
 

     780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017 

   

 

 

 

 

 

 

 

 

 

 

 

SEMIoTICS 

Deliverable D4.7 
Implementation of Backend API (Cycle 2) 

 

 

Deliverable release date 31/12/2019 

Authors  
1. Arne Broering (SAG),  
2. Eftychia Lakka, Emmanouil Michalodimitrakis (FORTH), 
3. Konstantinos Fysarakis, Iasonas Somarakis, Michail Smyrlis (STS) 
4. Piotr Kowalski, Michał Rubaj, Urszula Stawicka (BS) 
5. Felix Klement, Korbinian Spielvogel, Henrich C. Pöhls (UP) 
 

 

Responsible person Łukasz Ciechomski (BS) 

Reviewed by Mirko Falchetto (ST-I), Konstantinos Fysarakis (STS), Felix Klement (UP), 
Eftychia Lakka, Nikolaos Petroulakis Manolis Michalodimitrakis (FORTH) 

Approved by PTC Members (Vivek Kulkarni, Nikolaos Petroulakis, Ermin Sakic, Mirko 
Falchetto, Domenico Presenza, Verikoukis Christos) 

PCC Members (Vivek Kulkarni, Nikolaos Petroulakis, Verikoukis Christos, 
Georgios Spanoudakis, Domenico Presenza, Danilo Pau, Joachim 
Posegga, Darek Dober, Kostas Ramantas, Urlich Hansen) 

Status of the Document Final 

Version 1.0 

Dissemination level Confidential 

https://upload.wikimedia.org/wikipedia/commons/b/b7/Flag_of_Europe.svg


780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017 
Deliverable D4.7 Implementation of Backend API (Cycle 2) 
Dissemination level: [Confidential]  

 

2 

Table of Contents 

1 Introduction ............................................................................................................................................ 5 

1.1 PERT chart of SEMIoTICS ............................................................................................................. 6 

2 Implementation approach ....................................................................................................................... 7 

2.1 SEMIoTICS Development and Release Cycles .............................................................................. 7 

2.2 SEMIoTICS development workflow ................................................................................................ 8 

 SEMIoTICS Git branches ........................................................................................................... 8 

 Continuous integration pipeline .................................................................................................. 9 

3 Cycle plan .............................................................................................................................................10 

4 Backend components – Cycle 2 ............................................................................................................12 

4.1 Graphical User Interface ...............................................................................................................12 

 Architectural changes ................................................................................................................13 

 Actions flow ...............................................................................................................................14 

 GUI changes .............................................................................................................................18 

 New features .............................................................................................................................20 

4.2 Backend Orchestrator ...................................................................................................................23 

 Development status...................................................................................................................25 

 Backend orchestrator dashboard setup .....................................................................................31 

4.3 Pattern Orchestrator .....................................................................................................................33 

 Development Status ..................................................................................................................34 

 Component API interactions description ....................................................................................37 

4.4 Pattern Engine (backend) .............................................................................................................38 

 Development Status ..................................................................................................................39 

 Component API Interactions Description ...................................................................................40 

4.5 Backend Semantic Validator .........................................................................................................41 

 Development Status ..................................................................................................................43 

 Component Implementation Cycle 2 - API Interactions Description ............................................45 

4.6 Thing Directory .............................................................................................................................47 

4.7 Recipe Cooker ..............................................................................................................................48 

4.8 Security Manager (backend) .........................................................................................................50 

 Development status...................................................................................................................51 

 Entity (incl. user) authentication ................................................................................................53 

 Workflows and interactions with other SEMIoTICS components.................................................54 

 Implementation of and interaction with the authentication component ........................................56 

 API of the security manager (backend) in Swagger....................................................................58 



780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017 
Deliverable D4.7 Implementation of Backend API (Cycle 2) 
Dissemination level: [Confidential]  

 

3 

 Attribute based encryption .........................................................................................................59 

4.9 Local Embedded Intelligence ........................................................................................................60 

4.10 Monitoring .....................................................................................................................................61 

 Development status ...............................................................................................................61 

 API of the Monitoring Component ..........................................................................................63 

 Component API interaction description ..................................................................................69 

5 Validation..............................................................................................................................................71 

5.1 Related Project Objectives and Key Performance Indicators (KPIs) ...............................................71 

5.2 SEMIoTICS implementation requirements .....................................................................................73 

6 Conclusion ............................................................................................................................................74 

 

 

 

  



780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017 
Deliverable D4.7 Implementation of Backend API (Cycle 2) 
Dissemination level: [Confidential]  

 

4 

Acronyms Table 

Acronym Definition 

API Application Programming Interface  

CD Continuous Development 

CI Continuous Integration 

CPU Central Processing Unit 

CRUD Create, Remove, Update, Delete 

DVCS Distributed Version Control System  

EMF Eclipse Modelling Framework 

GUI Graphical User Interface 

GW Gateway 

HTTP Hypertext Transfer Protocol 

IaaS Infrastructure as a Service  

IIoT Industrial Internet of Things 

IoT Internet of Things 

JSON JavaScript Object Notation 

JSON-LD JSON for Linking Data 

OVS  Open vSwitch 

OVSDB Open vSwitch Database Management Protocol 

PaaS Platform as a Service  

PEP Policy Enforcement Point 

QoS Quality of Service 

REST Representational State Transfer 

SDN Software-Defined Networking 

SEMIoTICS Smart End-to-end Massive IoT Interoperability, Connectivity and Security 

SPDI Security, Privacy, Dependability, and Interoperability  

SW Software 

TCP Transmission Control Protocol 

TD Thing Description 

UC Use Case 

UML Unified Modeling Language 

URI Uniform Resource Identifier 

URL Uniform Resource Locator 

VM Virtual Machine 

vSwitch Virtual Switch 

W3C World Wide Web Consortium 

WoT Web of Things 

WP Work Package 

 

 

  



780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017 
Deliverable D4.7 Implementation of Backend API (Cycle 2) 
Dissemination level: [Confidential]  

 

5 

1 INTRODUCTION 

The project aims to deliver an open-source, proof-of-concept implementation of the SEMIoTICS framework, 
integrating the core interoperability, monitoring, intelligence, adaptation, and networking capabilities. In this 
context, the implementation of the backend API in SEMIoTICS is covering not only the implementation of the 
necessary algorithms, techniques, and components but also the delivery of an API set giving access to them.  

Said backend API provides communication across the layers and communication with external systems and 
services, while any kind of connection within the IoT platform is to be monitored in order to ensure Security, 
Privacy, Dependability, and Interoperability (SPDI) requirements relevant for each component. Moreover, the 
delivery of 3 prototypes (use cases) of IoT applications will demonstrate the business and technological 
capabilities of the SEMIoTICS framework, spanning the domains of Wind Energy, Healthcare and Smart 
Sensing 

From an implementation perspective, the current implementation Cycle 2 (due M23) together with Cycle 1 
(delivered M17) and Cycle 3 (final, due M30) are providing implementation of algorithms, techniques, and 
components in WP4 (Tasks 4.1 - 4.5) and deliver set of dedicated APIs giving access to them. As it has been 
stated in the project Description of the Action, this API will also provide IoT components communication across 
layers and integration with external systems and partners.  

Based on the above, Deliverable 4.7 “Implementation of SEMIoTICS Backend API (Cycle 2)” presented herein, 
is the output of T4.6 (Implementation of SEMIoTICS backend API), provides the status of the second 
implementation cycle, describes the implementation approach and re-iterates which backend architectural 
components (see D2.4) are to be developed in which SEMIoTICS development cycle, focusing on the initial 
algorithms, techniques, and components specified in D4.1 to D4.5 and the APIs for accessing them.  

In more detail, the deliverable D4.7 is structured as follows: 
• Section 2 describes the SEMIoTICS implementation approach.  

• Section 3 establishes the backend architectural components need to be developed in SEMIoTICS 
development cycle. Due to slight architectural modifications and project plan changes, the plan of 
development cycles has been slightly modified in order to reflect the current status. 

• Section 4 covers the development status of Cycle 2 and describes the progress of development of 
each component delivered within cycle 2 in dedicated subsections. 

• Section 5 positions the work presented herein in reference to the project’s Objectives and associated 
KPIs and requirements 

• Section 6 features the concluding remarks and pointers to future work and ensuing  deliverables. 

 

  



780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017 
Deliverable D4.7 Implementation of Backend API (Cycle 2) 
Dissemination level: [Confidential]  

 

6 

1.1 PERT chart of SEMIoTICS 

Figure 1 below presents the PERT chart of the project, visualizing the links and relationships between the WPs 
and Tasks. Please note that the PERT chart is kept on task level for better readability.  

36 months Leader: SAG

31.12.202001.01.2018

WP1: Project Management

23 months Leader: ST-I

30.11.201901.01.2018

WP2: Requirements and Architecture for 
Smart Sensing and Smart Actuation

24 months Leader: SAG

30.04.202001.05.2018

WP3: Smart objects and networks

25 months Leader: FORTH

30.06.202001.06.2018

WP4: Pattern-driven smart behavior of 
IIoT with End-to-End Security and Privacy

24 months Leader: ENG

31.12.202001.01.2019

WP5: System Integration and Evaluation

36 months Leader: SAG

31.12.202001.01.2018

T1.1: Project coordination 36 months Leader: FORTH

31.12.202001.01.2018

T1.2: Project technical and innovation 
management

36 months Leader: SAG

31.12.202001.01.2018

T1.3: Coordination with EU programme 
level activities

3 months Leader: STS

31.03.201801.01.2018

T2.1: Analysis of emerging business and 
technical IoT value drivers

4 months Leader: SAG

30.04.201801.01.2018

T2.2: Specification of use case scenarios 
& applications and their requirements

4 months Leader: ST-I

30.06.201801.03.2018

T2.3: Specification of infrastructure 
requirements

18 months Leader: BS

31.12.201901.07.2018

T2.4: SEMIoTICS architecture design

22 months Leader: SAG

29.02.202001.05.2018

T3.1: Software defined Aggregation, 
Orchestration and cloud networks

22 months Leader: CTTC

29.02.202001.05.2018

T3.2: IIoT Network Function Virtualization

22 months Leader: SAG

29.02.202001.05.2018

T3.3: Semantics-based bootstrapping & 
interfacing

22 months Leader: STS

29.02.202001.05.2018

T3.4: Network-level semantic 
Interoperability

22 months Leader: IQU

30.04.202001.07.2018

T3.5: Implementation of Field-level 
middleware & networking toolbox

23 months Leader: STS

30.04.202001.06.2018

T4.1:Architectural SPDI patterns

22 months Leader: ENG

30.04.202001.07.2018

T4.2: Monitoring, prediction and 
diagnosis

22 months Leader: ST-I

30.04.202001.07.2018

T4.3: Embedded Intelligence and local 
analytics

22 months Leader: FORTH

30.04.202001.07.2018

T4.4: End-to-End Semantic 
Interoperability

22 months Leader: BS

30.06.202001.09.2018

T4.6: Implementation of SEMIoTICS 
backend API

22 months Leader: UP

30.04.202001.07.2018

T4.5: End-to-End Security and Privacy

5 months Leader: UP

31.10.201901.06.2019

T5.1: KPIs and Evaluation Methodology

15 months Leader: BS

31.08.202001.06.2019

T5.2: Software system integration

20 months Leader: IQU

31.08.202001.01.2019

T5.3: IIoT Infrastructure set-up and 
testing

13 months Leader: SAG

31.12.202001.12.2019

T5.4: Demonstration and validation of 
IWPC- Energy scenario

13 months Leader: ENG

31.12.202001.12.2019

T5.5: Demonstration and validation of 
SARA-Health scenario

13 months Leader: ST-I

31.12.202001.12.2019

T5.6: Demonstration and validation of 
IHES-Generic IoT scenario

36 months Leader: CTTC

31.12.202001.01.2018

T6.1: Impact Creation and Dissemination 31 months Leader: ENG

31.12.202001.06.2018

T6.2: Exploitation of results

24 months Leader: SAG

31.12.202001.01.2019

T6.3: Standardization
36 months Leader: CTTC

31.12.202001.01.2018

WP6: Impact, Dissemination and 
Standardization

 

FIGURE 1 PERT CHART 

  



780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017 
Deliverable D4.7 Implementation of Backend API (Cycle 2) 
Dissemination level: [Confidential]  

 

7 

2 IMPLEMENTATION APPROACH 

In SEMIoTICS, Task 4.6 is the main implementation task of WP4, which focuses on delivering the SEMIoTICS 
components specified in the context of WP4’s previous tasks (Task 4.1 to 4.5), following incremental release 
cycles. Implementation has been divided into 3 development cycles as per the Description of the Action and 
the entire project’s work program has been aligned with such an approach.  

In the following sections, the software development and release processes are detailed. Moreover, there is a 
detailed description of the development and release cycles based on an Agile1 and Continuous Integration (CI) 
/ Continuous Development (CD) best practices which have been proven to be a very efficient approach in the 
IT domain.  

2.1 SEMIoTICS Development and Release Cycles 

In the context of Task 2.4, we have designed the SEMIoTICS architecture and defined the architectural 
components of each layer. Each architectural component is associated with a respective functional module 
(i.e. component) with an owner assigned. These components are implemented with an iterative process, which 
follows the concept of CI. Such an iterative development process is performed in cycles, with each cycle ending 
with a new software release. Each release cycle consists of the following phases, also illustrated in Figure 2, 
and lasts approximately 4 months: 

1. Feature planning: The consortium agrees on the features that will be implemented in the next release. 
This might occur during a feature planning meeting, or during the regular project meetings and calls. It 
defines all required mechanisms and interfaces in a high-level specification document, which also includes 
the test cases which will be adopted during system verification. This phase requires approximately 1 month.  

2. Development: With the requirements document at hand, all required features are implemented by the 
responsible developers coordinated by component owners. Each developer is responsible for ensuring that 
the proposed features are properly implemented in the associated architectural component, as defined in 
Task 2.4, additionally ensuring that all related functionalities including legacy functionalities of the 
component are preserved. Furthermore, appropriate testing will ensure that the developed components and 
feature sets perform as specified. Development requires 2 months. 

3. Integration: After completion of the development phase, changes are integrated into the main SEMIoTICS 
codebase. Automated non-regression and sanity tests are performed to rule-out regressions. This task 
requires 1-2 weeks.  

4. System testing: The testing team deploys the new software release to the testbed and performs all the 
required system tests to validate that it runs as specified, further, this is essential to ensure that and new 
modules and features correctly interoperate with the rest of the system. In case of issues, they report back 
to the responsible developers and depending on the required effort, further, development might occur to fix 
the issue or move the issues for resolution in upcoming releases. This phase requires 2-3 weeks.  

5. System release: Eventually, the developer generates all the release artifacts and documents and tags the 
current version of the software. In addition, a system release review meeting takes place to identify and 
discuss problems encountered during this release cycle.  

 

 

1 https://agilemanifesto.org 



780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017 
Deliverable D4.7 Implementation of Backend API (Cycle 2) 
Dissemination level: [Confidential]  

 

8 

 

FIGURE 2: SEMIOTICS RELEASE CYCLE 

Tentatively, the consortium considers the following release schedule.  

• M15 marked the start of the development process. 

• On M17 (Cycle 1), the first software release was delivered, including the basic functionality of the 
SEMIoTICS backend implementation. 

