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1. INTRODUCTION  
This deliverable provides the validation of the SEMIoTICS technologies in the context of the development of a 
solution in the domain of Ambient assisted living. 

The aims of SARA, this is the name of the solution, is to integrate a number of assistive technologies to address 
the diverse problems that older people face when living independently with the support of their community. 

In particular, the SARA solution is being developed around the concept of Assistive Task (AT). An Assistive 
Task is a coherent set of SARA functionalities addressing a specific risk related to the independent living of 
elderly people affected by Mild Cognitive Impairment (MIC) or mild Alzheimer’s disease (AD). 

The Assistive Tasks being developed in SARA address risks related to four areas: physical decline, cognitive 
decline, medication management, and psychological needs.  

We selected two assistive tasks to validate how and to what extent the SEMIoTICS technologies can facilitate 
the implementation of a system like SARA. The selected ATs are the Fall Management and the Remote Gait 
Analysis. The Falls Management Assistive Task aims to reduce the consequences of fall events of elderly living 
at home. The Gait Analysis Assistive Task aims to support remote gait quality assessment by means of specific 
exercises executed by the patient using a Robotic Rollator and under the remote supervision of a Doctor.  

The implementation of each SARA Assistive Task requires the integration of multiple mobile (mobotic) and static 
(domotic, or home automation) robotic elements working in tandem with wearable health monitors, personal 
smart devices (phones and tablets) and various (proprietary and third party) computational and information 
services. All these devices that are not specifically designed to work together.  

This integration effort requires to cope with a number of challenges arising in each of the main areas addressed 
by the SEMIoTICS project: 

• security, privacy, dependability and safety: all stored personal data must be securely encrypted with 
protected access only by authorized and authenticated individuals and/or system processes; all 
communications with personal data as content must be securely encrypted with authenticated endpoints; 
the treatment of patient health data must comply with healthcare domain standards and national and 
international regulations concerning security and privacy; all actuator control signals (whether originating 
‘on device ’or ‘over the network’) must be protected from malicious interference; 

• semantic interoperability: the different devices consume and produce different kinds and quantities of 
data, in diverse formats, and support different modes of network communication (Bluetooth, Wi-Fi, wired 
ethernet, can-bus, etc.). Moreover, for reliability, critical data is collated from multiple redundant sources 
(several components monitoring the same features) and shared through multiple redundant channels; 

• embedded intelligence: to ensure timely responses of robotic elements, AI intense computations are 
executed concurrently throughout the system, with operations dynamically dispatched to the nearest 
available computing resources (including edge devices);  

• trustworthy network management: system components and technologies must be configured on a 
reliable network to avoid service interruptions; high-priority communications, e.g. incident alerts, must be 
transmitted by reliable means (e.g. multiple identical transmissions over multiple channels) and given 
network priority; network configurations are not static: mobile devices move around and may temporarily 
go out of range of Wi-Fi; mains powered devices (e.g. Wi-Fi base stations, domotic servers) are lost 
during power outages, while battery powered devices (e.g. robots and phones) will need periodic 
recharging; and wearable health monitors can be removed (e.g. when taking a bath). 

In this document, the validation of the benefits brought by the SEMIoTICS technologies to the development and 
operation of SARA is presented by means of five sub use cases. Each sub use case focuses a subset of the 
challenges in one the areas presented and represents a different view on the very same system. The five sub 
use cases are: 
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• Moving Intelligence to the Edge demonstrating how SEMIoTICS Local Embedded Intelligence can be 
deployed on the SARA Robotic Rollator and utilized in the implementation of the SARA Remote Gait 
Analysis Assistive Task. 

• Automated, trustworthy healthcare connectivity show how NFV along with the pattern related 
components, offer a flexible solution to deal with the heterogeneous traffic flows of SARA. Also, how they 
reduce the manual intervention in the networking configuration and management, thus yielding a network 
management automation solution. 

• Enforcement and Monitoring of GDPR-compliant access Control to confidential and sensitive data 
presenting how SEMIoTICS can be used to address security, privacy, dependability and safety 
challenges.  

• Controlling bulbs and robots demonstrates how the SEMIoTICS Semantic Interoperability technologies 
can help the developers of the SARA solution to interface heterogeneous devices ranging from light bulbs 
to semi-autonomous robots. 

• Monitoring Activities of Daily Life show how the SEMIoTICS Monitoring, Prediction and Diagnosis 
Mechanisms (MPD) component developed in the context of Task 4.2, can be used to support the Human-
Robot Interaction in the context of the SARA Remote Gait Analysis Assistive Task. 

1.1. Methodology and document structure 
The overall development of SARA in SEMIoTICS proceeded in three phases: 

• the initial phase took place during the first year of the project and concerned the establishment of both 
business requirements and requirements of SARA towards the SEMIoTICS framework. 

• the second phase, during the second year of the project, saw the set-up of the initial infrastructure, the 
selection of the ATs to be used for the evaluation, and the development of a first version of the Fall 
Management AT without the use of SEMIoTICS technologies (still under development at that time). This 
development served to establish a baseline for the subsequent developments based on the SEMIoTICS 
technologies. This first implementation was shown during the first formal review of the project. 

• the third phase started with the third year of the project and is concerning both the re-engineering of Fall 
Management AT and the development of the new Remote Gait Analysis AT. Both this development are 
based on the adoption of the SEMIoTICS technologies as illustrated by means of four sub use cases 
presented in the present deliverable. 

This deliverable D5.10 accounts for the intermediate results achieved during the third phase of the development 
and is organised as follows: section 2 presents the Assistive Tasks selected for the evaluation of the SEMIoTICS 
technologies (section 2.1), the challenges subsumed by the implementation of selected ATs (section 2.2), and 
introduces the aspects addressed by each of the five sub use cases (section 2.3). Sections 3, 4, 5, 6 and 7 go 
in the details of each sub use case. Finally, the KPIs and requirement related to this use case are presented in 
Section 8. 

This deliverable D5.10 is the result of the joint effort by all contributing partners during the development of the 
SARA prototype. At the beginning of the third phase bi-weekly meetings were run to keep aligned each partner 
about the work of the others, share results of experimentations and take design decisions. Later on the meetings 
were run weekly. 
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2. USE CASE DESCRIPTION 
As described in Deliverable 2.2, the use case 2 is from the domain of Ambient Assisted Living and focuses on 
the development of the SARA distributed application running on the CLOE-IoT platform.  

The global trend for increased life expectancy is expected to be accompanied by a rapid rise in the number of 
people affected by Mild Cognitive Impairment (MIC) or mild Alzheimer’s disease (AD). Aging and dementia lead 
to a significant chronic loss in physical/cognitive capacities and a decline in functional ability, resulting in 
increased dependency and need for caregiving, with substantial medical, social, psychological, and financial 
burdens placed on patients, their families, and their communities. Indeed, the kind of continuous, holistic and 
integrated care required by people with dementia cannot be satisfied by the current ‘specialist’ model, and the 
gap between the number of people in need of care and those able to provide it is expected to grow. People also 
prefer to live in their own homes for as long as possible rather than being institutionalized in sheltered/nursery 
homes when age-related problems appear. Leading, for example, to propose “Aging in place” - allowing older 
adults to age in the least restrictive environment of their choice - as a more desirable and viable care model.  

Home automation and robotics systems can help relieve the caregiving burden and make ‘ageing in place’ a 
reality by providing physical and cognitive assistance to the elderly in the common tasks of daily home living, 
helping them maintain their autonomy longer and delay the need for social/health service interventions. 
Advances in artificial intelligence (AI) and IoT technologies are rapidly converging to make such solutions both 
technically and economically feasible. In this light, Engineering is extending its current commercial AREAS® 
suite - an Enterprise Resource Planning solution for the Health sector - with SARA (Socially Assistive Robotic 
Solution for Ambient assisted living), a robotic system aimed at providing automated health/incident monitoring 
and home assistance to elderly people with mild cognitive impairments.  

As its name indicates, SARA is a Socially Assistive Robotics (SAR) solution. SAR solutions resides at the 
intersection of Assistive Robotics (AR) - typically robots that provide physical assistance (e.g. rehabilitation 
robots, wheelchair robots, mobility aids, manipulator arms) - and Socially Interactive Robotics (SIR) - whose 
main task is some form of social interaction with humans (e.g. engaging in conversation, understanding 
gestures, role taking, task collaboration). SAR aims to assist humans through social interaction – an ambitious 
goal given that social interaction is arguably the most complex of all human behaviours. A socially competent 
robot, for example, should be able to: communicate with high-level dialog; use natural cues (gaze, gesture, etc.); 
express and/or perceive emotions; learn/recognise models of other agents; exhibit distinctive personality and 
character; establish and maintain social relationships; (possibly) learn/develop social competences.  
Achieving human level competence in these areas is well beyond even the best of contemporary AI technologies, 
so with SARA our goal is more pragmatic. We aim to develop an expandable platform that initially exhibits only 
trivial social capabilities (well within current technological limits), while yet providing a solid foundation for future 
expansion to more sophisticated human-like interactions. 

The design of SARA integrates a number of assistive technologies to address the diverse problems that older 
people face when living independently with the support of their community. More specifically, it comprises 
multiple mobile (mobotic) and static (domotic, or home automation) robotic elements working in tandem with 
wearable health monitors, personal smart devices (phones and tablets) and various (proprietary and third party) 
computational and information services, to continuously monitor and assist elderly subjects (and their 
caregivers) in their normal daily activities in and around the home. The technical components of SARA are as 
follows:  

• backend AREAS Cloud Services (ACS): serving primarily as a repository of medical records and an 
offline store for monitored bio-medical data;  

• a Body Area Network (BAN) comprising wearable health monitors (e.g. for heart-rate, blood pressure, 
breathing rate, stress levels, balance and fall detection) worn by the elderly subject and communicating 
via Bluetooth to their personal device (phone or tablet);  

• a Robotic Rollator (RR): a smart wheeled walking frame providing physical support for standing, sitting 
and walking, and capable of monitoring its user’s posture and gait, and of (limited) autonomous 
navigation;  
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• a Robotic Assistant (RA): a mobile humanoid robot - specifically Softbank’s humanoid “Pepper” robot1 
- capable of autonomous navigation, face recognition, scripted dialog and adopting life-like human poses 
(e.g. to perform arm/hand gestures);  

• various AI Services: computational resources providing machine learning (ML), mapping, route planning 
and reasoning capabilities (among others);  

• a Smart Home: a home incorporating intelligent objects, utilizing wired or wireless networks and having 
the capacity to analyse patterns of activities to manage appliances in anticipation of human needs or to 
provide adaptive cues for human occupants.  

 
FIGURE 1: SARA MAIN TECHNICAL COMPONENTS AND COMMUNICATION SYSTEM  

With the exception of the ACS and RR (both developed in house by Engineering) these components are all off-
the-shelf devices that are not specifically designed to work together. The different devices consume and produce 
different kinds and quantities of data, in diverse formats, and support different modes of network communication 
(Bluetooth, Wi-Fi, wired ethernet, can-bus, etc.). Moreover: for reliability, critical data is collated from multiple 
redundant sources (several components monitoring the same features) and shared through multiple redundant 
channels; to ensure timely responses of robotic elements, AI intense computations are executed concurrently 
throughout the system, with operations dynamically dispatched to the nearest available computing resources 
(including edge devices); network configurations are not static: mobile devices move around and may 
temporarily go out of range of Wi-Fi; mains powered devices (e.g. Wi-Fi base stations, domotic servers) are lost 
during power outages, while battery powered devices (e.g. robots and phones) will need periodic recharging; 
and wearable health monitors (BAN devices) can be removed (e.g. when taking a bath). 

The SARA solution is built on top of on the CloE-IoT platform.  The CloE - IoT platform2 aims to simplify the 
integration of highly distributed, complex and robust IoT solutions exploiting computational resources both in the 
cloud and at the edge. 

2.1. Generic storylines 
The SEMIoTICS technologies are validated in the context of a re-engineering process of the SARA prototype 
being developed by ENG. This re-engineering process concerns both the business logic layer (i.e. the assistive 
tasks provided by SARA to its end users) and the middleware layer (i.e. the CloE-IoT services). 

At the business logic layer two assistive tasks are chosen: Fall Management and Gait Analysis. 

2.1.1. FALL MANAGEMENT ASSISTIVE TASK 

 
1 https://www.softbankrobotics.com/emea/en/robots/pepper   
2 Staring from January 2020 the CloE-IoT platform is part of the Digital Enabler  ecosystem. https://www.eng.it/en/our-
platforms-solutions/digital-enabler  
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The Fall Management Assistive Task is one of the Assistive Task contributing to the fulfilment of requirements 
of the SARA Use case and described in deliverable D2.2 - “SEMIoTICS usage scenarios and requirements”. 

• The SARA system MUST (via SARA Hub devices) continuously monitor the Patient to detect, and raise 
an alert in case of, incidents (i.e. critical medical events such as falls, heart attacks, etc.). 

• The SARA system MUST reliably and rapidly notify assigned Caregivers of Patient incidents. 

• The SARA system MUST (for reasons of privacy) notify the Patient whenever a telepresence session 
has started/ended, and also inform the Patient of the identity of the remote operator. 

• The SARA system MUST reliably and rapidly respond appropriately to health-critical events (in particular 
incident alerts). 

 

The Falls Management Assistive Task aims to reduce the consequences of fall events of elderly living at home. 
In particular: 

1. SARA continuously monitors the patient by means of the devices (e.g. smart phone/smart watch) within her 
Body Area Network; 

2. whenever the fall detection software hosted by the BAN detects a possible fall, it raises (both via cellular and 
Internet connectivity) an early warning towards a remote assistance Call Centre. This warning message 
carries also information about the location/area where the event was detected. The fall detection software 
identifies the location of the event using iBeacon technology. 

3. using the local Wi-Fi network the warning message is also forwarded to the Robotic Assistant (i.e. a Pepper 
robot in the current prototype). 

4. as soon as the Robotic Assistant receives a fall event message it starts to navigate toward the location 
indicated in the message. The Robotic Assistant relies on the navigation and localization cloud services of 
the SARA solution to autonomously reach the location of the event. 

5. once reached the location of the event the Robotic Assistant may interact with the Smart Environment to 
better prepare the environment for the telepresence session initiated by the Call Centre operator later on (see 
next steps in this scenario). As an example the Robotic Assistant might decide to turn on the lights or open 
the shades if on board sensors report a low level of enlightenment in the room. 

6. the call distributor software operating at the Call Centre dispatches the message to one of the operators 
logged into the system. The call distributor software forwards to an operator only those messages originating 
from a certified device. Moreover the call distributor also filters out duplicated messages related to the same 
event. 

7. the Operator Console web application retrieves from the Electronic Patient Healthcare record service of the 
AREAS® platform the relevant clinical data of the patient indicated in the warning message. The Operator 
Console web application presents, in a coherent way, both the information carried by the warning message 
and that retrieved from the Electronic Patient Health Record. 

8. once all the relevant information has been presented, the Call Centre operator can assess the actual situation 
at patient’s home starting a telepresence session with the Robotic Assistant using the cameras on board of 
it. 

9. if the position reached autonomously by the Robotic Assistant is not satisfactory for an assessment of the 
scene of the event, the Call Centre operator can also initiate a teleoperation session to move the Robotic 
Assistant to a better point of view. 

2.1.2. REMOTE GAIT ANALYSIS ASSISTIVE TASK 
The Remote Gait Analysis Assistive Task is one of the Assistive Task contributing to the fulfilment of 
requirements of the SARA Use case and described in deliverable D2.2 - “SEMIoTICS usage scenarios and 
requirements” 
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• The SARA system MUST (via the SARA Hubs) continuously monitor the Patient's daily activities.  

• The SARA system MUST assist the Patient in performing a variety of physical rehabilitation exercises. 

• The SARA system MUST provide (via the SARA Hubs) the GP remote access to real-time (Hub 
monitored) Patient biomedical data.  

• The SARA system SHOULD facilitate the integration of legacy and new IoT Devices (Hubs, Sensors & 
Actuators) - e.g. through standardised low-level API conformance. 

 

The Gait Analysis Assistive Task aims to support remote gait quality assessment by means of specific exercises 
executed by the patient using the Robotic Rollator and under the remote supervision of a Doctor. In particular: 

1. The Doctor schedules the timeframe for the execution of the assessment session using the SARA Agenda 
service. As an example a Doctor could schedule a periodic assessment session to be executed during the 
third week of every month. 

2. At the start of the period scheduled by the Doctor (e.g. the third week of the month) the SARA Agenda service 
notifies a remainder to the Robotic Assistant. 

3. Once received the notification the Robotic Assistant autonomously navigates to the location where the patient 
is. For the navigation and localization the Robotic Assistant relies on the navigation and localization cloud 
services of the SARA solution (see also previous Fall Management scenario). 

4. Once reached the patient the Robotic Assistant initiates a dialog with the patient to engage him/her in the 
execution of the gait assessment session. For the execution of the dialog the Robotic Assistant relies on the 
Dialog Manager cloud service of SARA and other third party AI services (e.g. speech to text). 

5. If the patient accepts to do the gait assessment session a notification is sent to the Doctor. If the patient 
refuses, the session is rescheduled. 

6. Upon the reception of the acceptance by the patient the Doctor starts a remote supervision session using the 
Gait Analysis web application from the SARA solution. 

7. At the beginning of the session the Doctor starts a telepresence session using the camera on board of the 
Robotic Assistant. Using this session the Doctor can do a visual assessment of the gait of the patient. The 
doctor can use the Gait Analysis web application also to teleoperate the Robotic Assistant and move it to a 
better pint of view if the current one does not allow a clear view of the scene. The Doctor may also decide to 
keep a video recording of the execution of the exercises for subsequent analysis. 

8. The patient executes the exercises as requested by the Doctor. During the execution of the Gait Encoder 
software hosted by the controller of the Robotic Rollator segments and encode the time series generated by 
various sensors embedded within the Robotic Rollator (e.g. IMU, Lidar, handlebars). 

9. As the encoded time series are produced by Gait Encoder they are sent to the Gait Clustering cloud service 
part of the SARA solution.  

10. The Gait Clustering service clusters the time series received by the Gait Encoder and presents the resulting 
clusters to the Doctor using the Gait Analysis web application. The Doctor uses this clusters to make his/her 
assessment about the condition of the patient. The Gait Clustering service also attaches the result of the 
clustering to the Health record of the patient. 

2.2. Challenges and objectives 
The smart end-to-end IoT interoperability, connectivity and security technologies developed by the SEMIoTICS 
project can play a critical role in addressing the key challenges entailed in the development of SARA. 
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In particular, already the implementation of the two assistive tasks described in the section 2.1 requires to 
address a number of challenges arising in the area of: 

• End-to-end security, privacy, dependability and safety: the development and operation of SARA need 
means to accurately assess the impact of varying system configurations on the security, privacy, 
dependability and safety properties of the system: to verifiably ascertain, for example, if using a particular 
device for a particular purpose, or a particular configuration of devices, exposes the system to an 
unacceptable level of risk. 

• IoT Semantics Interoperability: SARA system relies on a distributed network of sensors and actuators, 
employing diverse wired and wireless communications technologies. The nodes in the network are highly 
heterogenous, ranging from basic inertial measurement units (IMU - e.g. for balance and fall detection), 
presence sensors (e.g. cameras equipped with motion detection and face/object recognition), to 
sophisticated robotic devices with their own internal sensor/actuator systems and onboard computers. 
The sensor/actuator network also communicates with backend cloud services to access and store events 
(e.g. ‘fall detected’, ‘telepresence session initiated’) and monitored health data (e.g. detailed time-
sequenced measurements from BAN devices). Accordingly, the system must deal with a wide range of 
device semantics (different kinds of devices with different functions), data formats (syntactic 
representations), measurement unit conventions (for sensor readings), and communications protocols 
(e.g. Wi-Fi, ZigBee, Bluetooth). Various key aspects of SARA functionality, moreover, require that data 
from multiple sources is collated, aggregated and/or analyzed in a coherent collective fashion. The 
reliable detection of ‘fall incidents’, for example, may involve the continuous comparative evaluation of 
data from wearable IMU devices, RR handle-mounted pressure sensors and RA video cameras (among 
others). 

• Embedded Intelligence and local analytics: SARA is an application of Socially Assistive Robotics 
(SAR), and is thus fundamentally an artificial intelligence system. SARA requires the continuous operation 
of a range of perceptual systems. This means multiple AI/ML processes working concurrently to extract 
different features from the sensory input in a timely fashion - i.e. without any significant network latency. 
Thus there is a strong need for an IoT infrastructure that supports computationally intensive, distributed 
AI processing at the edge of the IoT network. 

