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1 INTRODUCTION 
This deliverable is the final summary related to reporting all activities within Task 5.6 (“Demonstration and 
validation of IHES-Generic IoT scenario”) in SEMIoTICS. 
In more detail, the reporting period covers all technical integration activities done during cycle 1 and cycle 2 
integration of SEMIoTICS UC3 (M24-M36). In section 1.1 the updates from D5.6 has been shortly reported. 
Section 2 introduces a quick recap of the target motivating scenarios to be showcased by the UC3 
demonstrator within SEMIoTICS, a quick overview on the challenges associated to UC3 scenario and a 
complete presentation of all the sub use case scenarios (section 2.3) derived from the one presented in section 
2.1, that has lead the incremental integration from field level to backend level of the UC3 demonstrator. 
Section 3 presents the final version of the integrated SEMIoTICS UC3 testbed based on OpenStack and VNF 
virtualization, that has been used to showcase the three incremental sub use case storylines discussed in 
sections from section 4 to section 6. Final sections 7 and 8 are dedicated to derive the conclusions of this final 
cycle of integration and a complete summary with results related to the KPIs associated to the final demo 
architecture.   
The purpose of this document is to describe how the UC3 demonstrator (use case and all associated three 
sub-use cases) has been incrementally implemented, validated, and tested during Task 5.6 activities from M24 
to M36. 
 

1.1 D5.11 Updates vs D5.6 Quick Summary 
An overview of the changes and updates to the previous version of this deliverable (i.e., D5.6) are provided 
below: 

• Section 2 “Use Case Description” has been updated in order to include an additional 3rd sub scenario 
implemented during cycle 2 integration activities. 

• Section 3 “Testbed setup, integration and validation” has been updated in order to reflect final UC3 
testbed demonstrator. 

• Section 4 “Sub Use Case 1: Local vs Global anomalies Detection Demo” has been updated to reflect 
final integration status. 

• Section 5 “Sub Use Case 2: Cloud Level Data Aggregation, Data Analytics and Visualization Demo” 
has been updated to reflect final integration status. 

• Section  6 “Sub Use Case 3: Pattern-Based Sensing Dependability Monitoring” has been updated to 
reflect final integration status. 

• Section 7 has been added in order to report all UC3 related requirements and KPIs in a single entry 
point. 

• Section 8 “Conclusions” has been further elaborate in order to include the lessons learnt during this 
UC3 integration activity. 
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2 USE CASE DESCRIPTION 
2.1 UC3 storyline and scenarios 
On April 6th, 2009, Student’s House in L'Aquila (Italy) was devastated by a strong earthquake and 8 young 
students died. On January 18th, 2017, a huge avalanche hits the Hotel Rigopiano in Farindola, near Pescara 
(central Italy), causing the death of 29 people that were present in the structure for winter holydays. 
Those tragedies taught us about the importance of an automatic earthquakes events detection system. If the 
streak of earthquakes events leading to those disasters had been promptly notified to e.g., the National 
Protection Department, maybe the early evacuation procedures would have been started in time. This could 
have saved many precious lives. 
Trying to address this scenario, UC3 in SEMIoTICS is aiming to provide an innovative technology for enabling 
distributed AI at both backend and field level, focusing for the latter in distributed low power IoT field devices. 
The innovation consists of partitioning the analytics usually centralized at backend/cloud server across several 
layers of the architecture, up to the sensor devices. This “close to the edge” distributed approach empowers 
sensors analytics by deploying optimized AI algorithms specifically designed for low power embedded micro-
controllers. 
UC3 within SEMIoTICS is also a horizontal and generic IoT solution, exploiting SEMIoTICS infrastructure (its 
pattern design framework and part of its components). UC3 scenario aims to provide an enabling technology 
that could be used to address a wider range of vertical specific scenarios in which event detection is needed. 
The AI Sensing Platform in fact provides a disruptive and innovative technology for enabling AI in distributed 
low power IoT field devices and in particular low power embedded micro-controllers yet ensuring 
interoperability and ease of integration as a main concern. This platform is implementing a horizontal 
technology in the form of SEMIoTICS reusable components. This analytics leverages on optimized, yet 
powerful AI algorithms tailored for online training and unsupervised model learning on 32bits low-cost low 
power micro-controller units (MCU). These field device nodes, mapped as specifically developed field layer 
SEMIoTICS components are referred as “IHES Devices” and “IHES Supervisor” components. UC3 system 
enables highly scalable distributed intelligence thanks to devices communication and coordination on event-
driven patterns instead of data-centric driven approach mostly used on nowadays cloud IoT centralized 
systems. 
 
STMicroelectronics AI Sensing platform adopts the core principles of the edge/pervasive computing paradigm 
as opposed to cloud-centric approach, where the intelligent processing of sensed data is moved and distributed 
to the leaves of the system, at field level sensing devices, embedding algorithms based on the highly nonlinear 
approximation capabilities of artificial neural networks, statistical analysis, distributed computation for 
increased system scalability, safety and robustness. In particular, the core functional ities of the system are 
moved at lower levels of the platform and two key aspects are therefore implemented: 
 

1. Local predictive analytics for environmental and inertial data streams: In the AI Sensing use case, 
localized edge analytics will be applied which will result in unsupervised IoT behavior where only 
results and events triggered by these analytics will be propagated to the upper level on the 
infrastructure to the IoT Gateway locally and to enable a seamless deployment on a Vertical Application 
at network layer. 
 

2. Local AI Sensing behavior and monitoring: The sensing of this environmental and inertial data streams 
acting locally at sensor level allows to process more data in real-time and to precisely identify relevant 
events by modeling the characteristics of the acquired data thanks to neural network self -learning 
algorithms. Security is increased as well because complete raw data are almost rarely propagated to 
the IoT Gateway, but just those identifying anomalies are transmitted for complex processing. This 
makes the system highly scalable, robust, and largely autonomous on its local behavior.  
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On top of those technologies, an additional data aggregation layer for early avalanche warning has been 
developed in sub scenario2 to complete the scope of the UC3 demonstrator. 
A significant and meaningful incremental demonstration of the technology will be implemented and validated 
during the project as described in the following sections. 
 
Three different scenarios have been identified of a relevance for demonstrating UC3 using SEMIoTICS 
framework in a lab environment: 
 
Sub Scenario 1 - Local Vs Global anomalies detection 
A series of inertial intelligent IoT Nodes are deployed in the public building under control analyzing the 
vibrations at different places and floors. Equivalent systems are deployed in nearby buildings. When abnormal 
vibrations are detected at device level the system reports them to local LAN, where they are locally stored, 
and then, also propagated to the backend level, labelling them as either a local anomaly or a global one. In 
case of positive feedbacks (either local or global), triggering further layered analytics defined in sub scenario 
2, the system reports the alert to owners and operators of the building as well as, in case, to the local 
authorities. Depending on the specific use case application this capability opens to further actions by 
integrating further solutions to the system. As an example, it would be possible, by instantiating further 
SEMIoTICS patterns to send the command to the elevators control system of the building to reach level zero 
and stop working preventing people from use them until the alert is released. Authorities may also decide after 
check to issue an evacuation alarm. Further details about this UC3 sub scenario have been reported in section 
4. 
 
Sub Scenario 2 – Collaborative Edge-Cloud Avalanche Warning System 
Additional outdoor sensors are utilized to track local temperatures and lighting / sun heating condition. Thereby, 
this sub use case relies on a collaborative edge-cloud data analytics approach. On the one hand, seismic 
events are detected by the local embedded intelligence of the IHES sensing units, given the accelerometer 
sensors’ data. On the other hand, the temperature data is sent to the backend cloud. Then, to monitor the 
environmental trends further specific analytics based on linear regressors for the temperature rise warning, 
have been deployed at UC3 backend level, which allow to detect risky temperature events. Those risky 
temperature trends are triggered by this additional analytics UC3 service. Namely, they are triggered when the 
predicted temperature is above the parameter bounds provided by a simulated weather station agency. For 
instance, this can correspond to the information available on the remote DB of the local ARPA1 (“Agenzia 
Regionale Per l’Ambiente”) or any other openly available 3rd party weather service. Finally, an avalanche 
warning is raised to authorities when jointly a risky temperature is detected at the cloud and a global abnormal 
vibration has been reported at the IHES sensing units. Further details about this UC3 sub scenario have been 
reported in section 5. 
 
Sub Scenario 3 – Pattern-Based Sensing Dependability Monitoring 
Focusing on the dependability of the monitoring system deployed within UC3, additional pattern-based 
capabilities are deployed in the context of the third sub-scenario. This feature has been implemented thanks 
to the integration of pattern enablers developed within the SEMIoTICS framework. Considering the presence 
of redundant sensors in UC3, it is possible to monitor the parameters related to the fault tolerance and the 
reliability of the sensing system. This allows to trigger the associated reasoning of these two properties and 
the dependability property. These monitoring and reasoning capabilities are achieved through the deployment 
of a lightweight Pattern Engine at the field layer, integrating monitoring capabilities, and the support by 

 
1 ARPA https://www.arpalombardia.it (link accessed in December 2020) 
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instances of the Pattern Orchestrator and the SEMIoTICS GUI at the backend. Further details about this UC3 
sub scenario are reported in section 6. 
 