• On M23 (Cycle 2), the second software release was delivered, incorporating the pattern-driven smart 
behavior. 

• On M30 (Cycle 3), the third release will deliver the SEMIoTICS end-to-end architecture 
implementation. 

2.2 SEMIoTICS development workflow 

SEMIoTICS has adopted the Git Distributed Version Control System (DVCS) for source code and asset 
management, as well as for monitoring the development process. We rely on a hosted solution from GitLab 
which hosts the central SEMIoTICS repo located at https://gitlab.com/semiotics/. We refer to this repo as 
the origin, which is the standard Git terminology and all SEMIoTICS partners have permissions to push and 
pull changes. In addition to this, developers can directly pull changes from other peers to form sub-teams, e.g., 
to collaboratively work on a new feature which will then be pushed to the origin repo. 

 SEMIOTICS GIT BRANCHES  

The central SEMIoTICS repository holds two main branches, the master branch, and the develop branch. The 
master is generally considered to be the main branch, which reflects the latest stable  software release. The 
master branch integrates all delivered development changes for the next release, so it can also be considered 
to be the “integration branch”. When the source code in the  develop branch reaches a stable point and is ready 
to be released, all of the changes should be merged back into master and then tagged with a release number. 

In addition to the main branches (i.e., master and develop), feature branches may be used to develop new 
features for the upcoming or a future release. Feature branches generally exist as long as a new feature is in 
development and will eventually be merged back into the develop branch, to ultimately add the new feature to 
an upcoming release, or even discarded in case of an experiment that led to a dead -end. Feature branches 
are also created in the origin repo, so multiple developers can push to the same feature branch. Multiple feature 
branches may exist at a time. 

 

https://gitlab.com/semiotics/


780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017 
Deliverable D4.7 Implementation of Backend API (Cycle 2) 
Dissemination level: [Confidential]  

 

9 

 

FIGURE 3: SEMIOTICS GIT REPOSITORY BRANCHES  

 CONTINUOUS INTEGRATION PIPELINE 

A Continuous Integration CI / CD pipeline is also part of GitLab features, in the form of a web application with 
an API that stores its state in a database. It manages the project builds and provides a Graphical User Interface 
(GUI) which gives an easy to understand overview of the project development process. Most importantly,  the 
CI pipeline is closely integrated with the core features of GitLab. The GitLab CI pipeline is part of the 
SEMIoTICS testing framework and includes all required unit tests and integration tests. Tests can be authored 
by the respective developers or a separate testing team. Only if tests pass, then a new code is committed to 
the source code repository. Furthermore, the system performs nightly builds and in case of build failure notifies 
the responsible developers to fix the issue. The SEMIoTICS Continuous Integration processes include the 
following, which may be accomplished via the GitLab system, or additional tools : 

• A ticketing system to assign tasks and feature requests to partners 

• A task planning system to assign features to future releases 

• Team collaboration tools (e.g., Messaging, File sharing, etc.) 

It should be noted that access to the GitLab project is granted only for Consortium Members as per the 
Consortium Agreement. 

  



780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017 
Deliverable D4.7 Implementation of Backend API (Cycle 2) 
Dissemination level: [Confidential]  

 

10 

3 CYCLE PLAN 

The development of the WP4 components has been planned according to development cycles – from 1 to 3 
(final) – as defined above. The plan of the cycles is related to the outputs of the different Tasks and the 
respective components as depicted in the SEMIoTICS Architectural Framework (Figure 4). More specifically, 
Task 4.6 provides the implementation of components defined within WP4 as well as the development of the 
backend API. Moreover, partial integration of the respective components that are also related to the outputs of 
the tasks as depicted in Figure 4 below is an important part of efforts within T4.6 however the main effort on 
that is planned within WP5. 

 

FIGURE 4 SEMIOTICS ARCHITECTURAL FRAMEWORK 



780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017 
Deliverable D4.7 Implementation of Backend API (Cycle 2) 
Dissemination level: [Confidential]  

 

11 

Various components from SDN/NFV orchestration layer and field layer are mostly implemented in WP3, thus 
Table 1 only shows the cycle-assignment of components implemented within WP4 to development cycles. 
Each component is developed in at least two cycles. It should be reiterated that this document is part of a 
sequence (D4.6, D4.7, and D4.13), with the current deliverable (D4.7) covering the second cycle. More details 
about the individual components can be found in Section 0. While various components from the SDN/NFV 
orchestration layer and field layer are mostly implemented in WP3,  it shows the cycle-assignment of 
components implemented within WP4 to development cycles. Each component is developed at least in two 
cycles. This document is a combination of D4.6, D4.7 and D4.13. D4.7 covers the second cycle and all the 
components are described in Section 4. 

TABLE 1 ASSIGNMENT OF COMPONENTS TO CYCLES 

Component Owner Cycle 1 Cycle 2 Cycle 3 

Backend orchestrator BS Part 1 Part 2 Part 3 

Pattern Orchestrator STS Part 1 Part 2 Part 3 

Pattern Engine STS Part 1 Part 2 Part 3 

Monitoring ENG - Part 1 Part 2 

Backend Semantic Validator FORTH Part 1 Part 2 Part 3 

GUI BS Part 1 Part 2 Part 3 

Backend Security Manager UP - Part 1 Part 2 

Recipe Cooker SAG Part 1 Part 2 Part 3 

Thing Directory SAG Part 1 - Part 2 

Local Embedded Intelligence ST - Part 1 Part 2 

Every cycle plan is monitored with the use of the GitLab tool, while the feature backlog definition identified at 
the early stage of the project, is provided within Section 0. As per the Agile methodology, the backlog is 
constantly updated throughout the project. 

 

  



780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017 
Deliverable D4.7 Implementation of Backend API (Cycle 2) 
Dissemination level: [Confidential]  

 

12 

4 BACKEND COMPONENTS – CYCLE 2 

As mentioned above, the implementation of the SEMIoTICS framework solution imposes not only the 
implementation of the components but also designing suitable interactions between them. Not only is the 
definition of components API required, but also defining which components are consumers of which component 
API.  

The landscape definition of the component interactions with API definitions has been initiated in Cycle 1 and 
continued at the early stages of Cycle 2, as it was crucial for further development of the specific components. 
The subsections below feature implementation details for each of the components comprising the SEMIoTICS 
backend, as of Cycle 2. 

4.1 Graphical User Interface 

As described in D4.6, Graphical User Interface is a component responsible for giving meaningful insights into 
the platform and centralized visualization of the whole framework as well as is a layer of presentation for 
specific use cases. 

During cycle 1, there has been extensive analysis run, which outcome is designed . The following approaches 
have been taken and implemented: 

• GUI that communicates through the API with an external application. 

• GUI that loads the view itself from the external application.  

• GUI that is dedicated to the given backend application. 

Several views have been developed within cycle 2 and few of them have been updated. Also, the architecture 
of GUI has been enriched with several new components. 

TABLE 2 GUI BACKLOG 

Feature/task scope Short description Cycle assignment Status 

Initialize GUI application Create a SpringBoot & Angular application Cycle 1 Delivered 

Create a view to perform basic 
actions on Things 

Create all necessary endpoints for GUI. Create 
a graphical user interface. The interface 

should allow to register a thing description, 
delete a thing description, display all 

registered things, display things’ details. 

Cycle 1 Delivered 

Provide support for multiple 
environments 

Create maven profiles to facilitate the process 
of the application deployment 

Cycle 1 Delivered 

Prepare GUI for deployment on 
Backend Orchestrator 

Create dockerfile and dockerize the application 
so it can be later deployed on Kubernetes 

Cycle 1 Delivered 

Create a database for GUI Create a database that should store 
information about registered things, their 

details including all the properties and actions 
and all the data gathered from them. 

Create entities, services, repositories. Add a 
database connection handler. Change the 

already existing implementation of methods so 
they can use database 

Cycle 2 Delivered 



780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017 
Deliverable D4.7 Implementation of Backend API (Cycle 2) 
Dissemination level: [Confidential]  

 

13 

Add dashboard functionality Create PoC that allows a user to perform basic 
CRUD operations on dashboards and widgets. 

Cycle 2 Delivered 

Create a simulator of a thing. Create a mock-up application which imitates 
the behavior of the real IoT device 

Cycle 2 Delivered 

Add a mechanism to gather 
historic data from IoT devices 

Create a mechanism to collect data from IoT 
devices and save them in the database 

Cycle 2 Delivered 

Create a view that displays SPDI 
Patterns 

Create a service that allows getting the SPDI 
Patterns from Pattern Orchestrator and to 

prepare them to be displayed in GUI. 
Create an interface that displays SPDI 
patterns from all of the SEMIoTICS’s 
architecture layers and their details 

Cycle 2 Delivered 

Create a view that displays SPDI 
Recipes 

Create a service that allows getting the SPDI 
Recipes from Pattern Orchestrator and to 

prepare them to be displayed in GUI. Create a 
GUI that displays SPDI recipes in the form of 

graphs. 

Cycle 2 Delivered 

Create a view to interact with 
Things. 

Create a graphical user interface and a service 
that mediates between GUI and IoT Devices 

and allows to: 
get real-time properties values of sensors, 

perform an action on actuators, 

Cycle 2 Delivered 

Implement a fully functional user 
dashboard with widgets 

Implement all the essential functions and 
views 

Cycle 3 To Do 

Add routing to other SEMIoTICS’ 
components 

Create a bar that allows navigating through 
other SEMIoTICS’ components 

Cycle 3 To Do 

 ARCHITECTURAL CHANGES  

Components in the GUI component picture and their roles: 

• GUI: Database – PostgreSQL database stores configuration data and historical data gathered from 
registered sensors 

• GUI: Backend – a mediator between GUI and any application that GUI communicates with 

• GUI: Worker Orchestrator – a new inner component of GUI: Backend. The role of GUI: Worker 
Orchestrator is to assign a job to each of the registered workers using a round-robin algorithm. 

• GUI: Thing Worker – a worker that periodically retrieves data from registered things 

• GUI: Semantic Thing Simulator – a simulator of a thing that exposes endpoints:  
o to get thing data 
o to interact with a thing  

The overall picture of the architecture is presented in Figure 5. With this approach, it is possible to present not 
only the current state of registered things but also, it is possible to present historical data gathered by Thing 
Worker.  



780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017 
Deliverable D4.7 Implementation of Backend API (Cycle 2) 
Dissemination level: [Confidential]  

 

14 

 

FIGURE 5 GUI ARCHITECTURE COMPONENTS 

 ACTIONS FLOW 

Action sequences are shown in the flow charts below. As shown in Figure 6, after GUI:ThingWorker is 
initialized, GUI:ThingWorker registers itself with the GUI:Database. 

 

 

 

FIGURE 6 THINGWORKER REGISTRATION WITH THE GUI DATABASE 
 



780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017 
Deliverable D4.7 Implementation of Backend API (Cycle 2) 
Dissemination level: [Confidential]  

 

15 

After initialization, GUI:ThingWorker starts cycle job as shown in Figure 7 (with the frequency of the job as 
a parameter).  

 

FIGURE 7 GUI:THINGWORKER CYCLE JOB 



780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017 
Deliverable D4.7 Implementation of Backend API (Cycle 2) 
Dissemination level: [Confidential]  

 

16 

GUI:ThingWorker’s single thread is responsible for sending a request to a thing that was assigned to him to 
obtain thing’s data. The data is then stored in the GUI:Database (as shown in Figure 8). 

 

FIGURE 8 GUI:THINGWORKER’S SINGLE THREAD 

GUI:WorkerOrchestrator is responsible for checking that all registered workers are working properly. It is done 
by sending a checkIfAlive request to each GUI:ThingWorker. If a worker does not respond or works incorrectly, 
information about an incident is passed to the GUI:Database and, for security reasons GUI:ThingWorker is 
destroyed. The described flow of actions is shown in Figure 9. 



780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017 
Deliverable D4.7 Implementation of Backend API (Cycle 2) 
Dissemination level: [Confidential]  

 

17 

 

FIGURE 9 GUI:WORKERORCHESTRATOR FLOW 

 

 



780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017 
Deliverable D4.7 Implementation of Backend API (Cycle 2) 
Dissemination level: [Confidential]  

 

18 

Additionally, GUI:WorkerOrchestrator is responsible for assigning work to every GUI:ThingWorker. In the  
beginning, GUI:WorkerOrchestrator gets a list of tracked things from GUI:Database. Then, 
GUI:WorkerOrchestrator gets available workers from GUI:Database. Finally, GUI:WorkerOrchestrator assigns 
things to every GUI:ThingWorker according to the round-robin algorithm. A sequence diagram of these actions 
is presented in Figure 10. 

 

FIGURE 10 GUI:WORKERORCHESTRATOR ASSIGNING FLOW 

 GUI CHANGES 

List view, presented in Figure 11, has been updated with two icons – blue icon navigates to the updated details 
view (Figure 12), while the green “eye” icon can be used to open a Thing monitoring view that has been 
developed within this cycle and is described later in this Section. The registration view ( Figure 13) does not 
have any significant changes different than the background change, and light mode used to be consistent with 
the overall GUI view. 

 



780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017 
Deliverable D4.7 Implementation of Backend API (Cycle 2) 
Dissemination level: [Confidential]  

 

19 

 

FIGURE 11 UPDATED LIST VIEW 

 

FIGURE 12 UPDATED THING DETAILS VIEW 



780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017 
Deliverable D4.7 Implementation of Backend API (Cycle 2) 
Dissemination level: [Confidential]  

 

20 

 

FIGURE 13 UPDATED REGISTRATION VIEW  

 NEW FEATURES 

4.1.4.1 THING MONITORING VIEW 

Within cycle 2, the Thing monitoring view was developed (presented in Figure 14). Now, it is possible to interact 
with Things – in this example with a Thing called Sunblind. At the moment, it is possible to set parameters that 
will be used later to create meaningful results on IoT dashboards in the next development cycle. Now, it is also 
possible to interact with things – make a simple actuation such as open/close Sunblind or parametrized one 
e.g. set motor speed value. (As it was mentioned earlier, this view is crucial for the IoT Dashboard coming in 
the next cycle). 

 

FIGURE 14 THING MONITORING VIEW 



780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017 
Deliverable D4.7 Implementation of Backend API (Cycle 2) 
Dissemination level: [Confidential]  

 

21 

4.1.4.2 SPDI PATTERNS 

To enable meaningful insights into the platform, the SPDI pattern monitoring view, presented in Figure 15, was 
developed. One of the objectives of the project was the development of the SPDI patterns, and this view gives 
a way of presentation of patterns (Security, Privacy, Dependabili ty, and Interoperability), including cross-layer 
and layer-specific patterns. Patterns are colored according to their state. The icon is green if all patters are 
satisfied, and it is red if none is satisfied. It is yellow when the pattern is partially met, and it is gray if patterns 
of one kind aren’t defined. After clicking on the “Show Table” button, the SPDI pattern monitoring view can be 
presented as a table (see Figure 16). 

 

FIGURE 15 SPDI PATTERN MONITORING VIEW 

 

 

FIGURE 16 SPDI PATTERN TABLE 



780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017 
Deliverable D4.7 Implementation of Backend API (Cycle 2) 
Dissemination level: [Confidential]  

 

22 

The pattern details view has been developed as well. It is possible to present all patterns that one kind of 
pattern consists of (see Figure 17).  