• Trustworthy Network Management: SARA is a distributed application where different computing entities 
continuously communicate and synchronize their activities to collectively generate the overall functionality 
of the system. Many of these distributed computations, due to their near real-time nature, are subject to 
strong time constraints – which can only be met by a network infrastructure capable of guaranteeing 
trustworthy, low latency, reliable communications between all participating components. The SARA 
robotic nodes, moreover, have (quasi)autonomous behaviours driven to a large extent by uncertain and 
unpredictable events in the environment – with a corresponding uncertainty and unpredictability in the 
generated computational load. Such variability prohibits the advance determination of optimal 
configurations of networking resources for trust guarantees. Indeed, dealing with such dynamic run-time 
variability entails adopting correspondingly dynamic and flexible mechanisms for trustworthy network 
management. 

2.3. SEMIoTICS sub use cases 
In this document the validation of the benefits brought by the SEMIoTICS technologies to the development and 
operation of SARA is presented by means of five sub use cases. Each sub use case focuses a subset of the 
challenges in one the areas presented in section 2.2 and represents a different view on the very same system. 
The five use cases are: 

• Moving Intelligence to the Edge demonstrates how the time series clustering algorithm part of the 
SEMIoTICS Local Embedded Intelligence component developed in the context of Task 4.3, can be 
deployed on the SARA Robotic Rollator and utilized in the implementation of the SARA Remote Gait 
Analysis Assistive Task. 

• Automated, trustworthy healthcare connectivity shows how NFV along with the pattern related 
components, offer a flexible solution to deal with the heterogeneous traffic flows of SARA. Also, how they 
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reduce the manual intervention in the networking configuration and management, thus yielding a network 
management automation solution. 

• Enforcement and Monitoring of GDPR-compliant Access Control to Confidential and Sensitive 
Data shows how the interaction of the SEMIoTICS Security & Privacy components is able to address, 
realize and monitor the enforcement of all security- and privacy-relevant properties of user-related data. 
Especially in this sub use case, the data relates to the medical conditions and thus is privacy sensitive 
data.  SEMIoTICS enforces the GDPR-compliant controlled access to that data by enforcing and 
monitoring access control through policies as well as through encryption to enable GDPR-compliant data 
handling also during transfer and storage even beyond the system's boundary. 

• Controlling bulbs and robots demonstrates how the SEMIoTICS Semantic Interoperability technologies 
developed in the context of Task 3.3 can help the developers of the SARA solution to interface 
heterogeneous devices ranging from light bulbs to semi-autonomous robots while keeping the application 
logic independent from the underlying hardware and transport protocols as much as possible. 

• Monitoring Activities of Daily Life shows how the SEMIoTICS Monitoring, Prediction and Diagnosis 
Mechanisms (MPD) component developed in the context of Task 4.2, can be used to support the Human-
Robot Interaction in the context of the SARA Remote Gait Analysis Assistive Task. 

The reader can find in Appendix A the mapping between the sub use cases introduced by this section and the 
requirements posed by the SARA-Health use case towards the SEMIoTICS framework. This set of requirement 
was initially presented in deliverable D2.3 - ”Requirements specification of SEMIoTICS framework”. 



780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017 
Deliverable D5.10 Demonstration and validation of SARA - Health (Cycle 2)  
Dissemination level: Public  

 

14 

3. SUB USE CASE 1: SEMIOTICS-ENABLED GAIT ANALYSIS 
WEB APP 

3.1. Scope and Objectives 
This sub use case aims to demonstrate how various SEMIoTICS technologies developed in the context of WP3 
and WP4 can help to implement one of the SARA functionalities: the Gait Analysis Assistive Task described in 
section 2.1.2. This sub use case represents an evolution of the sub use case 1 that was named “Moving 
intelligence to the edge”. 
In particular this sub use case aims to demonstrate how the SEMIoTICS Local Embedded Intelligence 
technologies (more specifically the time series clustering algorithm) developed in the context of Task 4.3 can 
help to reduce the amount of raw data  required to be transmitted from field devices to cloud services. 

The SARA Gait Analysis Web Application is the application utilized by a Doctor to remotely supervise a Gait 
Analysis examination session performed by a patient at home. The SARA Gait Analysis Web Application allows 
a Doctor to schedule gait analysis sessions, to run a telepresence session using a Pepper Robot, receive and 
store gait data collected by means of Robotic Rollator and, to review data after the end of a session. 

The Figure 2 shows the page offered by the GA Web App to supervise a gait analysis session. The widget at 
the center of the page shows the video stream generated by the camera on board of robotic assistant (i.e. the 
Pepper robot). A Doctor can select the point of observation using the controls on the right part of the page: the 
buttons allow positioning the robot and fixing the posse of its head. The controls on the bottom part of the page 
allow start/stop recording the gait data collected by means of the Robotic Rollator. 

 
 

FIGURE 2: THE SARA INTERFACE SUPPORTING THE SUPERVISION OF A REMOTE GA SESSION 

3.2. Interaction with SEMIoTICS framework 
Figure 3 shows the SEMIoTICS components involved during the runtime for the execution of the Gait Analysis 
AT. 
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FIGURE 3: SEMIOTICS COMPONENTS USED BY DOCTOR WEB APP 

The Doctor Web App is a web application residing on the SARA Server. A Doctor can access the Doctor Web 
App across the Internet using a standard Web Browser. 

The Doctor Web App uses the SEMIoTICS Security Manager to authenticate a user. The Doctor Web App 
relies on the Electronic Health Record from AREAS® to retrieve/store information about patients. 

The SARA Gait Analysis Server offers to the Doctor Web App the operations to manage a Gait Analysis 
session. 

Whenever a Doctor requests to start the recording of data, the Gait Analysis Server communicates with the 
Gait Sampler application hosted by the Robotic Rollator assigned to the patient. 
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The Gait Sampler uses the Rollator Servient to obtain the time series representing the distances of patient’s 
legs from the back of the rollator (Figure 4). This operation is done putting an observation on the resources 
legR and legL exposed by the rollator servient (see also section 6.3.1). The Rollator Servient is the SARA 
component that virtualizes the Robotic Rollator as a “Thing” in the sense defined by the WoT standard. 

 
FIGURE 4: AN EXAMPLE OF TIME SERIES RECEIVED BY THE GAIT SAMPLER 

The Gait Sampler extracts the time series representing a single gait from the time series received from the 
servient (Figure 5). Each time series accounting for a single gait is encoded using the SEMIoTICS Time series 
encoder. The encoded time series are sent back to the Gait Analysis server via the TS Listener interface. 

 
FIGURE 5: EXAMPLE OF TIME SERIES SENT TO THE TS ENCODER 

Whenever a Doctor requests to stop the recording of data, the Gait Analysis Server uses the SEMIoTICS 
Timeseries clustering component to assign each buffered time series to cluster. The TS Classifier allows Gait 
Analysis Server to compute the probability that a gait cycle belongs to one of the possible predefined cluster 
(Figure 6) 
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FIGURE 6: AN EXAMPLE OF ASSIGNMENT PRODUCED BY THE TS CLASSIFIER 

The result of the clustering is sent back to the Doctor Web App that presents it in the web interface of the 
Doctor. 

At the end of a session the SARA Gait Analysis Server persists an encrypted version of the results of the 
clustering: The encryption is done using the SEMIoTICS Attribute-Based Encryption component. 

The Figure 7 shows more precisely the interactions occurring between components during the execution of Gait 
Analysis Task. 
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FIGURE 7: INTERACTIONS BETWEEN COMPONENTS 

In particular: 

1. The Doctor Web Application requests the address of the patient’s rollator to the Electronic Health Record 
(EHR). 

2. The EHR return the rollator’s address to the Doctor Web Application. 

3. The Doctor Web Application requests to the Gait Analysis Server to start the sampling of the patient’s gaits. 

4. The Gait Analysis Server requests to the Gait Sampler to start sampling process. 

5. The Gait Sampler requests to the Local Thing Directory (a SEMIoTICS component) the descriptor of the 
Rollator. 

6. The Local Thing Directory returns the descriptor of the Rollator to the Gait Sampler component. 

7. The Gait Sampler requests to the Rollator Servient to notify periodically the distance of the right leg. 

8. The Gait Sampler requests to the Rollator Servient to notify periodically the distance of the left leg. Once 
both observations (left leg and right leg) are in place the Gait Sampler repeats continuously the steps 9-13 
described below: 

9. The Gait Sampler receives (asynchronously) from the Rollator Servient the distance of the left leg, or 

10.  the Gait Sampler receives (asynchronously) from the Rollator Servient the distance of the right leg. 
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11.  The Gait Sampler, whenever detects that a gait cycle is complete, requests to the TS Encoder (a SEMIoTICS 
component) the encoding of the two times series accounting for the distance of the left and right legs from 
the rollator. 

12.  The Gait Sampler receives from the TS Encoder the encoded versions (latent representations) of the two 
time series. 

13.  The Gait Sampler forwards to the Gait Analysis Server the time series received by the TS Encoder. 

14.  The Gait Analysis Server requests to the TS Clustering component (a SEMIoTICS component) to assign to 
each time series the probability to be in one of the predefined gait clusters. 

3.3. Setup testbed and integration 
The tested of sub use case 1 utilizes three hosts (see also Figure 3): 

• Doctor’s workstation implemented by a standard PC running Window 10 OS. 

• SARA server’s software components are deployed both on a standard personal computer and on a 
virtual machine (running Linux OS) available from the FiwareLab3 node operated by ENG in its data center 
located in Vicenza (Italy). 

• Robotic Rollator Hub implemented by a Raspberry Pi 3 running Raspbian OS. This host is the same 
host used by sub use case 4 (see section 6). The Robotic Rollator Hub is realized using a Raspberry Pi 
3 which is a clone of the one on board of the actual Robotic Rollator. During the second half of the year 
it was required to rely on a clone to cope with the impossibility to access the actual Robotic Rollator 
because of the Covid-19 pandemics. 

The components presented in Figure 3 are implemented as follows: 

• Doctor Frontend is realized by a Chrome Web browser executing the JavaScript served by the Doctor 
Web App hosted by the SARA server. This script implements the GUI of the Doctor Web Application. 

• Doctor Web App is implemented by a web application written in Angular 8 and Typescript running on a 
Tomcat web server and uses the angular-oauth2-oidc4 support to interact with the SEMIoTICS Security 
Manager instance operated by University of Passau5 (Figure 8). 

 
3 https://www.fiware.org/developers/fiware-lab/ 
4 https://www.npmjs.com/package/angular-oauth2-oidc 
5 http://semiotics-security.sec.uni-passau.de:3002/ 
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FIGURE 8: THE AUTHENTICATION PAGE PRESENTED BY THE SEMIOTICS SECURITY MANAGER 

• Electronic Health Record is realized by a database from AREAS®. The Electronic Health Record from 
the AREAS® is a development instance that does not contain any sensible data related to any real 
individual. 

• TS Clustering is realized by the Keras library and the SEMIoTICS time series clustering model described 
in deliverable D4.10 and trained using data collected by means of the Robotic Rollator before the Covid-
19 lockdown (i.e. same data used by sub use case 4 described in section 6). 

• Gait Analysis Server is realized by a REST service developed in Python 3.8 making use of Flask 
framework6. The Gait Analysis Server uses the Keras 2.4.3 and Tensorflow 2.3.0 to load and execute the 
SEMIoTICS Clustering Model. The SEMIoTICS Clustering Model is deployed on the SARA server as an 
HDF5 (.h5) file. 

• TS Encoder is realized by the Keras library and the SEMIoTICS time series encoder model described in 
deliverable D4.10 and trained using data collected by means of the Robotic Rollator before the Covid-19 
lockdown (i.e. same data used by sub use case 4 described in section 6). Similarly to the Gait Analysis 
Server the time series encoder is rest service developed in Python 3.8 making use of Flask framework7. 
The Gait Sampler uses Tensorflow Lite runtime to exploit the Timeseries encoder model. The Robotic 
Rollator Hub hosts a Tensorflow Lite version of the regular Timeseries encoder model. 

 
6 https://flask.palletsprojects.com/en/1.1.x/ 
7 https://flask.palletsprojects.com/en/1.1.x/ 
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FIGURE 9: THE MODEL UTILIZED BY THE TIMESERIES ENCODER 

• Rollator Servient is the WoT servient virtualizing the Robotic Rollator as a “Thing” in the sense of the 
WoT standard and is described more in details in section 6). 

• Gait Sampler is realized by a REST service implemented in the Java programming language. Figure 10 
shows a snapshot of the window used to debug the Gait Sampler component. 
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FIGURE 10: GAIT SAMPLER: INPUT FROM THE SERVIENT (TOP) AND EXTRACTED GAIT TIME SERIES 

(BOTTOM) 
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4. SUB USE CASE 2: AUTOMATED, TRUSTWORTHY 
HEALTHCARE CONNECTIVITY 

4.1. Scope and Objectives 
The SARA system generates traffic with heterogeneous features, stemming from the diversity of IoT devices 
embedded in the different SARA components such as the robotic rollator, the robot or the Body Area Network 
(BAN). Namely, the traffic will have different requirements in terms of priority: 

• Low priority. For instance, traffic from appliances within the smart home during ordinary activities. 

• High priority. Traffic generated by those Assistive Tasks like the Fall Management AT described in section 
2.1.1, which are related to potential health problems of the elderly people under control, e.g. abnormal 
change in his breathing, in his heart rate or in his gait.  

Moreover, the SARA use case involves data related to a health application. Thereby, it involves several trust 
levels that have to be considered for their processing at the networking layer: 

• Low trust. For instance, the traffic generated by the mobile phone. 

• Medium trust. For instance, the traffic from sensors at the smart home. 

• High trust. For instance, the traffic generated by the robot assistant. 

The heterogeneity in the traffic requires a flexible network that is capable to process the traffic accordingly. 
Moreover, the heterogeneity of the traffic leads to an increased network complexity, as it can lead to more 
configurations to adapt the network to the traffic features. In order to cope with the traffic heterogeneity and with 
the increased network complexity we adopt herein the Network Function Virtualization (NFV) framework. NFV 
provides a flexible network, as it relies on the virtualization of the computing, storage and networking resources 
yielding the so-called Network Function Virtualization Infrastructure (NFVI). Thereby, the network functions can 
be deployed on top of this NVFI in the form of the so-called Virtual Network Functions (VNF). This provides a 
flexible networking approach as the virtual resources can be allocated easily according to the network services ’
needs. Moreover, the VNFs can be chained to form the so-called Service Function Chains (SFC). For instance, 
one can form an SFC consisting of a Firewall (FW) and a Load Balancer (LB). Another example is an SFC 
consisting of a FW, a Deep Packet Inspection (DPI) and Intrusion Detection System (IDS). Thereby, NFV 
provides flexibility and the proper means to deal with traffic heterogeneity. Last, but not least, the configuration 
and lifecycle management of the VNFs along with the virtualized infrastructure management, are automated 
thanks to the NFV Management and Orchestration (NFV MANO) sub block within the NFV framework. 

Considering the above, there is significant motivation to leverage the flexibility provided by SFC to define specific 
service chains for each type of traffic. By applying the previous described procedure of chain instantiation, the 
SARA solution can support traffic forwarding through specific service functions. That includes the traffic 
forwarding for the different type of traffic exchanged between the different actors as following: 

• Chain 1 – Mobile Phone: Firewall -> DPI -> IDS -> Output.  

• Chain 2 – Robotic Rollator: Firewall -> IDS -> Load Balancer -> Output. 

• Chain 3 – Smart Home: Firewall -> IDS -> Output. 

• Chain 4 – Robotic Assistant:  Firewall -> Load Balancer -> Output. 

• Chain 5 - Malicious: Firewall -> Honeypot. 

The above scenario sketches a complex environment, requiring support for integration of heterogeneous devices 
and communication protocols, high degrees of interoperability, and support for distributed services and 
applications (each with its own set of intrinsic requirements), while guaranteeing the safety of the patient and 
the security and privacy of her patient data. This use case is visualized in Figure 11, which depicts the various 
types of devices, their interactions, and the involved communication technologies.  
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FIGURE 11: SARA-HEALTH SCENARIO AND TRAFFIC CLASSIFICATION 

The instantiation of a sequence of functions can constitute a service chain. Similar to the insertion of service 
functions in the SFC manager through the exposed service function REST interface, service chains can be 
inserted. In the list of the service functions, the firewall, the DPI, the IDS and the Load Balancer have been 
defined as the most crucial ones to enable the SPDI properties required by each chain to guarantee. Each VNF 
has a unique IP address which is required for the configuration and integration with the other functions interacting 
also with the use case devices and apps. Pattern Orchestrator is responsible to forward the SFC request to the 
Pattern Engine in order to verify or instantiate SFC requests. 
By leveraging the NFV framework, herein several SFC will be deployed on top of the virtual resources exposed 
by the NFVI. Namely, first a traffic classifier splits the incoming traffic from the SARA IoT field devices into 
several data flows. Then, these data flows are processed by the most proper SFC according to the traffic 
features. 

The main objectives of this sub use case are summarized as follows: 

• Show how NFV along with the pattern related components, offer a flexible solution to deal with the 
heterogeneous traffic flows of SARA. Also, how they reduce the manual intervention in the networking 
configuration and management, thus yielding a network management automation solution.     

• Provide an NFV testbed to process, at the networking level, the different data flows of the SARA use 
case, according to their heterogeneous requirements. 

• Provide the NFV MANO components that control the lifecycle management of the VNF along with the 
management of the virtualized infrastructure to deploy the VNFs. Thus, the NFV MANO leads to the 
automation of the virtual resources and the network functions management. 
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4.2. Interaction with SEMIoTICS framework 
The components of the SEMIoTICS ’framework that are used in this sub use case are highlighted in Figure 12 
and their interaction is detailed in the following subsections.  

 
FIGURE 12: SEMIOTICS’ COMPONENTS USED IN SUB USE CASE 2 

4.2.1. INTERACTION WITH NFV 
The SEMIoTICS ’NFV component is a fundamental part of the sub use case presented in this section. The NFV 
component allows to virtualize the computing, the networking and the storage resources at the cloud level 
yielding the so-called NFVI. Thereby, the VNFs that compose the SFC can be deployed as VMs that leverage 
those virtual resources. Moreover, the NFV component has the role to manage the whole lifecycle of the VNFs, 
through the NFV MANO subcomponent, see Figure 13. Thereby, it controls their onboarding within the NFV 
framework. Also, it provides configuration files that allow to automatize the instantiation of the VNFs, e.g. by 
defining the features and configuration of the VMs that hold the VNFs. Moreover, it allows the termination of the 
VMs that hold the VNFs. Next, more details on the role of the NFV component are given.  

4.2.2. NFV ORCHESTRATOR AND VNF MANAGER 
These are the sub blocks of the NFV component that manage the lifecycle of the VNF. Namely, the NFV 
orchestrator provides templates of configuration files to allow the end-user to describe the features and 
functionalities of the Network Services (NS) and their associated VNFs. These configuration files are so-called 
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VNF descriptors and NS descriptors. Note that this explanation is assuming that we use an OSM implementation 
of the NFV MANO, thereby a VNF is always within the context of a NS. Also, a cloud init file can be included to 
indicate the initial behavior, configuration and software installations of the VM that will hold the VNF. Once these 
configuration files are edited, we can onboard to the library of the OSM the VNF and NS packages that define 
the VNFs and the NS. Then, one can trigger the instantiation of the NS and their associated VNFs. This provokes 
that the NFV orchestrator communicates internally with the VNF manager, note that both blocks are 
implemented by the OSM. Then, the VNF Manager communicates internally with the VIM to trigger the 
instantiation or termination of the VNF. Thereby, it triggers the management of the virtual resources in the VIM 
to deploy the VMs that hold the VNFs.  

4.2.3. VIRTUAL INFRASTRUCTURE MANAGEMENT 
This block is the responsible for managing the NFVI, i.e. the virtual computing, storage and networking resources 
that allow to deploy the VNFs at the cloud level. The VNF manager and the NFV orchestrator manage the 
communication with the VIM internally. In other words, the end-users or applications that are external to the NFV 
framework do not need to communicate with the VIM, as the NFV orchestrator provides a high level interface 
through the configuration files mentioned above and through REST API interfaces. Thereby, as an example, the 
VIM creates or terminates the VM that holds the VNF, when the instantiation or termination of the VNF is 
triggered at the NFV orchestrator. The instantiation or termination process implies the allocation or release of 
the virtual resources from the NFVI to create or terminate the VM. Note that herein the VIM and NFVI are 
implemented by means of the OpenStack software, see section 4.4. 