These three sub scenarios have been integrated incrementally in two macro steps that has been implemented 
in cycle 1 and cycle 2 task 5.6 activities: a first step (cycle 1) where the focus was on testing the system in 
isolation on a controlled environment (i.e., in a simulated laboratory environment) in order to effectively 
demonstrate the effectiveness of the Local Embedded Analytics (LEA) and edge computing core capabilities 
at work. After this isolated validation done mainly by ST-I as domain experts, as part of UC3 T5.6 cycle 2 
activities, the actual integration of this UC3 analytics in the SEMIoTICS framework has been achieved. 
Furthermore, this integration has been done by either developing specific new components (IHES LEA on MCU 
and IHES Supervisor and Local DB, plus the collaborative edge-cloud avalanche warnings system located in 
UC3 backend), or by adopting existing SEMIoTICS components (e.g., the pattern related ones) enlarging the 
UC3 testbed environment to dedicated field trials aiming at verification that the all the three sub use cases 
were realized consistently across the same UC3 testbed demo. As part of the field trial validation, proper end-
to-end validation from Field Devices (IHES Sensing Units), to IoT gateway up to SEMIoTICS network and IHES 
backend/cloud deployed infrastructure where the UC3 App has been deployed. 
 

2.2 Challenges and objectives 
The system presented in this deliverable, that in essence is the UC3 as it is defined in SEMIoTICS technical 
annex, is an intelligent distributed end-to-end architecture for detection and validation of critical events that 
does not require any or very limited prior information the environment to be monitored (IHES, Intelligent 
Heterogeneous Embedded Sensors + collaborative edge-cloud avalanche warning system). 
This system is composed of several capable intelligent nodes (IHES Sensing Units) to obtain environmental 
data, analyze them, and detect anomalies using both neural networks and autoregressive models. These smart 
nodes are connected to a supervisor (IHES Supervisor) whose purpose is to coordinate at field level them to 
propagate relevant seismic events to other system architecture components located in other layers. Its main 
tasks are to aggregate the data and perform a validation of the local detected changes from any of the individual 
sensor units. These events are propagated to the UC3 backend level where they are further classified by 
additional analytics components to achieve the objectives. Scope of Task 5.6 is thus to provide an end to end 
layered intelligence demo scenario within SEMIoTICS ecosystem. This effort provides a complete end-to-end 
SEMIoTICS infrastructure integration at field, network, and backend level. Those additional levels of integration 
will open up the possibility to aggregate further data and services beyond the scenarios considered in UC3, 
from multiple local IHES supervisor’s analytics cluster, carrying out HTTP queries towards 3rd party open cloud 
services and, in case of re-detection of any anomaly confirmed event, promptly notify it (for example by email) 
to the service manager monitoring. 
Task 5.6 outcomes are complete both as regards contextualization and the KPIs (Key Performance Indicators) 
defined in SEMIoTICS, both for correctness, robustness, and reliability of the system with the newly introduced 
dependability and monitoring patterns depicted in sub scenario 3. The solution presented in this deliverable as 
a whole, is an excellent technological driver that will enable thanks to the SEMIoTICS open infrastructure the 
derivation of new use cases able to exploit this intelligent layered system, making IoT technologies more 
pervasive and widely adopted. 
 

2.3 SEMIoTICS UC3 sub use cases 
Nowadays we live surrounded by many devices connected to the network capable to acquire data on the 
environment and on those who live the environment. Using this huge amount of data in the correct way, opens 
the door to new technologies and construction of systems with purposes and purposes unthinkable even just 
a few years ago. SEMIoTICS and UC3 IoT Generic scenario within it, aims to explore the possibilities offered 
by diffusion of the Internet of Things (IoT), from the data and resources that this dissemination brings to have, 
with the will to explore new ways of thinking, designing and building pervasive systems. In particular, the main 
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UC3 scenario objective is to create a horizontal enabling technology aimed at automatic detection and 
validation local critical events, which does not require any prior knowledge of the environment to mon itor. In 
addition, this technology will be integrated in this task 5.6 into an end-to-end project implemented with the aim 
of demonstrating the feasibility of this new disruptive Intelligent IoT technology proposal within the SEMIoTICS 
framework for intelligent IoT and IIoT (Industrial IoT) applications. 
On IoT domains there are various approaches to handle such a large data from massively deployed IoT things.  
But in essence they could be classified into “Cloud”, “Fog” or “Edge” computing depending on where  actually 
these data are processed and aggregated into the IoT ecosystem, e.g., on backend, gateway or IoT device 
node. A summary picture is shown on Figure 1. The main issue with “Cloud Computing” (P.Mell, 2011) data 
aggregation approach is mainly poor scalability and system resiliency. 
Another aspect to consider, especially in their simpler form concerns the data. Very often these IoT cloud-
based solutions use a lot of sensors that, very often, are unable to perform computations but only to acquire 
and send raw data. To get information from these data, therefore, they must arrive in some centralized unit 
with the aim to carry out appropriate analyzes depending on the type of data and the purpose  of the system. 
This creates a huge amount of data traffic that needs to be transferred within the system and requires to have 
a reliable, responsive, and high-bandwidth communication. Moreover, data security poses relevant challenges 
on such scenario. To remedy, or at least mitigate, these problems, there are at least others  two well-known 
approaches to solve the problem: "Fog Computing" and "Edge Computing". 

 
FIGURE 1. DATA ANALYTICS COMPUTING APPROACHES2 

As can be seen in above figure, "Fog Computing" consists in using an intermediate level with computational 
ability to receive the raw data of the that derive from the sensors and, even before sending them to the cloud, 
make part of the computing in order to reduce the amount of data exchanged and sent to the cloud.  

 
2 Courtesy from Winsystems 
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Finally, the paradigm opposite to "Cloud Computing", is the so-called "Edge Computing": in this case the 
computation takes place directly at the lowest level (on the IoT sensing device), reducing considerably the 
band of data transferred to the highest levels of architecture. Obviously, even this latter solution is not without 
any problem or cons: by carrying out the computing closer to where the data is collected greatly reduces the 
problems related to bandwidth and security of raw data (which is no longer necessary to transmit at other 
architectural levels), but there are severe hardware limitations. In fact, the more the computation moves down, 
the more difficult it will be to implement complex and intelligent algorithms. 
In UC3 scenario we tried to provide to map on SEMIoTICS architecture the “edge computing” approach by 
tailoring specific scenarios to demonstrate its feasibility. 
From the main storyline presented in section 2.1 we derived three sub use cases to incrementally demonstrate 
the capabilities of the Generic IoT System within SEMIoTICS technology, and these latter ones will be analyzed 
in sections 3-5 that follow. 
 
This deliverable describes the specific UC3 SEMIoTICS infrastructure adopted in order to bring “Edge 
computing” approach into reality and the actual mapping of the SEMIoTICS components vs the HW platform 
testbed developed in task 5.6 is presented in Figure 2. Moreover in Figure 3, the SEMIoTICS components 
considered in the scope of the UC3 – Generic IoT scenario - are represented, with new features specifically 
developed, existing technologies re-adapted, and existing IoT technologies. 
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FIGURE 2. UC3 SYSTEM VS COMPONENTS MAPPING 
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FIGURE 3. UC3 SEMIOTICS COMPONENTS STATIC MAPPING 

 
As stated in general introduction we have consolidated the complete demonstrator along task 5.6 activities by 
following an incremental approach from bottom to top, and we derived intuitive, self-contained storylines and 
sub-use cases to showcase the incremental functionalities available. 
We identify three incremental sub use cases (from sub use case 1 to sub use case 3) that have incrementally 
integrated into UC3 testbed the components highlighted on Figure 3 as part of cycle 1 and cycle 2 activities. 
Sub use case 1 is devoted to show specific local analytics deployed at device level to enable smart autonomous 
learning devices following the “Edge Computing” approach. Sub use case 2 focuses on how to bring and further 
process the results of the data analytics and sensing readings on the upper level of the infrastructure (i.e., the 
UC3 backend), and the scalable infrastructure needed for it in order to open-up/scale to backend added value 
services. Finally sub use case 3 will deploy end-to-end specific UC3 Dependability patterns exploiting 
SEMIoTICS ecosystem, by instantiating and adapting its pattern related components, to allow a full integration 
into SEMIoTICS architecture and a better resilience to system/sensors faults.  
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3 TESTBED SETUP, INTEGRATION AND VALIDATION 
UC3 is validated in a SEMIoTICS testbed environment, being composed of a Backend layer, an NFV 
Infrastructure layer, and a Field layer. This is the 1st validation testbed and infrastructure, which was integrated 
during this cycle 1 period, focusing on the first sub-use case which is detailed in Section 4, where UC3 
applications that implement smart monitoring and analytics functions, are managed autonomously by the 
SEMIoTICS framework. Thus, functionalities such as establishing connectivity, negotiating transport protocols 
and networking paths, as well as service scale-out and load balancing functions will be totally transparent for 
IoT applications. Moreover, they are handled by the respective frameworks of the SEMIoTICS infrastructure 
under the control of the Pattern Orchestrator. During cycle 2 activities period, we extended the same approach 
in the sub-use cases 2 and 3 by incrementally adding all the missing features, SW artifacts and missing 
components, and integrating them under the same UC3 testbed. As a result, a complete end-to-end 
demonstrator has been provided, ensuring the correct integration from the field layer to the network and finally 
the backend where the UC3 GUI visualization based on openHAB IoT platform and the global data aggregation 
and 3rd party services queries has been implemented. The UC3 testbed has been enhanced by providing the 
infrastructure needed to support the validation and inclusion of all the yet missing components needed by the 
full storyline and expected for the final demo.  
More specifically, the UC3 testbed is currently composed of: 

• One backend server with 6-cores and 32 GB RAM hosts the NFV MANO framework and Network 
services. To increase portability, the same server acts as the Compute Node, or Cloud hypervisor, that 
hosts all IIoT services and VNFs in dedicated Virtual Machines (VMs). 