 

FIGURE 17 PATTERN DETAILS 

4.1.4.3 SPDI RECIPE VIEW 

SPDI recipe view is the other view that has been developed in this cycle. This view presents recipes obtained 
from Pattern Orchestrator (they were created before in Recipe Cooker). The given algorithm is presented as a 
graph. The inner components of sequences are colored with the same color to meaningfully illustrate th e 
recipe. Split nodes are the nodes that have more than one child (e.g. when data from one collector is passed 
to the two different analytic tools). Merge nodes are the nodes that have at least two parents (e.g. to use two 
factors to make some decision).  

As it is in the “Recipe1” example (see Figure 18), the red one sequence illustrates passing data from Camera to 
the ObjectDetector. The green one sequence shows that sound data is passed from the Microphone to 
the SoundClassifier.  The output from ObjectDetector and the output from SoundClassifier are combined in 
the DetectIntruder merge node. This node is responsible for combined analytics with the aim of the detection 
of an intruder. Based on the output of the DetectIntruder node, the SendNotification component can be 
invoked.  



780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017 
Deliverable D4.7 Implementation of Backend API (Cycle 2) 
Dissemination level: [Confidential]  

 

23 

 

FIGURE 18 SPDI RECIPE VIEW 

4.2 Backend Orchestrator 

As described in D4.6, the Backend Orchestrator is a component responsible for integrating all backend services 
and exposing API. Kubernetes2 has been chosen as a component responsible for the orchestration of the 
SEMIoTICS backend. Kubernetes is an open-source project that enables declarative framework orchestration 
that has become a standard and is available to install on most of the platforms. Additionally, this technology is 
in line with proposed microservices architecture (described widely in D2.4).  

The development of the Backend Orchestrator component has been continued within cycle 2.  

Within Table 3 updated backlog of the tasks planned for the component is visible with the given status of the 
implementation. Further sections provide more details of the implementation.  

The technologies which have been chosen to be used for backend orchestration are the following: 

- Kubernetes – technology used as backend orchestrator to orchestrate backend applications  
- Ansible 2.5 – technology used as a tool to automatize installation of Kubernetes and its dependencies 
- Docker – technology used for containerization of applications written in different languages  

 
 
 
 
 
 
 

 

 

2 https://kubernetes.io 



780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017 
Deliverable D4.7 Implementation of Backend API (Cycle 2) 
Dissemination level: [Confidential]  

 

24 

TABLE 3 BACKEND ORCHESTRATOR BACKLOG 

Feature/task scope Short description Cycle 
assignment 

Status 

Comparison and choosing the 
technology for Backend 

Orchestrator 

Comparison of OpenStack, Kubernetes, and 
OpenShift. 

Cycle 1 Delivered 

Installation of Kubernetes on a 
cloud server for fast testing the 

chosen technology 

Creating an instance of Kubernetes Cluster on 
AWS. Testing process to determine the size of 

resources for the physical cluster. 

Cycle 1 Delivered 

Creating a docker images 
repository 

Creating a repository for Docker images on the 
GitLab. 

Cycle 1 Delivered 

First installation of Backend 
Orchestrator on BLS cluster 

Creating the ansible script for installing required 
tools on a cluster. Testing one node Kubernetes 

architecture 

Cycle 1 Delivered 

Changing the internal architecture 
of Backend Orchestrator 

Creating at least two nodes. There have to be a 
master node and a slave. 

Cycle 1 Delivered 

Implement a proxy mechanism in 
PEP 

Implement a proxy mechanism to intercept HTTP 
traffic going to the main application and authorize 

the request in Security Manager 

Cycle 1&2 Done 

Add a proxy application to 
authenticate requests 

Add mitmproxy application as an Authentication 
Enforcement Point which adds the client’s token to 

an HTTP request 

Cycle 1&2 Done 

Preparation of PEP for 
deployment on Backend 

Orchestrator 

Create dockerfile and dockerize the application so 
it can be later deployed on Kubernetes 

Cycle 1&2 Done 

Set of access rules for consortium 
partners to Backend Orchestrator 

Configure the namespaces and roles on 
Kubernetes. Creating the script that assigns 

permission per roles and namespaces. 

Cycle 2&3 In Progress 

Develop the scheme of deploying 
the component 

Creating the script of deployment, service and 
config map for example component. 

Cycle 2 Done 

Deploying GUI and Thing 
Simulator on Kubernetes cluster 

Developing the structure of deployment files for 
GUI  and Thing Simulator 

Cycle 2 Done 

Automate the repeatable process 
of deploying the components. 

Installation Jenkins on the machine. Creating the 
access rules for Jenkins to the BO. 

 

Cycle 2 Done 

Enabling communication between 
components deployed on 

Backend Orchestrator and to 
external applications 

Develop the scripts  that allow to expos the 
component to externals networks 

Cycle 2 Done 



780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017 
Deliverable D4.7 Implementation of Backend API (Cycle 2) 
Dissemination level: [Confidential]  

 

25 

Performing the test of 
communication between 

components 

Testing internal and external communication 
between deployed components 

Cycle 2 Done 

Develop the way of storage and 
updating the credentials for 

externals applications 

Set of rules about storage and user credentials for 
GitLabRepository. 

Cycle 2 Done 

Manual deployment of Thing 
Directory 

Create dockerfile and dockerize the application so 
it can be later deployed on Kubernetes. 

Deployment component 

Cycle 2 Done 

Creating and configuration of the 
tool for the administrator of 

Backend Orchestrator 

Configure a dashboard that shows the state of the 
cluster. Creating the notification when the 

dangerous state of a cluster. 

Cycle 2 Done 

Creating deployment files for AOL 
components 

Create deployment .yml files for GUI, Security 
Manager, Think Directory, Think Simulator and 

Think Worker, which allows deployment on 
Kubernetes. 

Cycle 2 Done 

Create automatized jobs for 
deploying components. 

Create CI/CD pipeline that allows deploying the 
following components GUI, Security Manager, 

Think Directory, Think Simulator and Think Worker 
on Kubernetes after manual initialization. 

Cycle 2 Done 

Creating deployment files for AOL 
components 

Create deployment .yml files for Pattern Engine, 
Recipe Cooker, Backend Semantic Validator, which 

allows deployment on Kubernetes. 

Cycle 3 To Do 

Create automatized jobs for 
deploying components. 

Create CI/CD pipeline that allows deploying the 
following components: Pattern Engine, Recipe 

Cooker, Backend Semantic Validator on 
Kubernetes after manual initialization. 

Cycle 3 To Do 

 DEVELOPMENT STATUS 

In cycle 2 the Kubernetes instance was installed with ansible scripts on BLS premises (on bare metal).  The 
instance was used to orchestrate a subset of components of SEMIoTICS backend. One of the tasks, which is 
to prepare a set of access rules for consortium partners to Backend Orchestrator, will be continued in cycle 3. 
The script with permissions and namespaces has already been prepared but the configuration on Kubernetes 
is still to be done. Concept of Kubernetes deployment site has changed and there is alternative installation 
approach considered. Namely, to install BO on the server of one of the partners instead of on BLS. The server 
will be available in cycle 3 so the final decision and configuration is postponed to this cycle. 

Kubernetes uses a declarative approach to manage Kubernetes resources. The ‘semiotics’ namespace 
resource was created especially for the project, so every application can be deployed in this namespace. This 
resource was created during Kubernetes setup. 

apiVersion: v1 

kind: Namespace 

metadata: 

   name: semiotics 



780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017 
Deliverable D4.7 Implementation of Backend API (Cycle 2) 
Dissemination level: [Confidential]  

 

26 

One of the most popular ways to use Kubernetes API is with kubectl command-line tool. The output of 
command used to present the current state of all deployed applications within ‘semiotics’ namespace (created 
during the installation) is presented in Figure 19 (view from ubuntu terminal).  

As it is shown in the presented figures (Figure 19), in the current cycle Kubernetes instance was used to 
orchestrate following backend applications related to GUI and/or security use case: 

o Security Manager 
o Security Manager:PEP 
o Thing Directory 
o GUI:Backend 
o GUI:Frontend 
o GUI:ThingSimulator 
o GUI:ThingWorker 
o GUI:Database 

In cycle 2, the response from Pattern Orchestrator was mocked by GUI:Frontend application. For every 
application, a dedicated Kubernetes YAML declarative configuration was prepared. In case of GUI:Frontend 
application following resources were created: 

- Deployment – responsible for ensuring that predefined number of GUI:Frontend applications are ready 
(see YAML definition in  

- Table 6) 
- Service – responsible for exposing GUI:Frontend application outside of the cluster (see YAML definition 

in Table 4) 
- ConfigMap – responsible for providing necessary information for GUI:Frontend Deployment (see YAML 

definition in  
-  
- Table 5). 

TABLE 4 GUI:FRONTEND SERVICE DEFINITION 

apiVersion: v1 

kind: Service 

metadata: 

  name: web-app-svc 

  namespace: semiotics 

  labels: 

    app: front 

spec: 

  type: NodePort 

  ports: 

  - port: 80 

    nodePort: 32000 

    protocol: TCP 

  selector: 

    app: front 



780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017 
Deliverable D4.7 Implementation of Backend API (Cycle 2) 
Dissemination level: [Confidential]  

 

27 

 

 

TABLE 5 CONFIGMAP USED BY GUI:FRONTEND POINTING GUI:BACKEND  

apiVersion: v1 

kind: ConfigMap 

metadata: 

  name: api-map 

  namespace: semiotics 

data: 

  API_URL: http://172.22.2.9:31000/td 

 

TABLE 6 GUI:FRONTEND DEPLOYMENT DEFINITION 

apiVersion: apps/v1 

kind: Deployment 

metadata: 

  annotations: 

    configmap.reloader.stakater.com/reload: "api-map" 

  name: front-deployment 

  namespace: semiotics 

  labels: 

    app: front 

spec: 

  replicas: 1 

  selector: 

    matchLabels: 

      app: front 

  template: 

    metadata: 

      labels: 

        app: front 

    spec: 

      containers: 

      - name: front 

        image: registry.gitlab.com/semiotics/backend/gui/frontend:jenkins 



780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017 
Deliverable D4.7 Implementation of Backend API (Cycle 2) 
Dissemination level: [Confidential]  

 

28 

        resources: 

          requests: 

            memory: "20Mi" 

            cpu: "200m" 

          limits: 

            memory: "40Mi" 

            cpu: "400m" 

        ports: 

          - containerPort: 80 

        env: 

        - name: API_URL 

          valueFrom: 

            configMapKeyRef: 

              name: api-map 

              key: API_URL 

      imagePullSecrets: 

      - name: blue-k8s 

In case of GUI:Backend application following resources were created: 

- Deployment – responsible for ensuring that predefined number of GUI:Backend applications are ready 
(see YAML definition in Table 7) 

SERVICE – RESPONSIBLE FOR EXPOSING GUI:FRONTEND APPLICATION OUTSIDE OF THE 
CLUSTER (SEE YAML DEFINITION IN  

- Table 9) 

CONFIGMAP – RESPONSIBLE FOR PROVIDING NECESSARY INFORMATION FOR GUI:FRONTEND 
DEPLOYMENT (SEE YAML DEFINITION IN  

- Table 8) 

TABLE 7 GUI:BACKEND DEPLOYMENT DEFINITION 

apiVersion: apps/v1 

kind: Deployment 

metadata: 

  name: back-deployment 

  namespace: semiotics 

  labels: 

    app: back 

spec: 



780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017 
Deliverable D4.7 Implementation of Backend API (Cycle 2) 
Dissemination level: [Confidential]  

 

29 

  replicas: 1 

  selector: 

    matchLabels: 

      app: back 

  template: 

    metadata: 

      labels: 

        app: back 

    spec: 

      containers: 

      - name: back 

        image: registry.gitlab.com/semiotics/backend/gui/backend:jenkins 

        resources: 

          requests: 

            memory: "230Mi" 

            cpu: "100m" 

          limits: 

            memory: "460Mi" 

            cpu: "200m" 

        imagePullPolicy: Always 

        ports: 

        - containerPort: 8090 

        env: 

        - name: THING_DIRECTORY_SERVICE_URL 

          valueFrom: 

            configMapKeyRef: 

              name: backend-map 

              key: THING_DIRECTORY_SERVICE_URL 

        - name: SPRING_DATASOURCE_URL 

          valueFrom: 

            configMapKeyRef: 

              name: backend-map 

              key: SPRING_DATASOURCE_URL 

        - name: SPRING_DATASOURCE_USERNAME 

          valueFrom: 



780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017 
Deliverable D4.7 Implementation of Backend API (Cycle 2) 
Dissemination level: [Confidential]  

 

30 

            configMapKeyRef: 

              name: backend-map 

              key: SPRING_DATASOURCE_USERNAME 

        - name: SPRING_DATASOURCE_PASSWORD 

          valueFrom: 

            configMapKeyRef: 

              name: backend-map 

              key: SPRING_DATASOURCE_PASSWORD 

      imagePullSecrets: 

      - name: blue-k8s 

 

TABLE 8 CONFIGMAP USED BY GUI:BACKEND (POINTING THING DIRECTORY SERVICE) 

apiVersion: v1 

kind: ConfigMap 

metadata: 

  name: backend-map 

  namespace: semiotics 

data: 

  THING_DIRECTORY_SERVICE_URL: http://tdirectory-svc:8080 

  SPRING_DATASOURCE_URL: *** 

  SPRING_DATASOURCE_USERNAME: *** 

  SPRING_DATASOURCE_PASSWORD: *** 

 

TABLE 9 GUI:BACKEND SERVICE DEFINITION KIND: SERVICE 

apiVersion: v1 

metadata: 

  name: back-svc 

  namespace: semiotics 

spec: 

  ports: 

  - nodePort: 31000 

    port: 8090 

    protocol: TCP 



780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017 
Deliverable D4.7 Implementation of Backend API (Cycle 2) 
Dissemination level: [Confidential]  

 

31 

    targetPort: 8090 

  selector: 

    app: back 

  sessionAffinity: None 

  type: NodePort 

 BACKEND ORCHESTRATOR DASHBOARD SETUP 

The deployed Kubernetes dashboard presents the current state (all running) of deployed applications in the 
browser (Figure 20), while Figure 19 shows the same state using kubectl tool in ubuntu console.  

 

 

FIGURE 19 CURRENT STATE OF DEPLOYED APPLICATIONS WITHIN SEMIOTICS NAMESPACE  

 



780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017 
Deliverable D4.7 Implementation of Backend API (Cycle 2) 
Dissemination level: [Confidential]  

 

32 

FIGURE 20 STATE OF DEPLOYED APPLICATIONS WITHIN SEMIOTICS NAMESPACE PRESENTED 
WITH KUBERNETES DASHBOARD  



780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017 
Deliverable D4.7 Implementation of Backend API (Cycle 2) 
Dissemination level: [Confidential]  

 

33 

4.3 Pattern Orchestrator 

As described in D4.6, Pattern Orchestrator is responsible for the automated configuration, coordination, and 
management of different patterns and their deployment. In further detail, the Pattern Orchestrator will:  

1. Receive instantiated recipes from Recipe Cooker via defined API  
2. Extract SPDI & QoS properties/requirements from instantiated recipes and convert to patterns  
3. Convert patterns to Drools  
4. Classify and distribute patterns (as Drools) to the different pattern engines in three layers (Backend, 

Network, Field) 
 

Cycle 2 includes:  

• Re-implementation of the Pattern Orchestration interface with REST API 

• Extension of the Pattern Orchestrator - Pattern Engines interfacing with more REST services  

• Integration with SEMIoTICS GUI 

• New classes for the instantiation of Drools facts  

TABLE 10 PATTERN ORCHESTRATOR BACKLOG 

Feature/task scope Short description Cycle assignment Status 

API definition between 
Recipe Cooker and 

Pattern Orchestrator 

Recipe Cooker needs to submit an 
instantiated recipe to the Pattern 

Orchestrator and expects a response 
that indicates whether the recipe 

definition is feasible to execute. For that 
reason, an API needs to be defined. 