4.2.4. PATTERN ORCHESTRATOR 
Pattern Orchestrator is responsible for automated configuration, coordination, and management of different 
patterns and their deployment. Moreover, it is used for processing a received requirement in order to translate 
it to Drools facts. The result of the said processing enables the Pattern Orchestrator to choose which Pattern 
Engine should receive the corresponding Drools facts in order to reason with them. 

4.2.5. PATTERN ENGINE 
Pattern Engine at the application layer, includes the pattern rules in the form of Drools rules, responsible for 
verifying and instantiating VNFs and SFCs. With the said rules the Pattern Engine is able to reason whether a 
new VNF is needed to be instantiated in order to complete a specific SFC. Moreover, if an SFC is not instantiated 
at all, the rules allow the instantiation of the SFC after having gathered all the necessary VNFs. Due to the fact 
that the Pattern Engine at the application layer, has a global view of the pattern facts across all layers, it makes 
it appropriate for providing up to date information on a graphical interface designed specifically for SFC 
management in a higher level. This interface is called SFC GUI and extracts all the information depicted directly 
from the Pattern Engine. 

4.2.6. THING DIRECTORY 
Thing Directory at the application layer represents a global repository for all the registered Things and is used 
to browse Things based on their Thing Description. The information extracted from Thing Directory is used from 
the Backend Semantic Validator to verify the interoperability between two Things. Moreover, it is used from the 
SFC GUI to populate the available nodes that can be used as source and destination of a flow. 

4.2.7. BACKEND SEMANTIC VALIDATOR 
The Backend Semantic Validator component is responsible for semantic validation mechanisms at the backend 
layer. It receives from the Pattern Engine the source and destination of a flow in order to verify the interoperability 
between them. When the interoperability between source and destination is not present, The Backend Semantic 
Validator informs the Pattern Engine so that the latter can take appropriate actions. 

4.2.8. GUI 
The GUI component is responsible for the visualization of SPDI pattern monitoring and pattern details. It receives 
from the Pattern Orchestrator information regarding the source and destination of a chain as well as the current 
state of the SPDI properties for the said chain. 
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4.3. Setup testbed and integration 
4.3.1. NFV TESTBED 
Herein, we leverage CTTC’s NFV testbed for several purposes. First, to host the VNFs that process the traffic 
stemming from the SARA’s IoT GW. Second, those VNFs are chained yielding the so-called Service Function 
Chains (SFC), which pave the way to support the trustworthy healthcare service. Third, a Virtual Private Network 
(VPN) has been configured at CTTC to let other partners access the NFV testbed from outside CTTC. Fourth, 
as it is detailed below, the NFV testbed exposes a northbound interface (NBI). That interface allows external 
entities, such as the pattern orchestrator or the SFC GUI, to control remotely the whole lifecycle of the SFC, NS 
or VNFs and to enforce the proper patterns dynamically. In the next Figure 13, we show a block diagram of the 
NFV testbed along with its interaction with the external entities through the NBI. 

 
FIGURE 13: NFV TESTBED AT CTTC AND ITS INTERACTION WITH THE SFC GUI AND THE PATTERN 

ORCHESTRATOR 

More specifically, this testbed consists of the next functional blocks according to the ETSI’s NFV standard [1]. 
First, the VNFs are deployed on top of a virtualized infrastructure that exposes virtual computing, networking 
and storage resources. This infrastructure is so-called Network Function Virtualization Infrastructure (NFVI) and 
is one of the fundamental blocks of the NFV framework. Second, the whole NFV framework is managed by the 
so-called NFV Management and Orchestration (NFV MANO). More specifically, the NFV MANO is responsible 
for the whole lifecycle of the NS, the VNFs and the SFC, i.e. their creation, deployment and termination. The 
NFV MANO consists of three sub blocks. The NFV Orchestrator (NFVO), the VNF Manager (VNFM) and the 
Virtualized Infrastructure Manager (VIM). The virtualized resources and the whole NFVI are controlled by the 
VIM. The whole lifecycle of the VNF is managed by the NFVO and the VNFM, which have the responsibility to 
provide northbound API interfaces to interact with the end-user. This allows the end-user to edit the VNF features 
in terms of computing, storage or networking requirements. Also, it permits to onboard the VNF within the NFV 
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framework, i.e. as part of the library of available VNFs. Moreover, the NFVO/VNFM blocks let the end-user to 
trigger the VNF instantiation or termination on top of the NFVI. In this regard, it is worth mentioning that the 
NFVO communicates downwards with the VNFM and the VNFM in turn communicates downwards with the VIM. 
Similarly, it is the NFVO that controls the whole lifecycle of the NS and the SFC and communicates downwards 
with the VIM to implement the required operations of the lifecycle such as instantiation or termination. In fact, 
note that a NS contains or embeds one or more VNFs. More insights on NFV for the SEMIoTICS purposes are 
given in the SEMIoTICS ’deliverable D3.8 [2]. 

The above-mentioned NFV blocks are implemented in CTTC’s NFV testbed by using the next software: 

• OSM (Open Source MANO) [3]. It implements the NFVO along with the VNFM blocks. 

• OpenStack [4]. The OpenStack controller implements the VIM, the OpenStack compute node implement 
the NFVI. 

The NFV testbed, mentioned above, has the topology described in Figure 14. More specifically, the NFV MANO 
consists of two functional blocks. Thus, on the one hand, the OSM implements the NFVO and VNFM. On the 
other hand, the NFV MANO contains another sub block, the OpenStack controller node, which implements the 
VIM. The NFVI is composed of one functional block, an OpenStack compute node that exposes its virtualized 
resources to instantiate the VNFs. A switch is leveraged for the communications between all the functional blocks 
mentioned above.   
 

 
FIGURE 14: TOPOLOGY OF THE CTTC’s NFV TESTBED. 

In order to implement the NFVI and NFV MANO functional blocks described in Figure 14 we have deployed VMs 
within the servers available at the CTTC premises. Namely, each functional block of Figure 14 is a VM. 
Moreover, the computing, storage and RAM memory of the VM have been set up according to the requirements 
of each of the software components. Next, we describe the features of each VM and the switch: 

• VM containing the OSM. 

• Storage of 98 GB. 

•  RAM of 8 GB. 

•  4 CPU cores. 

• Operative system is the Ubuntu 18.04.4 LTS. 

• VM containing the OpenStack controller node. 



780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017 
Deliverable D5.10 Demonstration and validation of SARA - Health (Cycle 2)  
Dissemination level: Public  

 

29 

• Storage of 98 GB. 

•  RAM of 32 GB. 

•  6 CPU cores. 

• Operative system is the Ubuntu 18.04.4 LTS. 

• VM containing the OpenStack compute node.  

• Storage of 10 GB. 

•  RAM of 8 GB. 

•  4 CPU cores. 

• Operative system is the Ubuntu 18.04.4 LTS. 

• The switch is a 10GBASE-T programmable switch. 

Moreover, it is important to note that OSM version 7 has been installed, following the guidelines in [5]. Regarding 
the OpenStack, the Train version has been installed and set up in our NFV testbed. To this end, a devOps 
approach has been adopted. More specifically, OpenStack Ansible has been leveraged to ease and to automate 
the installation of the application and the configuration process of the underlying infrastructure that will support 
the OpenStack. We have followed the OpenStack Ansible guidelines in [6] to install and configure OpenStack 
Train in our NFV testbed. It is worth noting that Ansible is a type of configuration-management software, which 
follows an infrastructure as code approach. Thereby, it relies on an inventory, i.e. a set of configuration files that 
describe the nodes that can be accessed by Ansible. Moreover, Ansible relies on a set of files that permit to 
carry out operations on the managed nodes, thus these files are so-called Playbooks. Note that each Playbook 
maps a group of hosts to a set of roles. 

Regarding the NFV testbed, it is also important to mention that the capability to support SFC in OpenStack has 
been enabled. To this end, we have installed the “networking-SFC” plugin for the OpenStack Neutron sub-block8. 
This plugin provides APIs to support SFC directly from OpenStack Networking (i.e. Neutron). Moreover, a set of 
constraints must be taken into account to enable SFC in OpenStack: 

• First, each compute node of the NFVI must reserve a dedicated network interface for connecting VNFs 
to VLAN provider networks. 

• Second, VXLAN are the only supported network technology for SFC data planes. 

• Third, the data plane interconnecting VNFs in the SFC must support OpenFlow. 

Additionally in FORTH’s premises, the Pattern Orchestrator, Pattern Engine, Backend Semantic Validator and 
SFC GUI are deployed also in VMs. An Intel NUC (Figure 15) is used with 32GB RAM, 500GB storage and a 
CPU i7-6770HQ 2.60GHz with 8 cores. Proxmox Virtual Environment is installed in the Intel NUC which hosts 
the aforementioned VMs 

• VM containing the Pattern Orchestrator. 

• Storage of 10 GB. 

•  RAM of 4 GB. 

•  4 CPU cores. 

• Operative system is the Ubuntu 18.04.4 LTS. 

• VM containing the Pattern Engine. 

• Storage of 10 GB. 

•  RAM of 4 GB. 
 

8 "Service Function Chaining Extension for OpenStack Networking.," [Online]. Available: 
https://docs.openstack.org/networking-sfc/latest/. [Accessed December 2020]. 
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•  4 CPU cores. 

• Operative system is the Ubuntu 18.04.4 LTS. 

• VM containing the Backend Semantic Validator. 

• Storage of 15 GB. 

•  RAM of 2 GB. 

•  2 CPU cores. 

• Operative system is the Ubuntu 18.04.5 LTS. 

• VM containing the SFC GUI.  

• Storage of 20 GB. 

•  RAM of 2 GB. 

•  4 CPU cores. 

• Operative system is the Ubuntu 18.04.4 LTS 

 
FIGURE 15: INTEL NUC AT FORTH TESTBED 

Last, but not least, it is important to expose that the interface between the NFV and the SFC GUI-Pattern 
orchestrator is done through REST APIs and http requests, according to the ETSI GS NFV-SOL 0059. In fact, 
this document describes the standardized implementation for the Os-Ma-NFVO reference point, which is ETSI-
NFV compliant [1] and defines the interface between the NFV MANO and external Operational Support Systems 
(OSS). Thereby, in our case, the SFC GUI-Pattern Orchestrator are considered as OSS and are fully compliant 
with the ETSI-NFV framework. 

The detailed procedure used to validate the NFV testbed described in this section can be found in Appendix A. 

4.3.2. SERVICE FUNCTION CHAINING PATTERNS VALIDATION 
Service Function Chaining Patterns provide the ability to define an ordered list of security network services (e.g. 
firewalls, DPIs, IDS) for security in network infrastructures by creating chains at design and by updating functions 
in chains based on available ones at runtime. SFC patterns should cover the placement, security and scalability 

 
9 ETSI, "Network Functions Virtualisation (NFV) Release 2; Protocols and Data Models; RESTful protocols specification for  
the Os-Ma-nfvo Reference Point," ETSI GS NFV-SOL 005, 2018. 
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aspect of SEMIoTICS network infrastructures. The deployment of network service functions can be used to 
guarantee specific network security and dependability properties. However, stitched them into chains can satisfy 
more than one SPD properties. One of the innovative approaches supported by this work, is the dynamic 
instantiation of SFCs based on the predefined SFC patterns. When there is a request for an SFC instantiation 
containing service functions, the depicted in Figure 16 procedure should be followed. If the SFC does not exist, 
the instantiation of the respective SFC is deployed through the identification of the requested VNFs. If the VNFs 
exist in the service nodes, the SFC is updated including these VNFs. If the VNFs do not exist, the service node 
with the available resources is requested to instantiate the respective VNFs. The procedure is ended when all 
the requested VNFs are included in the SFC.  

 
FIGURE 16: VNF INSTANTIATION BASED ON SFC REQUEST 

To proceed to the above description, SFC patterns are developed to achieve the requirement for end to end 
guarantees by the traffic forwarding through different security service functions. The patterns can be expressed 
as Drools rules10 to enforce the following requirements: 

• Verify service function chains on chain requests. 

• Instantiate service function chains, if the required functions have been already instantiated. 

• Verify functions to insert them in the request chain. 

• Instantiate not defined service functions to satisfy service function chain requests. 

The ultimate goal of the SFC GUI is to enable the Administrators of the SARA solution to interact with the system 
that provides a secure networking infrastructure, via the associated proactive and reactive security mechanisms, 
such as the deployment of network security services and the continuous monitoring and intrusion detection. In 
Figure 17 the SFC GUI is presented which gathers in one screen all the necessary information. 

 
10 Drools Business Rules Management System https://www.drools.org 
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FIGURE 17: SFC GUI 

All information depicted in SFC GUI is gathered from Backend Pattern Engine with a simple http-GET request 
(Figure 18).  

• Backend Pattern Engine gathers information from: 

– Thing Directory (Nodes) 

– OSM (Function List and Function Instances) 

– SFC Requests (Chains) 

– Pattern Requirement (user input) 
 

 
FIGURE 18: PATTERN ENGINE REST FOR SFC GUI 
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A user can request for specific VNFs to be applied in a flow of a specific source and destination such as the end 
hosts such the robot, patient or backend services such as AREAS, AI services. The list of sources and 
destination will be populated on the next cycle based on the information retrieved from the Thing Directory or 
manually in case of backend services. The VNFs that the user can choose from, is dynamically populated with 
information provided by the OSM.  

Upon clicking on the submit button a new Pattern Requirement is created that is sent directly to the Pattern 
Engine and is consumed by the addSFCReq endpoint (Figure 19 and Figure 20).  

 
FIGURE 19: PATTERN ENGINE REST FOR SUBMIT BUTTON OF SFC GUI 
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FIGURE 20: PATTERN ENGINE FIRING SFC RELATED RULES 

After the new requirement has been consumed by the Pattern Engine, the pattern rules (Figure 21 to Figure 25) 
are fired causing the verification and instantiation of VNFs and SFCs. 

 

 
FIGURE 21: SERVICE FUNCTION CHAIN VERIFICATION 

1. rule "Chain Verification Pattern Rule" 
2. salience 10 
3. when 
4.  $chain: Chain($functions: functions, instantiated==true) 
5.  $PR: Req($src:src,$dst:dst, pro.chain.functions==$functions, 

satisfied==false) 
6. then 
7.  System.out.println("Chain Verified"); 
8.  modify($PR){satisfied=true}; 
9. end  



780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017 
Deliverable D5.10 Demonstration and validation of SARA - Health (Cycle 2)  
Dissemination level: Public  

 

35 

 
FIGURE 22: SERVICE FUNCTION CHAIN INSTANTIATION 

 
FIGURE 23: SERVICE FUNCTION CHAIN CREATION 

1. rule "Chain Instantiation Pattern" 
2. salience 20 
3. when 
4.  $chain: Chain($functions: functions, instantiated==false) 
5.   $PR: Req($src:src, $dst:dst,  pro.chain.functions== $functions, 

satisfied==false) 
6. then      
7.  Orch orch=new Orch(); 
8.  orch.instantiateChain($chain.id, $chain.name); 
9.  modify($chain){instantiated=true}; 
10.  System.out.println("Chain Instantiated"); 
11. end 

1. rule ”Chain Creation Pattern" 
2. salience 30 
3. when 
4.  $PR: Req($src:=src, $dst:=dst, $pro: pro, satisfied== false) 
5.  not Chain($functions: functions, $functions:= $PR.pro.chain.functions, 

instantiated==false) 
6. then      
7.  Orch = new Orch(); 
8.  String idd = orch.createChain($PR.pro.chain.functions, "chain",      

$src.address, $src.port, $dst.address, $dst.port); 
9.  Chain chain = new Chain(idd, "chain", $PR.pro.chain.functions,false); 
10.  insert(chain); 
11.  System.out.println("Chain Descriptor Created"); 
12. end  
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FIGURE 24: SERVICE FUNCTION VERIFICATION 

 

FIGURE 25: SERVICE FUNCTION INSTANTIATION 

In use case 2, the main two applications are the Gait analysis and Fall management. More specifically, for the gait 
analysis the requirement include the instantiation of a chain for the traffic forwarding from the patient to the doctor 
including a firewall, a DPI and an IDS. Upon submitting the requirement, the appropriate rules are fired at the pattern 
engine, forcing the instantiation of the required functions in OpenStack and the formation of the chain in the OSM. 
As soon as all rules have finished, all information is available in the SFC GUI Figure 26.  

1. rule "Virtual Service Network Function Verification" 
2. ruleflow-group "SFC" 
3. salience 40 
4. when 
5.  $function: Function($type:=type, instantiated==true) 
6.  $chain: Chain($functions: functions, $functions not contains 

$function, instantiated==false) 
7.  $PR: Property($src:=src, $dst:=dst, 

$reqFunctions:=property.chain.functions, satisfied== false) 
8.  Function($type==type) from $reqFunctions 
9. then      
10.  System.out.println("Verification of Function"); 
11.  $chain.addFunction($function); 
12.      update($chain); 
13. end  

1. rule "Virtual Service Network Function Instantiation" 
2. ruleflow-group "SFC" 
3. salience 50 
4. when 
5.     $function: Function($type:=type, instantiated==false) 
6.     not Function($type:=type, instantiated==true) 
7.     $chain: Chain($functions: functions, $functions not contains 

$function, instantiated==false) 
8.     $PR: Property($src:=src, $dst:=dst, 

$reqFunctions:=property.chain.functions, satisfied== false) 
9.     Function($type==type) from $reqFunctions 
10. then    
11.     System.out.println("Instantiation of Function"); 
12.     Function function = new Function($function.type); 
13.     modify($function){instantiated=true}; 
14. end 
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FIGURE 26: GAIT ANALYSIS SCENARIO (1) 

The procedure includes the verification of a chain based on the described patterns. If the chain is not instantiated, 
the pattern will trigger the instantiation of a new chain based on an existing chain descriptor as can be seen in 
Figure 27 and Figure 28. If the chain descriptor exists, the patterns are able to trigger the creation of the chain 
before its instantiation of the required functions in the OpenStack, as can be seen in and Figure 29. 

 

FIGURE 27 INSTANTIATION OF SERVICE CHAIN IN OSM 
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FIGURE 28 INSTANTIATION OF SERVICE FUNCTIONS IN OPENSTACK 

 

 

FIGURE 29 CREATION OF SERVICE CHAIN DESCRIPTOR IN OSM 
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To evaluate the developed solution, different experiments for forwarding traffic through the different chains such as 
for the Gait Analysis application and the Fall management. The patient sends data to the doctor via the instantiated 
chain including a firewall a dpi and an ids service functions. As can be seen from the tcp dump data capture in 
FIGURE 30, each service function forwards the traffic to the next node, offering different security guarantees in 
each chain. 

 

 

FIGURE 30 GAIT ANALYSIS SCENARIO (2) 

Similarly, for the fall management, when there is an emergency, a connection between the Call center and the robot 
will be opened to exchange data and guidelines. Figure 31 and Figure 32 present the traffic forwarding from call 
center to robot through the instantiated chain including a load balancer and a firewall. 
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FIGURE 31 FALL MANAGEMENT SCENARIO (1) 

 

FIGURE 32 FALL MANAGEMENT SCENARIO (2) 

Finally, ac can be seen during the evaluation of the two scenario, both experiments can prove the flexibility and 
applicability of our developed solution to offer traffic forwarding to enable end to end SPD properties. 

4.3.3. BACKEND SEMANTIC VALIDATOR AND THING DIRECTORY VALIDATION 
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Backend Semantic Validator (BSV) is able to verify whether two endpoints, a.k.a. source and destination such 
as end hosts (robot, patient, smart home) or backend services (doctor, AREAS, AI Services), are semantically 
interoperable. Figure 33 shows how the Backend Semantic Validator is involved in the flow and Figure 34 show 
a closer look to that process. The main idea here is to feed the BSV with a pair of end nodes that represent the 
source and destination. Their Thing Description is looked up in the Thing Directory and based on the result the 
BSV is capable to respond whether interoperability exists between them. 

 
FIGURE 33: BSV INTEGRATION 
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FIGURE 34: BSV AND THING DIRECTORY INTERACTION 

All the above are possible by the REST endpoint “validateData” (Figure 35) of the BSV which receives the 
source and destination in order to lookup their Thing Description in Thing Directory 

 
FIGURE 35: BSV “VALIDATEDATA” ENDPOINT 
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The result of the interaction between the Backend Pattern Engine and the Backend Semantic Validator is 
visualized in the SPDI monitoring view, where the end to end Interoperability property becomes green as can 
be seen in Figure 36.  