• A virtualized IoT gateway based on a 64-bit ARMv8 Single Board Computer (i.e., an Odroid C2) which 
is capable of hosting VNFs and acting as a gateway hypervisor as well. 

• A legacy gateway and sensors 
• Field layer devices from ST. 

 

 
FIGURE 4. PHYSICAL INFRASTRUCTURE OF UC3 TESTBED 

IHES Acceleration Sensing IHES Environmental sensing

Legacy gateway

And sensors Backend Server SEMIoTICS

Gateway

Wireless Router

With MQTT

OpenHab GUI
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3.1 Field layer 
The UC3 Field Layer testbed includes a virtualized IIoT gateway that interconnects a set of sensors and 
actuators with the backend cloud. The IoT gateway supports KVM virtualization, enabling us to push VNFs 
down to the gateway tier. This allows services with ultra-low latency requirements to be pushed in very close 
proximity to the Field devices, hence minimizing latency. The relatively modest resources available at the 
gateway, which is implemented with a Odroid 64-bit ARM-based Single-Board Computer (SBC), means that it 
must be used for a minimum number of VNFs with low processing needs. Crucially, the IoT gateway hosts the 
IHES supervisor service, which is implemented as a .Net console application and thus requires the  mono or 
.Net Core runtime frameworks to operate. Since both runtimes require hundreds of megabytes of storage 
space, the mkbundle tool was leveraged, which is a cross-compiler tool which produces a native Linux 
executable an initial .Net assembly, packaging any .NET dependencies and any additional assemblies that the 
application requires. Moreover, since the original application supported the Raspberry Pi 3 environment, the 
cross-compilation capabilities of the mkbundle were leveraged: 
 
First, the cross-compiler tools of the 64-bit target platform (i.e., the Odroid C2) were fetched: 

$ mkbundle --fetch-target mono-5.18.0-ubuntu-16.04-arm64 
 
And finally, the native Odroid C2 executable was simply cross-compiled with the following command, and 
deployed within the VNF-1: 
 

$ mkbundle -o slim_coordinator --cross mono-5.18.0-ubuntu-16.04-arm64 --deps 
slim_coordinator.exe --machine-config /usr/etc/mono/4.5/machine.config 
 

 
FIGURE 5. VIRTUALIZED IOT GATEWAY 

 
The UC3 LEA component mapped directly into STM32 MCU has been integrated into the UC3 testbed as it 
was designed released in task 4.3 with minimal adaptions to it for the specific MCU mapped components. 
Please refer to section 4.3.1 for an overview about it.  
Finally, as part of the UC3 Second Cycle the SEMIoTICS pattern engine was deployed at the IoT gateway, 
with support added for the reliability pattern. More specifically, the pattern engine keeps track of MQTT 
messages transmitted by IHES sensors with a timeout value which is triggered when no heartbeat messages 
are received for a user-defined time threshold. Moreover, the pattern engine can keep track of sensor value 
disagreement, such that sensor redundancy scenarios can be supported. 
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3.1.1 BACKEND 
As part of the UC3 second cycle, the SEMIoTICS Pattern Orchestrator (PO) and GUIHub were deployed at the 
UC3 Backend server, while the openHAB IoT platform was already deployed during the First Cycle. The 
SEMIoTICS PO related to the Field Pattern Engine through TCP port 7080, and the GUIHub through TCP port 
9080. Thus, the latter can visualize the status of the Dependability pattern, pulling status updates from the PO 
in real time. Moreover, the BLS GUI was updated to host the openHAB HabPanel GUI inside the GUIHub 
module. The following BLS GUI components were deployed as Docker containers at the UC3 backend server:  
 

• GUI frontend: This is an Angular app that serves as Graphical User Interface. 
• GUI backend: This is Spring Boot app that is responsible for all GUI logic and operations. It receives 

requests from GUI frontend and communicates with integrated components e.g., Thing Directory, 
Pattern Orchestrator. 

• GUI database: This is a PostgreSQL database that storages all GUI data. 
 
Moreover, a UC3 recipe for dependability was authored which sets-up a redundancy scenario for UC3 
environmental sensors. In this scenario, at least two sensors must be online and transmit measurements of 
the same value (e.g., temperature) that should not diverge more than a maximum user-defined threshold. 
Finally, during second cycle a dedicated cloud-based InfluxDB instance was deployed at the Backend to 
aggregate sensor values and events to be visualized by the openHAB HabPanel GUI. The deployment of a 
global DB was deemed necessary to free-up resources from the IoT gateway which hosts the local DB and 
decrease latency in serving sensor values to the visualization sub-system which is also hosted at the Backend. 
It must be noted that sensor data visualization and aggregation functions are deployed within Virtual Network 
Functions (i.e., VNFs) hosted by the UC3 NFVI as detailed in Section 3.2. 
 

3.2 NFV Infrastructure (NFVI) 
The UC3 NFVI includes the set of NFV controllers and managers (i.e., VIM, Neutron SDN, ETSI OSM), and 
the set of hardware used for virtualizing network functions (also referred to as compute nodes). Together, SDN 
and NFV are able to realize customizable isolated network environments (termed Virtual Tenant Networks, or 
VTNs), where processing endpoints (i.e. VNFs) are dynamically instantiated at appropriate Compute Nodes. 
Network traffic is then directed towards such VNFs, which may be standalone or part of a custom Service 
Function Chain (SFC) to reach a desired endpoint, be processed or consumed. It must be noted that the UC3 
Backend server also serves as a Compute Node which provides “scalable, on demand, self-service access to 
compute resources” via the OpenStack Nova hypervisor service and its Compute APIs. The UC3 IIoT 
applications are implemented as a collection of 3 such VNFs: 

• VNF-1 includes the Supervisor and Local DB functions and is deployed at the IoT gateway, simplifying 
deployment and ensuring minimal latency of the functions 

• VNF-2 includes the openHAB Visualization service, and is leveraged to display sensor data, as well as 
global and local status changes in real time and generate charts. 

• VNF-3 implements global data aggregation and storage via a global InfluxDB time series database, 
allowing post-processing and analysis of sensor data. 

 



780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017 
Deliverable D5.11 Demonstration and validation of IHES- Generic IoT (Cycle 2) 
Dissemination level: Public  

 

16 
 

 
FIGURE 6. UC3 NFVI INCLUDING THE VNF1, VNF2 AND VNF3 AND NFV MANO 

 
 The whole lifecycle of the VNFs is managed by the NFV MANO framework which is composed of the NFVO 
and VNFM modules. More specifically, note that the user has to interact with the OSM to manage the whole 
lifecycle of the VNF. Moreover, the OSM interacts internally with the OpenStack, which manages the 
deployment of the VNFs on top of the NFVI, encapsulated within VMs. More insights on NFV for the SEMIoTICS 
purposes are given in the SEMIoTICS’ deliverable D3.8 (al. J. S., 2020). Next, we list the configuration files 
required for VNF deployment and we explain their role: 
 

• VNF descriptor (VNFd). This is the configuration file that describes the VNF, which has a yaml format. 
It describes the features of the VM that will host the VNF, the links that the VNF exposes externally to 
connect to e.g. NS and other features that we will see below. 

• Network Service descriptor (NSd). VNFs are part of an overall network service (NS). A NS contains 
at least one VNF. Moreover, the NS is described by a configuration file in yaml format that is so-called 
NSd. It describes among other features the constituent VNFs of the NS or the links between the NS 
and the VNF. The tag “constituent-vnfd” indicates which VNFs are part of the NS and the “vld” tag 
defines the virtual links used by the NS for to interconnect VNFs 

• Cloud init file. This is a configuration file that will be used by the VM that will host the VNF. It specifies 
the initial behavior that the VM needs to provide. For instance, installation of software packages, 
execution of software applications, among other features. 
 