Cycle 1 Delivered 

Transformation of an 
instantiated recipe to 

patterns 

Pattern Orchestrator must understand 
the instantiated Recipes it receives, as 

defined by the Recipe Cooker and 
transform them into patterns. 

Cycle 1 Delivered 

Communication with the 
three Pattern Engines 

Interfacing with Pattern Engines on all 
layers (Backend, Network, and Field) 
needs to be implemented and tested. 

Cycle 1 Delivered 

Store patterns (as Drools) 
in the backend pattern 

repository 

The patterns created by Pattern 
Orchestrator need to be communicated 

to the Backend Pattern Engine for 
storing in the local repository. 

Cycle 2 Delivered 

Classify and distribute 
patterns (as Drools) to the 
different pattern engines 

Pattern Orchestrator must be able to 
decide for each of the Drools 

Rules/Facts (patterns), which is the 
appropriate Pattern Engine to deliver it. 

Cycle 2 & 3 In Progress 

IoT service orchestration 
adaptation 

In case an SPDI or QoS property is no 
longer guaranteed, adaptation actions 
must be taken, changing a number of 

orchestration components. In that way, 
the Pattern Engines can guarantee that 
the SPDI/QoS property in question is 

henceforward satisfied. 

Cycle 3 To Do 



780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017 
Deliverable D4.7 Implementation of Backend API (Cycle 2) 
Dissemination level: [Confidential]  

 

34 

As already mentioned in Section 4.4 regarding the distribution of patterns to different pattern engines, the 
decision mechanism of the Pattern Orchestrator, is not yet finalized. This is due to the fact that new patterns 
(rules, facts) are created constantly and will continue to be created until the end of the project. Therefore, the 
decision mechanism is constantly updated in order to include the newly created patterns.  

 DEVELOPMENT STATUS  

Similarly, to the Backend Pattern Engine described in subsection 4.4, the Spring Framework was adopted to 
build REST web services for the Pattern Orchestrator. Other SEMIoTICS components, such as Recipe Cooker, 
are able to make REST requests to the Pattern Orchestrator API using REST clients. An excerpt from the 
source code presents the REST services made available by the Backend Pattern Engine, in Figure 21. 

 

FIGURE 21: PATTERN ORCHESTRATOR REST API 

Recipe Cooker uses the insertRecipe REST request to communicate with Pattern Orchestrator including a 
recipe description in JSON format. Such a request is depicted in Figure 22. Under “recipeID” a unique string 
that acts as an identifier is provided, while under “recipe” label lays the recipe descripti on itself. The recipe 
instance depicted here is very simple and consists of two software components that are placed in sequence, 
which means that the output of the former is consumed as input by the latter.  

 

FIGURE 22: INSERTRECIPE PAYLOAD IN JSON FORMAT 

The removeRecipe request is used once again by the Recipe Cooker for the deletion of a Recipe from the 
Drools memory in one of the Pattern Engines in the three layers.  

Moreover, the SEMIoTICS GUI uses the REST API of Pattern Orchestrator in order to visualize the status of 
the SPDI and QoS properties of the deployed IoT Service orchestrations. The response of the Pattern 
Orchestrator is in JSON format. A sample response is depicted below. 

{ 

    "recipe": { 

        "name": "RecipeName", 

        "values": { 

            "LinksList": [{ 

                "ID": "L23", 

                "Node1": "P2", 



780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017 
Deliverable D4.7 Implementation of Backend API (Cycle 2) 
Dissemination level: [Confidential]  

 

35 

                "Node2": "P3", 

                "layer": "network", 

                "properties": [{ 

                    "name": "Pr23", 

                    "type": "required", 

                    "category": "qos_bandwidth", 

                    "value": 1000.0, 

                    "datastate": "datastate", 

                    "subject": "L23", 

                    "satisfied": true, 

                    "verificationtype": "verificationtype", 

                    "means": "means" 

                }] 

            }], 

            "NodesList": [{ 

                "ID": "P1", 

                "Name": "P1", 

                "layer": "network", 

                "properties": [{ 

                    "name": "Pr1", 

                    "type": "required", 

                    "category": "qos_bandwidth", 

                    "value": 10.0, 

                    "datastate": "datastate", 

                    "subject": "P1", 

                    "satisfied": true, 

                    "verificationtype": "verificationtype", 

                    "means": "means" 

                }] 

            }, { 

                "ID": "P2", 

                "Name": "P2", 

                "layer": "network", 

                "properties": [{ 

                    "name": "Pr2", 



780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017 
Deliverable D4.7 Implementation of Backend API (Cycle 2) 
Dissemination level: [Confidential]  

 

36 

                    "type": "required", 

                    "category": "qos_bandwidth", 

                    "value": 10.0, 

                    "datastate": "datastate", 

                    "subject": "P2", 

                    "satisfied": true, 

                    "verificationtype": "verificationtype", 

                    "means": "means" 

                }] 

            }], 

            "SequencesList": [{ 

                "ID": "S23", 

                "Name": "S23", 

                "Node1": "P2", 

                "Node2": "P3", 

                "layer": "network", 

                "properties": [{ 

                    "name": "PrS23", 

                    "type": "required", 

                    "category": "qos_bandwidth", 

                    "value": 10.0, 

                    "datastate": "datastate", 

                    "subject": "S23", 

                    "satisfied": true, 

                    "verificationtype": "verificationtype", 

                    "means": "means" 

                }] 

            }], 

            "MergesList": [{ 

                "ID": "M1", 

                "Name": "M1", 

                "Node1": "P1", 

                "Node2": "S23", 

                "Node3": "S45", 

                "layer": "network", 



780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017 
Deliverable D4.7 Implementation of Backend API (Cycle 2) 
Dissemination level: [Confidential]  

 

37 

                "properties": [{ 

                    "name": "PrM1", 

                    "type": "required", 

                    "category": "qos_bandwidth", 

                    "value": 10.0, 

                    "datastate": "datastate", 

                    "subject": "M1", 

                    "satisfied": true, 

                    "verificationtype": "verificationtype", 

                    "means": "means" 

                }] 

            }] 

        } 

    } 

}  

As we can see the JSON response is actually a list for: 

• the components (Nodes) that constitute the orchestration in question 

• the Links among these components 

• the Sequences in which the Nodes are organized 

• the Merges in which the Nodes are organized 

• the Choices in which the Nodes are organized 

• the Splits in which the Nodes are organized 

 COMPONENT API INTERACTIONS DESCRIPTION 

The key interactions of the Pattern Orchestrator with other components can also be seen at the instantiation 
and runtime diagrams depicted below. More details regarding the communications of the Pattern Orchestrator 
with the three Pattern Engines is given in the in D5.2.  

 



780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017 
Deliverable D4.7 Implementation of Backend API (Cycle 2) 
Dissemination level: [Confidential]  

 

38 

 

FIGURE 23 PATTERN ORCHESTRATOR INSTANTIATION AND RUNTIME DIAGRAM 

4.4 Pattern Engine (backend) 

As described in D4.6, the Backend Pattern Engine is a module featuring an underlying semantic reasoner 
processing Drools rules and facts. Additionally, it allows the insertion, modification, execution, and retraction 
of patterns either at design time or at runtime, through the Pattern Orchestrator, in the SEMIoTICS backend. 
Utilizing the Drools rule engine, the Pattern Engine is able to reason on the SPDI and QoS properties of aspects 
pertaining to the operation of the SEMIoTICS backend.  

During runtime, the Backend Pattern Engine Module is able to receive fact updates from the Pattern engines 
of lower layers (Network & Field), in order to have an up-to-date view of the SPDI state of all the layers and 
the corresponding components.  

Cycle 2 development includes:  

• New implementation of API  

• Successful communication between the Backend Pattern Engine, the Pattern engines of other layers 
and the Pattern Orchestrator 

• New classes for the instantiation of Drools facts  
 

Please refer to Table 11 for more details. 



780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017 
Deliverable D4.7 Implementation of Backend API (Cycle 2) 
Dissemination level: [Confidential]  

 

39 

TABLE 11 PATTERN ENGINE BACKLOG 

Feature/task scope Short description Cycle 
assignment 

Status 

API Definition Pattern Engines in all layers need a 
common API for the interactions between 

them, therefore the first step is to define the 
API. 

Cycle 1 Delivered 

Drools pattern rules 
instantiation 

Patterns in the form of Drools Rules must 
be created and instantiated inside the 
Drools Engine of the Backend Pattern 

Engine. 

Cycle 1 Delivered 

Drools pattern rules storage in 
a standalone repository 

A standalone repository is needed for the 
Drools pattern rules in order to maintain 

them in the case of restarting the engine. 

Cycle 1 Delivered 

Communication of network 
and field updates to Backend 

Pattern Engine 

The Backend Pattern Engine must have a 
global view of the SPDI properties, 

therefore, Pattern Engines in the field and 
network layer must propagate their updates 

to Backend Pattern Engine 

Cycle 2 Delivered 

Successful testing of flow 
from Recipe Cooker 

The Recipe Cooker is the point of start for 
an IoT service orchestration to be deployed 
with SPDI properties assigned to it. The IoT 

service orchestration must be 
communicated to the relevant Pattern 

Engines through the Pattern Orchestrator 
(please see the comment below). 

Cycle 2 & 3 In progress 

Adaptation to maintain desired 
properties 

When the desired property is no longer 
satisfied, the Backend Pattern Engine must 

take adaptation actions accordingly. 

Cycle 3 To do 

Update of Backend Pattern 
Engine status based on 

information from the SDN/NFV 
layer and Field layer 

Update of Backend Pattern Engine on 
status based on instantiated paths with 

different properties, an adaptation of 
network to maintain desired properties and 

used SFC chains. 

Cycle 3 To do 

Regarding the testing of flow from Recipe Cooker, successful communication has been implemented which 
delivers the orchestration from the Recipe Cooker to a Pattern Engine through Pattern Orchestrator. The 
distribution of patterns to different pattern engines, the decision mechanism of the Pattern Orchestrator, is not 
yet finalized. This is due to the fact that new patterns (rules, facts) are created constantly and will continue to 
be created until the end of the project. Therefore, the decision mechanism is constantly updated in order to 
include the newly created patterns. 

 DEVELOPMENT STATUS  

Regarding the Backend Pattern Engine, the environment that was set up during Cycle 1 included Apache 
Maven 3.6.1, JBoss Drools7 7.15, and gRPC8 with Protocol Buffers9 Version 3. During Cycle 2, gRPC8 and 
Protocol Buffers were replaced with a corresponding REST approach for compatibility purposes with other 
SEMIoTICS components. 



780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017 
Deliverable D4.7 Implementation of Backend API (Cycle 2) 
Dissemination level: [Confidential]  

 

40 

The Spring Framework was adopted to build REST web services. Using REST clients, other SEMIoTICS 
components are able to successfully make REST requests to the Backend Pattern Engine API. An excerpt 
from the source code presents the REST services made available by the Backend Pattern Engine, in Figure 
24. 

 

FIGURE 24: BACKEND PATTERN ENGINE REST SERVICES 

 COMPONENT API INTERACTIONS DESCRIPTION 

As we can see in Figure 24 above, the main web services exposed from the Backend Pattern Engine API are:  

• addFact 

• factRemove 

• factUpdate 

• factStatus 

• insertRule 

The above corresponds to the creation, retrieval, deletion of facts and creation of rules. 

In more detail, the addFact REST service is used by the Pattern Orchestrator for the communication of new 
Drools facts of a new IoT Service orchestration. It can also be used by the Pattern Engines of the other layers 
(Network and Field) in the case of new fact discovery. In any case, the JSON that is sent is based on the Fact 
Java class that can be seen in the code snippet below, in Figure 25. 



780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017 
Deliverable D4.7 Implementation of Backend API (Cycle 2) 
Dissemination level: [Confidential]  

 

41 

 

FIGURE 25: FACT JAVA CLASS ATTRIBUTES USED IN REST SERVICES JSON 

Moreover, the factRemove is used in order for a fact to be deleted from the Drools Memory of the Backend 
Pattern Engine. The factUpdate is used again by the Pattern Orchestrator in case some changes need to be 
applied to a Drools Fact. The factStatus REST service returns the current status of a special type of Drools 
facts, the instances of Property class. These instances are used to describe SPDI and QoS properties for the 
components of an IoT Service orchestrator. This REST service could be used for the visualization of the SPDI 
properties of an orchestrator in the SEMIoTICS GUI. Finally, the insertRule REST service is used only by the 
Pattern Orchestrator to communicate Drools Rules to the Backend Pattern Engine for the reasoning of the 
SPDI and QoS properties.   

Table 12 below shows an aggregation of the API communications between the Backend Pattern Engine and 
the other SEMIoTICS components.  

TABLE 12: BACKEND PATTERN ENGINE API COMMUNICATIONS 

Consumer 
component 

Owner Components that will 
be used/consumed 
by this component 

A layer of 
component that will 

be consumed 

Description of 
interactions 

Pattern Orchestrator STS Backend Pattern 
Engine 

Backend CRUD of rules and 
facts 

Backend Pattern 
Engine 

STS Network Pattern 
Engine 

Network Fact and Rule 
Updates 

Backend Pattern 
Engine 

STS Field Pattern Engine Field Fact and Rule 
Updates 

4.5 Backend Semantic Validator 

As mentioned in the D4.6, the scope of the Backend Semantic Validator (BSV) component is to tackle the 
semantic interoperability issues that arise in the SEMIoTICS framework (see Deliverable D4.4), at the 
application orchestration layer. The BSV can receive a request from IoT application for interaction between 
two Things (i.e. sensor, actuator), which are described with two different TDs (based on W3C Thing 
Descriptions that are serialized to JSON-LD standard format), respectively. The functionality of this component 
consists of: 



780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017 
Deliverable D4.7 Implementation of Backend API (Cycle 2) 
Dissemination level: [Confidential]  

 

42 

1. Searching for the necessary Thing models in the Thing Directory component to detect any potential 
semantic conflicts between the interacting domains. 

2. Connecting with Recipe Cooker and Semantic Edge Platform (in the field) to resolve these semantic 
conflicts using the Adaptor Nodes that configure an Interaction Pattern in accordance with the 
application's requirements. 

3. Transferring the translated request to the Semantic API & Protocol Binding component which is 
responsible to trigger the GW Semantic Mediator in the filed layer to send the request in an appropriate 
format to the target Thing (actuator). 

TABLE 13 BSV BACKLOG 

Feature/task scope Short description Cycle 
assignment 

Status 

First installation of a server 
using gRPC and protocol 

buffers 

In order to receive a request from an IoT 
application, a service is required from the 

BSV side. For this reason, a server is 
implemented with the appropriate 

endpoints, using gRPC framework and 
protocol buffers, for the aforementioned 

communication. 