 

 
FIGURE 36: END TO END INTEROPERABILITY   

The evaluation of the SFC approach in the SARA use case was presented in this section. The SDN/NFV-enabled 
test-bed setup for service function chaining was tested in the NFV-enabled architecture for the dynamic VNF 
instantiation enabling the interaction between the pattern engine to instantiate VNF through the OpenSource 
MANO (OSM) and OpenStack. 

end to end Interoperability 
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5. SUB USE CASE 3: ENFORCEMENT AND MONITORING OF 
GDPR-COMPLIANT ACCESS CONTROL TO CONFIDENTIAL 
AND SENSITIVE DATA 

5.1. Scope and Objectives 
We would like to highlight a very important topic of security and privacy: the protection of personal data. Not 
only with the advent of the GDPR, the protection of confidentiality and also integrity of personal data has become 
of paramount importance. Especially in a medical use case, such as UC2. However, we would like to note that 
when we speak of confidentiality protection for GDPR-compliance we can as well map the technical protection 
mechanisms of SEMIoTICS to protect the confidentiality of trade-secrets. Following the definition in TRIPS from 
the World Trade Organization, trade secrets describe information that is considered to have a commercial value 
due to its secrecy and that its secrecy must be protected against third parties. So, when we can prohibit that 
information is made available or disclosed to unauthorized individuals, which is the more technical definition of 
confidentiality from ISO 27000, then we can protect both personal data to comply with the GDPR or trade-
secrets. In use case 2 the former is the more important case, due to which we decided to put GDPR in the title.  

The challenges we face are that the GDPR requires you to limit the amount of data you collect to what you 
actually need and further limit the access to the information already collected to the authorized entities. 

The access to data needs to be managed in a very generic fashion to make it usable at large scale but also at 
very fine-grained levels in order to allow the SEMIoTICS framework to be adapted to many different usage 
scenarios. To fulfil this objective the access control is attribute-based which allows Role-based access control 
(RBAC), e.g. you allow or deny access based on an attribute that specifies a role, e.g. like entity with the attribute 
“doctor” which shall be given to those with the role of a medical doctor in our hospital use case. Using attributes 
enables fulfilling two GDPR-requirements, first and most obvious they allow to specify policies which control and 
thus allow to restrict access to the sensitive data. Second, it allows that selected individuals, which have the 
attribute, could gain access without having to reveal more than their attribute, i.e. a more privacy-friendly form 
of access control can be implemented. So instead of having to tell the system that one has to state that one is 
the doctor “John Doe” one would only need to reveal to the system that one has the correct set of attributes, 
e.g. being a “doctor”. This limits the data being collected. 

Another challenge was to ensure the confidentiality of medical data even when that data becomes stored or 
transported outside of SEMIoTICS perimeter. To address this challenging objective, SEMIoTICS facilitates a 
cryptographic mechanism, known as attribute-based encryption (ABE). This is like normal cryptographic 
encryption, e.g., we encrypt data and unless you have the correct decryption key you cannot read the data. 
However, in many applications it is not a-priori known who the authorized recipient will be. Instead, one might 
only know certain attributes of authorized entities and all those entities who possess the right attributes would 
form a group. This means that encryption can happen, e.g., data should only be read by entities that are doctors, 
without knowing nor without needing to know who a doctor at the time of retrieval is. SEMIoTICS achieves this 
loose coupling and still enforces confidentiality for data even if it is stored on systems outside the realm of 
SEMIoTICS. 

To enforce one of the most sought-after features of GDPR-compliance, that of retention times, the attribute-
based encryption capabilities of SEMIoTICS are combinable with a time-variant attribute. That means that the 
patient’s system might generate date, e.g., a video stream or a location, which is encrypted not only for doctors 
(see our previous example), i.e., using an attribute “doctor” during encryption, but with an additional attribute 
that encodes that this data can only be accessed for a certain time frame, e.g., 48h is an often-used retention 
period for videos. The technical details have been discussed in D4.12. 

Last but not least, the challenge is to monitor that the system correctly enforces the intended behaviour, for this 
we describe how SEMIoTICS monitoring is used as a solution for periodical self-audit capabilities by monitoring 
for pattern-compliance. 
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5.2. Interaction with SEMIoTICS framework 
5.2.1. AUTHORIZATION POLICY MANAGEMENT 
Figure 37 shows the workflow of the Remote Gait Analysis Assistive Task (see section 2.1.2): the workflow 
starts with the scheduling of the Gait Analysis session. The data shared by devices can only be provided to 
systems or users who have the appropriate privileges at the moment, specifically, the patient’s data can only be 
accessible by his or her doctor during the specified period (e.g., during the exercises).  Changing policies for 
accessing specific devices will take place before and after exercise. The design shown in Figure 37 fulfils data 
protection principles like purpose limitation – the data is processed only for the legitimate purposes specified 
explicitly to the patient, the data processing is done in such a way which ensures appropriate security, integrity 
and confidentiality. 

The exercise can be either postponed or started. If the patient postpones the exercise, it is rescheduled (i.e., for 
the next day) and it’s one end of the flow. If the patient chooses otherwise, SARA sends an HTTP request to 
Pattern Orchestrator informing that the exercises have already started, and the doctor should get permission to 
get the patient's data for the time of exercises. Pattern Orchestrator transforms the request and sends it to 
Backend Pattern Engine. Then, using the Security Manager’s API Backend Pattern Engine updates the policies 
to give the doctor access to the data. As soon as the patient finishes exercises, the flow is repeated but the only 
difference is the update of policies takes away privileges to inspect the patient’s data instead of giving them. 

 
FIGURE 37: REMOTE GAIT ANALYSIS WORKFLOW 

Send schedule as 
pattern language 

Send initial facts 
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• SARA: The component is responsible for interaction with the patient. SARA’s main role in the use case 
will be to trigger the request to update the doctor’s policies after the patient starts exercises and as soon 
as they are finished. 

• Security Manager (backend): The component will be used in the sub-use case both as the security 
provider and policy management point. It will serve to generate an authentication token using SARA’s 
credentials and later on, to verify entities based on their token. The second role of Security Manager will 
be to alter doctor’s permission, either to allow him to get access to the patient’s data during the exercises 
or to take away privileges after the exercises are finished. 

• Pattern Orchestrator: Pattern Orchestrator receives the HTTP request from SARA and transforms it into 
facts that will later send to the Backend Pattern Engine. 

• Backend Pattern Engine: Backend Pattern Engine reasons based on the received facts and sends HTTP 
request to Security Manager to change the doctor’s privileges. 

5.2.2. AUTHENTICATION MANAGEMENT 
To authenticate SARA, to every HTTP request an authorization token is added. The Token is generated based 
on SARA’s unique client identification number and client secret. All incoming request to the device will be 
intercepted by Policy Enforcement Point which verifies whether the owner of the request has sufficient 
permission to get access to the data. If it does, the request is forwarded to its original destination, if not an error 
is thrown due to lack of privileges (according to standard RFC 7519). 

 
FIGURE 38: AUTHENTICATION MANAGEMENT PROCESS 

• AEP (Authentication Enforcement Point) Authentication Enforcement Point is a stand-alone application 
which generates an authentication token that adds it to every HTTP request that is coming out of SARA. 
To apply a valid token, AEP uses Security Manager's OAuth 2.0 Clients Credentials Grant flow using 
SARA’s client-id and client secret. Using these values, Security Manager can generate a unique token 
for the component, which is added to the HTTP request header in order to not be rejected by Policy 
Enforcement Point. This component supports also the automatic addition of token to all outgoing HTTP 
requests and it is supported when it runs in the backend layer. 

• PEP (Policy Enforcement Point) In order to secure access to the components' resources, the APIs of a 
device is protected by Policy Enforcement Point. PEP provides security in two ways. Firstly, it is deployed 
as a sidecar along with the primary application. They both share the same network allowing them to 
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communicate through localhost. The main application is only accessible from within local network, 
because it does not expose its port outside the device, only PEP does that, meaning that in order to get 
the resource of the main application all HTTP traffic must go through PEP. Secondly, the HTTP request 
must bear a valid authorization token and the client which makes an HTTP call has to be authorized to 
do so. To evaluate client authorization, PEP uses the Security Manager's Policy Decision Point. After the 
evaluation of the client’s policy, HTTP call is either allowed to reach the main application or it is rejected 
due to the insufficient permission.  

• Device The device is a generic component which is compliant to the WoT standard and has an API. The 
device shares the data through its API. 

As stated before, PEP is a generic component that can be used in every setup which involves guarding REST 
API. In the following scenario, PEP is used to secure communication between GUI and Monitoring Component. 
PEP was deployed along with Monitoring Component, as its sidecar whereas AEP was deployed with GUI. Four 
possible outcomes might be distinguished: 

• HTTP request does not bear any authorization token 

 
• HTTP request does have authorization token though it is invalid 

 
• HTTP request has a valid authorization token and the entity is authorized to get the resource 

 
• HTTP request has a valid authorization token but the entity does not have required permissions to get 

the resource 

 

5.3. Setup testbed and integration 
There are 4 main steps for enforcing and monitoring that are taking place in several components spread over all 
layers of the SEMIoTICS architecture: 

• First, setup tasks, as well as later management tasks, establish the policies and users as well as their 
attributes. 

• Second, the actual enforcement of access control. 

• Third, we dynamically adapt the access control to react, e.g., to emergency situations like in the fall 
assistance task. 

• Forth, monitoring for compliance, e.g., GDPR-conformance. 

In the remaining text we will detail how these main steps are happening within the generic storyline of UC2 we 
will highlight which components’ interactions are facilitated to reach our objectives. 
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5.3.1. SETUP STEPS 
SEMIoTICS is built upon the concept that each participating entity has their own identity and their own set of 
attributes. If you think about human users, the name would be “John Doe” and an attribute could be “doctor”. To 
ensure that only particular entities are able to obtain certain attributes, the identity management must initially 
setup administrative users who can change those attributes or create new users, and the system could also 
gradually enforce administrative restrictions, by enforcing access control on the ability to modify (create, change, 
delete) attributes or new entities. Further, there are policies which govern which access is allowed and which 
access is restricted. This follows the general principle of access control policies, e.g., an entity is given the right 
to access an object in a certain manner, e.g., an entity with the attribute doctor is allowed to read Hans Meier’s 
medical records. These policies are created initially as part of the system’s setup and the use of patterns allows 
to create those even faster. We explained the usage and technical backgrounds of attribute-based policies as 
well as entity related policies in D4.12 Section 2.2.4.1. These policies are defined individually as required by the 
respective application or use case. In order to provide a more user-friendly way to define the policies defined by 
config files, there is the possibility to set the policies through the currently deployed graphical user interface 
(GUI). Our GUI is implemented as a node.js based application, which facilitates the Security Manager API and 
can also be used to showcase how to interact with the Security Manager. All necessary functionality of the 
Security Manager’s API is made available via the GUI and can be accessed via the interface. This removes the 
hurdle of having to write complicated configuration files to initially setup the Security Manager. 

Furthermore, one of the initial steps during the system setup is to define the patient’s privacy settings. As each 
patient may have other privacy concerns, we can individually enforce different privacy settings for each patient. 
This can range from defining how long each private and sensitive data should be accessible, by whom it should 
be accessible to defining several characteristics of the person that can access the data (e.g., gender, age, 
language, country). These settings can, of course, be later changed manually by the patient him-/herself. 

5.3.2. ENFORCING ACCESS CONTROL 

The SEMIoTICS framework allows us to enforce access control on privacy sensitive data in two 
different ways: 

• By means of access control: When an entity with the role “doctor” tries to access the patient’s data, the 
request is intercepted by the Policy Enforcement Proxy (PEP) (see Section 5.2.6 and D4.12 Section 
3.2.4.1 for detailed information) which then forwards this request to the Security Manager. In this context 
the Security Manager functions as a Policy Decision Point (PDP), that then either allows or rejects the 
access to the patient’s data, based on the entity’s attributes (see Section 5.2.6 and D4.12 Section 3.2.1.1). 
For Use-Case 2, this mechanism is especially used for step 7 of the Remote Gait Analysis Assistive Task. 

• By means of encryption: During an emergency case, the patient’s data is accessible by anyone of the 
role “doctor” (enforced by the Security Manager and PEP). However, the SEMIoTICS framework is also 
able to enforce the patient’s previously defined privacy settings. This is done by encrypting the patient’s 
data with the help of Attribute Based Encryption (see D4.12 Section 3.2.1.4). Due to the encryption, the 
privacy sensitive data is now only accessible by an entity that fulfils all conditions that the patient wants 
to be enforced (e.g., gender of the doctor, language, age). Additionally, the maximum availability of the 
data can also be enforced by this technique. E.g., the patient can control how long the data can be 
decrypted, by defining a maximum lifetime of the data which is then part of the encryption. When this 
time-window expires nobody will be able to decrypt this data anymore. For Use-Case 2, this mechanism 
will be especially helpful for step 7 of the Fall Management Assistive Task. 

5.3.3. DYNAMIC POLICY ADAPTATION 
We assume the following case: 

Alice is a Call Centre Operator who normally is not able to get Bob's location. In an emergency (e.g. during the 
execution of Fall Management AT), however, Alice should be able to retrieve it. The SM offers the possibility to 
dynamically adjust access rights very quickly through the policies. If Bob falls, the application changes the policy 
via the API of the Security Manager dynamically. Now it is possible for Alice to get the location (see Figure 39). 
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FIGURE 39: DYNAMIC POLICY ADAPTATION 

5.3.4. MONITORING COMPLIANCE 
It is important that in complex systems we not only set policies and enforce them, but that we also –at least- 
periodically monitor that the system is still conforming to the intended behaviour; this is especially true in a 
system where the policies will get dynamically updated to adapt to changes in the environment as supported by 
SEMIoTICS. In UC2 this dynamicity happens to adapt to medical emergency situations, in which case access 
is granted to aid in such emergency situations.  

As an example, let us explain a bit more details about the Fall Management Assistive task of UC2. Here we 
allow logging of and access to a patient’s geo location, in order to correctly assist the patient, but only in case 
the patient fell down (dynamic policy update).   

In order to ensure compliance SEMIoTICS is capable, and we take advantage of this functionality in UC2, to 
check actively if the intended policies are enforced. This allows to detect suspicious access capabilities or 
changes to the policy which were not reverted. This self-audit capability is based on checking periodically the 
current access capabilities and compare them with expected values, and this checking is based on the SPDI 
patterns, here especially the security (S) and privacy (P) related patterns are of concern. To stay within the 
general storyline, there is a pattern on privacy that states that only patients normally have access to their 
location. Thus, in SEMIoTICS there is a periodic question to the security manager asking to list all entities who 
are not patients which have access to location data, and if this answer is not an empty list, then the privacy 
pattern is violated, and an alarm is raised. Of course, in emergency cases, like the fall of a patient, this default 
privacy setting is dynamically overruled. But, only for those patients that fell and only for the duration of the 
emergency. Thus, the monitoring component should not have to constantly alert the data protection officers.    

So, by creating patterns that implement GDPR-compliant behaviour SEMIoTICS allows the systems 
administrators to enable the system to self-check itself. 

 
5.3.5. ATTRIBUTE-BASED ENCRYPTION 
As described in D4.12, the SEMIoTICS framework supports the use of Attribute-Based Encryption (ABE). The 
ABE is a relatively recent cryptographic approach that reconsiders the concept of public-key cryptography. For 
instance, in common public-key cryptography, a message is encrypted for a specific receiver using the receiver’s 
public-key. Identity-based cryptography and in particular identity-based encryption (IBE) modified the 
established structure of public-key cryptography by changing the public-key in an arbitrary string, the email 
address of the receiver. The ABE goes one-step further and determines the identity not as an individual but as 
a set of attributes (user roles). Due to that, the encryption of the messages is achieved by using the subsets of 
attributes –key policy ABE (KP- ABE) – or the policies, which are defined over a set of attributes –ciphertext 
policy ABE (CP- ABE). In comparison with the IBE, the ABE has meaningful benefit, because it offers flexible 
one-to-many encryption instead of one-to-one; it is considered as a promising method to manipulate the issue 
of secure and fine-grained data sharing and decentralized access control. 
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In UC2, we applied this technique to the Gait Analysis Scenario, by encrypting the privacy sensitive data of the 
patient when sending it to the doctor/monitoring person during the exercise session of the patient. With the help 
of SEMIoTICS’ Attribute-Based Encryption, the patient can determine his/her privacy requirements before the 
session starts. Those privacy requirements will then be translated into specific attributes, which will be used for 
encrypting the patient-related data.  

If the doctor/monitoring person wants to access the patient’s data, he/she first has to create a user-specific 
decryption key with the help of 1) the SEMIoTICS Security Manager (hosted at the premises of University of 
Passau), which also provides an Attribute-Based Encryption endpoint or 2) the locally deployed Attribute-Based-
Encryption component, which is included in the SEMIoTICS framework as a dockerized component. 

A decryption is possible if and only if the monitoring person’s decryption key satisfies all privacy requirements 
that were previously defined by the patient, i.e. their attributes match, otherwise, no data will be revealed. 

 

 
FIGURE 40: DEMONSTRATION OF ATTRIBUTE-BASED-ENCRYPTION IMPLEMENTATION ON THE 

ROLLATOR 

For this specific use-case scenario, we decided to deploy the Attribute-Based Encryption component directly 
onto the rollator, which also determines the patient-related gait analysis data. When the rollator starts recording 
the patient’s data (left side of Figure 40), the first step is to forward the data to the locally deployed Attribute-
Based Encryption component. The ABE component then uses the previously defined privacy requirements of 
the patient to encrypt the data (right side of Figure 40) and transfer it back to the rollator, which then makes the 
data available for the monitoring person. 
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FIGURE 41: SUCCESSFUL DECRYPTION OF PATIENT-RELATED DATA 

 

 
FIGURE 42: UNSUCCESSFUL DECRYPTION OF PATIENT-RELATED DATA 
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Afterwards, the monitoring person, can use the SEMIoTICS Security Manager or his/her own locally deployed 
Attribute-Based Encryption component to decrypt the data. We demonstrate this functionality with two fictional 
examples: 

1. In Figure 41, we have Alice, a Doctor, 36 years old. She’s been working at the Hospital in Rome for 5 
years. On Monday at 8:30 am, during Bob’s exercise session, she receives the encrypted data of Bob. 
With her user-specific Key, which she previously generated with the help of SEMIoTICS’ Attribute-Based 
Encryption API, she tries to decrypt the received data, by sending a decryption request to the Backend 
Security Manager. The Security Manager then checks whether Alice’s key satisfies all privacy 
requirements of Bob. As she’s accessing the data on the same date, the requirement that the data 
should only be accessible for 7 days, is fulfilled. Furthermore, Alice is older than 30 years old and has 
been working at the hospital for more than a year. And the time of access is during Bob’s exercise 
session. Therefore, the security manager can successfully decrypt Bob’s data with Alice’s key and 
forwards the data back to her. Alice can now work with Bob’s data. 

2. In Figure 42, we have Eve, a doctor, who is 29 years old and has been working at the hospital of Passau 
for roughly 6 months. On Monday at 8:30 am, during Bob’s exercise session, she receives the encrypted 
data of Bob. As Alice did in the first scenario, she sends her key and the encrypted data of Bob to the 
Backend Security Manager.  Even though she’s accessing Bob’s data during his exercise session, her 
personal key does not satisfy the privacy requirements of Bob. He clearly stated, that the doctor must 
be older than 30 AND must have been working at the hospital for at least a year. Therefore, the Security 
Manager fails at decrypting Bob’s data and sends an error message to Eve. She’s not able to access 
Bob’s data. 

A demonstration and further explanation of the software components and their deployment can be found in 
D4.12 or in the video about sub-use case 3 as part of the overall Security & Privacy functionality of SEMIoTICS. 
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6. SUB USE CASE 4: CONTROLLING BULBS AND ROBOTS 
6.1. Scope and Objectives 
This sub use case aims to demonstrate how the SEMIoTICS Semantic Interoperability technologies developed 
in the context of Task 3.3 can help the developers of the SARA solution to interface heterogeneous devices 
ranging from light bulbs to semi-autonomous robots. 