Next, we present an example snapshot of the yaml file that we have used to define the VNFd of VNF3 (similar 
yaml files are prepared for VNF-1 and VNF-2). First, note that the “connection-point” tag indicates the external 
connection points of the VNF. Its value corresponds with the one assigned above in the NSd yaml file, within 
the “vnf-connection-point-ref” tag of the “vld” list. The tag “id” is the unique identifier for the VNF and it is 
important to recall it, as it is used in the NSd. The tag “mgmt-interface” is the interface over which the VNF is 
managed. Moreover, the “cp” within it just specifies the type of management endpoint, in our case “cp” means 
that we will use a connection point. Another important tag is the “vdu”, which stands for virtual description unit, 
and it specifies the features of the VM that will host the VNF. Thereby, the “cloud -init-file” indicates the cloud 
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init file that will be used by the VM. The snapshot for this cloud init file is described below. The tag “image” 
indicates the image that will be used to create the VM, in our case we will have an Ubuntu OS. The “interface” 
tag within the “vdu” tag specifies the interfaces for the vdu. Note that we define an external connection point 
that corresponds with the connection point def ined for the vnfd. Last, but not least, the “vm-flavor” indicates 
the computing, memory, and storage features of the VM that will host the VNF. Thereby, note that we define a 
VM with 1 virtual CPU, 4 GB of RAM and 5 GB of storage. 
 

 
FIGURE 7. VNFD TO CONFIGURE AND TO DEPLOY THE VNF RELATED TO VNF3 

 

3.3 UC3 Networking 
In UC3 a Virtual Tenant Network (VTN) is deployed to interconnect VNFs1-3, leveraging OpenStack Neutron 
Networking, which is hosted within the main Controller node. OpenStack Neutron is an SDN controller which 
is part of the OpenStack networking project and provides the virtual networking resources expected in the 
SEMIoTICS NFVI, offering control over L2/L3 networking parameters, security policies, resource management 
and QoS over a simple REST API. Moreover, VTN offers Layer 2 isolation of virtual network participants, 
compatible with the Network Slicing (NS) concept. In UC3 VTNs are implemented with VXLAN, supporting 
unlimited network overlays on top of the provider network which provides external access to UC3 VNFs. The 
UC3 VTN is bridged via an Open vSwitch bridge with the Wi-Fi network, allowing sensor nodes to directly 
interact with the VNFs, through an MQTT based message bus. Moreover, DHCP and Firewall functionality i s 
offered by Neutron.  
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FIGURE 8. UC3 NETWORKING VIA OPENSTACK NEUTR 
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4 SUB USE CASE 1: LOCAL VS GLOBAL ANOMALIES 
DETECTION DEMO 

4.1 Story line 
This sub use case is in line with the UC3’s scenario 1, “Local Vs Global anomalies”, described in section 2. As 
a result of this, we provided and deployed the complete field level UC3 analytics into UC3 testbed described 
in section 3, in order to enable the final SEMIoTICS framework integrated UC3 demonstrator. Furthermore, as 
stated in the scenario 1 of UC3, a key capability of the UC3 distributed intelligence system is the ability to self-
learn from the environment any nominal state from a given input sensor and set -up autonomously threshold-
free analytics in order to detect any anomaly from this acquired nominal state. On top of this it is possible, by 
using several IHES device nodes deployed in the environment, to estimate the relations between the sensing 
device in order to understand at a higher level of the architecture, if a particular anomaly belongs to a single 
node (local change) or has been observed by many (partial change) if not all nodes (global change).   
The scope of this sub use case 1 is to provide an integrated infrastructure at field level (devices + gateway) to 
realize these capabilities. The scenario involves the need for three more Field Level SEMIoTICS components, 
the instantiation of the MQTT infrastructure needed for message exchange, and the NFV virtualization 
infrastructure for a reliable, affordable mapping of the UC3 testbed infrastructure.   
 

4.2 Scope and objectives 
The main objectives of this sub use case are summarized as follows: 

• Integrate into the testbed discussed in section 3, the three UC3 Local Embedded Analytics (LEA) 
related components at field level, as it has been designed and developed from AI self-learning / 
statistical algorithms characterized in task 4.3 and described in detail on deliverable D4.10 (al. M. F., 
April 2020). 

• Integrate and deploy UC3 MQTT infrastructure at field level as it has been designed and discussed in 
Task 2.4, D2.5 (al. M. f., December 2019). 

• Validate the integrated functionalities verifying that the VNF UC3 testbed works as expected compared 
to the ST initial laboratory testbed. 

• Visualize real-time sensor values, events, as well as global and local changes events though openHAB 
UC3 App. 

• Cross-compile the IHES Supervisor service components for the Odroid C2 virtualized gateway 
embedded board, and deploy within VNF-1, since in ST testbed it was validated on a Raspberry Pi3 
board. 

• Integrate the IHES local DB service exploiting InfluxDB for local data and events storage 
• Set the requirements and derive the functional blocks to support functionalities described in sub use 

case scenarios 2 and 3 by designing all components interoperability  and implementing dynamic flows 
architecture as reported in D2.5 – UC3 architecture section. 
 

4.3 Interaction with SEMIoTICS framework and components 
In this the section we detail SEMIoTICS the set of components leveraged by UC3 or that could interoperate 
with UC3 infrastructure within the SEMIoTICS framework architecture and explain their interactions during the 
UC3 sub use case 1 storyline presenting sequence diagrams for common procedures and APIs and their 
relation to other SEMIoTICS components are overviewed. 
 
Field level SEMIoTICS components needed for UC3 scenario:  

• Local Embedded Analytics component on MCU (see section 4.3.1).  
• Supervisor and Local DB components on gateway (see sections 4.3.2 and 4.3.3).  
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• The openHAB platform (see section 4.3.4). 
 
Field level SEMIoTICS components interoperable with UC3 designed sub-system (please refers do related 
deliverables in WP4 – D4.8, D4.11 and D4.13 for details about these two SEMIoTICS components and their 
interaction with other components): 

• Semantic Edge Platform: interoperability with this component is possible by exploiting common 
underlying Node-RED infrastructure. This allows the possibility to have an open flexible ecosystem 
able to easily map and sustain new use case scenarios. 

• Local Thing Directory: on UC3 scenario the coordination and management of the nodes are ensured 
by the interaction between the LEA component on the MCU and the IHES supervisor service. Anyhow, 
since the IHES sensing devices relies on standard MQTT + JSON communication protocol, it is 
possible to expose them additionally as standard WoT device node in order to be discoverable as 
simple sensing units by other systems / components not part of the specific UC3 architecture. This 
ensures the interoperability and facilitate integration at gateway level with virtually any 3rd party 
services. A TD (Thing Descriptor) exposing underlying MQTT protocol of the UC3 sensing devices has 
been documented and released as reference on D4.11 subsection 4.3.3.    

  
The sub use case 1 scenario basically implements two flow diagrams that has been declared in D2.5 as part 
of the UC3 ecosystem. The one presented in Figure 9 represents the communication flow and processing 
between the IHES sensing nodes and the IHES supervisor, where a generic raw data signal is locally 
processed to detect anomalies, stored in a local DB together with events generated by the LEA component 
embedded on the MCU device. Finally, on bottom left part the correlation between gathered data is computed 
so to enable at IoT gateway the possibility to discriminate among local or global anomalies.  
 

 
FIGURE 9. UC3 FL MESSAGE FLOW: SENSING UNITS TO IHES SUPERVISOR 

 
On Figure 10 instead, it is reported part of the flow that we implement as part of cycle 1 activities where the 
results (i.e., events) reported by the system at FL are propagated to the upper level of the UC3 infrastructure 
exploiting the MQTT communication and the VNF virtualization infrastructure. As today, we realized only part 
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of the diagram flow (the left part on Figure 10, involving mainly the interaction between the sensing board and 
the gateway declared in this sub use case 1). On cycle 2 integration the full diagram will be integrated to realize 
the complete flow involving the SEMIoTICS infrastructure as well at network and cloud level. Please refer to 
section 5 (sub use case 2) for a preliminary discussion about that specific part of the UC3 demonstrator.   
 

 
FIGURE 10. LOCAL VS GLOBAL SCENARIO, FIELD LAYER MESSAGE FLOW 

 

4.3.1 IHES LOCAL EMBEDDED ANALYTICS (ON MCU) 
This component has been developed within task 4.3 and it has been integrated on UC3 testbed as a dedicated 
firmware on a STM32 microcontroller board whose package and libraries are reported in Figure 11. It includes 
all the analytics local algorithms (tiny AI for signal modelling prediction and online training, statistical algorithms 
like the CDT and CPM for anomalies detection and validation), and finally the MQTT + JSON client . 
As a result, the LEA component interacts with the SEMIoTICS framework thanks to a specifically designed 
MQTT JSON protocol that delivers to other components in the infrastructure the anomalies detected in the 
form of relevant events. 
In more detail, each IHES sensing unit is composed by a dedicated board equipped with an ARM Cortex M4 
80Mhz MCU, an X-NUCLEO-IDW01M1 Wi-Fi adapter and an X-NUCLEO IKS01A2 environmental + inertial 
sensors expansion board, all stacked together on a single PCB board named “CLOUD-JAM” (see Figure 
12Figure 11). Each MCU is programmed with a dedicated FW stack implementing the UC3 designed analytics 
algorithms discussed in D4.3 and D4.10 together with the communication stack (Wi-Fi + MQTT client) based 
on STMicroelectronics legacy middleware SW stack. 
These devices were integrated into the sub use case 1 IoT gateway. 
A detailed overview and characterization of them has been provided as part of final D4.10 (al. M. F., April 
2020). Please refer to this deliverable for any detail about it. 
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FIGURE 11. IHES SENSING NODE SW ARCHITECTURE: ANALYTICS MQTT JSON FLOW 

 

 
FIGURE 12. IHES LEA ON CLOUD-JAM STM32 BOARD 

 

4.3.2 IHES SUPERVISOR SERVICE 
The IHES supervisor service is a specifically designed SW service mapped on UC3 IoT gateway as part of the 
virtualized VNF-1 instantiation. It is a key-components at gateway level to interface the IHES Sensing unit and 
allows interoperability with the SEMIoTICS infrastructure though underlying MQTT protocol and node-RED 
infrastructure. 
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It is mainly divided into following software modules briefly described: 
 

MQTT CLIENT: the purpose of this module is to allow communication through the MQTT protocol 
and, therefore, to exchange messages with the IHES Sensing Unit connected to the IoT gateway. 
In addition, the algorithms are contained here for parsing JSON messages sent by nodes, together 
with APIs for writing to the local DB. 
 