Cycle 1 Delivered 

Establish communication 
between Recipe Cooker and 

BSV 

Recipe Cooker is the primary tool for 
designing the flow that involves Things as 
well as other components. In order to be 

able to guarantee the semantic 
interoperability between the Things, the 

Recipe Cooker needs to be able to 
communicate with BSV. The output of the 
Recipe cooker is in JSON format that BSV 

parses. 

Cycle 2 Delivered 

Re-implement BSV’s 
endpoints using RESTFul 
services instead of gRPC 

Due to compatibility issues with Recipe 
Cooker, the need to abandon gRPC 
implementation and replace it with 

RESTFul Services. 

Cycle 2 Delivered 

Resolve semantic conflicts 
using the Adaptor Nodes 

Upon receiving a recipe from Recipe 
Cooker, the BSV checks the semantic 

validity of the involved Things and 
responds accordingly to Recipe Cooker. 
When two Things are not semantically 

interoperable, the BSV creates an Adaptor 
Node, which resolves the semantic conflicts 

between them. 

Cycle 2 & 3 In Progress 

Communication with the 
Semantic API & Protocol 

Binding component 

When the request of an IoT application 
results in the involvement of brownfield 
systems, it is necessary to forward the 
request to the Semantic API & Protocol 

Binding component, which is responsible to 
trigger the GW Semantic Mediator in the 

filed layer. Therefore, communication 
between BSV and Semantic API & Protocol 

Binding needs to be implemented. 

Cycle 3 To Do 



780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017 
Deliverable D4.7 Implementation of Backend API (Cycle 2) 
Dissemination level: [Confidential]  

 

43 

Interact with other European 
platforms (e.g. FIWARE). 

The request from an IoT application 
includes Thing Description in JSON-LD 

format, which may reference other 
European schemas different from 

iot.schema (e.g. schema.lab.fiware.org). 
Therefore, an example of interaction with at 

least one European platform should be 
implemented. 

Cycle 3 To Do 

Interact with Pattern related 
modules 

One of the features promised in Pattern 
Engine regards interoperability properties. 
The semantic interoperability, in particular, 
implies the interaction between BSV and 

Pattern Engine. 

Cycle 3 To Do 

Regarding the resolution of semantic conflicts by means of implementing Adaptor Nodes, the internal 
mechanism of the BSV is not yet completed. This is due to the fact, that the descriptions of the 6 types of smart 
objects, which are required by the KPI-2.1, are not finalized. The duration of the implementation for the said 
mechanism is under constant refinement until all of the types are sufficiently described. Also, in order to 
proceed with the interaction with other European platforms in Cycle 3, it will be necessary to update the 
mechanism that resolves the conflicts. Therefore, the above mechanism has started in Cycle 2 but will be 
delivered in Cycle 3. 

 DEVELOPMENT STATUS 

The first step has been implemented in Cycle 1 (see D4.6), but during the Cycle 2, the service requests 
(POST/GET) development technology was changed in order to be compatible with the other components. 
Specifically, the grpc3 method was replaced by the RESTful API4 to provide services for receiving data in a 
convenient format, creating new data, updating data and deleting data between the interaction of SEMIoTICS 
architecture components. 

The second step has been developed during Cycle 2. Particularly, this part is responsible to resolve any 
possible semantic conflicts between the interacting different Things, using or creating the corresponding 
Adaptor Nodes in Recipe Cooker. A recipe is instantiated in the Recipe Cooker, which is a flow of interactions 
between Things (i.e. Sensor, Actuator) with their own respective Thing Description. Practically, this flow is a 
JSON file that includes all the above information about the connectivity between Things (ingredients) Figure 
26. 

 

 

 

3 https://grpc.io/ 

4 https://restfulapi.net/ 



780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017 
Deliverable D4.7 Implementation of Backend API (Cycle 2) 
Dissemination level: [Confidential]  

 

44 

 

FIGURE 26 RECIPE EXAMLPE BEFORE SEMANTIC VALIDATION 

Based on the previous analysis, the functionality of the second BSV step that has been developed during Cycle 
2, is summarized in the following phases: 

• A Post Service Request (validateRecipeFlow) has been developed in order to Recipe Cooker send 
the JSON/flow recipe to BSV (see Figure 26). This request aims to trigger BSV to check for any 
interoperability conflicts between the two Things of this recipe. 

• The BSV component interacts with the Thing Directory component to ensure that these specific Things 
have already been registered in order to receive information on their TDs. This is a required step, 
otherwise, the BSV cannot resolve semantic differences and ensure that data flow is possible between 
them. 

• The BSV parses the TDs to discover for the semantic interoperability between the connected Things. 
In this phase, there are two possible cases: 

o Interacting Things used the same data transformation techniques (i.e. use the same units of 
measurements) 

o Interacting Things used the different data transformation techniques (i.e. the first Thing uses 
string unit of measurements and the second float). In this case, the BSV searches in Recipe 
Cooker for the corresponding Adaptor Node (for the above example, the corresponding 
Adaptor Node has the name AdaptorNodestringtofloat). If the Adaptor Node does not exist, 
the BSV should develop and add it in the Recipe Cooker. 

• The BSV sends the response back to Recipe Cooker, using JSON format, with the updated flow, 
which has a new “wire” with the Adaptor Node between two initial Things (ingredients) of the recipe 
(see Figure 27). The updated flow can be imported and saved by the Recipe Cooker. The advantage 
of this process is that after resolving the semantic interoperability conflicts between these two specific 
Things, in any future interaction that will be required for these, the Adapter Node will be added to the 
corresponding recipe to ensure semantic interoperability.  



780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017 
Deliverable D4.7 Implementation of Backend API (Cycle 2) 
Dissemination level: [Confidential]  

 

45 

 

FIGURE 27 RECIPE EXAMPLE AFTER SEMANTIC VALIDATION 

 COMPONENT IMPLEMENTATION CYCLE 2 - API INTERACTIONS DESCRIPTION 

The scope of development within cycle 2 is to ensure the semantic interoperability between two Things (i.e. 
sensor, actuator), which are described by two different TDs. Specifically, the cycle 2 implem entation of BSV 
component includes: 

• A Post Service Request (validateRecipeFlow), based on REST API, has been developed which 
receives as input a JSON (the flow from Recipe Cooker). 

• Discover the TDs of a specific Things based on their ids, which are included in the receiving recipe, 
to decide for the semantic interoperability. 

@PostMapping(value = "/validateRecipeFlow", consumes = "application/json", produces = 
"application/json") 

 

    //Post to validate Flow from Recipe Cooker 

    public String validateRecipeFlow(@RequestBody ArrayList<Flow> flows) throws Exception {} 



780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017 
Deliverable D4.7 Implementation of Backend API (Cycle 2) 
Dissemination level: [Confidential]  

 

46 

 

 

• In case that the interacting Things used the different data transformation techniques, the BSV 
searches in Recipe Cooker for the corresponding Adaptor Node. Node-RED includes the core set of 
available nodes, in a specific directory (.node-red/node_modules) and every node is represented by 
a subdirectory with a unique name. The BSV parses this directory in order to detect the corresponding 
folder (for the above example search for the directory AdaptorNodestringtofloat).  

//Encoder for Query in Thing Directory    

public static String urlEncoder(String inputURL) throws UnsupportedEncodingException{ 

String url = varUrlThingDirectory + "/td-lookup/sem?query=" + URLEncoder.encode(inputURL, "UTF-8"); 

 return url;} 

 

//HTTP GET request in the Thing Directory 

public static String sendGetFlow(String url, String id) throws Exception { 

 final String USER_AGENT = "Mozilla/5.0"; 

 URL obj = new URL(url); 

 HttpURLConnection con = (HttpURLConnection) obj.openConnection();  

con.setRequestMethod("GET"); 

con.setRequestProperty("User-Agent", USER_AGENT); 

 int responseCode = con.getResponseCode(); 

BufferedReader in = new BufferedReader(new InputStreamReader(con.getInputStream()));  

String inputLine; 

StringBuffer response = new StringBuffer(); 

while ((inputLine = in.readLine()) != null) { 

 response.append(inputLine); 

   } 

 in.close(); 

if(responseCode==200) { 

 if (response.length()==0) { 

  System.out.println("The Thing with id: " + id +" does not exist in the Thing Directory");  

                 return "1"; }  

 else { 

                 System.out.println("The Thing with id: " + id +" exists in the Thing Directory"); 

                 JSONObject responseJSON = new JSONObject(response.toString()); 

                 return responseJSON.getJSONObject(id).toString();}  

         } 

  else if(responseCode==400) { 

              System.out.println("Bad Request"); 

              return "2"; } 

  else if(responseCode==500) { 

              System.out.println("Internal Server Error"); 

              return "3"; } 

 return "0";} 

 

 



780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017 
Deliverable D4.7 Implementation of Backend API (Cycle 2) 
Dissemination level: [Confidential]  

 

47 

 

• If the Adaptor Node has been already included in Recipe Cooker, the BSV creates the updated flow 
(JSON file) and sends it as the response of POST service in the Recipe Cooker (see Figure 26). 
Otherwise, the component develops the Adaptor Node with specific functionality. There are some 
general principles to follow when creating new nodes in Node-RED (Recipe Cooker based on this 
platform) and extend the core structure. The procedure consists of a pair of files:  

o a JavaScript file that defines what the node does, 
o an HTML file that defines the node’s properties, edit dialog and help text,  
o a package.json file is used to package it all together as a npm module. 

All the above files are created, wrote and saved in the specific directory .node-red/node_modules by the 
component in order to add the new custom Adaptor Node in Recipe Cooker; in this way , the response with the 
updated flow/JSON (including the new Adaptor Node) can be imported and recognized by the Recipe Cooker. 

4.6 Thing Directory 

As described in D4.6, the Thing Directory is a component hosting Thing Descriptions (TDs) of registered things 
and can be used to browse and discover Things based on their TDs. This is the Thing Directory deployed on 
the backend level (or network level depending on demo setup). It interacts with the Local Thing Directory that 
runs on IIoT GW. 

//Check if there is the Adaptor Node 

String nameAnaptorNode = " AdaptorNode" +unitThing1+"To"+unitThing2; 

boolean findDirectory =false; 

File directory = new File(directoryNodeREDModules); 

File[] contentsOfDirectory = directory.listFiles(); 

for(File object : contentsOfDirectory) { 

 if(object.isDirectory()){ 

  if(object.getName().matches(nameAnaptorNode.replaceAll("\\s",""))){ 

                           System.out.print("A folder with name "+ nameAnaptorNode +" is already 
exist in the path: "    +directoryNodeREDModules +" \n"); 

                              findDirectory = true;}}} 

//After the creation of Adaptor Node directory, three files are requested 

createPackage(directoryNodeREDModules, nameAnaptorNode, "package" , ".json");  

createHtml(directoryNodeREDModules, nameAnaptorNode, nameAnaptorNode , ".html");  

createJavascript(directoryNodeREDModules, nameAnaptorNode, nameAnaptorNode , ".js");  

 

//Run the RecipeCooker 

Process p = Runtime.getRuntime().exec("node-red"); 



780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017 
Deliverable D4.7 Implementation of Backend API (Cycle 2) 
Dissemination level: [Confidential]  

 

48 

Table 14 presents the identified backlog scope and assignment to development cycles planned to include the 
implementation status. There has been no work planned nor done within Cycle 2.  

TABLE 14 THING DIRECTORY BACKLOG 

Feature/task scope Short description Cycle assignment Status 

Implementation Based on an existing, open-source 
implementation of the Thing Directory, we 

provided a solution, which is compliant with 
the W3C Thing Description. We packaged 
the Thing Directory as a Docker container 

for easy deployment. 

Cycle 1 Delivered 

Deployment: Cloud-level We deployed the Thing Directory in an 
AWS Cloud environment, accessible for all 

project partners 

Cycle 1 Delivered 

Implementation: Up-to-
date TDs 

A mechanism will be implemented that 
uploads the latest version of TDs from field 

devices to the Thing Directory so that 
components such as the Recipe Cooker will 

always have the up-to-date view on the 
field level. 

Cycle 3 To do 

4.7 Recipe Cooker 

As described in D4.6, Recipe Cooker is responsible for cooking (creating) recipes that reflect user requirements 
on different layers (cloud, edge, network), transforming recipes into understandable rules for each layer. It 
uses the Thing Directory with all necessary models to create these rules. 

Table 15 presents the identified backlog scope and assignment to development cycles planned to include the 
implementation status.  

TABLE 15 RECIPE COOKER BACKLOG 

Feature/task scope Short description Cycle 
assignment 

Status 

Design: merge of recipe + 
pattern concepts 

Introduced the recipe concept, as 
developed in the BIG IoT project, within 

the SEMIoTICS architecture. A recipe can 
be considered as a template for an IoT 

application. At this point in time, we 
merged the recipe concept together with 
the SPDI pattern concept. : By enabling 

the application-centric definition of recipes 
and automatically translating them into 

SPDI patterns and network-specific details, 
we hide the details of network 

configuration from the developers and they 
can fully concentrate on the program logic 

of their IoT application. (Documented in 
D3.4, Section 2.3 as well as D4.1) 

Cycle 1 Delivered 

Design: translation of recipes 
into facts 

After the conceptual merging of the two 
concepts, we worked out a mechanism for 

Cycle 1 Delivered 



780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017 
Deliverable D4.7 Implementation of Backend API (Cycle 2) 
Dissemination level: [Confidential]  

 

49 

a translation chain from the recipe, over 
SDN network mode, to patterns and finally 

facts in the rule engine. We, therefore, 
enable the semantic description of 

application-level constraints and their 
automatic conversion into network 

configurations. (Documented in D4.4) 

Implementation: Recipe 
Cooker as Node-RED 

extension 

Redefinition of the recipe cooker, as 
implemented in BIG IoT, by use of the 

Node-RED visual programming 
environment. The advantage of Node-RED 

is that we can build upon a broad 
ecosystem of nodes for the integration of 
IoT devices and services. (Documented in 

Section 4.7.1) 

Cycle 1 Delivered 

Implementation: Distributed 
execution of recipes 

Extension of the recipe cooker’s execution 
environment for IoT flows to allow their 

distributed IoT orchestration. The 
extension enables the deployment of the 
components of a flow to different devices. 
Further, the extension allows the definition 
of application-specific QoS constraints to 

be auto-translated into patterns for network 
configuration. 

Therefore, the so-called ‘DirectCom’ node 
was developed, which allows representing 

the network in the application flows 
defined via the recipe cooker. An example 

application flow could aim to transmit a 
video stream from a camera ‘ia a 'video 

’ccess' node to an AI pipeline via the 
‘DirectCom’ node. In this example, the 

DirectCom node allows now to define the 
video frame rate to a minimum of 15 

frames per second. This is communicated 
to the Pattern Orchestrator and then the 

Pattern Engine for the network to be 
configured and monitored. 

Cycle 2 In finalization 

Implementation: Distributed 
AI 

According to the wind turbine use case, a 
distributed AI approach is implemented 

with the Recipe Cooker by implementing 
nodes for the execution of machine 

learning models that can detect grease 
leakage in a turbine. 

Therefore, dedicated nodes are being 
developed to implement the AI pipeline 

and the use case. These nodes realize the 
functionalities to (1) read images in high 

frequency from the video stream, (2) 
convert an image into a tensor, and (3) to 
classify the tensor according to a defined 

Neural Network model. 