As should be evident from the description of the Assistive Tasks given in section 2.1, in general, a SARA 
Assistive Task is realized through the interaction of various devices. As an example the Fall Management AT 
requires that the Robotic Assistant interacts with the lighting system of the Smart Home whilst the Gait Analysis 
AT requires the Doctor Web Application, interacts across the Internet, with a remote Robotic Rollator (Figure 
43). 

 
FIGURE 43: THE ROBOTIC ROLLATOR BEING USED BY THE SARA PROTOTYPE 

In the Fall Management AT the Robotic Assistant needs to discover which are the lights available in the room 
where the possible fall event occurred and then request their activation to illuminate the scene. Once the 
available lights are discovered the interaction between the robot and the lights bulbs may occur using different 
protocols (e.g. ZigBee, Bluetooth, Z-wave). This need is reflected in the SARA requirements R.UC2,5 and 
R.UC2.11. 

In the development of SARA there is the general requirement to keep the application logic independent from the 
underlying hardware as much as possible. As an example, in the context of the Gait Analysis AT, we wish to 
keep the application logic deployed on board of the Robotic Rollator independent from the specificities of the 
rollator used for the prototyping. This general requirement is reflected in the requirement R.UC2.6. 
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6.2. Interaction with SEMIoTICS framework 
In relation to interconnection between different devices, and the requirements previously described, we followed 
the KPI-2.1, that it is the semantic descriptions for different types of smart objects, that we described on the 
D5.1. The semantic descriptions for all the types of smart objects are based on W3C Web of Things (WoT) 
standard; in particular we used the WoT Thing Description standardized format for describing IoT things. Each 
sensor, actuator or thing from all SEMIoTICS use cases were identified and for each smart object one Thing 
Description (TD) was provided. We used iotschema.org to semantically annotate each TD. 

The goal was to enable smart objects to become interoperable. For the UC2 we focused on the 
sensors/actuators on board of the Robotic Rollator (RR), such as the Handlebar, Inertial Measurement Unit 
(IMU), LiDAR, Range Sensors (obstacle sensors) and Motorised Hub Wheels. 

Figure 44 shows the SEMIoTICS Semantic Interoperability technologies involved in the implementation of the 
SARA solution. 

 
FIGURE 44: SEMANTICS INTEROPERABILITY COMPONENTS IN SARA FIELD DEVICES 

6.3. Setup testbed and integration 
6.3.1. VIRTUALIZATION OF THE ROBOTIC ROLLATOR 
The first step that we did to make the Robotic Rollator available as a “Thing” (in the sense of the WoT standard) 
it was to expose all the sensors onboard of the RR, through the CoAP protocol. This because CoAP is one of 
the protocol supported from the WoT (as described in details in D3.9). To do that, we implemented a CoAP 
server running on the Raspberry Pi that it is the device acting as Robotic Rollator Hub, i.e. in charge of controlling 
all the sensors/actuators. The Raspberry Pi used by the Robotic Rollator is a Raspberry Pi 3b with 1Gb RAM, 
16GB SSD and Raspian OS. 
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Following an example of REQUEST to the CoAP server previously shown: 

 
FIGURE 45: A SENSOR VALUE RETURNED BY THE COAP SERVER FO THE ROBOTIC ROLLATOR 

After that, we created the node-wot servient; this one allows to show the RR as a Thing. To do that we utilized 
the ThingWeb’s node-wot implementation of the WoT standard11. 

We create a TD for the RR, linking all the sensors to the related CoAP connection; so that, if we want the value 
of the obstacleR (obstacle sensor put on the right front on the RR), the node-wot servient provide a GET 
REQUEST to the related CoAP link, in this case “coap://127.0.0.1:5555/obstacleR”. 

To summarise we developed two main programs running on the RR: 

• the CoAP server, that exposed all the sensors compliant with the CoAP protocol and  

• the node-wot servient, that made the RR as a Thing in the WoT, for this reason we named it as 
“WoT_RR_SARA”. 

If both those programs are running properly on the RR, it is possible to open a browser in a PC connected on 
the same networks, pointing to the RR’s ip address followed by the port 8080 (where the WoT Servient is 
listening for incoming requests) and all the sensors are been shown as a property of the RR (Figure 46). 

 
FIGURE 46: THE TD OF ROBOTIC ROLLATOR AS RETURNED BY THE WOT_RR_SARA SERVIENT  

As it is possible to see from Figure 46, the RR is described as a Thing and exposed all the sensors following 
the iotschema.org, that it was our scope. 

 
11 https://github.com/eclipse/thingweb.node-wot/  
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If we wish to get the data of a single sensor, we need to add “/properties/obstaleR” to the completed link 
previously explained as following: 

 
FIGURE 47: A SENSOR VALUE RETURNED BY THE WOT_RR_SARA SERVIENT 

In addition to that, we deployed the Semantic-IoT-Gateway developed by Siemens in the context of the 
SEMIoTICS project. Using this component, it is possible to make the Robotic Rollator available as a node within 
a Node-RED instance running on the Robotic Rollator hub. This enable the possibility to use the Node-RED 
graphical environment to develop node.js applications that make use of the vitalized sensors and actuators of 
the Robotic Rollator. 

In the Figure 48 it is shown a simple Node-RED flow that visualizes the value of the obstacleR sensor every 10 
seconds by means of a GET request. 

 
FIGURE 48: A SIMPLE NODE-RED FLOW USING A SENSOR OF THE ROBOTIC ROLLATOR 
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To the date, due to the impossibility to access the actual Robotic Rollator because of the Covid-19 pandemics, 
all the steps previously listed in detail have been carried out with a Raspberry Pi simulator. All the validations 
steps will be repeated with the actual physical device as soon as it will be possible to access again the ENG 
premise where the Robotic Rollator is. 

The data used for this first validation round comes from traces recorded with the actual rollator before the Covid-
19 lock down. 

6.3.2. VIRTUALIZATION OF ZIGBEE LIGHT BULBS 
The Smart Home Hub is realized using a Raspberry 4. The connectivity with ZigBee devices enabled by an 
XBee module connected to the Raspberry via USB. The light bulb used for the validation is a Philips Hue lamp 
(Figure 49). 

 
FIGURE 49: THE HARDWARE USED FOR THE VALIDATION OF THE SMART HOME HUB 

The WoT Servient is implemented using the SANE Web of Things Servient12. The SARA ZigBee Servient uses 
DigiKey’s library13 to control the XBee module.  

The SARA ZigBee Servient creates an http binding for the Hue hence it is possible to control the light bulb using 
standard REST call over http for turning the light on (e.g. http://10.0.1.29:8080/ZigBeeBulb/actions/on ) and off 
(e.g. http://10.0.1.29:8080/ZigBeeBulb/actions/off ). 

6.3.2. VIRTUALIZATION OF SOFTBANK’S PEPPER ROBOT 
The humanoid robot used for the validation is a SoftBank’s Pepper Robot (Figure 50). A CoAP server enables 
the communication between the robot and the other components of SARA. The CoAP server is implemented 
using the Californium14 library. Differently from other components (e.g. Robotic Rollator) in the system the 
Robotic Assistant Hub does not host any of the SEMIoTICS Field components (e.g. Local Thing Directory, IoT 
Gateway). This design decision is motivated by the need to reduce as much as possible the drain of 
computational resources from the robot’s processor. This requirements stems from the fact that the robot’s 
processor is in charge for the execution of all the processes controlling the mechanics of the robot. An overload 
of the processor with extra process could have an impact on the responsiveness of the robot and the fluidity of 
its movements and, hence, in a worsen User Experience (UX). 

 
12 https://github.com/sane-city/wot-servient 
13 https://www.digi.com/resources/documentation/digidocs/90001438/Default.htm 
14 https://www.eclipse.org/californium/ 
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The SARA Pepper CoAP server creates a CoAP binding for a Pepper robot and hence it is possible to observe 
current status robot’s resources (e.g. speed of front wheel via the resource 
coap://192.168.1.10:5683/wheelFL/speed/sensor/value) and to activate/deactivate robot’s behaviours (e.g. 
activate navigation behavior  coap://192.168.1.10:5683/behaviour/navigation/start).  

 
FIGURE 50: THE PEPPER ROBOT USED FOR THE VALIDATION OF THE SMART ASSISTANT HUB 

The robot is not able to serve its own Thing Descriptor since it does not host a WoT compliant servient. Therefore 
in a typical SARA field configuration the TD of the robot is available from the Local Thing Directory deployed on 
the Smart Home Gateway. Below is shown a snippet of the TD describing the robot used for the SARA validation: 
{ 

    "id": "urn:robotic-assistant-0", 

    "title": "SARA Robotic Assistant", 

    "@context": [ 

        "https://www.w3.org/2019/wot/td/v1", 

        { 

        "iot": "http://iotschema.org/", 

     "schema": "http://schema.org/", 

     "sara":"http://www.eng.it/sara/" 

        }, 

        { 

            "@language": "en" 

        } 

    ], 

    "@type": "Thing", 

    "security": [ 
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        "nosec_sc" 

    ], 

    “properties”:{…} 

  

    "actions":{ 

        "startNavigation":{ 

            "@type":"StartNavigation", 

            "iot:capability":"sara:MobileBase", 

            "description":"Start navigation of robot", 

            "idempotent": false, 

            "safe": false, 

            "forms":[{ 

                    "href": "coap://192.168.1.10:5683/behaviour/navigation/start", 

                    "contentType": "application/json", 

                    "op": [ 

                        "invokeaction" 

                    ] 

                } 

            ] 

        }, 

        "stopNavigation":{"@type":"StartNavigation", 

            "iot:capability":"sara:MobileBase", 

            "description":"Start navigation of robot", 

            "idempotent": false, 

            "safe": false, 

            "forms":[{ 

                    "href": "coap://192.168.1.10:5683/behaviour/navigation/stop", 

                    "contentType": "application/json", 

                    "op": [ 

                        "invokeaction" 

                    ] 

                } 

            ] 

        } 

    } 

} 
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7. SUB USE CASE 5: MONITORING ACTIVITIES OF DAILY LIFE 
7.1. Scope and Objectives 
This sub use case aims to demonstrate how the SEMIoTICS Monitoring, Prediction and Diagnosis component 
(MPD) can be used for the monitoring of Activities of Daily Life (ADL) performed by the elderly while at home. 
Examples of ADL include cooking, eating, sleeping, relaxing etc.. For the SARA solution understanding which 
activity is being performed by the patient is a key capability. As an example this information can be used to drive 
the interaction between the humanoid (Pepper) robot and the patient. In particular it can be used as indicator of 
the availability of the patient to interact and hence to reduce the risk that the patient refuses the social interaction. 

In the context of the Gait Analysis Task this need occurs during the engagement of the patient (steps 2-4 
described in section 2.1.2).  

A Doctor uses the SARA Gait Analysis Web Application (introduced in the context of sub use case 1) to schedule 
a gait analysis session. The Figure 51 shows the page offered by the GA Web App to schedule a remote gait 
analysis session. 

 
FIGURE 51: THE SARA INTERFACE SUPPORTING THE SCHEDULING OF A REMOTE GA SESSION 

It is important to note that, also as evidenced by the figure, at this stage the Doctor does not fix a precise date 
to run the session. Instead the Doctor fixes a range of dates (typically one week) when the examination should 
occur and the robotic assistant is delegated to engage the patient and remind him/her to fix a precise date. 

In order to reduce the risk that patient refuses the interaction it is important for the robotic assistant to understand 
when it is the “right” way and time to successfully engage the user. 

A basic awareness of the type of activity being carried on by the patient can help the robotic assistant’s software 
to decide whether to start a successful social interaction. In fact we can expect that, depending on the patient, 
there will be activities that he/she is more prone to interrupt in order to interact with the robot. 

This awareness can be created by using the SEMIoTICS Monitoring component to infer the kind of activity being 
carried on from the stream of events generated by the appliances within the smart home. 
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7.2. Interaction with SEMIoTICS framework 
Figure 52 shows the SEMIoTICS components utilized for the scheduling of a Remote Gait Analysis AT. 

 
FIGURE 52: SEMIOTICS COMPONENTS SUPPORTING THE SCHEDULING OF A REMOTE GA SESSION 

The Doctor Web Application (already introduced for the sub use case 1 described in chapter 3) relies on the 
Human Task Manager to create and assign tasks to human agents. In the particular in the context of the Gait 
Analysis the Doctor Web Application uses the Human Task Manager to assign to the patient the task to fix date 
and time of the examination. The start deadline and the completion deadline of the task are set to the dates 
specified by the Doctor by means of the interface presented in Figure 52. 

At the start date set for the task the Human Task Manager creates a notification for the patient. The notification 
is realized by writing a corresponding tuple within the Coordination Server deployed on the hub of patient’s 
Smart Home. 

The Coordination Server notifies the potentially interested clients about the availability of a new tuple 
representing the goal to finalize the examination scheduling. The potential clients could be the patient’s 
smartphone, the caregiver’s smartphone or the Robotic Assistant Agent. Each of the notified clients can decide 
to remove the tuple from the server indicating with this action that it is going to take care of the achievement of 
the goal. For the purposes of this section we consider only the case of the tuple goal being removed by the 
Robotic Assistant Agent. 

The Robotic Assistant Agent is the software component controlling the activation/deactivation of the social 
behaviours of the robot. For the evaluation of the precondition of the user engagement behavior the Robotic 
Assistant agent relies on the Human-Robot Interaction (HRI) Manager residing within the SARA backend server. 
The RA Agent requests to the HRI Manager to be notified when the patient can be approached and the social 
interaction can start. 
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The HRI Manager uses the SEMIoTICS Monitoring component to infer the ADL being performed by the patient 
and, based on this, to decide whether the patient can be potentially interrupted by the robot interaction (i.e. the 
robot is likely to succeed with user engagement). 

More specifically the HRI Manager submits to the Monitoring component a collection of queries each defining 
an ADL as a pattern over the stream of events generated by the Smart Home Servient (described in section 
6.3.2). 

The HRI Manager requests to the robot to approach the patient whenever the HRI Manager receives the 
notification that the patient is performing a potentially interruptible activity (i.e. whenever the Monitoring 
component matches one of the patterns defining an ADL). The HRI Manager makes the request towards the 
robot by writing a specific tuple within the Coordination Server. 

The writing in the Coordination Server of a tuple representing the goal to approach the user, results in the 
Robotic Assistant Agent requesting the robot to move towards the user. The RA Agent starts the navigation 
towards the patient by activating the navigation behavior of the robot via the Robot CoAP Server. 

7.3. Setup testbed and integration 
The tested of sub use case 5 utilizes three hosts (see also Figure 52): 

• SARA server: as in sub use 1 was the software components part of the SARA server and are deployed 
both on a standard personal computer and on a virtual machine (running Linux OS) available from the 
FiwareLab15 node operated by ENG in its data center located in Vicenza (Italy). 

• Humanoid robot: it is a SoftBank’s Pepper Robot. It is the same device utilized in sub use case 4. The 
configuration of this host is described in section 6.3.3. 

• Smarthome hub: is Raspberry Pi v4. It is the same device utilized in sub use case 4. 

The components presented in Figure 52 are implemented as follows: 

• The Human Task Manager is a Springboot application exposing a REST API to manage human tasks. In 
this context a human task is a data structure describing an activity supposed to be performed by a human. 
A human task carries indication of the person in charge of the execution of the activity, the start and 
completion deadlines, as well as the escalation action to undertake in case deadlines are missed. Using the 
Human Task operations users can change the state of task (e.g. move the state from “not started” to 
“started”). The Human Task Manager takes care of the management of the lifecycle of a task: it monitors 
the state changes of a task and may initiate actions (e.g. send a reminder to the owner of the task if a 
deadline is missed). 

• Monitoring is the SEMIoTICS Monitoring, Diagnosis and Prediction (MDP) component developed in the 
context of WP4 and described in deliverable D4.9. 

• Human-Robot Interaction (HRI) Manager is a Springboot application. It runs various computational 
intensive algorithms driving the social interaction between robots and humans. These algorithms are 
accessible to robotic field devices via a REST API. For the purposes of the sub use case 5 it implements a 
basic algorithm that allows the humanoid robot to decide whether to initiate an interaction with a patient. 
The algorithm allows the humanoid robot to start an interaction only if it evaluates that the ADL ongoing 
within the smart home can be interrupted (i.e. that the probabilities that the user refuses to interact are low). 
The HRI Manager uses the SEMIoTICS monitoring component to monitor the ADL ongoing within the smart 
home. The HRI Manager submits a query for each type of ADL. For the experimentation we defined queries 
for “cooking”, “relaxing”, “housekeeping” and “leaving home”. 

• Robotic Assistant Agent: it manages the goals of the robotic assistant. Goals are represented as tuples 
within the CloE-IoT Coordination Service. The RA agent continuously monitors the Coordination Service 
and selects from it the next goal for the robot. 

 
15 https://www.fiware.org/developers/fiware-lab/ 
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• Coordination Server offers the components of a CloE - IoT distributed application the capability to 
coordinate their activities using the tuple space (or blackboard) paradigm. Following this paradigm the 
various components of a distributed application undertake their specific activities driven by the availability 
of specific data (tuples) in a shared memory space (tuple space). Besides writing tuples in the shared space 
an application can read/remove tuples matching a tuple template. The operations to read/remove tuples 
from the tuplespace come in two flavours: blocking and non-blocking. Blocking operations blocks the control 
flow of the caller until an instance of the requested tuple appears in the tuplespace. The shared tuplespace 
can be accessed whether via a proprietary interface (Coordination) or an interface following the FIWARE 
NGSIv2 standard. In the latter case tuples are presented as contexts to the client application. 

For the purpose of the experimentation we supposed the sensors were deployed within an apartment having the 
layout shown in Figure 53.  

 
FIGURE 53: SUB USE CASE 5 VIRTUAL APARTMENT 

The measurements of the apartment were chosen to be compatible with the demo room at ENG facility in Rome. 
The demo room was equipped with light panels simulating the walls of the apartment (Figure 54). These mock ups 
served the purpose to force both the robot and experimenters impersonating a user to follow as much as possible 
the trajectories they would have followed within the real apartment. This was important in order to generate sensors 
activation pattern as much as possible close to those generated in a corresponding real apartment. 

For the SARA use case we assumed the smart home was able to generate their types of events: 

• time events H0…H23 representing hours of the day 

• location events (e.g. ENTRANCE, LIVING, KITCHEN) indicating the presence of a user in a specific area of 
the apartment 

• powering events indicating that an appliance (e.g. light bulb, oven) is turned on/off 

• opening/closing events indicating the opening/closing of drawers and doors (of cupboard, wardrobe, main 
entrance)  
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FIGURE 54: ENG DEMO ROOM EQUIPPED WITH MOCKUPS STAYING FOR WALLS 

We considered a subset of the ADLs typically used in this kind of experimentation: “Leaving home”, “Cooking”, 
“Relaxing”, “Taking medication”, “Eating”, “Sleeping”, “Bathing”, “Toilet”. 

We experimented the use of SEMIoTICS MPD predictive queries [9] to characterize each ADL in term of the 
events emitted by the smart environment. 

We defined a type of event (e.g. “CookingEvent”) for each of the ADL considered in the experiments (e.g. 
“Cooking”). The MDP notifies to the HRI one of these event whenever it infers the execution of a specific ADL 
is ongoing. 

The query request to notify an event of type “Cooking” to the endpoint “http://saraserver:9090/hri/notifications” 
(i.e. the HRI Server) whenever the causal model used by the MPD let to infer that the activation of the location 
sensor in the kitchen (i.e. “http://homegateway:9090/kitchen”) immediately followed by the ignition of the oven 
(i.e. “http://homegateway:9090/oven”) is caused (with likelihood 70%) by an (undetected) event of type 
“PrepareMealTask” within the SARA Human Task Manager. 

{ "id":3100, 

    "events":[  

        {"name":"CookingEvent", 

        "eventsPattern":{ 

            "name":"CookingEventPattern", 

            "condition":{"type":"location", 

                        "source":{"wot":"http://homegateway:9090/kitchen"} 

                }, 

            "next":{ 

                "name":"TurnOnOven", 

                “condition":{"type":"switchOn", 

                            "source":{"wot":"http://homegateway:9090/oven"} 

                }, 

                "causedBy":{ 

                    "name":"PrepareMealTaskAssignment", 
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                    "condition":{"type":"PrepareMealTask", 

                                “source":{"source":"http://saraserver:9191/tasks/"}, 

                                "likelihood":70.0 

                                } 

                    } 

                } 

            } 

        } 

    ],  

    "listeners":["http://saraserver:9090/hri/notifications"] 

} 

QUERY 1 : EVENTS PATTERN DESCRIBING COOKING ACTIVITY 

The COVID-19 pandemics did not allow using the ENG Demo Room to run the experiments imaged to discover 
and exploit the causal model needed by the MDP to infer ongoing ADL. 