• CORE MODULE: all the functions are contained in this main software module. They include the 
complete management of IHES Sensing Unit connected to the system, the implementation of the 
adaptation strategies. Also, these functions define all the parameters that allow connection to the 
local MQTT broker. 

 
• DEPENDENCY GRAPH: the purpose of this last module is to compute the dependency graph. It is 

a graph G = {V, E} with V that represents the set of graph nodes (the datastream connected to the 
system) and the set of arches (relationships between datastream). We will say, therefore, that two 
data flows X and Y are related to each other if and only if there is an arc connecting them. An arc 
from datastream X to datastream Y creates a direct relationship when X and Y are datastream 
associated with sensors of the same type. If instead, these data streams are associated with 
different types of sensors, the report says live. The IHES supervisor service contains all the 
algorithms for the calculation of the correlation matrix between different data series and allows to 
obtain the dependency graph from the latter. 
The purpose of the Dependency Graph is to autonomously estimate which (and how) the 
datastream they are related to each other to implement self-adaptation strategies of the intelligent 
system using this information. 

 
• NODE-RED dataflow frontend: this module is responsible to dynamically manages the MQTT 

dataflow connections between connecting IHES nodes and the IHES Local DB component to 
ensure data connection properties and safe data storage for later monitoring and data / events 
analysis. The MQTT data flows are organized in a hierarchy of topics depicted in Figure 13 
designed to manage node scalability and seamlessly connection / disconnection to the system.  
On Figure 14 it is reported an example of the Node-RED dataflow instantiated to store into the 
local DB the message MQTT payloads sent by a node device. 
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FIGURE 13. UC3 PROTOCOL MQTT TOPICS HIERARCHY 

 

 
FIGURE 14. NODE-RED MQTT DATAFLOW 

 

4.3.3 IHES LOCAL DB 
The IHES local database, is implemented on top of the InfluxDB stack. InfluxDB is a SQL-like time-series 
database supporting a whole ecosystem for data processing, storage, and data aggregation. All messages 
sent on local LAN by the IHES sensing units are stored into this database. InfluxDB offers a complete set of 
standard HTTP Rest APIs to query and manage the database. The interaction between the IHES local DB 
component, the IHES Supervisor and other components in case, is guaranteed thanks to the adoption of the 
Node-RED infrastructure as the enabling technology for real-time data flows instantiations.  
 

4.3.4 OPENHAB PLATFORM 
The open-sourced openHAB platform is a flexible, open-source, technology-agnostic automation platform that 
can integrate a multitude of devices and systems. To achieve this, openHAB segments and compartmentalizes 
certain functions and operations. openHAB uses Apache Karaf to create an Open Services Gateway initiative 
(OSGi) runtime environment. Jetty is used as the HTTP server, which implements the Dashboard and 
Management GUI and hosts the openHAB REST API. In UC3, the openHAB HabPanel GUI is leveraged for 
visualization purposes, to display in real-time field sensor values, as well as global and local changes. More 
specifically, during the UC3 2nd cycle implementation, a HabPanel Timeline widget was leveraged to visualize 
global, partial, and local changes. These were represented as purple, yellow, and blue bars respectively.  
 

4.4 Validation 
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The validation activities related to the development and later deploying of the two components supporting sub 
use case 1 story line (i.e., the IHES Sensing Device and IHES Supervisor service) has been done as part of 
both WP4 and WP5 activities, mainly on task 4.3 and task 5.6. 
We could ideally identify two separate phases of the whole validation step of the components: a 1st initial 
development / tuning phase of the analytics algorithms and their efficient partitioning and mapping on the 
different part of the system, carried out in ST labs by sett ing-up a field level dedicated testbed. This part of the 
validation has been done during task 4.3 by mainly ST while planning the integration infrastructure needed for 
task 5.6 with the other UC3 partners. A second phase validation, aiming at providing a reliable, interoperable 
UC3 testbed integrated in SEMIoTICS has been done as part of the task 5.6 activities thanks to the cooperation 
of all partners involved in the UC3. The focus of this validation was the deployment of a SEMIoTICS integrated 
testbed fully functional to incrementally support the three main sub use cases. During this validation great care 
has been devoted in ensuring that all the technologies characterizing the UC3 scenario, validated in the initial 
ST proprietary testbed, has been integrated into existing SEMIoTICS ecosystem in order to enable all 
requirements and needs related to the distributed edge computing approach. 
As a result of all these activities we achieved a complete Field Level UC3 deployment at device and gateway 
level, together with a preliminary vertical integration with the network and backend components and the 
openHAB IoT platform that has been used in cycle 2 to deliver a monitoring GUI of the whole system. The final 
version of this UC3 app, and a screenshot is reported in Figure 15. It shows the GUI panel showing the live 
data acquired form six connected IHES sensor devices (three inertial sensors for vibration plus three more for 
environmental monitoring) with a temporal plot of the anomalies reported by the connected node plus the raw 
data readings and specific events at each single node. A bar chart located in the bottom part of the panel is 
instrumental to this and the color of the bar identify the type of change. In blue color are reported the local 
changes, in yellow the partial ones, and finally in purple color the global ones. This preliminary classification 
of the type of abnormal changes done at field device level, that is the main goal of sub scenario 1 presented 
in section 4 is the key enabler for the demo and in particular of the sub use case 2 described in section 5, to 
detect and raise potential avalanche warning alerts. In more detail, the avalanche alert is raised only when 
global changes are reported by the field devices analytics thanks to the analysis on correlated devices done 
in IHES Supervisor, and when also abnormal temperature trends have been identified by the additional 
analytics deployed at UC3 backend. This has been designed with the intent to limit as much as possible false 
positive alerts in the UC3 system.  
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FIGURE 15. UC3 OPENHAB GUI APPLICATION 
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5 SUB USE CASE 2: CLOUD LEVEL DATA AGGREGATION, DATA 
ANALYTICS AND VISUALIZATION DEMO 

5.1 Story line: Collaborative edge-cloud analytics for early avalanche warning. 
This sub use case is in line with the UC3’s scenario 2, “Causal discovery and inference”, described in section 
2.1. Therefore, this sub use case is motivated by the Rigopiano avalanche accident, where both the rise of 
temperature along with seismic events provoked an avalanche that killed several persons. The aim is to alert 
proactively on the risk of such avalanches by leveraging the SEMIoTICS technology, as it will be described 
below. To this end, herein we provide a global data aggregation, data analytics and storage at the cloud level, 
which is combined with the local intelligence at the field devices. Therefore, in terms of data analytics, herein 
we leverage the benefits of both the intelligence implemented at the field devices and at the cloud level. Thus, 
a so-called collaborative edge-cloud approach is proposed herein. This is complemented by a visualization 
tool that displays the stored data or a processing of this data. The functional block diagram of the scenario is 
described in Figure 16. 
The IHES sensing units by ST are the IoT field devices that gather the environmental data needed to detect 
the risk of avalanches. Namely, on the one hand they obtain temperature measurements. On the other hand, 
the accelerometer sensors obtain measurements related to the vibration of the surface where they are placed. 
The local embedded intelligence at the field devices allows to detect seismic events by relying on the 
accelerometer sensors’ data. The supervisor at the IoT GW controls the training of the embedded local 
intelligence algorithms. The MQTT protocol is used to transmit sensors' data to the cloud. Thereby, the global 
data base at the cloud is populated by the data transmitted by the IHES sensing units. On the other hand, the 
data base can contain data from third party databases of local authorities, e.g. the National Institute of 
Geophysics and Volcanology (INGV) or weather agencies. Thereby, the monitoring of the IHES sensing units 
can be complemented with atmospheric trends. In this regard, herein we will simulate a weather agency and 
we will consider that it provides some environmental parameters bounds, related to the temperature. When 
these parameters are surpassed an early avalanche risk warning can be triggered, as it will be explained in 
the validation and implementation section.  
Besides, the global data aggregation or storage, the cloud also provides data analytics and visualization 
functionalities. openHAB allows the visualization of the sensors' data and the output of the use case 3 app. In 
fact, the use case 3 app is the cornerstone of this sub use case, as it implements the data analytics to infer 
the risk of an avalanche. On the one hand, it implements a temperature predictor, by leveraging the available 
temperature measurements provided by the IHES field devices. The temperature prediction is compared to the 
weather agency parameters bounds and if they are surpassed a risky temperature event is triggered. On the 
other hand, the use case 3 app at the cloud considers the seismic events provided by the local embedded 
intelligence of the IHES sensing units. Finally, when there is both a risky temperature event and a seismic 
event, the use case 3 app triggers the early avalanche risk warning. Thereby, a collaborative edge-cloud 
intelligence is implemented.  
Finally, it is worth mentioning that the network function virtualization (NFV) technology controls the 
virtualization of the computational and storage resources of the cloud, yielding the so called Network Function 
Virtualization Infrastructure (NFVI). Thereby, a set of Virtual Network Function (VNFs) located at the cloud 
level can be deployed on top of the NFVI in a flexible, scalable, and isolated manner. This is the case of our 
use case 3 app, which implements the avalanche risk alert. 
In summary, the collaborative-edge cloud approach proposed herein for early avalanche risk warning has the 
next benefits. It allows the aggregation of local information available at the GW level in a global entity, which 
is made available for assessment and post-processing by analysts. Thereby, the visualization and data 
analytics at the cloud offer a global view of sensor data and events, which complements the local view offered 
by GWs. Moreover, the global database can contain data from third party databases. The consolidation of this 
data allows local authorities to act proactively and avoid disasters. The Use case 3 app also provides an 
eastbound interface towards the visualization tool provided by the openHAB to display the aggregated data. 
For instance, the historic measurements of temperature, the predicted temperature and the avalanche warning 
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can be displayed in openHAB. Thereby, the time-series of data from the IHES sensing units and from third 
party authorities can be presented in charts at various timescales upon request. 