Cycle 3 In progress 



780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017 
Deliverable D4.7 Implementation of Backend API (Cycle 2) 
Dissemination level: [Confidential]  

 

50 

Implementation: 

Federated Learning 

To support the wind turbine use case, 
existing Neural Network models need to be 

retrained for the particular imagery 
expected to be seen inside the turbine – 
either with leaked grease/oil or without it. 
This retraining should be done locally at 

each turbine to avoid sending training data 
(large imagery data) over the network. 

However, a central model should 
aggregate the model updates from the 

different turbines. Therefore, nodes have 
to be implemented which allow the 

retraining, and the federation of the model 
updates. 

Cycle 3 To do 

4.8 Security Manager (backend) 

The Security Manager in a backend layer is a component that is responsible for ensuring end-to-end security 
and safety. Its development started in Cycle 2 as indicated in Table 1. The Security Manager helps SEMIoTICS 
to tackle the security and privacy problems that arise from the multi-tenant scenarios in a variety of levels, i.e., 
from the networking layer to the application layer. Therefore, the SEMIoTICS architectural framework d epicted 
in Figure 4 shows several Security Manager components (at the level of the backend and additionally at the 
network- and field-level) that work together but are controlled by the Security Manager in the backend. The 
components allow SEMIoTICS to achieve the required functionality in order to:  

• provide mechanisms to authenticate users and manage their identities.   

• provide mechanisms to manage the identities of other entities, e.g. sensors. 

• support use case applications to enforce access to privacy-sensitive information within the application. 

• support use case applications to enforce access to privacy-sensitive information when the data is 
stored in a cloud server, e.g., by using attribute-based encryption and lightweight encryption 
algorithms. 

• provide mechanisms to configure and manage SEMIoTICS end-to-end secure networking capabilities. 

All those requirements are covered and managed by one or more of the different software modules of the 
Security Manager. 

TABLE 16 SECURITY MANAGER BACKLOG 

Feature/task scope Short description 
Cycle 

assignment 
Status 

Initialize PEP application Create a SpringBoot application Cycle 2 Delivered 

Implement a Proxy 
mechanism in PEP 

Implement a Proxy mechanism to intercept 
HTTP traffic going to the main application 

and authorize the request in Security 
Manager 

Cycle 2 Delivered 

Add a proxy application to 
authenticate requests 

Add mitmproxy application as an 
Authentication Enforcement Point which 

adds the client’s token to an HTTP request 
Cycle 2 Delivered 

Prepare PEP for deployment 
on Backend Orchestrator 

Create dockerfile and dockerize the 
application so it can be later deployed on 

Kubernetes 
Cycle 2 Delivered 



780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017 
Deliverable D4.7 Implementation of Backend API (Cycle 2) 
Dissemination level: [Confidential]  

 

51 

Prepare AEP for deployment 
on Backend Orchestrator 

Create dockerfile and dockerize the 
application so it can be later deployed on 

Kubernetes 
Cycle 2 Delivered 

Add a mechanism to configure 
PEP from a file. 

Implement a mechanism that allows 
configuring mapping between an HTTP 

request and Security Manager calls 
Cycle 3 To do 

Merge all the existing 
submodules into one 

component 

Merge all the submodules to one 
component to simplify the implementation 

of CI/CD pipeline 
Cycle 2 Delivered 

Add MongoDB to support 
Security Manager 

Implement MongoDB as a database used 
by Security Manager to increase the 
performance of the Security Manager 

Cycle 2 Delivered 

Implementation of a call to find 
entities with a visible attribute 

Implementation of functionality to find 
entities with a particular, visible attribute to 
allow the evaluation of a privacy pattern in 

Pattern Engine. 

Cycle 2 Delivered 

Implementation of attribute-
based encryption 

Implementation of attribute-based 
encryption and a REST call to generate 

keys for an entity (based on its attributes or 
based on its policy) 

Cycle 3 To do 

Integration with Thing 
Directory 

Implementation of calls and methods 
essential to register new things as soon as 
they appear available in Security Manager 

Cycle 3 To do 

 

 DEVELOPMENT STATUS 

Within cycle 1, as per preparation for further development of the Security Manager scheduled for cycle 2, all 
steps of the release circle were followed (depicted in Figure 2) apart from the software module that provides 
the Attribute-Based Encryption (ABE) functionality; the latter is still under development and in the early testing 
phase. 

Deployment of Security Manager’s submodules was delivered followed by the extensive testing based on the 
workflow identified within Use Case 2 on Assisted Living. Integration testing with SEMIoTICS Patter Engine. 
Moreover, detailed definition, implementation and testing how the Sidecar Proxy subcomponent developed 
within cycle 1 interact (Figure 28) with Security Manager in order to provide the functionality of a Policy 
Enforcement Point (PEP).  

Furthermore, in order to comply with the overall orchestration approach for the backend layer, the Security 
Manager component in the backend has been dockerized. Such an approach allows for easy deployment of 
the component to the Backend Orchestrator as well as provides the capability of smooth integration with all 
backend services and exposed APIs. 

Another workstream of efforts has been focusing on deep verifications weather Security Manager (backend) 
subcomponents are capable of supporting other user scenarios foreseen for this component. Within cycle 2 
full verification has been done for Use Case 2 while Cycle 3 will focus on the other two Use Cases. Further 
application adaptation and refinement will be performed in order to deliver backend security service fully 
operational for all foreseen Use Cases and user scenarios.  



780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017 
Deliverable D4.7 Implementation of Backend API (Cycle 2) 
Dissemination level: [Confidential]  

 

52 

 

Figure 28 presented below, shows the general communication flow with the Policy Enforcement Point. This 
clearly points out that the sidecar proxy is the point of contact for other applications enforcing the access 
control policy to the primary application. The request (1) only arrives at the primary application if it is allowed 
by the security and privacy policy. The judgment, so the decision based on the policy, of what is allowed is 
elaborated by the security manager (between steps 2&3). 

 



780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017 
Deliverable D4.7 Implementation of Backend API (Cycle 2) 
Dissemination level: [Confidential]  

 

53 

 

FIGURE 28 GENERAL COMMUNICATION FLOW WITH PEP 

 

 ENTITY (INCL. USER) AUTHENTICATION 

In order to make access control decisions, the Security Manager needs to know which entity is requesting 
which access. In order to become assured of the entity, the entity authentication mechanism needs to be 
provided by the Security Manager. To handle the authentication requests of users and other enti ties alike, the 
Security Manager is additionally an OAuth2 provider. OAuth in Version 2.0 is a standardized specification and 
associated with RFCs developed by the IETF OAuth WG5 framework for user authentication, published in 
October 2012. OAuth 2.0 is considered an industry standard and is a state of art.  

Leveraging OAuth 2.0 as an industry standard allows easy integration with any application. Hence any 
component of the SEMIoTICS framework, can use their existing client implementations and integrate with 
SEMIoTICS identity management and authentication services offered by the Security Manager in the backend. 
In essence, applications requiring authentication services need to register as an Oauth2 client with the Security 
Manager and then can defer users to the SEMIoTICS authentication endpoint. Such an approach is very 
beneficial when users have only access to a browser (or a mobile device) because the OAuth protocol design 
covers such user scenarios. Additionally, applications without explicit user interaction, e.g., batch or cron-jobs, 
can authenticate towards the Security Manager by providing their client credentials or by a username and 
password tuple for a valid user. The general architecture of the OAuth-related component of the SEMIoTICS 
Security Manager in the backend is depicted in Figure 25. 

 

 

5 https://datatracker.ietf.org/wg/oauth/documents/ 



780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017 
Deliverable D4.7 Implementation of Backend API (Cycle 2) 
Dissemination level: [Confidential]  

 

54 

 

 

 WORKFLOWS AND INTERACTIONS WITH OTHER SEMIOTICS COMPONENTS  

The highlighted area of Figure 30 depicts the interaction of the Security Manager with the Pattern Engine (PE) 
described with an example of Use Case 2 user scenario. The goal is so the Pattern Engine is capable of 
verifying if the current decision policies inside the Security Manager is conforming to the SPDI Patterns as 
specified for the system. The information on which SPDI patterns to enforce, the Pattern Engine uses in two 
ways. Firstly, PE can use the SPDI patterns to define the request issued to the Security Manager (like get 

Authorized List) to obtain certain information about the currently enforced policy.  

Secondly, PE uses the SPDI patterns to reason on the answers received from the Security Manager. The 
reasoning allows the Pattern Engine to identify if the Policy being enforced in SEMIoTICS is compliant. PE is 
able to reflect this to the outside via an API call that allows other components to retrieve the SPDI status.  

 

FIGURE 29: SECURITY MANAGER IDM ARCHITECTURE 



780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017 
Deliverable D4.7 Implementation of Backend API (Cycle 2) 
Dissemination level: [Confidential]  

 

55 

 

FIGURE 30 WORKFLOW FOR UNAUTHORIZED LOCATION RETRIEVAL 

Non-highlighted area of Figure 30 depicts how the doctor’s initial request to a service is intercepted by the 
Sidecar Proxy acting as a Policy Enforcement Point (PEP). This shows that the Sidecar Proxy (asking the local 
Security Manager) is only needed if the service is exposed by the field level and Security Manager is 
synchronized. After the evaluation of the policy, the Sidecar proxy gets the permission details for the incoming 
request from the Security Manager. Based on this information the PEP then decides what to do with the request 
or response. 

Figure 31 presents the sequence diagram of how the Local Embedded Intelligence running in the field level is 
monitoring the patient. Depending on the patient’s status, the policy might need to get updated accordingly, in 
order to dynamically adapt to current events. In the case of no health-critical events detected [normal], the 
policy is kept very strict and compliant to the SPDI patterns (area highlighted in green in Figure 31).  

However, in the case of a [critical event] occurrence, the policy must be adjusted, and certain additional 
monitoring data are requested. As per the exemplary flow from Use Case 2, it might be the monitoring of the 
patient’s location. The policy update, in this case, would grant the doctor access to the location, by weakening 
the policy, even to a point where it might not conform to the normal SPDI patterns. The sequence diagram 
depicted in yellow in Figure 31 presents how a doctor can be authorized in such an alternate case.  

In the case the policy denies access to the PDP, the Sidecar proxy will block the access as depicted in the 
bluely highlighted area 



780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017 
Deliverable D4.7 Implementation of Backend API (Cycle 2) 
Dissemination level: [Confidential]  

 

56 

 

FIGURE 31 WORKFLOW FOR ADJUSTING POLICY DYNAMICALLY TO ALLOW LOCATION RETRIEVAL 
IN HEALTH CRITICAL EVENTS 

The abovementioned data flow, clearly presents that SEMIoTICS is capable of dynamically adjusting security 
and privacy policies, e.g. grant access to a previously unauthorized service  however the access is limited and 
granted for a limited period of time when a critical event is ongoing.  

 IMPLEMENTATION OF AND INTERACTION WITH THE AUTHENTICATION COMPONENT 

This section provides an overview of how to interact with the SEMIoTICS Security Manager (backend) to obtain 
a token if you are authorized to obtain such one (Table 17). 

TABLE 17: EXAMPLE OF AUTHENTICATING USING JAVASCRIPT CLIENT AND RECEIVE THE TOKEN 
RECEIVE THE TOKEN 

1. function authenticateClient(protocol,host,port,client,secret) {   

2.    

3.   var auth = “Basic “ + new Buffer(client + “:” + secret).toString(“base64”);   



780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017 
Deliverable D4.7 Implementation of Backend API (Cycle 2) 
Dissemination level: [Confidential]  

 

57 

4.   request({   

5.         method : „POST“,   

6.         url : protocol+”://”+host+”:”+port+”/oauth2/token”,   

7.         form: {   

8.           grant_type:’client_credentials’   

9.         },   

10.         headers : {   

11.           „Authorization“ : auth   

12.        }   

13.   },   

14.   function (error, response, body) {   

15.         if(error)   

16.           throw new Error(error);   

17.         var result = JSON.parse(body);   

18.         var token = result.access_token;   

19.         var type  = result.token_type;   

20.         console.log(“kind of token obtained: “+type);   

21.         console.log(“token obtained: “+token);   

22.         getInfo(protocol,host,port,token,”client”);   

23.         getInfo(protocol,host,port,token,”user”);   

24.   });   

25. }   

As per exemplary code in Table 17, to authenticate a client e.g. in Javascript the developers of the other 
components of SEMIoTICS that want to interact with the Security Manager’s IDM -related component, need to 
define a function that calls the /oauth2/token endpoint with a POST request. To do so they define the protocol, 
the host and corresponding port of the Security Manager. The authorization variable defined in the header of 
the request is the based64-encoded client’s secret. If the authentication was successful, the Security Manager 
returns a token for the authenticated client and the token type. 

This complete request can also be sent as a simple curl request as shown in Table 18, line 1. The obtained 
return values – in case the user with the name MySemioticsClient2 with the password Ultrasecretstuff  is 
authenticated successfully – can be seen in the lines 2 – 5: the answer contains the access_token as well as 
the token_type. 

 

TABLE 18: EXAMPL EFO AUTHENTICATION USING CURL AND RECIEVE THE TOKEN 

1. curl  -X POST -u MySemioticsClient2:Ultrasecretstuff -

d grant_type=client_credentials http://localhost:3000/oauth2/token   

2. {   
3.   „access_token“:“1A9HeY99gSYTA2o0MxIhi8pM0UVG … rWXvrc9nqSdlj1vsEQE3INQyR0bRO“El",  “  "to

ken_t”p”":"Bea”er"   

4. }  

  



780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017 
Deliverable D4.7 Implementation of Backend API (Cycle 2) 
Dissemination level: [Confidential]  

 

58 

 
TABLE 19: UPDATING A POLICY 

1. tokens.find(username‘+ '’@!' + auth_type, function (_error, token) {   

2.     sm= requi‘e('security-manager-’dk')({   

3.         api: conf.api_url,   

4.         idm: conf.idm_url,   

5.         token: token   

6.     });   

7.     sm.policies.pap.set({   

8.         entityId: username‚+ '‘@!' + auth_type,   

9.         entityTyp‚: 'u‘er',   

10.         fiel‘: 'locat’on',   

11.         policy: conf.polici‚s['fal‘en']   

12.     }).then(functi®(r) {   

13.         return res.status(200).send({   

14.             ‘ext: 'Sucessfully set status to ’allen'   

15.         });   

16.     }).catch(function (err) {   

17.         return res.status(err.response.status).send({   

18.             text: err.response.data.error   

19.         })   

20.     });   

21. }); 

Table 19 shows how dynamic policy is updated using an SDK developed to be used to implement the policy-
related functions inside of the SEMIoTICS Security Manager. First , the Security Manager reads the provided 
token and checks if it is valid. Then the policy set function is used to update the policy to the given one in the 

conf.policies[‘fallen’] variable. That activates policy decision making the status into account and thus reacting 
dynamically to the situation that the patient has fallen. While updating the policy one must provide the 
corresponding entityId and the entityType as well as the field (location) for which it is intended to update 

the policy. As the setter function returns a Javascript Promise one can use the .then and .catch clauses to 

further process the call.  

 API OF THE SECURITY MANAGER (BACKEND) IN SWAGGER  

Within SEMIoTICS, there has been complete Interface Description (AP) distributed, described in swagger using 
YAML-language. Swagger allows to define the function names, the variables but also the structure of variables 
(e.g. lists or arrays) and would allow the software developers to automatically generate code for their clients.  