Therefore we decided to introduce an activity simulator within the architecture. Figure 55 shows how the 
simulator is connected to the rest of the architecture of this sub use case: 

 

 
FIGURE 55: ARCHITECTURE EXTEND WITH SIMULATOR 

The ADL Simulator uses the WoT Servient interface to operate on the (simulated) appliances managed by the 
Smart Home Servient. The operations of ADL Simulator have the effect that the Smart Home servient produces 
powering events towards the Monitoring component. 
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The ADL Simulator uses the Fiware NGSIv2 to publish the location of the simulated agent. 

 
FIGURE 56: OUTPUT OF THE ADL SIMULATOR 

The Monitoring component uses the WoT signaler to receive events from the Smart Home Servient and the 
Fiware signaler [9] to receive events from the Coordination Server. This configuration allowed verifying the 
capability of the MDP to fuse events from two different platforms (i.e. WoT and Fiware). 

The ADL Simulator receives the notifications about the detected events by implementing the Event Listener 
interface. The ADL Simulator uses this notification to verify that the activity detected by the MPD matches that 
being simulated and compute the accuracy of the detection. 
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8. OVERALL KPIS AND REQUIREMENTS (ALL) 
This section aims to provide a summary of requirements and KPIs relevant for evaluation in Use Case 2. The 
five presented Sub Use Cases, together with the remaining Use Cases 1 & 3 aim to address and validate the 
requirements presented in Table 1, while the relevant KPIs are presented in Table 5. 

Further information on use case -specific requirements related to Use Case 2 are provided in D2.3. The original 
methodology of KPI evaluation contained in D5.1 was updated where required and is mostly summarized here 
for brevity. 

8.1. Related KPIs 
In this sub section, we list the SEMIoTICS ’KPIs  related to the use case 2.  

TABLE 1 KPIS RELATED TO UC2 

KPI ID KPI description Role in this KPI 

KPI-1.1 Number of SPDI Patterns SFC patterns and privacy patterns are used in this use case 

KPI-1.2 Machine-processable language 
for pattern The pattern language is used for processing patterns 

KPI-2.1 Semantic descriptions for 6 types 
of smart objects 

The description of the semantics related to this use case are 
also defined 

KPI-2.2 Data type mapping and ontology 
alignment 

The interoperability mechanisms are intervened in order to 
ensure that the data format and data alignment in use case 2. 

KPI-2.3 Semantic interoperability with 3 
IoT platforms 

The development of a specific signaller was used to make the 
CloE-IoT platform observable by the SEMIoTICS 

KPI-3.1.1 Generating monitoring strategies 
in the 3 targeted IoT platforms 

The SARA use case monitors events generated by two IoT 
platforms: SEMIoTICS and CloE-IoT 

KPI-3.1.2 Fuse results from these monitors The query language of the SEMIoTICS MPD component 
allowed us to define cross-platform queries 

KPI-3.1.3 Performing predictive monitoring 
with an average accuracy of 80% 

The SEMIoTICS MPD Component supports both prediction 
and diagnostic queries. 

KPI-3.2 Delivery of a monitoring 
language 

The SEMIoTICS MPD Component provides a language to 
define high-level events that should be produced as result of 
the monitoring activity. 

KPI-4.2 Delivery of mechanisms with 
adaptation time of 15ms 

The developed SFC patterns were used as a sufficient 
adaptation mechanism to offer proactive adaptations as 
evaluated in this use case 
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KPI-4.3 
Delivery of adaptations 
mechanisms enabling 

improvement by at least 20% 

the developed SFC patterns were used as a sufficient 
adaptation mechanism to offer reactive adaptations by means 
of monitoring and intelligence analytics, as evaluated in this 
use case 

KPI-4.6 Development of new security 
mechanisms/controls 

From an NFV perspective, SFC is leveraged to guarantee 
security procedures for each kind of traffic in UC2. This is 
done by concatenating different security enforcers (firewalls, 
Intrusion Detection Systems, Honeypots) and forcing traffic to 
travers them. As each element is configured with specific 
security rules according to the expected traffic, only 
authorized packets are expected to go through to the 
services’ endpoints. 

KPI-5.1 Deployment of a multi-domain 
SDN orchestrator 

Multi-domain SDN orchestration is supported in this use 
cases by the deployment of the SDN/NFV-enabled 
SEMIoTICS architecture in multiple-locations around different 
countries of Europe. 

KPI-5.2 Service Function Chaining (SFC) 
of a minimum 3 VNFs 

This KPI aims at the orchestration of SFC able to provide 
security by the chaining of at least 3 VNFs. That is, from a 
centralized position in the SEMIoTICS architecture, the NFV 
component should be able to build and configure the SFC for 
each kind of traffic. 

KPI-6.1 

Reduce manual interventions 
required for bootstrapping of 

smart object in each use case 
domain by at least 80%. 

The bootstrapping service for the smart objects involves the 
availability of other functional blocks, e.g. at the networking 
level the VNFs and SFC that allow to forward the traffic from 
the smart objects towards the backend. 
An implementation of these functional blocks, at the 
networking level, in the form of VNFs automates its availability 
for the bootstrapping process. In this regard, note that the 
NFV MANO automatizes the creation of the VNFs and its 
deployment on top of the NFVI in the form of VMs. Also, it 
automatizes the configuration, software installation and 
programs executions in the VM at boot time. Therefore, such 
operations are expected to eliminate user intervention 
completely. 

KPI-6.2 
Leveraging upon FIWARE assets 

in developing the SEMIoTICS 
framework 

The SARA Health Scenario uses KNOWAGE applications 
as part of SEMIoTICS GUI 

KPI-6.3 Delivery of 3 prototypes of 
IIoT/IoT applications 

The SARA use case delivered a first prototype of the SARA 
solution empowered with SEMIoTICS technology 

KPI-7.1 Provision the SEMIoTICS 
building blocks 

The provision of the components that are used in SARA use 
case 

8.1.1. Objective 1 - Security, Privacy, Dependability and Interoperability (SPDI) Patterns 
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8.1.1.1. KPI-1.1: Number of SPDI Patterns 
The developed SPDI patterns are specified in a document format, and are detailed in the deliverable D4.8 – 
“SEMIoTICS SPDI Patterns (final)”. In the context of UC2, SFC related patterns were used to support the 
dynamic instantiation of SFCs as well as privacy related. These patterns were preinstalled in the Backend 
Pattern Engine (as presented in the Section 4). 

Apart from the SFC patterns, the Privacy pattern is modified in such a manner to take into account the facts 
modified by the Security Manager. 

The when part of the rule specifies:  

1. Two Placeholder that act as the two endpoints. The Placeholder is a parent class for Host, IoTSensor, 
IoTGateway etc, which enables the rule to be more abstract without the need to specify a new rule for 
every class. 

2. A sequence of the Placeholder indicating their interaction. 

3. Two properties on for each Placeholder 

4. The orchestration property that can be guaranteed through the application of the pattern, i.e., the privacy 
property in this case ($PR). 

The then part modifies the status of the orchestration property to state that the property holds. 

 

FIGURE 57: PRIVACY PATTERN 

8.1.1.2. KPI-1.2 - Machine-processable language for pattern 
The verification of delivery of the SEMIoTICS Pattern Language and its usability for defining machine-processable 
patterns is achieved through document review of deliverable D4.8 – “SEMIoTICS SPDI Patterns (final)”. The 
verification of the format of the derived machine-processable patterns is achieved through verification of the correct 
functionality of a Drools rules reasoning engine. 

In more detail, a Drools rule that encodes a pattern includes the inputs of the pattern’s components and the required 
property in Left Hand Side (LHS). When the conditions in the LHS are satisfied, then the rule is fired to execute the 
actions as described in its Right-Hand Side (RHS). In the RHS, the new requirements of the compositions or atomic 
components can be inserted, updated or deleted. 

In Table 2, a few semantics are presented related to SFC patterns. In the LHS, the components which constitute 
the topology of the pattern are defined. Different facts such as Virtual Service Functions and Service Function 
Chains are included in the list. Moreover, the Req represents the constraints of the topology and the required 
property. In the RHS, the pattern provides the solution by inserting, modifying, updating or retracting facts from the 
knowledge base which will also update the inventory list in the controller. Each component is converted through the 
respective Java class to an understandable format to the Pattern Engine. 
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TABLE 2: PATTERN RULE CONSTRUCTS 

Type Syntax Description 

rule rule "name" name of the rule 

Left Hand Side (LSH) 

when 

Pattern Elements (Facts) 

Function (type, instantiated) match Virtual Service Network Functions 

Chain(functions) match Service function chains 

Req (src, dest, category, 
satisfied) 

match requirements of pattern such as source, 
destination, property category and satisfied 

Conditional Elements 

== match conditions 

contains contains object (logical) 

not not match (logical) 

!= not match (arithmetic) 

Right Hand Side (RSH) 

then 

Actions 

modify (\$fact)\{pro=pro'\} modify knowledge base fact 

retract (\$fact) retract knowledge base fact 

insert (new Fact ()) insert knowledge base fact 

update (\$fact) update knowledge base fact 

Java commands other Java language syntax 
 

8.1.2. Objective 2 - Semantic Interoperability 

8.1.2.1. KPI-2.1 - Semantic descriptions for 6 types of smart objects 
Semantic descriptions for all the types of smart objects have been provided based on W3C Web of Things (WoT) 
standard. In parallel, the iotschema.org was used to semantically annotate each TD. The analysis and description 
of semantic models with the TD for the sensors that were used in SEMIoTICS UCs have been presented in D4.11- 
“Semantic Interoperability Mechanisms for IoT (final)”. Particularly, in case of UC2, the following Table 3 highlights 
the main properties, data types and actions for Things. 
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TABLE 3: DESCRIPTION OF A SUBSET OF SENSORS ON BOARD USED IN UC2 

Sensor Properties Data Types 

Ultrasonic range 

obstacleL (ObstacleSensors) Meters 

obstacleC (ObstacleSensors) Meters 

obstacleR (ObstacleSensors) Meters 

Accelerometer 
Acceleration Number (float) 

Resolution Number (float) 
 
The SEMIoTICS components that are involved in semantic description of UC2 sensors/actuators, are detailed and 
explained in subsection 6.2 - “Interaction with SEMIoTICS framework”. An example of the updated version of JSON-
LD for the UC2 is following: 
 
{ 
   "id":"urn:robotic-rollator-0", 
   "title":"SARA Robotic Rollator", 
   "@context":[ 
      "https://www.w3.org/2019/wot/td/v1", 
      { 
         "iot":"http://iotschema.org/", 
         "schema":"http://schema.org/", 
         "sara":"http://www.eng.it/sara/" 
      }, 
      { 
         "@language":"en" 
      } 
   ], 
   "@type":"Thing", 
   "security":[ 
      "nosec_sc" 
   ], 
   "properties":{ 
      "legR":{ 
         "@type":"iot:Distance", 
         "iot:capability":"sara:RightLegProximitySensing", 
         "description":"Current distance of the user's right leg from the back side of the rollator.
", 
         "observable":true, 
         "readOnly":true, 
         "writeOnly":false, 
         "type":"integer", 
         "schema:minValue":0.0, 
         "schema:maxValue":1.5, 
         "iot:distanceUnitCode":"iot:Meters", 
         "forms":[ 
            { 
               "href":"coap://sara-rollator.ddns.net:5683/robotic-rollator-0/events/legR", 
               "op":[ 
                  "subscribeevent" 
               ], 
               "contentType":"application/json" 
            }, 
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            { 
               "href":"http://sara-rollator.ddns.net:8081/robotic-rollator-0/events/legR", 
               "op":[ 
                  "subscribeevent" 
               ], 
               "subprotocol":"longpoll", 
               "contentType":"application/json" 
            } 
         ], 
         "data":{ 
            "type":"number" 
         } 
      }, 
      "legL":{ 
         "@type":"iot:Distance", 
         "iot:capability":"sara:LeftLegProximitySensing", 
         "description":"Current distance of the user's left leg from the back side of the rollator."
, 
         "observable":true, 
         "readOnly":true, 
         "writeOnly":false, 
         "type":"integer", 
         "schema:minValue":0.0, 
         "schema:maxValue":1.5, 
         "iot:distanceUnitCode":"iot:Meters", 
         "forms":[ 
            { 
               "href":"coap://sara-rollator.ddns.net:5683/robotic-rollator-0/events/legL", 
               "op":[ 
                  "subscribeevent" 
               ], 
               "contentType":"application/json" 
            }, 
            { 
               "href":"http://sara-rollator.ddns.net:8081/robotic-rollator-0/events/legL", 
               "op":[ 
                  "subscribeevent" 
               ], 
               "subprotocol":"longpoll", 
               "contentType":"application/json" 
            } 
         ], 
         "data":{ 
            "type":"number" 
         } 
      } 
   }, 
   "events":{ 
      "onchange":{ 
         "forms":[ 
            { 
               "href":"coap://sara-rollator.ddns.net:5683/robotic-rollator-0/events/onchange", 
               "op":[ 
                  "subscribeevent" 
               ], 
               "contentType":"application/json" 
            }, 
            { 
               "href":"http://sara-rollator.ddns.net:8081/robotic-rollator-0/events/onchange", 
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               "op":[ 
                  "subscribeevent" 
               ], 
               "subprotocol":"longpoll", 
               "contentType":"application/json" 
            } 
         ], 
         "data":{ 
            "type":"integer" 
         } 
      }, 
      "legR":{ 
         "@type":"iot:Distance", 
         "iot:capability":"sara:RightLegProximitySensing", 
         "description":"Current distance of the user's right leg from the back side of the rollator.
", 
         "observable":true, 
         "readOnly":true, 
         "writeOnly":false, 
         "type":"integer", 
         "schema:minValue":0.0, 
         "schema:maxValue":1.5, 
         "iot:distanceUnitCode":"iot:Meters", 
         "forms":[ 
            { 
               "href":"coap://sara-rollator.ddns.net:5683/robotic-rollator-0/events/legR", 
               "op":[ 
                  "subscribeevent" 
               ], 
               "contentType":"application/json" 
            }, 
            { 
               "href":"http://sara-rollator.ddns.net:8081/robotic-rollator-0/events/legR", 
               "op":[ 
                  "subscribeevent" 
               ], 
               "subprotocol":"longpoll", 
               "contentType":"application/json" 
            } 
         ], 
         "data":{ 
            "type":"number" 
         } 
      }, 
      "legL":{ 
         "@type":"iot:Distance", 
         "iot:capability":"sara:LeftLegProximitySensing", 
         "description":"Current distance of the user's left leg from the back side of the rollator."
, 
         "observable":true, 
         "readOnly":true, 
         "writeOnly":false, 
         "type":"integer", 
         "schema:minValue":0.0, 
         "schema:maxValue":1.5, 
         "iot:distanceUnitCode":"iot:Meters", 
         "forms":[ 
            { 
               "href":"coap://sara-rollator.ddns.net:5683/robotic-rollator-0/events/legL", 
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               "op":[ 
                  "subscribeevent" 
               ], 
               "contentType":"application/json" 
            }, 
            { 
               "href":"http://sara-rollator.ddns.net:8081/robotic-rollator-0/events/legL", 
               "op":[ 
                  "subscribeevent" 
               ], 
               "subprotocol":"longpoll", 
               "contentType":"application/json" 
            } 
         ], 
         "data":{ 
            "type":"number" 
         } 
      } 
   } 
} 

 

8.1.2.2. KPI-2.2 - Data type mapping and ontology alignment 
The data type mapping and ontology alignment was described in D4.11. “Semantic Interoperability Mechanisms for 
IoT (final)” with three scenarios focusing on the use cases considered in SEMIoTICS, which include data flow 
between smart objects and are linked in the composition structure defined by the SPDI patterns in T4.1. Namely, 
for the UC2 the above procedure is included in phase that the Robotic Assistant should reach the location where 
the (possible) fall event occurred (D2.5 – Figure 21). This phase is initiated by the Smart Environment sending to 
the Robot the request to move to the location of the event. Before this step, the interoperability mechanisms, that 
are triggered by the corresponding pattern rule, are intervened in order to ensure that the data format for the location 
between UC2 Smart Environment and UC2 Robot is the same, in order to achieve the target of the system (for 
example use both Degrees Minutes Seconds (DMS) or Decimal Degrees). The SEMIoTICS components and the 
interactions between them that are involved in this technique are highlighted in the sequence diagram (see Figure 
55). 
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FIGURE 58: UC2 DATA MAPPING APPROACH 

Furthermore, the demonstration of data type mapping and ontology alignment is part of the sub use case 2: 
Automated, Trustworthy Healthcare Connectivity (see subsection 4.2.6). For instance, the SFC GUI uses the Thing 
Directory component to discover the available nodes that can be used as source and destination of a flow (end 
points). Before the instantiation of a service function chain, Pattern Engine component sends a request to Backend 
Semantic Validator component to verify the interoperability between the end points. When the interoperability 
between source and destination is not present, the Backend Semantic Validator informs the Pattern Engine so that 
the latter can take appropriate actions (see Figure 59). 
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FIGURE 59: SUB USE CASE 2 – INTEROPERABILITY MECHANISMS 

8.1.2.3. KPI-2.3 – Semantic Interoperability with 3 IoT Platforms 
As it was mentioned in D4.9 – “SEMIoTICS Monitoring, prediction and diagnosis mechanisms (final)”, the 
development of a specific signaller was used to make the CloE-IoT platform observable by the SEMIoTICS 
Monitoring Component. In fact, the said signaller was leveraged by the SEMIoTICS Monitoring Component in order 
to observe events generated by the CloE-IoT Event Manager via the FIWARE NGSI v2 interface. Furthermore, 
SEMIoTICS TDs are serialized to JSON-LD, which enables JSON data to be interlinked and structured based on 
semantic (D3.9 – “Bootstrapping and interfacing SEMIoTICS field level devices (final)”. At the same time, FIWARE 
introduced the NGSI-LD, which is an evolution of the FIWARE NGSI v2 information model and has been 
updated/improved to support linked data (entity relationships), property graphs and semantics (exploiting the 
capabilities offered by JSON-LD)16. This aforementioned link has given rise to further investigation of data mapping 
and the interconnection between FIWARE and SEMIoTICS semantic concept (Table 4), as it was analysed in 
D4.11 – “Deliverable D4.11 Semantic Interoperability Mechanisms for IoT (final)”. 
 

 
16 https://fiware-datamodels.readthedocs.io/en/latest/ngsi-ld_faq/index.html 
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TABLE 4: OVERVIEW OF MAPPING FIWARE DATA MODEL TO IOTSCHEMA.ORG 

FIWARE Data Model SEMIoTICS based on iotschema.org 

Entity Thing Description 

Id of Entity Id of Thing Description 

Type of Entity Type of Thing Description 

Attributes Properties 

 

8.1.3. Objective 3 – Monitoring Mechanisms  

8.1.3.1. KPI-3.1 - Delivery of a Monitoring Management Layer 

8.1.3.1.1.KPI-3.1.1 - Generating monitoring strategies in the 3 targeted IoT platforms 
As presented in section 7 the SARA use case needs to monitor events generated by two IoT platforms: 
SEMIoTICS and CloE-IoT. In particulars SARA monitors the location of the patient using the Fiware NGSI v2 
interface offered by the CloE-IoT Coordination Server. SARA also monitors the usage of the appliances (Field 
Devices) within the monitored apartment using the Web Of Thing (WoT) interface offered by the Smart Home 
servient developed in SEMIoTICS. 

The SEMIoTICS Monitoring, Prediction and Diagnosis (MPD) components allowed monitoring both target 
platforms thanks to the Fiware signaler and the WoT signaler described in [9]. Figure 60 shows the messages 
confirming the registration of the two signallers within the MPD instance used for the SARA UC.  

 
FIGURE 60: REGISTRATION OF FIWARE AND WOT SIGNALERS WITHIN THE MPD COMPONENT. 

8.1.3.1.2.KPI-3.1.2 - Fuse results from these monitors 
For the purpose of monitoring of ADLs the SARA solutions needs to match patterns defined over events 
generated by a Fiware source (the CloE-IoT Coordination Server) and a WoT source (the Smart Home servient). 
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The query language of the SEMIoTICS MPD component allowed us to define cross-platform queries [9]. Query 
1 in section 7.3 is an example of the cross-platform queries used for the implementation of the ADL monitoring. 

