sections 2.3.3 and 2.3.4. 

 

3.4.1. TIME SERIES PREDICTION 

In the IHES system-horizontal demonstrator (UC3), a ML approach is used to estimate from a generic non-
linear time series a model for predicting the signal from live acquired data directly. This prediction will be used 
to detect any relevant anomaly from the model learned. With this goal in mind, i.e. to manage generic non-
linear complex dynamics on time series data, AI/ML models supporting the concept of recurrence have been 
investigated. Special attention has been given to Recurrent Neural Networks30 (RNN) models, as it seems they 
are a promising approach for deployment in time series modelling, and within these algorithms and models, 
the Echo State Network (ESN) models has been selected among the others, taking inspiration from the 
pioneering paper published in [23]. This type of AI/ML network model belongs to the reservoir computing family: 
it is a specific approach derived from RNNs and it is able to obtain results similar in term of accuracy to the 
ones achievable by traditional RNNs, but at a much lower complexity during actual training phase. 

The ESN model that has been designed as part of the local analytics SEMIoTICS component is able to predict 
and model any kind of non-linear time series input, yet respecting the constraints of an embedded system 
equipped with very limited memory and an MCU unit running at ~80/100 MHz  

 

The problems that have been considered during the model definition are related to the presence of many 
heterogeneous sensors (D2.3-Table1-R.GP.1), tight constraints in term of memory and computation for each 
single node, and high scalability of the system. The ESN models, first introduced by Jaeger [24], are a type of 
AI/ ML network architecture based on Reservoir Computing31 (RC); RC is an innovative design and training 
paradigm for a special kind of recurrent neural networks. In particular, RC is defined by two main families: ESN 
and Liquid State Machines (LSM). 

The term RC emphasizes that both techniques share the same basic fundamental idea, that is, the separation 
between the recurrent part of the network, the dynamic reservoir (DR), for the non-recurrent part, and the 
output readout layer. This allows to split the overall training process of the entire RNN in two distinct phases: 
the training of the hidden reservoir layer (usually done offline), and the training of the output readout layer. In 
particular, once the DR has been trained, the most common approach is to train the readout layer by linear 
regression or through an approach based on gradient descent. This avoids the use of back-propagation 
techniques on the entire RNN as it is in the case of back-propagation through time. 

 

The input signals to the network guide the non-linear DR, producing an internal hidden dynamic state called 
echo response, which is used as a basis for reconstructing the desired outputs through a linear combination of 
the DR outputs. In other words, the DR layer could be considered as composed by features used as input for 
the output readout layer. This strategy has the advantage that the recurrent network within the DR is fixed, so 

                                                 
30 https://en.wikipedia.org/wiki/Recurrent_neural_network 
31 https://en.wikipedia.org/wiki/Reservoir_computing 
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it is not involved in the online training phase. The ESN model selected as initial reference for the implementation 
of the time series prediction could be formally defined and visually represented as follows: 

 

 
FIGURE 11: ESN MODEL FOR TIME SERIES32 

 

The link between inputs and outputs allows the model to choose whether and to what extent to exploit the 
dynamics of the DR. Furthermore, the feedback link between outputs and DR has been made in order to avoid 
adding complexity and reducing the possible occurrence of instability problems as reported in [25]. 

The ESN embedded network model is specified by this model relation: 

 

𝑥ሺ𝑛 + 1ሻ = 𝑓ሺ𝑾𝒓𝒆𝒔 ∗ 𝑥ሺ𝑛ሻ +𝑾𝒊𝒏 ∗ 𝑢ሺ𝑛ሻ + 𝒃ሻ 
 

Where: 

• 𝑥ሺ𝑛 + 1ሻ is the state at time 𝑛 + 1 

• 𝑾𝒓𝒆𝒔, 𝑾𝒊𝒏 are respectively the DR neuronal reservoir and input weight matrices 

• 𝒃 represents the bias factor introduced 

• 𝑓ሺሻ is the non-linear activation function of neurons 

• The input and the hidden state at the time instant  𝑛are defined by 𝑢ሺ𝑛ሻand 𝑥ሺ𝑛ሻrespectively 

 

This non-linear model can be used to define a prediction at time 𝑛 + 1 given a set of n previous observations. 

 

3.4.2. TIME SERIES CLUSTERING 
 

In the case of Time Series Clustering, the execution of AI Algorithms derived from CNN and long short-term 
memory (LSTM) models has the aims to reduce the amount of data transferred toward the cloud: fixed-windows 
extracted from time series are processed on Field Devices and only encodings (i.e. algorithm outputs) are 
transferred to the cloud. Time Series Clustering is extremely important in the context of the SARA Healthcare 
solution (UC2): it is a practical example for showcasing the Local Embedded Intelligence component at work, 
where the algorithm runs at the node level processing sensed data.  

 

                                                 
32 Courtesy of https://www.researchgate.net/figure/Echo-State-Network-ESN-In-the-typical-setup-the-inputs-
are-fully-connected-to-a_fig1_263124732 

https://www.researchgate.net/figure/Echo-State-Network-ESN-In-the-typical-setup-the-inputs-are-fully-connected-to-a_fig1_263124732
https://www.researchgate.net/figure/Echo-State-Network-ESN-In-the-typical-setup-the-inputs-are-fully-connected-to-a_fig1_263124732
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Within UC2 the problem of time series clustering arises in the context of Gait Analysis. Spatial-temporal 
characteristics of gait (e.g. gait velocity) can be used by experts for diagnosis and as indicators of falling risk.  

The variables used for the analysis are the distances of the user’s legs from the Robotic rollator. These 
distances are measured by a laser range finder (LIDAR) mounted on the rollator (Figure 12). The two-time 
series (i.e. left leg distance and right leg distance) are the inputs for the gait analysis algorithm.  