 
FIGURE 16. FUNCTIONAL BLOCK DIAGRAM OF THE SUB USE CASE 2 

 
 

5.2 Scope and objectives 
The main objectives of this sub use case are summarized as follows: 

• Implement an early avalanche warning application that leverages the SEMIoTICS architecture. To this 
end, rely on a collaborative edge-cloud data analytics approach. The embedded local intelligence at 
the field devices will detect seismic events. The cloud will implement a temperature predictor given the 
temperature measurements gathered by the field devices. The early avalanche warning relies on both 
the seismic events inferred at the edge and the risky temperature events inferred at the cloud. 

• Implement in a global entity, at the cloud level, the capability to receive and to aggregate the time 
series of data transmitted from the IHES sensing units via MQTT. This includes temperature data 
measurements and seismic events generated by the IHES sensing units.  

• Leverage the openHAB visualization tool to display in real-time the temperature data measurements 
available at the cloud from different IHES sensing units. Also, use openHAB to display in real-time the 
temperature prediction inferred at the cloud level and the early avalanche warning. 

• The data aggregation, visualization and data analytics at the cloud level are implemented within the 
framework of NFV. 

• Provide a southbound interface for the GWs to send the IHES sensing unit data to the cloud level. The 
information model is analogous to the one used between the IHES sensing units and the GW. Thereby, 
the raw data and relevant events are expressed by means of a JSON model and an MQTT protocol is 
used for communication purposes. 
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5.3 Interaction with SEMIoTICS framework and components 
In Figure 17 we display the functional blocks of the sub use case 2, introduced in section 5.1, within the context 
of the SEMIoTICS architecture. Given this figure, below we explain in more detail the mapping and interaction 
between the functional blocks of this sub use case and the SEMIoTICS architecture.  
 

 
FIGURE 17. FUNCTIONAL BLOCK DIAGRAM OF THE SUB USE CASE 2 AND ITS MAPPING WITHIN 

THE SEMIOTICS ARCHITECTURE 
 

5.3.1 INTERACTION WITH THE IHES SENSING UNITS AND THE LOCAL EMBEDDED INTELLIGENCE 
The IHES sensing units are of paramount importance in the sub use case tackled herein. On the one hand, 
they obtain the temperature and accelerometer measurements. On the other hand, the accelerometer 
measurements are used by the local embedded intelligence to infer whether there are seismic events. 
Moreover, the temperature measurements are sent to the cloud via MQTT. The temperature measurements 
are the inputs of the temperature predictor implemented at the cloud level. Also, the output of the temperature 
predictor at the cloud level and the seismic events inferred by the field devices are used as inputs to infer at 
the cloud level whether there is a risk of an avalanche. 
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5.3.2 INTERACTION WITH THE SUPERVISOR AND LOCAL DB 
The sub use case presented herein has a clear interaction with some of the SEMIoTICS’ architectural 
components at the IoT GW level. Namely, the supervisor at the IoT GW controls the training of the embedded 
local intelligence algorithms implemented at the IHES sensing units and to this end, it needs the local DB as 
well. It must be noted that the openHAB visualization tool and the early avalanche warning use case 3 app, 
located at the cloud-level, interact with the gateway, that hosts the supervisor service and local DB, via an 
MQTT message flow. 
 

5.3.3 INTERACTION WITH THE NFV COMPONENT 
The SEMIoTICS’ NFV component is leveraged in the sub use case presented in this section. The NFV 
component allows the virtualization of the computing, networking, and storage resources at the cloud and at 
the gateway level yielding the so-called NFVI. Thereby, all VNFs can be deployed within VMs that leverages 
those virtual resources. Moreover, the NFV component has the role to manage the lifecycle of VNFs, through 
the NFV MANO subcomponent, see Figure 17. Thereby, it controls their onboarding within the NFV framework. 
 

5.3.4 INTERACTION WITH THE UC3 APP AT THE APPLICATION ORCHESTRATION LAYER  
The use case 3 app of the SEMIoTICS’ application orchestration layer is actually the core component of the 
sub use case presented herein. Namely, first it implements the MQTT receiving chain that allows to receive 
the MQTT messages sent by the IHES sensing units. Moreover, it extracts the temperature measurements and 
the seismic events from these MQTT messages. Also, given the temperature measurements, it implements a 
temperature predictor. The predicted temperature is compared to some parameter bounds prov ided by a 
simulated weather agency and if they are surpassed a risky temperature event is generated. Finally, the use 
case 3 app implements the early avalanche warning system as well. Namely, it leverages the temperature 
events produced by the temperature predictor along with the seismic events obtained from the IHES sensing 
units. Thereby, it triggers the avalanche warning when both the temperature and seismic events are identified.   
 

5.3.5 INTERACTION WITH THE OPENHAB VISUALIZATION COMPONENT 
This sub-use case provides real-time data visualization by leveraging the openHAB visualization component. 
More specifically, the global time series database stores the temperature measurements stemming from 
several IHES sensing units associated to the corresponding IoT GW. Thereby, the database contains relevant 
global information generated by the IHES sensing units. The openHAB visualization component can access 
the database and visualize the above-mentioned data in the form of charts, at various timescales. openHAB 
will also visualize in real-time the temperature prediction implemented the use case 3 app mentioned above. 
Also, the early avalanche warning will be visualized in openHAB. 
 

5.4 Validation 
In this section, we show how the sub-use case 2 has been implemented. Namely, according to the previous 
sections, herein we implement a cloud level data aggregation, data analytics and visualization that tackles the 
Rigopiano avalanche disaster. To this end, a collaborative edge-cloud approach has been implemented, as it 
has been introduced above. In Figure 18, for the sake of clarity, we show a block diagram of the implementation 
of the sub use case 2, which is in the context of the overall use case 3 testbed introduced above. 
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FIGURE 18. FUNCTIONAL BLOCK DIAGRAM OF THE IMPLEMENTATION OF SUB USE CASE 2.   

 
As it can be observed in Figure 18, the IHES sensing units gather temperature measurements. Also, they infer 
seismic events, given the measurements provided by the accelerometers. This inference is obtained thanks to 
the local embedded intelligence of the IHES sensing units. Then, the temperature measurements and the 
seismic events are transmitted to the cloud by using an MQTT communication protocol. Then, at the cloud, the 
MQTT data is aggregated, analyzed, and visualized. More specifically, the use case 3 app implements the 
avalanche risk assessment. To this end, it considers the seismic events available from the IHES sensing units 
and the output of the temperature predictor. The predicted temperature is considered risky if it surpasses the 
bounds provided by a simulated weather agency. Then, a risk of avalanche is triggered when both the 
temperature is risky and there are seismic events. Note that the temperature predictor relies on the temperature 
measurements gathered by the IHES sensing units. Namely, it works recursively and, in each iteration, it 
considers a batch of past temperatures to make the prediction for the upcoming future time horizon. Also, note 
that the proposed approach implements collaborative edge-cloud data analytics, as one the one hand the 
seismic events are inferred at the field devices. On the other hand, the cloud implements a temperature 
prediction and an avalanche risk assessment that considers both the seismic events, i.e. the intelligence at 
the edge and the temperature prediction, i.e. the intelligence at the cloud. Finally, the openHAB tool allows to 
visualize in real-time the temperature measurements available at the cloud, the predicted temperature, and 
the avalanche risk warning. Observe that the details for the local embedded intelligence and the IHES sensing 
units have been already provided above in the sub use case 1. Also, the MQTT communication has been 
detailed above in the testbed setup section. Thereby, herein we focus on providing the details for the use case 
3 app, which is the core data analytics component of the collaborative edge-cloud approach. Also, we show 
the overall integration of this sub-use case in the use case 3 testbed by providing the visualization results 
displayed in openHAB. These visualizations will show that the temperature measurements that the IHES 
sensing units transmit via MQTT are received properly and that are displayed in real -time. The visualizations 
also show that the temperature prediction leverages properly the past temperature measurements. Finally, the 



780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017 
Deliverable D5.11 Demonstration and validation of IHES- Generic IoT (Cycle 2) 
Dissemination level: Public  

 

32 
 

openHAB visualizations show that the risk assessment works properly as it raises an alarm when both there 
are seismic events and the temperature is risky.  
 