8.1.3.1.3.KPI-3.1.3 - Performing predictive monitoring with an average accuracy of 80% 
The SEMIoTICS MPD Component supports both prediction and diagnostic queries [9]. Prediction queries 
produce an event whenever the observation of a pattern of events let to infer, with a given likelihood, that a 
monitored source is going to emit an event of a given type. Diagnostic queries produce an event whenever the 
observation of a pattern of events let to infer, with a given likelihood, that a monitored source emitted an 
(unobserved) event of a given type. Both type of queries are supported by a causal model that the MPD 
discovers by means of the observation of the streams of events generated by the monitored event sources. Both 
types of queries pose the problem of the accuracy of the inference. 

In the context of SARA use case we experimented the use of diagnostic queries to infer the ADL ongoing within 
a Smart Home (see chapter 7).  The measurement of the accuracy for the type of inference done by diagnostic 
queries was done using streams of events generated by a simulated environment using the setting shown in 
Figure 55. The use of a simulated environment is motivated both by the COVID 19 pandemic and the fact that 
the use of a real environment would have required long periods of observations. 

The training of the model was done using a supervised approach: for each type of ADL we defined a possible 
sequence of events. Each sequence of events was prefixed with a special type of event (TaskAssignement) 
carrying the identifier of the ADL represented by the subsequent events (e.g. 
[“Cooking”,”Kitchen”,”SwitchOvenOn”]).  The TaskAssignment event at the beginning of each sequence acted 
as label for the rest of the sequence. The model was discovered by playing back the sequences by means of  
the simulator.  

The actual measurements were taken by playing back the sequences with the exception of their first event (i.e. 
the label) and verifying the matching between the event generated by the MPD and the label of the sequence 
being played back. Figure 56 presents an example of output produced by the ADL simulator during a 
measurement run. 

In the context of the simulated experiments the average measured accuracy was 78.7% . 

8.1.3.2. KPI-3.2 - Delivery of a monitoring language (ENG) 
The SEMIoTICS MPD Component provides a language to define high-level events that should be produced as 
result of the monitoring activity [9]. 

In the context of SARA use case the MDP query language was used to define the queries characterizing an 
ADL in terms of the events produced by the Smart Environment described in chapter 7. The following query 2 
is an example of a query used in the SARA use case. The query 2 is a predictive query describing the pattern 
of events generated during the execution of the “Leave home” activity. The query 1 in chapter 7 is another 
example of MPD query defined for the purposes of the SARA use case. 

More in general, the MDP Query language was suitable to express all the queries needed for the purposes of 
the SARA use case. 
{  

    "id":8100, 

    "events":[ 

        {“name":"Leave home", 

         "eventsPattern":{ 

                “name”:"Move to bedroom", 

                "condition":{"type":"location", 

                  "source":{"fiware":"http://homegateway:9090/bedroom"} 

                }, 
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                "next":{ 

                    “name":"Open wardrobe", 

                    “condition":{"type":"open", 

                      "source":{"wot":"http://homegateway:9090/wardrobe"} 

                }, 

                    "next":{ 

                        “name":"Move to entrance”, 

                        "condition":{"type":"location", 

                  "source":{"fiware":"http://homegateway:9090/entrance"} 

                }, 

     "causedBy":{ 

                    "name":"GoForAWalkTaskAssignment", 

                    "condition":{"type":"GoForAWalkTask", 

                                “source":{"source":"http://saraserver:9191/tasks/"}, 

                                "likelihood":70.0 

                                } 

                    } 

                } 

                    } 

                } 

            } 

        } 

    ],  

    “listeners":["http://localhost:8181/sara/securityalerts"] 

} 

QUERY 2: AN EXAMPLE OF SARA UC DIAGNOSTIC QUERY  

8.1.4. Objective 4 – Multi-layered Embedded Intelligence  

8.1.4.1. KPI-4.2 - Delivery of mechanisms with adaptation time of 15ms 
To achieve the main goal of this KPI, the developed SFC patterns were used as a sufficient adaptation mechanism 
to offer proactive adaptations as evaluated in this use case. To accomplish the goal, the procedure begins from 
the time that a requirement is inserted until the triggering of the required adaptation steps toward the satisfaction 
of the requirement. To proceed to the evaluation of this KPI and investigate whether the goal of 15ms can be 
achieved, the time was measured under two different conditions: when there was the need to instantiate a chain 
and when both the creation and the instantiation of a chain was needed, based on the insertion of a requirement. 
The time was measured by monitoring the timestamps of the time of the requirement insertion and the time until 
the instantiation of an unistantiated chain in OpenSource MANO. More specifically, the time of requirement 
insertion, adaptation triggering and complete was evaluated for the service function instantiation.  
The first experiment is related to the instantiation of a chain when the descriptor exists. As can be seen in the 
Figure 61, when a chain descriptor exists, the required time from the verification of the requirement regarding the 
instantiation of a chain until the begin of the adaptation triggering is measured at 1ms, achieving the KPI for less 
than 15ms adaptation time. However, the time required to finalize the instantiation of the respective VNFs in the 
OpenStack is measured to almost 3sec, but this is related to the number of requested VNFs and resource 
capabilities of the devices holding the OpenStack.  
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FIGURE 61: CHAIN INSTANTIATION FROM AN EXISTING NETWORK DESCRIPTOR 

The second experiment is focusing on the instantiation of a chain when the descriptor does not exist. As can be 
seen in the Figure 62, when a chain descriptor does not exist the required time from the verification of the 
requirement regarding the creation and the instantiation of a chain until the begin of the adaptation triggering is 
measured again at 1ms achieving the requirement for less than 15ms adaptation time. In addition, the time required 
to finalize the creation of the chain descriptor is less than 2ms. However, the instantiation of the respective VNFs 
is measured less than 3sec, but this is related again to the number of requested VNFs and resource capabilities 
of the devices holding the OpenStack.  
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FIGURE 62: CHAIN CRETION AND INSTANTIATION 

8.1.4.2. KPI-4.3 - Delivery of adaptations mechanisms enabling improvement by at least 20% 
This KPI aims to improve past adaptations by means of monitoring and intelligence analytics. In order to 
accomplish this, the existing adaptations will be measured beginning from the time that a failure has been detected 
until the time that it was required to restore the above failure. The described methodology is based on two scenarios 
for achieving the required KPI. The first scenario is that, after a failure, there is no adaptation and this is the 
behavior prior to SEMIoTICS. In the second scenario there is an existing adaptation mechanism, which 
SEMIoTICS tries to improve upon. In the first scenario any future adaptation mechanism provided by SEMIoTICS 
will automatically imply 100% improvement given the fact that prior to SEMIoTICS there was no adaptation at all. 
In the second scenario the improvement of the new mechanisms, will be measured by using appropriate metrics 
based on the use cases. 

 
For the delivery of evolution mechanisms enabling the detection and analysis of the effects of past adaptations the 
improvement of future adaptations, SFC patterns were used as well. More specifically, the developed SFC patterns 
were used as a sufficient adaptation mechanism to offer reactive adaptations by means of monitoring and 
intelligence analytics, as evaluated in this use case. To accomplish the goal, the procedure begins from the time 
that an event such as a failure is required until the triggering of the required adaptation steps to the end of the 
restoration of the updated action. To do so, it was measured the time between two different conditions the detection 
of an event such a failure starting from the detection of the failure until the triggering of the instantiation of a new 
one. For instance, when a failure has been identified such as the failure of a service function, the result will be 
related to the not satisfaction of the requirement inserted in the past for end to end traffic forwarding through the 
respective chain, resulting the lack of end to end connectivity. 
 
The first experiment includes the detection of a failure of an instantiated chain and the time required to instantiate 
a new one based on the existing descriptor. As can be seen in the Figure 63, when a chain instance is deleted, 
the failure is detected triggering the patterns to trigger the adaptation procedure based on the inserted requirement. 
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FIGURE 63: CHAIN INSTANTIATION AFTER THE DELETION OF AN INSTANTIATED CHAIN 

The second experiment includes both the deletion of a chain instance and the deletion of the respective descriptor 
procedure followed by the creation and the instantiation of a new one. As can be seen in the Figure 64, when a 
chain instance is deleted, the failure is detected triggering the patterns to trigger the adaptation procedure based 
on the inserted requirement. 

 

 
FIGURE 64: CHAIN CREATION AND INSTANTIATION WHEN A NETWORK DESCRIPTOR AFTER THE 

DELETION OF THE RESPECTIVE INSTANCE AND DESCRIPTOR 

As can be observed by both experiments, the adaptation mechanism provided by SEMIoTICS imply 100% 
improvement given the fact that prior to SEMIoTICS, there was no adaptation at all in the described use case. 
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Finally, the capability for adaptation improvements based on patterns strengthen the importance of the 
implemented framework. 

8.1.5. Objective 5 – IoT-aware Programmable Networks  

8.1.5.1. KPI-5.1 - Deployment of a multi-domain SDN orchestrator  
Multi-domain SDN orchestration is supported in this use cases by the deployment of the SEMIoTICS architecture 
in multiple-locations around different countries of Europe. More specifically, the network orchestration is applied 
through the NFV architecture located in CTTC premises in Barcelona that is able to enable traffic forwarding as 
described in this deliverable through the different end hosts in countries such as Italy and Greece. Moreover, the 
interconnection with the different components of SEMIoTICS architecture and backend services distributed in other 
countries and domains such as in Poland and Germany, provide a sufficient description of the multiple domain 
orchestration under this use case as can be seen in the Figure 65. Finally, the multi-domain orchestration in use 
case 2 can guarantee the TRL5 since all the involved components in the workflow including the SDN controller in 
OpenStack in combination with the respective VNFs can guarantee the TRL5 level requirement.  

 
FIGURE 65: MULTI-DOMAIN USE CASE COMPONENT ORCHESTRATION AND DISTIRBUTION 

8.1.5.2. KPI-5.2 - Service Function Chaining (SFC) of a minimum 3 VNFs 
This KPI has been fulfilled, as we have commented above in sub use case 2. Namely, we have created SFCs that 
have three VNFs, which is onboarded and instantiated properly in the NFV testbed. Thereby, the NFV MANO 
component is able to build and configure the SFC for each kind of traffic properly. In the next figures, we show how 
the SFC have effectively three VNFs and that they are running in the NFV testbed. 
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8.1.6. Objective 6 – Development of a Reference Prototype 

8.1.6.1. KPI-6.1 Reduce manual interventions required for bootstrapping of smart object in 
each use case domain by at least 80%. 

As commented above, the bootstrapping service for the smart objects involves the availability of other functional 
blocks, e.g. at the networking level the VNFs and SFC that allow to forward the traffic from the smart objects 
towards the backend.   

The NFV MANO automatizes the creation and instantiation of the VNFs on top of the NFVI in the form of VMs. 
Also, it automatizes the configuration, software installation and programs executions in the VM at boot time. In the 
annex B we illustrate these automation processes thoroughly. Namely, we show how the OSM, automates the 
creation, onboarding and instantiation of the SFC and VNF, and it only requires that the user fills some 
configuration files. Thereby, the manual intervention is almost avoided. Moreover, as explained in the annex B, the 
cloud init files associated to the VNFs allow to define the software packages and the initial configuration of the VM 
that implements the VNFs. Thereby, the manual intervention is almost avoided as well.  

8.1.6.2. KPI-6.2 - Leveraging upon FIWARE assets in developing the SEMIoTICS framework 
The aim of this KPI was to analyse the General Enablers developed in the project FIWARE for their possible use 
in the SEMIoTICS project. The possibility study integration of the FIWARE General Enablers integration with the 
SEMIoTICS has been performed. The analysis included all FIREWARE components in total. The result of this 
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analysis is described in Deliverable 5.2 in section 4.2. In the SARA Health Scenario is used only one FIWARE 
General Enabler - Knowage. It is the open source business analytics suite that provides the creating various 
types of visualizations starting from simple tables, through many types of graphs ending on interactive maps. It 
offers many business analytics tools like periodic reporting, business predictions, and interactive cockpit. In the 
following figures you will find an example of KNOWAGE applications as part of SEMIoTICS GUI. 
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8.1.6.3. KPI-6.3 - Delivery of 3 prototypes of IIoT/IoT applications 
The SARA use case delivered a first prototype of the SARA solution empowered with SEMIoTICS technology. 
Sub use case 1 presents some of the GUI presented by SARA to the Doctor in the context of the Gait Analysis 
Assistive Task. The other sub use cases demonstrate how other SEMIoTICS are deployed within SARA.  

8.1.7. Objective 7 – Promote the Adoption of EU Technology Offerings Internationally  

8.1.7.1. KPI-7.1 - Provision the SEMIoTICS building blocks 
This KPI will provide the key technological building blocks at TRL 6, 5 or 4. The following tables show the 
achieved TRL level of components used in SARA-Health Scenario. 
 

Component   Layer   Baseline TRL   Target TRL  
Current 
TRL  References 

Backend orchestrator   Application  N/A (new)   6  6 D4.13 

Backend Semantic 
Validator   Application  N/A (new)   4  4 

Section 4.2.7, 
D4.13 

GUI   Application   N/A (new)   6  6 D.4.13 

Local embedded 
intelligence   Field   2   4  4 

Section 3, 
D.4.13 
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Local thing directory   Field   6 (w/o adaptations)   6  6 D.4.13 

Monitoring   Application   N/A (new)   4  4 D.4.13 

NFV Orchestrator   NFV   6 (w/o adaptations)  
 6 (w/ 
adaptations)  6 

Section 4.2.2, 
D3.8 

Pattern Engine   Application   N/A (new)   4  4 
Section 4.2.5, 
D.4.13 

Pattern Orchestrator   Application   N/A (new)   4  4 
Section 4.2.4, 
D.4.13 

Security Manager   Field   4 (w/o adaptations)   5  5 D.4.13 

Security Manager   Application   4 (w/o adaptations)   5  5 D.4.13 

SFC Manager   SDN   6 (w/o adaptations)  
 6 (w/ 
adaptations)  6 D3.8, D3.11 

Thing Directory   Application   6 (w/o adaptations)  
 6 
(unchanged)  6  D.4.13 

VIM Connector   SDN  6 (w/o adaptations)  
 6 
(unchanged)  6 D3.7 

Virtualized Infrastructure 
Manager   NFV   6 (w/o adaptations)  

 6 (w/ 
adaptations)  6 

Section 4.2.3, 
D3.8 

VNF Manager   NFV   6 (w/o adaptations)  
 6 (w/o 
adaptations)  6 

Section 4.2.2, 
D3.8 

 

8.2. Related framework requirements 
In this section we consider the set of requirements that were described in deliverable D2.3 within the context of 
the SEMIoTICS’s framework. Thereby, we list the subset of requirements from D2.3 that are relevant for this 
sub use case and we indicate in which part of the functional block architecture they are needed. 

 
TABLE 5 REQUIREMENTS RELATDED TO UC2 

Req-ID Description Reference Fulfilment 

R.GP.2 Scalable infrastructure due to the fast-
paced growth of IoT devices. 

Section 4 The architecture tackled herein is highly 
scalable. Thanks to the NFV framework, 
more virtual computing and storage 
resources can be easily allocated when 
needed for the scalability purposes. 
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R.NL.1/ 
R.BC.1 

Controller Node requirement: At least 6 
CPU cores and 32 GB RAM. 

Section 4 This is in line with the requirements that 
have already reported above e.g. the 
OpenStack controller or the OSM, see 
section 4.4. Note that, in addition, it is 
required that the controller nodes have 
around 100 GB of storage memory,  

R.NL.2/ 
R.BC.2 

Controller Node requirement: At least 2 
Network interfaces. 

Section 4 This is a requirement applicable to the 
computer holding the controller, e.g. the 
OpenStack controller. 

R.NL.3/ 
R.BC.3 

Controller Node Requirement: Linux OS. Section 4 The controller nodes at the NFV MANO 
context, e.g. the OpenStack controller, 
require Linux OS.  

R.NL.5/ 
R.BC.5/ 
R.BC.6/ 
R.BC.7 

Hypervisor Nodes Requirement: At least 4 
CPU cores and 8 GB RAM, at least 2, 
1Gbps Network interfaces. 

Section 4 This is fulfilled or in line with the 
requirements for the compute nodes of the 
NFVI, see section 4.4. 

R.NL.6/ 
R.BC.8/ 
R.BC.9 

Hypervisor Nodes: KVM and Linux 
Containers (LXD) must be supported by the 
Hypervisor Linux OS. 

Section 4 This is supported in the compute nodes 
that form the NFVI, e.g. at the cloud level. 

R.S.1 The confidentiality of all network 
communication MUST be protected using 
state-of-the-art mechanisms. 

Section 3 
and D3.7 

The requirement was achieved in SDN 
connection with ovs switches by enabling 
SSL, and the Communication between 
Pattern Orchestrator and Pattern Engines 
with SSL. 

R.S.2 
 

Authentication and authorization of the 
stakeholders MUST be enforced by the 
Network controller, e.g. through access and 
role-based lists for different levels of 
function granularities (overlay, customized 
access to service, QoS manipulation, etc.) 

 
Section 3 
and D3.2 

  
The Security Manager can provide 
authorization to the users entering the 
controller. 

R.P.4 A short data retention period MUST be 
enforced and maintaining data for longer 
than necessary avoided 

Section 5 Attribute-Based Encryption can be used for 
enforcing a maximum access-time to 
stored data. 

R.P.8 Data MUST be stored in encrypted form. Section 5 ABE achieve this requirement since it is 
used for encrypting user-specific data. 

R.P.9 
 

Repeated querying for specific data by 
applications, services, or users that are not 
intent to act in this manner SHALL be 
blocked. 

Section 5 The Policy Enforcement Points (PEP) will 
be seeing all requests and can thus detect 
and mitigate such attempts. 
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R.P.13 The user SHALL be able to control the 
privacy mechanisms (i.e. redemption 
period, data granularity and dissemination, 
and anonymization technique) 

Section 5 This can be enforced by using Attribute-
Based Encryption as described in Sub-use 
case 3. The user is then able to enforce 
his/her privacy-concerns and wishes by 
encrypting the user specific data with the 
help of ABE. 

R.GSP.9 The SARA system SHALL provide robust 
mechanisms to protect Patient-related 
data. 

Section 5 This is fulfilled with the use of Security 
Manager  as described in Sub-Use Case 3 

R.GSP.10 The SARA system MUST fully comply with 
all relevant Italian laws governing the 
privacy, security and storage of sensitive 
Patient health-related data. 

Section 
5.3.4 

SEMIoTICS Pattern Engines and Security 
Manager allows to implement patterns that 
implement GDPR-compliant behaviour. 

R.UC2.1 The SEMIoTICS platform SHOULD support 
time- and safety-critical requirements by 
allowing SARA application logic to be 
deployed on resource-constrained edge 
gateways (e.g. smartphones, vehicles, 
mobile robots). SEMIoTICS platform 
functionalities SHOULD be locally available 
even in case of failure of communication 
with the SEMIoTICS cloud nodes. 

Section 3 
Section 6 

SEMIoTICS TS Encoder is available 
locally on the Robotic Rollator Hub. 
SEMIoTICS Local Thing Directory and IoT 
Gateway is available locally on the Robotic 
Rollator Hub. 
 

R.UC2.2 The SEMIoTICS platform SHOULD 
support the SARA solution to manage the 
trade-off between different requirements 
(e.g. reliability, power consumption, 
latency, fault-tolerance) by allowing both 
SARA application logic and platform 
features to be distributed over a cluster of 
gateways (SARA Hubs). 

Section 4 This requirement is fulfilled with the use of 
SFCs and NFV. 

R.UC2.3 The SEMIoTICS platform SHOULD 
guarantee proper connectivity between the 
various components of the SARA 
distributed application. The SARA solution 
is a distributed application not only because 
it uses different cloud services (e.g. AREAS 
Cloud services, AI services) from different 
remote computational nodes, but also 
because the SARA application logic itself is 
distributed across various edge nodes 
(SARA Hubs).  

Section 3 
Section 4 

This requirement is fulfilled with the use of 
SFCs and NFV. 

R.UC2.5 The SEMIoTICS platform should allow the 
SARA solution to discover the IoT devices 
that are registered in the system. IoT 
devices deployed by the SARA solution are 
expected to register themselves into the 
system using various standard protocols 
(e.g. LwM2M, MQTT, Bluetooth LE, 
ZigBee, etc.). 