The responses and the response codes are fully specified via YAML as well. In the following Figure 32, there 
is security manager IDM architecture showing how some of the information can be rendered from the YAML. 
Support of online tools like http://editor.swagger.io is very helpful, as those can automatically render a clickable 
client in the web browser when supplying the swagger file.  

 

http://editor.swagger.io/


780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017 
Deliverable D4.7 Implementation of Backend API (Cycle 2) 
Dissemination level: [Confidential]  

 

59 

 

FIGURE 32: SECURITY MANAGER IDM ARCHITECTURE 

 

 ATTRIBUTE BASED ENCRYPTION 

Attribute-Based Encryption (ABE) determines the authorization of a user to decrypt encrypted data based on 
the user’s attributes. That means that the decryption of a ciphertext is only possible if the user is able to confirm 
he possesses a set of specific attributes. These attributes are enclosed in the user’s decryption key. 
Cryptographically the encryption fails unless the decryption keys attribute to match the attributes of the 
ciphertext. This means that the attributes required are encoded during the encryption of the data. There has 
been development initiated, in order to implement a REST API endpoint (as seen in Figure 33) to make 
available the needed ABE functionality. The cryptographic functionality is based upon the open-source library 
OpenABE that provides a variety of attribute-based encryption algorithms. With this API, SEMIoTICS is 
enabled to seamlessly incorporate ABE technology into the Security Manager. This ensures that the 
information can only be accessed by a certain entity or by a group of entities with the requested set of attributes, 
e.g. only entities with the attribute "doctor" are able to access encrypted medical data. At the current state of 
development, which started at the end of cycle 2, the work has been focused on integrating the calls to the 
API endpoint in order to adopt ABE in the SEMIoTICS Security Manager.  

 



780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017 
Deliverable D4.7 Implementation of Backend API (Cycle 2) 
Dissemination level: [Confidential]  

 

60 

 

FIGURE 33 OVERVIEW OF THE ABE REST-API 

4.9 Local Embedded Intelligence 

The Local Embedded Intelligence Component in SEMIoTICS aims to provide a logical interface for exposing 
to the SEMIoTICS ecosystem the complete set of analytics algorithms developed within the project and 
described in D4.3 “Embedded Intelligence and Local Analytics”. These algorithms are the major enablers of 
the edge computing algorithms supported in the project. In particular, they could be subdivided into two major 
categories according to the intended usage scenario. 

The 1st set of algorithms enables the gait analysis on the SARA Healthcare scenario (i.e. UC2), whereas the 
2nd set of algorithms will support the Smart sensing use case (Generic IoT horizontal) that will be demonstrated 
mainly in UC3 final demo. The need for a common logical interface is enforced by the fact that these algorithms 
will be deployed on different types of field devices, with different legacy middleware constraints. As an example , 
the role of smart sensing units, within UC3, is played by small microcontroller units tightly coupled with 
miniaturized environmental/inertial sensors. Due to the heterogeneous set of available devices, and also 
algorithms available, an abstract interface has been identified and designed in SEMIoTICS as a viable solution 
for exposing the results of these algorithms in a coherent manner. This abstract interface is used to wrap 
conveniently the heterogeneous set of algorithms developed within Task 4.3 activities in order to make their 
outputs available in the field device level of SEMIoTICS. The outputs of the local analytics algorithms are 
described as event messages that are sent to the SEMIoTICS field level infrastructure in a semantically 
interoperable manner. As an example, the outcomes (i.e. anomalies) reported by the analytics/machine 
learning algorithms on the Generic IoT scenario are reported as timestamped events through a dedicated 
JSON protocol. The final implementation of the component is planned for the Cycle 3 final iteration. This 
component is currently under development on the two main scenarios under consideration also as part of task 
4.3 activities. 

In the following Table 20, a summary of the implementation tasks is presented detailing Cycle 2 and Cycle 3 
implementation plans. 

 

 



780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017 
Deliverable D4.7 Implementation of Backend API (Cycle 2) 
Dissemination level: [Confidential]  

 

61 

TABLE 20 LOCAL EMBEDDED INTELLIGENCE BACKLOG 

Feature/task scope Short description Cycle 
assignment 

Status 

Generic IoT Local Analytics 
Algorithms 

Local Embedded Component wrapper 
deployed on ST X-Nucleo Microcontroller 

equipped with MQTT Client. The 
component provides MQTT events 
regarding anomalies on inertial or 

environmental real-time acquired data. 

Cycle 2 Delivered 

Gait Analysis Local Analytics 
Algorithms 

The algorithms are under active 
development. Wrapping component 

implementation will be started on the cycle 
3 period. 

Cycle 3 To do 

4.10 Monitoring 

The objectives of the SEMIoTICS Monitoring component are twofold:  

• To generate specific messages in response to the reception of a set of messages generated by the 
components of an IoT application and matching some condition specified in the monitoring component by 
a client application (Monitoring requirement). 

• To guarantee that the messages needed to decide whether to generate a message can be produced by 
an IoT application and received by the monitoring component (Observability property). 

The project’s deliverable D4.2 - “SEMIoTICS Monitoring, Prediction and Diagnosis Mechanisms (first draft )” 
presents the initial design of the monitoring, prediction and diagnosis mechanisms in SEMIoTICS along with 
algorithmic and technological options suitable for the implementation of its key functionalities.  

  DEVELOPMENT STATUS 

Table 21 presents the identified backlog scope and assignment to development cycles planned.  

TABLE 21 MONITORING COMPONENT BACKLOG 

Feature/task scope Short description Cycle 
assignment 

Status 

sem-mdp-api Create a library for Monitoring API Cycle 2 Delivered 

sem-mdp-controller The first version of the Monitoring 
Controller 

Cycle 2 Delivered 

sem-mdp-web Bundle making available controller as a 
REST service 

Cycle 2 Delivered 

sem-mdp-cep-flink Flink-based implementation of the 
Complex Event Processor (CEP) 

(replanning of the delivery was needed due 
to the revision process of other 

deliverables) 

Cycle 2/3 In progress 

sem-mdp-signaller-wot Event Signaller for WoT (Web of Things) 
devices 

Cycle 2/3 In progress 



780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017 
Deliverable D4.7 Implementation of Backend API (Cycle 2) 
Dissemination level: [Confidential]  

 

62 

(replanning of the delivery was needed due 
to the revision process of other 

deliverables) 

sem-mdp-signaller-fiware Event Signaller for OpenStack 
deployments 

Cycle 3 To do 

sem-mdp-cmi Causal Model Identifier has the role to 
build the causal models. These models are 

created using as input both the 
(Re)configuration commands emitted by 
the Monitoring Controller and the events 
generated by the Business Event Monitor 

Cycle 3 In progress 

sem-mdp-epredictor The Event Predictor uses to Causal Model 
learned by the Causal Model Identifier to 

infer events not directly observable 
through the Events Signalers 

Cycle 3 To do 

sem-mdp-disgnosis-gui Visualization for the diagnosis Cycle 3 In progress 

sem-mdp-storgae Storage of High-Level events generated by 
an implementation of the Complex Event 
Processor (i.e. one of the sem-mdp-cep-* 

components) 

Cycle 2 Delivered 

As is evident from the above Table 21, the implementation of the Monitoring components has been initiated in 
Cycle 2. The development activities were kicked-of by the creation of a GitLab repository aiming to host the 
software artifacts constituting the implementation of the Monitoring component. 

In more detail, the component consists of the following maven artifacts are following: 

• sem-mdp-api : contains the APIs of the Monitoring Component  

• sem-mdp-controller : Monitoring Controller is responsible for configuring, observing and if needed, 
reconfiguring both the signaling mechanisms serving the Business Events Monitor and the Causal 
Model Identifier. 

• sem-mdp-cep-proton : Proton-based implementation of the Complex Event Processor (CEP)  

• sem-mdp-cep-flink :  Flink-based implementation of the Complex Event Processor (CEP)  

• sem-mdp-signaller-aws : Event Signaller for Amazon Web Services (AWS) IoT  

• sem-mdp-signaller-azure : Event Signaller for Azure IoT Suite 

• sem-mdp-signaller-fiware : Event Signaller for OpenStack deployments 

• sem-mdp-signaller-linux : Event Signaller for Linux nodes 

• sem-mdp-signaller-mindsphere : Event Signaller for Mindsphere 

• sem-mdp-signaller-network : Event Signaller for SDN controller 

• sem-mdp-signaller-openstack : Event Signaller for openstack instances 

• sem-mdp-signaller-wot : Event Signaller for WoT (Web of Things) devices 

• sem-mdp-cmi : Causal Model Identifier has the role to build the causal models. These models are 
created using as input both the (Re)configuration commands emitted by the Monitoring Controller and 
the events generated by the Business Event Monitor. 

• sem-mdp-epredictor : The Event Predictor uses to Causal Model learned by the Causal Model Identifier 
to infer events not directly observable through the Events Signalers 

• sem-mdp-diagnosis-anomaly : Anomaly detection (both GAN-based and LSTM-based) 

• sem-mdp-diagnosis-botnet : Botnet Attack Detection 

• sem-mdp-diagnosis-rabuse : Computational Resources Abuse Detector 

• sem-mdp-diagnosis-gui : Visualization for the diagnosis 



780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017 
Deliverable D4.7 Implementation of Backend API (Cycle 2) 
Dissemination level: [Confidential]  

 

63 

• sem-mdp-storage : Storage of High-Level events generated by an implementation of the Complex 
Event Processor (i.e. one of the sem-mdp-cep-* components) 

The technology chosen for the implementation of the above-listed artifacts is Apache Karaf6. This shows the 
Apache Karaf Web Console presenting some of the artifacts deployed on an instance of Karaf.  

 

FIGURE 34 APACHE KARAF WEB CONSOLE SHOWING MONITORING COMPONENT’S DEPLOYED 
ARTIFACTS 

The integrated Monitoring components are released and deployed into the SEMIoTICS backend as a Docker 7 
container. 

 API OF THE MONITORING COMPONENT 

The Monitoring component offers to its clients two interfaces: 

• Query API (Listing 1) allows starting a monitoring task by submitting a Query, to cancel an ongoing 
monitoring task, to check whether a previously activated task is still running. This interface is intended 
to serve on-line processing needs and hence the queries submitted through this interface are resolved 
directly against the stream of events generated by the event signalers.  

• Storage API: (Listing 1) allows resolving queries against the Monitoring component’s events database 
(sem-mdp-storage). It is intended to serve off-line processing needs. This interface offers operations 
to retrieve from the event storage: the identifiers of the events matching a query, the complete event 
given its identifier, the entire collection of events matching a query,  to request  to be notified when a 
query is matched by the insertion of a new event in the database, to delete a notification request, to 
retrieve a notification request by its identifier, to list the IoT devices (“things”) referenced by the events 
in the database. 

The set of possible queries that can be processed by the Monitoring component can be divided into three 
broad categories: 

• Domain-specific queries: queries producing high-level events accounting for state changes relevant 
for the specific application (i.e. a sudden increase of the heartbeat of a patient). The expected sources 
of these queries are the IoT applications (e.g. AREAS SARA). 

• Security-related queries: queries producing high-level events accounting for state changes that might 
impact the SPDI properties of the IoT applications or the platform itself (i.e. three consecutive failed 

 

 

6 http://karaf.apache.org 
7 https://www.docker.com 



780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017 
Deliverable D4.7 Implementation of Backend API (Cycle 2) 
Dissemination level: [Confidential]  

 

64 

attempts to log in with a wrong password). The expected sources of these queries are the Pattern 
Engine/Orchestrator and other components of the SEMIoTICS platform. 

• Self-monitoring queries: queries producing high-level events accounting for state changes that might 
impact the performance of the Monitoring component (i.e. event signaler for Mindsphere platform no 
longer available). The source of these queries is the Monitoring component itself. 

The Monitoring component consumes the EventListener interface to notify client applications about the 
occurrence of the pattern of events defined by a query within the on-line event streams or the event storage 
database (Figure 35) 

 

FIGURE 35 MONITORING COMPONENT AND ITS EXTERNAL INTERFACES  

{ 
  "swagger" : "2.0", 
  "info" : { 
    "description" : "Query Processor APIs", 
    "version" : "v0.1", 
    "title" : "SEMIoTICS Query Processor APIs", 
       "license" : { 
      "name" : "Apache 2.0", 
      "url" : "http://www.apache.org/licenses/LICENSE-2.0.html" 
    } 
  }, 
  "host" : "localhost:8080", 
  "basePath" : "/semiotics/api", 
  "tags" : [ { 
    "name" : "mdpqueries" 
  } ], 
  "schemes" : [ "http", "https" ], 
  "paths" : { 
    "/mdp/queries" : { 
      "put" : { 
        "tags" : [ "mdpqueries" ], 
        "summary" : "Get identifiers of events matching a query", 
        "description" : "Monitoring component uses events streams generated by signallers to match patterns sepcified by the query.", 
        "operationId" : "run", 
        "consumes" : [ "application/json" ], 
        "parameters" : [ { 
          "in" : "body", 
          "name" : "body", 
          "description" : "The query used to filter events", 
          "required" : true, 
          "schema" : { 
            "$ref" : "#/definitions/Query" 
          } 
        } ], 



780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017 
Deliverable D4.7 Implementation of Backend API (Cycle 2) 
Dissemination level: [Confidential]  

 

65 

        "responses" : { 
          "200" : { 
            "description" : "successful operation", 
            "schema" : { 
              "type" : "string" 
            } 
          } 
        } 
      } 
    }, 
    "/mdp/queries/{qid}" : { 
      "delete" : { 
        "tags" : [ "mdpqueries" ], 
        "summary" : "Deletes a running query", 
        "description" : "Notification listner is deleted by removing its query (this version of the API still assume a one-to-one assciation between 
query and listener)", 
        "operationId" : "cancel", 
        "parameters" : [ { 
          "name" : "qid", 
          "in" : "path", 
          "description" : "Identifier of the query.", 
          "required" : true, 
          "type" : "string" 
        } ], 
        "responses" : { 
          "200" : { 
            "description" : "successful operation", 
            "schema" : { 
              "type" : "boolean" 
            } 
          } 
        } 
      } 
    }, 
    "/mdp/queries/{qid}/running" : { 
      "get" : { 
        "tags" : [ "mdpqueries" ], 
        "summary" : "Number of running queries.", 
        "description" : "Returns the number of currently ongoing quries.", 
        "operationId" : "isRunning", 
        "parameters" : [ { 
          "name" : "qid", 
          "in" : "path", 
          "description" : "Identifier of the query.", 
          "required" : true, 
          "type" : "string" 
        } ], 
        "responses" : { 
          "200" : { 
            "description" : "successful operation", 
            "schema" : { 
              "type" : "boolean" 
            } 
          } 
        } 
      } 
    } 



780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017 
Deliverable D4.7 Implementation of Backend API (Cycle 2) 
Dissemination level: [Confidential]  

 

66 

  } 
  

LISTING 1 QUERY API (DEFINITIONS OMITTED) 