5.4.1 TEMPERATURE PREDICTION AND AVALANCHE RISK ASSESSMENT  
 
First, it is worth mentioning that the use case 3 app has been implemented using the next software 
programming languages and libraries:  
 

• Python. The python 3 programming language has been used to implement the use case 3 app, as it is 
within the open-source philosophy. Thereby, it can be integrated with the rest of the use case 3 testbed 
without the need of a license, which is needed e.g., in Matlab. 

• NumPy software library. This library has been used as the data analytics requires manipulations of 
mathematical arrays. 

• MQTT paho python library. This is a python library developed by Eclipse that provides APIs that 
implement the MQTT protocol. We need it as the communications inputs and outputs of the use case 
3 app with the rest of the use case 3 testbed are done through MQTT, e.g. the communication between 
the use case 3 app and the openHAB visualization.  

 
Moreover, as it is highlighted in Figure 18, the use case 3 app implemented for this sub use case 2 consists of 
the next sub-blocks and interfaces: 

• Temperature predictor. It predicts the temperature for a future time horizon periodically, given a batch 
of past temperature measurements from the IHES sensing units available at the cloud.  

• Avalanche risk assessment. Given the temperature prediction and the temperature bounds, provided 
by a simulated weather agency, it assesses if the predicted temperature is risky. Then, if the 
temperature is risky and there are seismic events it triggers the avalanche alert. 

• Interface with the IHES sensing units. It is based on MQTT, by subscribing to the proper MQTT topics 
the temperature and seismic events are received, as it is detailed below. 

• Interface with the simulated weather agency. It is based on MQTT. As in the previous bullet, the 
weather station parameter bounds are received by subscribing to the proper MQTT topics, as it is 
detailed below.  

• Interface with the openHAB visualization tool. The use case 3 app publishes MQTT topics containing 
the predicted temperature and the risk alerts. The openHAB can receive those messages by 
subscribing to the proper MQTT topics, as it is detailed below.  

 
All these sub-blocks and interfaces will be explained next in more detail. 
 
MQTT communication interfaces 
As it is introduced above, the MQTT-based interfaces allow the reception of the temperature measurements 
and the seismic events from the IHES sensing units. To this end, according to the IHES topic structure 
introduced in previous sections, we must subscribe to the next MQTT topic: 
 
“ihes/node/+/out” 
 
Note, that the wildcard “+” is used, as we do not care on the specific value of that position. When MQTT 
messages with this topic are received, a callback is called, according to the MQTT paho library, and the user 
must create the callback to process the MQTT messages with that topic. Thereby, we have created a callback 



780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017 
Deliverable D5.11 Demonstration and validation of IHES- Generic IoT (Cycle 2) 
Dissemination level: Public  

 

33 
 

to process the MQTT messages and to extract the temperature measurements and the seismic events 
embedded within them. This callback is displayed in Figure 19. For the sake of the clarity, note that according 
to the sections above, an MQTT message containing temperature has a JSON structure of this type: 
 
'{"topic": "ihes/node/00-80-e1-22-11-xx/out", "msg": {"type": "DATA", "ts": 2329865, "seqn": 13518, "payload": 
{"ds_mask": 7, "sample_id": 11469, "data": [40, 22.1, 1011.32], "residual": [ -0.613, 0.353, 0.058]}} 
 
Whereas, an MQTT message containing a seismic event, has a JSON structure of this type: 
 
'{"topic": "ihes/node/00-80-e1-00-00-xx/out", "msg": {"type": "CHANGE", "ts": 2333864, "seqn": 11626, 
"payload": {"ds_id": "ACC_Z", "tau_ts": 2327264, "thr": 100.0}}}' 
 
Note that in Figure 19 the callback calls the “AvalancheAlert_obj” object, which implements the avalanche alert 
assessment. 
 

 
FIGURE 19. CALLBACK FUNCTION THAT EXTRACTS THE TEMPERATURE AND SEISMIC EVENTS 

FROM THE MQTT MESSAGES.   
 
Similarly, in Figure 20 we present the callback that we have created to extract the weather station parameters 
embedded within an MQTT topic with a structure “weather_st/#”. Namely, there are two kind of topics. 
“weather_st/T_max” has an associated value that indicates the upper bound on temperature. If this value is 
surpassed then a risky temperature is triggered, as a risk of avalanche arises. In a similar manner, the topic 
“weather_st/deltaT_max” has an associated value that indicates an upper bound on the difference of 
temperatures, above which an avalanche may occur. 
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FIGURE 20. CALLBACK FUNCTION THAT EXTRACTS THE WEATHER AGENCY PARAMETERS. 

 
Also, regarding the MQTT-based interfaces, it is worth mentioning that the temperature prediction and the 
avalanche risk alert, inferred within the use case 3 app, are transmitted to the openHAB via MQTT. To this 
end, we use the MQTT paho client and we have created three MQTT topics: 
 

• "backend_analytics/avalanche_alert". It has an associated value that indicates whether there is an 
avalanche alert risk. 

• "backend_analytics/temperature_prediction". It has an associated value that contains the predicted 
temperature. 

• "backend_analytics/temperature_diff_prediction". It has an associated value that contains the 
predicted difference of temperatures. 

 
Finally, we would like to mention that all the MQTT-based interfaces described in this section have been tested 
before their integration within the overall use case 3 testbed presented below. To this end, we followed the 
same approach that was suggested in our previous deliverable (Falchetto et al., Demonstration and validation 
of IHES- Generic IoT (Cycle 1), Agusut 2020). Namely, a docker container approach was followed, as it allows 
to isolate each software block (Docker, n.d.). Thereby, we encapsulated in one docker container the software 
code that implements the “use case 3 app” of Figure 18, i.e. the temperature predictor, the risk assessment 
block and the MQTT receiving chains described above. In another docker container we encapsulated an MQTT 
Eclipse mosquitto broker (Eclipse mosquitto, n.d.), and finally, in another docker container we encapsulated 
the MQTT publisher that was emulating the IHES sensing units by transmitting real MQTT messages. Thereby, 
the MQTT messages stemming from the generated data are published and conveyed to an MQTT broker. 
Then, the MQTT subscriber callbacks explained above receive the data, i.e. the MQTT topics. To deploy the 
docker containers we use Docker compose (Docker Compose, n.d.), which is a tool to orchestrate multi-
container Docker applications. 
In Figure 21 we show an example, where we test that an MQTT message that contains the temperature 
measurements is properly received by the MQTT callbacks explained above. First, note how the MQTT broker, 
whose tag is “broker_1”, opens its port 1883 to listen new connections. And then, it detects a new connection 
from the MQTT publisher, whose IP is 172.18.0.3. Then, we can see how the MQTT publisher prints the line 
that it has read. This is the JSON data that embeds the MQTT topic and value that are transmitted by the 
MQTT publisher. Then, we can observe in Figure 21, that the MQTT broker detects a new connection from 
172.18.0.4, this is the MQTT subscriber. Afterwards, the MQTT subscriber displays the MQTT topics and the 
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associated value that it has received. Note, that the MQTT subscriber receives properly the MQTT message 
sent by the MQTT publisher and extracts the MQTT topic and value as it was expected. 
  

 
FIGURE 21. THE MQTT TOPICS AND VALUES ARE RECEIVED PROPERLY BY THE MQTT 

SUBSCRIBER 
 

Temperature predictor 
Next, we provide the details for the temperature predictor introduced above in Figure 18. Herein, for 
demonstration purposes we will assume that the prediction is short time horizons. In this setting, we will 
assume that the temperature at a given time instant depends linearly on its own previous values and on a 
stochastic term. Thereby, we assume that the temperature evolution is modelled as an autoregressive (AR) 
mode of order 1, which has the next expression (Shumway, 2010): 
 

𝑇𝑚(𝑛) = 𝑎𝑇𝑚(𝑛 − 1) + 𝛾 + 𝑤(𝑛),      2 ≤ 𝑛 ≤ 𝑁. (1)   

 
Where, 𝑇𝑚(𝑛) is the temperature measurement gathered by a IHES sensing unit at the time instant n. The 
terms 𝑎 and 𝛾 are the parameters that define the AR model and that must be learned or estimated. Finally, 
𝑤(𝑛) is a stochastic term that is modeled as white noise.  
To predict the temperature for a future time horizon, we need to learn the model parameters 𝑎 and 𝛾. To this 
end, it is assumed that a batch of past temperature measurements from the IHES sensing units is available at 
the cloud level. More specifically, we assume that the batch is of size 𝑁 and that it can contain measurements 
from different sensing units if they are correlated. For the learning or estimation of the parameter models, we 
leverage a Least Squares (LS) method. Namely, first we initialize the estimation of the parameter 𝑎 to a given 
value �̌�. Note that, �̌� can be simply the estimated value of 𝑎 in the previous prediction or that it can be initially 
estimated using the LS criterion, which yields, 
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�̌� = 𝒙#𝒚.  
 