Section 6 All the sensors onboard of the RR, are 
exposed through the CoAP protocol and 
combined with a node-wot servient. 
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R.UC2.6 The SEMIoTICS platform SHOULD allow 
the SARA solution to retrieve the resources 
exposed by registered devices via their 
object model (i.e. a data structure wherein 
each element represents a resource, or a 
group of resources, belonging to a device). 
The SEMIoTICS platform SHOULD support 
at least the OMA LWM2M object model. 

Section 6 The semantic descriptions for all the types 
of smart objects are based on W3C Web of 
Things (WoT) standard Each sensor, 
actuator or thing from all SEMIoTICS use 
cases were identified and for each smart 
object one Thing Description (TD) was 
provided. 

R.UC2.11 The SEMIoTICS platform SHOULD allow a 
SARA component to request a group of 
devices to take/initiate an action (e.g. turn 
on/off a light bulb). 

Section 6 The SARA ZigBee Servient creates an 
http binding for the Hue hence it is 
possible to control the light bulb using 
standard REST call over http for turning 
the light on. 

R.UC2.12 The SEMIoTICS platform SHOULD allow 
SARA components to delegate to the 
platform the computation of complex 
functions over the data received by field 
devices. These computations may result 
either in the generation of higher-level 
observation events (e.g. significant Patient 
events abstracted form sensor data) 
towards the ACS or in sensors 
configuration parameters (including 
actuators command). The SARA 
components MAY specify computations 
either as Dataflow or as Finite State 
Machine. 

Section 7 This requirement is fulfilled with the 
interaction of Human Task Manager, 
Human Robot Interaction Manager, 
Robotic Assistant Agent, Coordination 
Server and Monitoring Component. 

R.UC2.14 The SEMIoTICS platform MAY allow the 
SARA solution to access information 
concerning the location of mobile robotic 
nodes and to maintain SARA specific 
location information (e.g. collected map 
data). This would allow the SARA hub or 
cloud to send to robotic devices high level 
navigation related commands (e.g. “go to 
location”). 

Section 7 This requirement is fulfilled with the use of 
the MDP queries. 

R.UC2.15 The SEMIoTICS platform SHOULD provide 
low latency connectivity between the SARA 
hubs and cloud services (i.e. AREAS cloud 
services and AI services) to allow offloading 
of near real-time computation intensive 
tasks to the cloud.  

Section 1, 
Section 4 

This is related to the network management 
sub use case. 

R.UC2.16 The SEMIoTICS platform SHOULD support 
secure bootstrap, configuration and 
diagnostic of SARA hubs and devices. 

Section 5 In order to monitor that the system 
correctly enforces the intended behaviour, 
for this we describe how SEMIoTICS 
monitoring is used as a solution for 
periodical self-audit capabilities by 
monitoring for pattern-compliance. 
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9. CONCLUSION 
9.1. Observed Obstacles 
The most observed challenges for the implementation of this use case were related to the multi-domain 
deployment of the different components of the SEMIoTICS architecture that participated in SARA use case. 
There were constraints related to the private and public networking aspects realizing the implementation of this 
use cases closer to the reality of assistive living. Especially the current pandemic situation, which the project 
faced during the last year, pushed the use case 2 participants to work efficiently to overpass any constraint and 
achieve the overall scope and objectives of this use case. 

9.2. Concluding Remarks 
This deliverable presented the results of the validation of the SEMIoTICS technologies in the context of the 
development of SARA a solution in the domain of Ambient assisted living. 

This document also identified the challenges subsumed by the implementation of two of the SARA assistive 
tasks (Falls Management Assistive Task and Gait Analysis Assistive Task). 

Finally, this document presented the SEMIoTICS-based implementation of SARA by five points of view (sub use 
cases) each focusing one of main areas addressed by the SEMIoTICS project: (a) security, privacy, 
dependability and safety: (b) IoT semantic interoperability; (c) embedded intelligence and (d) automated 
trustworthy network management. 
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APPENDIX A - NETWORK INFRASTRUCTURE VALIDATION 
It is worth mentioning that a VPN has been configured at CTTC to let external users to access the NFV testbed 
described above.  In Figure B.1, we show that the execution of the VPN connection instruction, based on a 
configuration file, is successful. Then, in Figure B.2 and Figure B.3, it is shown that the VPN allows to access 
the OSM and OpenStack GUIs, respectively. Moreover, below it will be shown, that the external VPN users can 
use properly the OSM and OpenStack services. To this end, a generic VNF and they corresponding Network 
Service (NS) will be created, onboarded to OSM and instantiated on top the NFVI, which is managed by the 
OpenStack. Observe that in OSM a VNF is always within the context of NS, which can be interpreted as a higher 
layer entity. In fact, a NS can contain multiple VNFs. 

 

 
FIGURE B.1 VPN THAT ENABLES EXTERNAL USERS TO ACCESS THE CTTC’s NFV TESTBED. 



780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017 
Deliverable D5.10 Demonstration and validation of SARA - Health (Cycle 2)  
Dissemination level: Public  

 

95 

 
FIGURE B.2 VPN ALLOWS ACCESS TO OSM AT CTTC’s NFV TESTBED. 

 
FIGURE A.3 VPN ALLOWS ACCESS TO OPENSTACK AT CTTC’s NFV TESTBED. 
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Next, as it was mentioned above, a generic VNF and its corresponding NS are created, onboarded to OSM and 
instantiated on top of the NFVI. This shows that the external VPN users can access properly the NFV testbed 
and use its NFV services, i.e. OSM and OpenStack. To this end, we use the OSM command line interface (cli). 
Thereby, first it is shown in Figure 6 that the external users can enter via ssh to the VM that contains the OSM. 

 

 
FIGURE B.4 SSH TO THE VM THAT CONTAINS THE OSM. 

After entering to the VM that hosts the OSM, we will follow a set of steps to create, instantiate and terminate the 
generic VNF and the generic NS. Note that, the end user only needs to interact with the OSM, which 
communicates internally with the OpenStack. Moreover, the interaction with the OSM is through a set of 
configuration files that define the computing, storage and networking features of the VNF and the NS. These 
configuration files are so-called VNF descriptor (VNFd) and Network Service descriptor (NSd), respectively. 
Thereby, the next steps will be followed below to create, instantiate and terminate the VNF and NS.  

• Create generic NSd and VNFd. 

• Generate VNF/NS packages. 

• Onboard the VNF/NS packages to OSM library. 

• Instantiate the NS (and the VNF). 

• Check that we can access the VM created for the VNF instantiation.  

• Terminate the NS. 
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Create generic NSd (and VNFd). 
• Create VNFd, NSd folder structure 

First, OSM needs to create a folder structure for the NSd, VNFd and its related files, such as the cloud init, which 
defines the initial configuration of the VM that will hold the VNF. This is accomplished by using a shell script 
provided by OSM, it is called “generate_descriptor_pkg”. In Figure 7, we show how that folder structure is 
created correctly. 

 

 
FIGURE B.5 CREATION OF THE FOLDER STRUCTURE NEEDED TO CREATE VNFd and NSd. 

• Edit VNFd 

After creating the folder structure for the VNFd and NSd, we can edit the VNFd, which is a yaml configuration 
file. In Figure A.6 we present the snapshot of the yaml file that we have used to specify the VNFd. In the sequel, 
the important parts of this file are discussed. The tag “id” is the unique identifier for the VNF and it is important 
to recall it, as it is used in the NSd. The tag “mgmt-interface” is the interface over which the VNF is managed. 
Moreover, the “cp” within it just specifies the type of management endpoint, in our case “cp” means that we will 
use a connection point. Another important tag is the “vdu”, which stands for virtual description unit, and it 
specifies the features of the VM that will host the VNF. The “vm-flavor” indicates the computing, memory and 
storage features of the VM that will host the VNF. Thereby, note that we define a VM with 1 virtual CPU, 1 GB 
of RAM and no persistent storage, as the “image” that we discuss next defines enough storage for this test. The 
tag “image” indicates the image that will be used to create the VM, in our case we will have an Ubuntu OS. The 
“cloud-init-file” indicates the cloud init file that will be used by the VM. The snapshot for this cloud init file is 
actually described below. The “interface” tag within the “vdu” tag specifies the interfaces for the vdu.  

• Cloud init file specification 

This file is the one that specifies the initial configuration that we aim for the VM that will host the generic VNF. 
Note that its name is specified in the vnfd, as commented above. In Figure A.7, we provide the snapshot of this 
cloud init file and describe its functionalities. First, note that we have a field called “users”. This allows to add 
users to the system. Note that we have added a user called “generic”. Finally, within this user, there is an 
important field to be added, the “ssh_authorized_keys”. This is important, because here we add the public ssh 
keys of the users that will access the VM that hosts the VNF. 
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FIGURE B.6 VNFd THAT DESCRIBES A GENERIC VNF. 

• Edit NSd 

Next, in Figure B.8 we display a snapshot of the yaml file that we edited to specify the NSd. The relevant tags 
are described in the sequel. First, note that the tag “id” determines the unique identifier for the NS. The tag 
“constituent-vnfd” indicates which VNFs are part of the NS. In our case we have just the generic VNF, whose 
identification is “generic_vnfd” and is specified through the tag “vnfd-id-ref”. Note that, in the vnfd the “id” tag 
has to correspond with that value. Then, we have the tag “vld”, which is a description of the virtual links used by 
the NS for networking connections. In our case, note that the tag “type” is set to “ELAN”. This indicates that the 
virtual link is a service to connect VNFs. The tag “mgmt.-network” set to “true” means that this is a VIM 
management network. The tag “vim-network-name” describes the name of the network in the VIM account, in 
our case “externalNet” is the name that was given such network in the OpenStack framework. Finally, the tag 
“vnfd-connection-point-ref” describes the connection points for the virtual links towards a vnf. We can see that 
this is a connection towards our generic VNF as the tag “vnd-id-ref” is set to “generic_vnfd”.  
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FIGURE B.7 CLOUD INIT FILE ASSOCIATED TO THE GENERIC VNF. 

 
FIGURE B.8 NSd ASSOCIATED TO THE GENERIC VNF. 
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• Generate VNFd/NSd packages. 

At this point, the VNFd and NSd are already edited. Thereby, we can generate the NSd, and VNFd packages, 
which are required in the onboarding process of the OSM. This means, the process of having our NS and VNF 
packages available in the OSM library. To generate those packages we only need to execute the shell script 
“generate_descriptor_pkg” provided by the OSM, which needs the NS and VNF folder structure that we created 
above in Figure 7. 

 

 
FIGURE B.9 GENERATION OF VNFd AND NSd PACKAGES. 

• Onboard the VNF/NS  packages to OSM  library. 
Next, in Figure B.10 it is demonstrated that we are able to onboard properly the NSd and VNFd packages into 
the library of OSM. Recall that these are a set of configuration files that describe the properties of our VNF and 
the requirements in terms of computing and networking that it has. Also, they describe the features of the VM 
that will host the VNF and the initial configuration and software packages installations that we need in the VM. 
We have called the NSd and VNFd as generic_nsd and generic_vnfd, respectively. It can be observed that OSM 
has onboarded properly the NSd and VNFd, as they appear on the list of available packages in the OSM library. 
Note that the osm instruction “osm nsd-list” and “osm vnfd-list” were used. 

• Instantiate the NS. 
Then, in Figure B.11 we trigger the instantiation of the NS that we have onboarded in OSM for our generic VNF. 
This means that OSM will communicate with the OpenStack controller, which creates the VM that will host our 
VNF on top of the virtual resources exposed by the OpenStack compute node. For that, obviously, the OSM takes 
into account the information embedded within the NSd and VNFd. Note that to trigger the NS instantiation we 
used the OSM command “osm ns-create –ns_name generic –nsd_name generic_nsd”. Observe that you must 
specify for the nsd_name option the name of the NSd that you want to instantiate, otherwise the NS will not be 
instantiated. 
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FIGURE B.10 ONBOARD VNFd AND NSd PACKAGES TO OSM. 

 
FIGURE B.11 INSTANTIATE THE NS RELATED TO THE GENERIC VNF. 

• Check that the we can access the VM created for the VNF instantiation. 
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The NS instantiation creates the VM that holds the VNF, on top of the NFVI. Thereby, it is important to check if 
we have access to such VM. In order to obtain the IP of the VM we can just execute the openstack command 
”openstack server list”. OSM also provides this IP in the information of the NS instance. In Figure B.12 we show 
that we can access the VM that holds the generic VNF. 

 
FIGURE B.12 CHECK THE ACCESS TO THE VM CREATED TO HOLD THE GENERIC VNF. 

• Terminate the NS 

Finally, we show that we can terminate the NS, which shows the overall lifecycle of a NS and its associated 
VNFs. To this end, we use the OSM command “osm ns-delete” and its argument must specify the id of the NS 
instance that we want to terminate. In Figure B.13 we show that we can terminate the NS instance associated 
to the generic VNF. 
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FIGURE B.13 TERMINATE THE NS RELATED TO THE GENERIC VNF. 

Validation of the NBI between NFV and OSS 
The experiments that validate the NBI interface, which allows the connection between the NFV and external 
OSS, have been carried out thoroughly in SEMIoTICS’ deliverable D3.8. Thereby, we refer the reader to D3.8 
for full details on that validation. 
Validation of the SFC capability in NFV 
Next, we provide the experiments that validate the configuration of the SFC capability in the NFV testbed. Recall 
that SFC is enabled in OpenStack by installing and configuring the “networking-SFC” plugin for the OpenStack 
Neutron sub-block, see section 4.3.1. 

First, in Figure B.14 we present the NSd that is used to carry out the SFC tests that validate the SFC capability 
in the NFV testbed. The NSd is presented in three segments to fit the figure in one page. The first segment is 
the top left figure, the second one is the top right and the last segment is the bottom one. The relevant tags of 
the .yaml file for the SFC purposes are described next.  

• constituent-vnfd: Lists the VNF identifiers of the VNFs that belong to the SFC. 

• ip-profiles: This is used to define an inner sub-network for the SFC. This means that the VNFs that 
belong to the SFC will communicate through this network. Their IPs are only visible to VM that belong 
to the network, i.e. they are not visible to other VM in the CTTC’s NFV testbed. 

• vld: Here the networks’ link of the VNF’s that belong to the SFC are defined. Note that there are two 
networks. One inner network, which is the one commented in the previous point. The other is an external 
network, i.e. it allows the connectivity to other VMs within the CTTC’s NFV premises. It also allows the 
connectivity with other computers that are within the VPN context, though outside CTTC’s premises.   

• vnffgd: This is the tag that defines the behaviour of the SFC. The “classifier” tag defines which traffic is 
captured by the SFC and the ingress link, which is associated to a given VNF. In our case, the ingress 
is through the “sfc_generic_endpoint_vnfd” and we capture IP traffic whose source is 13.0.1.101 at port 
2 and destination 13.0.1.102 at port 80. The “rsp” tag defines the order, in terms of the VNFs, that the 
traffic will follow to traverse the inner part of the SFC. In our case, we just consider one inner VNF, 
sfc_mpls_vnfd. 
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1.  

 
FIGURE B.14 NSD FOR THE SFC EXPERIMENTS IN THE NFV TESTBED. 

In Figure B.15 we present the first experiment to validate the SFC capability in the NFV testbed. In this case, all 
the VMs are within the CTTC’s NFV testbed. Namely, the source of traffic is considered to be the first VNF of 
the SFC, i.e. the one whose IP is 13.0.1.101 and the destination the last VNF i.e. the one whose IP is 13.0.1.102. 
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We generated the traffic using the netcat utility17, which allows to write and read from network connections using 
TCP. Thereby, at the destination we also use netcat to receive the transmitted TCP message. Moreover, we 
use the tcpdump utility18 to analyse the network traffic and see whether the traffic is captured by the middle VNF 
of the SFC. Figure B.15 shows how the TCP packet sent by the source is received at the destination. We can 
also see that the SFC captures the packet and it traverses the middle VNF. 

 
FIGURE B.15 SFC EXPERIMENT IN THE NFV TESTBED, WHEN THE TRAFFIC SOURCE AND 

DESTINATION ARE WITHIN THE NFV TESTBED. 

In Figure B.16, we did an experiment that is similar to the one of Figure B.15. However, in this case, the source 
of traffic and the destination are VMs that are within the NFV testbed but that do not belong to the SFC. The aim 
is to assess whether the SFC can receive and forward traffic that is generated outside the SFC. Note that 
scenario is closer to a real scenario where the NFV testbed is integrated with other SEMIoTICS’ components. 
In order to forward the traffic that arrives to the SFC to a given destination we make use of the linux iptables19 
utility. Namely, the next two shell command instructions are leveraged, which have been included in the cloud-
init associated to the first VNF of the SFC for its automation, i.e. the one with IP 13.0.1.101. 

• sudo iptables -t nat -A PREROUTING -p tcp --dport 2 -j DNAT --to-destination 13.0.1.102:80 

• sudo iptables -t nat -A POSTROUTING -o ens4 -j MASQUERADE    

 
17 https://linuxize.com/post/netcat-nc-command-with-examples/ 
18 https://www.tcpdump.org/manpages/tcpdump.1.html 
19 https://help.ubuntu.com/community/IptablesHowTo 
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4. Note that these two instructions refer to the nat table, as iptables defines tables containing chains of rules 
for the treatment of packets and nat is the one that allows to change the source and/or target ip-address 
in packets. Also, observe that the nat table works by using two chain of rules, PREROUTING and 
POSTROUTING. The former is the chain where the packets enter before a routing decision is made. The 
latter is the chain where packets enter after the routing decision is made and before they are released to 
the hardware. In the PREROUTING command we say that all the TCP packets that arrive associated to 
port 2 we want to forward them to the IP 13.0.1.102 at port 80. Note that this is the last VNF of the SFC. 
The POSTROUTING command just forwards the outgoing packets through the network interface ens4.  

 

FIGURE B.16 SFC EXPERIMENT IN THE NFV TESTBED, WHEN THE TRAFFIC SOURCE IS ANOTHER NS 
OF THE NFV TESTBED AND DESTINATION IS OUTSIDE CTTC NFV TESTBED. 

The same rationale is applied at the last VNF of the SFC to forward the traffic to an external machine, a local 
PC in the VPN, whose IP is 192.168.169.100: 
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• sudo iptables -t nat -A PREROUTING -p tcp --dport 80 -j DNAT --to-destination 192.168.169.100:5000 

• sudo iptables -t nat -A POSTROUTING -o ens3 -j MASQUERADE 

In Figure B.16, we see how the traffic generated in the middle left figure passes through the first VNF of the 
SFC, on the top left. Then, it passes through the middle VNF of the SFC at the bottom, and finally leaves the 
SFC by traversing the last VNF of the SFC at the top right figure. Finally, it arrives to the external machine, as 
the middle right figure shows. 
Finally, in Figure B.17 we have done a similar experiment than in Figure B.16. However, in this case the source 
of traffic is located at the IoT GW in the Engineering premises, i.e. outside CTTC premises. Similarly, the 
destination is a backend server located in the Engineering premises as well. This validates the end-to-end 
connectivity. In terms of the iptable commands, we used in the first VNF of the SFC the same commands than 
for Figure B.16, as we want to route the incoming traffic until the last VNF of the SFC. The iptable commands 
of the last VNF of the SFC are also similar to the ones of Figure B.16, we just changed the destination IP address 
where we want to route the traffic: 

• sudo iptables -t nat -A PREROUTING -p tcp --dport 80 -j DNAT --to-destination 151.15.17.243:5000 

• sudo iptables -t nat -A POSTROUTING -o ens3 -j MASQUERADE 

In Figure B.17, on the top left, we show how the external traffic generated at Engineering arrives to the first VNF 
of the SFC, note that the traffic displays the external IPs of the SFC, i.e. 172.x.x.x. Namely, 172.113.40.1 is the 
IP of the external router of the NFV testbed. And 172.113.40.198 is the external IP of the first VNF of the SFC. 
Also, note in the bottom figure that the first VNF of the SFC chain forwards the traffic to the last VNF of the SFC. 
To show this situation we display the IP of the internal network of the SFC, i.e. 13.x.x.x. Finally, on the top right 
figure we show how the last VNF of the SFC routes the traffic to the backend server located at Engineering, 
whose IP and port are 151.15.17.243 and 5000, respectively. This figure also shows that the server at 
Engineering sends an ACK message, so it receives the traffic. 
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FIGURE B.17 SFC EXPERIMENT IN THE NFV TESTBED, WHEN THE TRAFFIC SOURCE AND 

DESTINATION ARE THE IOT GW AND BACKEND SERVER AT ENG PREMISES. 