 
FIGURE 12: GAIT ANALYSIS SETTING IN SARA UC 

 

As a first step, each time series is divided into fixed-sized windows using a sliding window. The objective is to 
find clusters in the fixed-sized windows, where each cluster represents a group of users (e.g. older adults, 
young people, etc.). UC2 will explore the use of the Deep Temporal Clustering (DTC) algorithm proposed in 
[26] for time series clustering / classification. The DTC algorithm makes use of CNN and LSTM networks. The 
DTC algorithm proceeds in three phases: 

 

1. Reduction of data dimensionality and learning of dominant short time scale waveforms using CNNs 

2. Further reduction of data dimensionality and learning of temporal connections between waveforms 
across all time scales using bidirectional LSTMs (Bi-LSTMs) 

3. Clustering to split data into two or more classes 

 

The first two steps are supposed to be executed locally on the Robotic Rollator whilst the last step is executed 
in the cloud. 

The Figure 13 presents the main stages within the data flow of the Deep Temporal Clustering (DTC) algorithm. 
The stages within the rectangular box are those planned to be executed by the controller on board of the Robotic 
Rollator. 
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FIGURE 13: DEEP TEMPORAL CLUSTERING (DTC) DATAFLOW 

 

The sequences processed by the DTC algorithm are generated by a Gait Extractor module which divides the 
time series generated by the LIDAR in subsequences each representing a gait event  

The first part of the algorithm proceeds along the following steps to obtain a latent representation of the time 
series generated by the Gait Extractor: 

• Each sub-sequence from the Gait Extractor is encoded by a convolution operator having a leaky rectified 
linear unit (ReLU) as activation function 

• The encoding is further reduced by a MaxPool operator 

• The features extracted by the previous stages are temporally associated by means of a Bidirectional Long 
Short-Term Memory (Bi-LSTM) operator 

The latent representations extracted by the first part of the algorithm (i.e. the encoder) feed two subsequent 
pipelines: 

• reconstruction pipeline (i.e. UpSample, Conv1DTranspose) is aimed at reconstructing the input sequences 
form the latent representations. The reconstructed sequences are used by the Mean-Square Error (MSE) layer 
that tries to minimize the reconstruction loss by changing the parameters of the encoder (i.e. the parameters 
of the 1DConvolution and the Bi-LSTM layers) 

• clustering pipeline is aimed at clustering the latent representations of the input sequences. The clusters 
represent the input for a process that tries to minimize the clustering loss by minimizing the Kullback-Leibler 
(KL) divergence. Also, this second minimization process acts thought the modification of the parameters of 
the encoder. 

It is worth to note that the DTC algorithm optimizes both reconstruction and clustering loss using in an 
interleaved manner the two minimization processes mentioned above. This interleaved optimization of the two 
objectives has the goal to force the encoder to learn to extract spatial-temporal features that are best suited to 
separate the input sequences into clusters [26].  
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4. CONCLUSION AND FUTURE WORK 
SEMIoTICS contributes to the architecture’s scalability by implementing specific local analytics algorithms at 
each layer of the SEMIoTICS architecture. When it comes to embedded devices in particular, this deliverable 
outlines an unfortunate trade-off followed by most IoT applications: devices are not taking advantage of their 
processing capabilities to avoid sending vast amounts of data to the cloud. Aside from privacy and scalability 
concerns, this practice spends valuable energy on the edge to communicate raw data to clouds.  

 

Instead, SEMIoTICS proposes performing more computation on the edge, at a lower energy cost, and sending 
fewer bytes of information to the backend for further processing, if needed. In a nutshell, our approach ensures 
that devices can save energy overall, protect the end user’s privacy, and support massive scalability of the 
infrastructure by spreading these local analytics at the edge of the architecture. More to the point, considering 
the recent advances in AI/ML, this document provided a detailed description of the landscape of some ML tools 
and possible ways to design and implement more lightweight versions of some algorithms for constrained 
devices. The range of possibilities for statistical and ML algorithms modelling are presented in section 2.3.  

 

Additionally, we complemented the view of the state-of-the-art techniques by describing the foundations for 
local analytics in embedded devices for SEMIoTICS in section 3.4. Moreover, the base for the local analytics 
functionality is focused in two aspects: time series prediction, and time series clustering. These approaches 
provide support for local embedded intelligence and local analytics within the project for the processing of time 
varying signals. They are provided as working functional modules that have been identified as part of the cycle1 
activities. For some of them, a functional mock-up of their main functionalities has been already mapped on a 
selected target platform of interest. During cycle 2 activities, we plan to complete the implementation of all 
required functions and functionalities and to integrate them in the whole framework during the integration 
phase, in cycle 3. Between the cycle 2 and cycle 3 interactions, the project will further characterize the 
algorithms to ensure that all the requirements are fulfilled. Consequently, fine-tuning and testing of the 
components are planned between the cycle 2 and cycle 3 integration activities, where some other algorithm 
could eventually be added depending on emerging needs from the use cases. These algorithms are likely to 
be evaluated from the set declared in D4.2 “SEMIoTICS Monitoring, prediction and diagnosis mechanisms” 
where all the algorithms used in SEMIoTICS are described.        

 

As this document is a preliminary draft, we will provide a full report and characterization on the final 
implementation of the mechanisms highlighted in this document, in particular regarding algorithms presented 
in sections 2.3.1, 2.3.2, 2.3.3, 3.4.1 and 3.4.2. These aspects are covered by the final draft of this document 
(i.e. D4.10), due by M26 in the project.  
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