{ 
  "swagger" : "2.0", 
  "info" : { 
    "description" : "This is an intial version of the Events Storage APIs", 
    "version" : "v0.1", 
    "title" : "SEMIoTICS Events Storage APIs", 
    "license" : { 
      "name" : "Apache 2.0", 
      "url" : "http://www.apache.org/licenses/LICENSE-2.0.html" 
    } 
  }, 
  "host" : "localhost:8080", 
  "basePath" : "/semiotics/api", 
  "tags" : [ { 
    "name" : "mdpstorage" 
  } ], 
  "schemes" : [ "http", "https" ], 
  "paths" : { 
    "/alarms" : { 
      "post" : { 
        "tags" : [ "mdpstorage" ], 
        "summary" : "Get Filtered alarms", 
        "description" : "Monitoring component returns the alarms (i.e. special events) matching a query", 
        "operationId" : "getFilteredAlarms", 
        "consumes" : [ "application/json" ], 
        "produces" : [ "application/json" ], 
        "parameters" : [ { 
          "in" : "body", 
          "name" : "body", 
          "description" : "Query used to filter alarms", 
          "required" : true, 
          "schema" : { 
            "$ref" : "#/definitions/Query" 
          } 
        } ], 
        "responses" : { 
          "200" : { 
            "description" : "successful operation", 
            "schema" : { 
              "type" : "array", 
              "items" : { 
                "type" : "object" 
              } 
            } 
          } 
        } 
      } 
    }, 
    "/events" : { 
      "post" : { 
        "tags" : [ "mdpstorage" ], 
        "summary" : "Get identifiers of events matching a query", 
        "description" : "Monitoring component uses underlaying database to get identifiers of requested events", 



780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017 
Deliverable D4.7 Implementation of Backend API (Cycle 2) 
Dissemination level: [Confidential]  

 

67 

        "operationId" : "getFilteredEvent", 
        "consumes" : [ "application/json" ], 
        "parameters" : [ { 
          "in" : "body", 
          "name" : "body", 
          "description" : "The query used to filter events", 
          "required" : true, 
          "schema" : { 
            "$ref" : "#/definitions/Query" 
          } 
        } ], 
        "responses" : { 
          "200" : { 
            "description" : "successful operation", 
            "schema" : { 
              "type" : "array", 
              "items" : { 
                "type" : "object" 
              } 
            } 
          } 
        } 
      } 
    }, 
    "/events/{eventId}" : { 
      "get" : { 
        "tags" : [ "mdpstorage" ], 
        "summary" : "Get event details", 
        "description" : "Asks Monitoring component for the details of an event", 
        "operationId" : "getEventDetails", 
        "produces" : [ "application/json" ], 
        "parameters" : [ { 
          "name" : "eventId", 
          "in" : "path", 
          "description" : "Identifier of the event", 
          "required" : true, 
          "type" : "string" 
        } ], 
        "responses" : { 
          "200" : { 
            "description" : "successful operation", 
            "schema" : { 
              "$ref" : "#/definitions/HighLevelEvent" 
            } 
          } 
        } 
      } 
    }, 
    "/notifications" : { 
      "post" : { 
        "tags" : [ "mdpstorage" ], 
        "summary" : "Submit notification request", 
        "description" : "Request to Monitoring component to register this notification (i.e. a Query)", 
        "operationId" : "submitNotification", 
        "consumes" : [ "application/json" ], 
        "produces" : [ "application/json" ], 
        "parameters" : [ { 



780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017 
Deliverable D4.7 Implementation of Backend API (Cycle 2) 
Dissemination level: [Confidential]  

 

68 

          "in" : "body", 
          "name" : "body", 
          "description" : "The notification (i.e. the query) to register", 
          "required" : true, 
          "schema" : { 
            "$ref" : "#/definitions/Query" 
          } 
        } ], 
        "responses" : { 
          "200" : { 
            "description" : "successful operation", 
            "schema" : { 
              "type" : "array", 
              "items" : { 
                "type" : "object" 
              } 
            } 
          } 
        } 
      } 
    }, 
    "/notifications/{queryId}" : { 
      "get" : { 
        "tags" : [ "mdpstorage" ], 
        "summary" : "Get details of a notification", 
        "description" : "Get details of a notification. A notification is a query.", 
        "operationId" : "getNotificationDetails", 
        "produces" : [ "application/json" ], 
        "parameters" : [ { 
          "name" : "queryId", 
          "in" : "path", 
          "description" : "Identifier of the notification.", 
          "required" : true, 
          "type" : "string" 
        } ], 
        "responses" : { 
          "200" : { 
            "description" : "successful operation", 
            "schema" : { 
              "$ref" : "#/definitions/Query" 
            } 
          } 
        } 
      }, 
      "delete" : { 
        "tags" : [ "mdpstorage" ], 
        "summary" : "Deletes a notification listener (+query)", 
        "description" : "Notification listner is deleted by removing its query (this version of the API still assume a oneto-one assciation between 
query and listener)", 
        "operationId" : "deleteNotficationListener", 
        "parameters" : [ { 
          "name" : "queryId", 
          "in" : "path", 
          "description" : "Identifier of the notification.", 
          "required" : true, 
          "type" : "string" 
        } ], 



780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017 
Deliverable D4.7 Implementation of Backend API (Cycle 2) 
Dissemination level: [Confidential]  

 

69 

        "responses" : { 
          "200" : { 
            "description" : "successful operation", 
            "schema" : { 
              "type" : "boolean" 
            } 
          } 
        } 
      } 
    }, 
    "/things" : { 
      "get" : { 
        "tags" : [ "mdpstorage" ], 
        "summary" : "List of things available for monitoring", 
        "description" : "", 
        "operationId" : "getThingsAvailableToMonitor", 
        "produces" : [ "application/json" ], 
        "responses" : { 
          "200" : { 
            "description" : "successful operation", 
            "schema" : { 
              "type" : "array", 
              "items" : { 
                "type" : "object" 
              } 
            } 
          } 
        } 
      } 
    } 
  }, 
  "definitions" : {…} 

LISTING 2 STORAGE API (DEFINITIONS OMITTED) 

 

 COMPONENT API INTERACTION DESCRIPTION 

The Figure 36 shows the interaction between the Monitoring component and its clients.  



780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017 
Deliverable D4.7 Implementation of Backend API (Cycle 2) 
Dissemination level: [Confidential]  

 

70 

 

FIGURE 36 INTERACTIONS BETWEEN THE MONITORING COMPONENT AND ITS CLIENTS 

  



780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017 
Deliverable D4.7 Implementation of Backend API (Cycle 2) 
Dissemination level: [Confidential]  

 

71 

5 VALIDATION 

This Section describes the validation features of SEMIoTICS that are related to the implementation of backend 
components and the rest topics that are presented in this document.  

5.1 Related Project Objectives and Key Performance Indicators (KPIs) 

TABLE 22 PRESENTS THE TASK OBJECTIVES AND APPROPRIATE SECTIONS ADDRESSING THOSE 
WHILE  

Table 23 presents the KPI’s objective which is relevant for Task 4.6. 

TABLE 22 TASK’S OBJECTIVES 

T4.6 Objectives D4.7 Sections 

• Implementation of the algorithms, techniques, and components in Tasks 4.1-4.5 
and the delivery of an API giving access to them. 

0 

• Providing IoT components communication across layers and integration with 
external systems and partners. 

4.2 

• Receiving messages from sensors and resource provisioning as a result of 
analytics computing. 

4.1 

• Implementation of appropriate security levels for each connection type, in order 
to ensure the coherence of data and minimal latency in data transmission. 

4.2, 4.8 

• Using semantic communication metadata to enable negotiation and 
interoperability between components. 

4.5, 4.8 

• Registration of SPDI pattern, which will include the SPDI patterns known to the 
infrastructure and their currently deployed instances in the IoT applications 
managed by the infrastructure. 

4.3, 4.4, 4.6, 4.7 

• Dashboard providing administrators of such applications with access to runtime 
IoT application management information. 

4.2, 4.10 

• Component supporting different types of horizontal and vertical runtime of 
proactive and reactive adaptation. 

4.2, 4.3, 4.9, 
4.10 

 

Because task 4.6 is closely related to Tasks 4.1-4.5 and provides an implementation of the algorithms, techniques, 
and components described in these tasks, hence is correlated with the project’s requirements from the entire 
WP4. The KPI’s objectives for T4.6 are presented below: 

 

TABLE 23 KPI’S AND OBJECTIVES 

Objective KPI-ID Description Related task 

1 SPDI Patterns KPI-1.1 Number of SPDI Patterns T4.1 

1 SPDI Patterns KPI-1.2 Deployment of a multi-
domain SDN orchestrator 

T4.1 



780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017 
Deliverable D4.7 Implementation of Backend API (Cycle 2) 
Dissemination level: [Confidential]  

 

72 

2 Semantic Interoperability KPI-2.1 Semantic descriptions for 
6 types of smart objects 

T4.1, T4.4 

2 Semantic Interoperability KPI-2.2 Data type mapping and 
ontology alignment 

T4.4 

2 Semantic Interoperability KPI-2.3 Semantic interoperability 
with 3 IoT platforms 

T4.4 

3 Monitoring Mechanisms KPI-3.1.1 Generating monitoring 
strategies in the 3 
targeted IoT platforms 

T4.1, T4.2 

3 Monitoring Mechanisms KPI-3.1.2 Fuse results from these 
monitors 

T4.1, T4.2 

3 Monitoring Mechanisms KPI-3.1.3 Performing predictive 
monitoring with an 
average accuracy of 80% 

T4.1, T4.2 

3 Monitoring Mechanisms KPI-3.2 Delivery of a monitoring 
language 

T4.1, T4.2 

4 Multi-layered Embedded 
Intelligence 

KPI-4.1 Delivery of lightweight ML 
algorithms 

T4.3 

4 Multi-layered Embedded 
Intelligence 

KPI-4.2 Delivery of mechanisms 
with adaptation time of 
15ms 

T4.1, T4.2, T4.3 

4 Multi-layered Embedded 
Intelligence 

KPI-4.3 Delivery of adaptations 
mechanisms enabling 
improvement by at least 
20% 

T4.2, T4.3 

4 Multi-layered Embedded 
Intelligence 

KPI-4.4 Detection time of less 
than 10 ms 

T4.3 

4 Multi-layered Embedded 
Intelligence 

KPI-4.6 Development of new 
security 
mechanisms/controls 

T4.1, T4.5 

5 IoT-aware Programmable 
Networks 

KPI-5.2 Service Function 
Chaining (SFC) of a 
minimum 3 VNFs 

T4.1 

6 Development of a Reference 
Prototype 

KPI-6.1 Reduce Required Manual 
Interventions 

T4.1 

6 Development of a Reference 
Prototype 

KPI-6.3 Delivery of 3 prototypes 
of IIoT/IoT applications 

T4.6 



780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017 
Deliverable D4.7 Implementation of Backend API (Cycle 2) 
Dissemination level: [Confidential]  

 

73 

 

5.2 SEMIoTICS implementation requirements 

The general SEMIoTICS’ requirements (D4.6) that are covered by the presented implementation of SEMIoTICS 
components are summarized in the next table.  

For the sake of easier readability, here we present only the requirements directly related to Task 4.6 and logical 
components belonging only to this task, while all requirements related to Tasks 4.1 to T4.5 are presented in 
respective deliverables. The full scope of requirements mapping is available in D2.4 

TABLE 24 TASK’S REQUIREMENTS 

Requirements 
(D4.6) 

Description Related task Status 

R.GP.1 

End-to-end connectivity between the 
heterogeneous IoT devices (at the field level) 
and the heterogeneous IoT Platforms (at the 
backend cloud level) 

T4.6 Delivered 

R.GP.2 
Scalable infrastructure due to the fast-paced 
growth of IoT devices 

T4.6 Delivered 

R.BC.15 

Secure communication among the various 
Backend Cloud components (e.g., use of 
dedicated management network, appropriate 
Firewall rules) 

T4.6 Delivered 

R.P.1 The collection of raw data MUST be minimized. T4.6 Delivered 

R.P.2 

The data volume that is collected or requested 
by an IoT application MUST be minimized (e.g. 
minimize sampling rate, amount of data, 
recording duration, different parameters). 

T4.6 Delivered 

R.P.3 Storage of data MUST be minimized. T4.6 Delivered 

R.P.4 
A short data retention period MUST be enforced 
and maintaining data for longer than necessary 
avoided. 

T4.6 In progress 

R.P.9 

Repeated querying for specific data by 
applications, services, or users that are not 
intended to act in this manner SHALL be 
blocked. 

T4.6 In progress 

  



780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017 
Deliverable D4.7 Implementation of Backend API (Cycle 2) 
Dissemination level: [Confidential]  

 

74 

6 CONCLUSION 

Within this deliverable, the details of the WP4 developed components of the second cycle of implementation 
Task 4.6 are presented. The progress of work advancement has been tracked using GitLab, which is the main 
code repository of the development monitoring and tracking. Based on the open issues tracked in Gitlab, 
weekly technical meetings have been held for the status and any risk tracking.  

All work delivered within cycle 2 has been focusing on the variety of key aspects of SEMIoTICS. The 
development, distributed across involved partners, was delivered separately while the integration part has 
been reserved for the future cycle and mainly for the WP5. Planning and implementation of cycle 2 have been 
performed within five subjective streams as follows: 

• The first workstream is focusing on SPDI patterns, going from Recipe Cooker where the distributed 
execution of recipes was developed. Moreover, storing the patterns in the backend repository of 
Pattern Engine has been delivered along with the classification and distribution of the patterns from 
Pattern Orchestrator to Pattern Engines. Finally, the visualization of patterns in the SEMIoTICS 
platform has been delivered within the GUI component. 

• Within the second workstream, the effort has been put into the delivery of semantic interoperability. 
Communication between Recipe Cooker and BSV has been established successfully. The BSV’s 
endpoints were reimplemented using RESTFul services instead of gRPC and the work on resolving 
semantic conflicts using the Adaptor Nodes has been started and will be continued in cycle 3. 

• The third workstream was focusing on the security aspects. PEP, AEP and Proxy mechanisms.  

• The fourth workstream has been focusing on the Backend Orchestrator implementation and proper 
configuration along with further development of one central GUI for user interaction with the framework. 

• The last workstream was focusing on the monitoring and local embedded intelligence aspects. The 
Monitoring component has identified two interfaces (Query API and Storage API) and 3 possible 
domains of queries: domain-specific, security-related and self-monitoring. Local embedded intelligence 
efforts have been focusing on the generic local IoT analytic algorithms. 

According to the description provided in Section 3, Task 4.6 delivers the implementation of components defined 
within WP4, the backend API and the integration of the respective components that are also related to the 
outputs of the tasks as depicted in Figure 4. The outcome of the task T4.6 are deliverables D4.6 (presented in 
June 2019), D4.7 (presented herby) and D4.13 (the outcome of cycle 3 development). Deliverable D4.7 has 
provided development status for Graphical User Interface, Backend orchestrator, Patter Orchestrator, Pattern 
Engine (backend), Backend Semantic Validator, Thing Directory, Recipe Cooker, Security Manager (backend), 
Local Embedded Intelligence and Monitoring. 

Deliverable D4.13 will cover the finalization of the development of all components involved within WP4. While 
the interaction between all the architectural components is defined within D2.5 (Deliverable 2.5 “SEMIoTICS 
high-level architecture (final)”), the detailed specifications of the API area partially the outcome of D4.7 (cycle 
2) and D4.13 (cycle 3) development. 

Following those 3 cycles of development, the SEMIoTICS will reach its development maturity within the delivery 
of cycle 3 (final). 