Where, bold-face expression denotes vectors and # denotes the pseudo-inverse operator, i.e. 𝒙# = (𝒙𝑇𝒙)−1𝒙𝑇 
. T denotes the transpose operator of a vector and 𝒙, 𝒚 have the next expressions: 
 

𝒙 = [𝑇𝑚(1), ⋯ , 𝑇𝑚(𝑁 − 1) ]𝑇, 𝒚 = [𝑇𝑚(2), ⋯ , 𝑇𝑚(𝑁) ]𝑇  

 
Then, given the initial estimation of �̌� we can learn 𝛾. We use a LS regression and thereby 𝛾 has the next 
expression,  
 

𝛾|�̌� = 𝟏#𝒛 (2)   

 
Being, 𝟏 a vector of ones of size N-1 and 𝒛 has the next expression, 
 

𝒛 = [𝑇𝑚(2), ⋯ , 𝑇𝑚(𝑁) ]𝑇 − �̌�[𝑇𝑚(1), ⋯ , 𝑇𝑚(𝑁 − 1) ]𝑇  

 
And finally, given 𝛾 we can update our estimation of 𝑎 by using a LS algorithm: 
 

�̂�|𝛾 = 𝒙#�̃�      (3)   

 
Where  �̃� = [𝑇𝑚(2) − 𝛾, ⋯ , 𝑇𝑚(𝑁) − 𝛾]𝑇. Finally, we can obtain the expression of the predicted temperature, 
given the values of the AR model that we have learnt in equations (2) and (3). Thereby, the predicted 
temperature for a future time horizon 𝑀 is given by the next equation, 
 

𝑇𝑝(𝑛) = �̂�𝑇𝑝(𝑛 − 1) + 𝛾,      2 ≤ 𝑛 ≤ 𝑀      (4)   

 
 
Also, to complete our exposition, we provide in Figure 22 the python code that we coded to implement the 
temperature predictor explained above in equations (1)-(4). 
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FIGURE 22. PYTHON CODE THAT IMPLEMENTS THE TEMPERATURE PREDICTOR 
 

Below, we will present how the temperature predictor was properly integrated within the whole use case 2 
testbed, as we will show the real-time prediction in openHAB. Moreover, for the sake of completeness, we 
present next more insights on the temperature prediction that has been just explained. To this end, we did a 
simulation, where we generated the temperature measurements by using the equation (1), with 𝑎 = 1, 𝛾 = 0.1, 
𝑁 = 10, the initial temperature is 18 Celsius degrees and a uniform distribution was assumed for the noise 
term i.e. 𝑤(𝑛)~𝑈(−0.08,0.08). Moreover, the real temperature is assumed to be given by (1) when the noise 
term is not present. The predicted temperature is obtained by using equation (4) with a horizon 𝑀 = 5. The 
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results are presented in Figure 23. It can be observed that the predicted temperature represents a good 
estimation of the real temperature. In order to complete the validation, we also present some experiments with 
real data that we did with this algorithm in Figure 24. 
 

 
FIGURE 23. VALIDATION OF THE TEMPERATURE PREDICTOR WITH SIMULATED DATA. 
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FIGURE 24.VALIDATION OF THE TEMPERATURE PREDICTOR WITH REAL DATA. 

 
 
Avalanche risk assessment 
Next, we explain how the avalanche risk assessment sub block depicted in Figure 18 has been implemented. 
To this end, in Figure 25 we present the python code that was developed. Herein, a collaborative edge-cloud 
approach is proposed to detect the risk of avalanches, as it has been mentioned above in the context of e.g. 
Figure 18. Thereby, the avalanche risk assessment requires two main inputs: 
 

• The output of the temperature predictor at the cloud level. This is provided by the code of Figure 22 
and corresponds to the equations (1)-(4). 

• The seismic events inferred by the IHES sensing units that are available at the cloud via MQTT. This 
is the interface explained above in Figure 19. 

 
Namely, as it can be observed in Figure 18, when the buffer of temperature measurements is filled, the 
temperature predictor is called. Then, the predicted temperature is compared to the parameter bounds 
provided by the weather agency, i.e. T_max and deltaT_max. Recall that these parameters are obtained via 
MQTT, as it was discussed in the context of Figure 20. If those bounds are exceeded, then a risky temperature 
event is activated. Then, it is checked if there are both a seismic event and a risky temperature event. In that 
case, a risk of avalanche is triggered. Therefore, the logic to trigger the avalanche is mathematically expressed 
as:  
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𝛼

= { 1,   [ (max(𝑻𝑝) ≥ 𝑇𝑚𝑎𝑥 )𝑂𝑅(∆𝑻𝑝 ≥ ∆𝑇𝑚𝑎𝑥)]𝐴𝑁𝐷(𝜎)
 0,                                                                           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

      

(5)   

Where, 𝛼 denotes the avalanche warning, 𝑻𝑝  is the vector of the predicted temperatures obtained by stacking 
the values in (4), ∆𝑻𝑝 is the difference between the maximum and minimum in 𝑻𝑝. The parameters 𝑇𝑚𝑎𝑥 and 
∆𝑇𝑚𝑎𝑥 are the upper bounds on the temperature and difference of temperatures given by the weather agency. 
Finally, 𝜎 denotes whether there are seismic events detected by the IHES sensing units. 
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FIGURE 25. AVALANCHE RISK ASSESSMENT PYTHON CODE 
Finally, the avalanche risk warning and the temperature predictions are sent via MQTT to the openHAB. The 
code to do so is displayed in Figure 26.   
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  FIGURE 26. PYTHON CODE THAT SENDS THE AVALANCHE WARNING AND 

PREDICTED TEMPERATURES TO OPENHAB FOR VISUALIZATION. 
  

5.4.2 OPENHAB VISUALIZATION: VALIDATION OF THE INTEGRATION OF THE COLLABORATIVE 
EDGE-CLOUD ANALYTICS WITHIN THE UC3 TESTBED  

 
In this sub-section, we present the integration of the sub use case 2 explained above within the use case 3 
testbed by means of the visualizations provided by openHAB.  To this end, first in Figure 27 we highlight the 
next functionalities. On the bottom left, we display the IHES sensing units that gather the temperature 
measurements and seismic events. As it was mentioned above in this section, the IHES sensing units send 
the data to the cloud via MQTT, where the data is stored, it is analyzed, and it is displayed. Thereby, on the 
top of Figure 27  we show the temperature measurements from the IHES sensing units are displayed properly 
in real-time by means of the openHAB tool. This figure also validates the MQTT communication chain between 
the IHES sensing units and the cloud. Moreover, on the right bottom of Figure 27 we display the real-time 
prediction of the temperature predictor explained in the previous sub-section. Recall, that this predictor takes 
periodically a batch of temperature measurements to perform the prediction. Namely, in the case of Figure 27, 
the predictor is taking the temperature measurements that are displayed in the figure. On the bottom of Figure 
27 we also show the avalanche warning, which is tackle in more detail in the figures that are explained below.  
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FIGURE 27. INTEGRATION IN UC3 TESTBED. OPENHAB DISPLAY TEMPERATURE MEASUREMENTS 

AND THE PREDICTED TEMPERATUTRE. 
 
 
In Figure 28, we generated a seismic event by moving some of the IHES sensing units. This event is detected 
by the local embedded intelligence of the IHES sensing units and it is transmitted to the cloud via MQTT. Then, 
as it was explained in the previous sub-section, the avalanche risk assessment block of Figure 18 considers 
this seismic event along with the output of the temperature predictor. Note that in this case, the temperature 
is not risky, as compared to the weather station bounds. Thereby, the avalanche risk assessment block 
considers that there is not an avalanche risk. This is properly displayed in the bottom of Figure 28. 

Predicted Temperature 
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FIGURE 28. INTEGRATION IN UC3 TESTBED: SEISMIC EVENT GENERATED AT THE IHES SENSING 

UNITS. 
 
 
 
In Figure 29, we provoked a risky temperature event by lighting up some of the IHES sensing units. The 
temperature measurements are sent to the cloud via MQTT and are displayed in real-time in openHAB. We 
can see on the top right of Figure 29 how the temperature raises suddenly. The temperature measurements 
are the inputs of the temperature predictor, which predicts that the temperature will keep increasing. Then, this 
output is sent to the avalanche risk assessment block. However, as there is not a seismic event, the risk 
assessment block considers that there is not an avalanche risk. 
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FIGURE 29. INTEGRATION IN UC3 TESTBED: RISKY TEMPERATURE EVENT PREDICTED. 

 
 
Finally, in Figure 30, we generated both a seismic event and a rise of the temperature measurements, by 
following the same procedure than the ones explained for Figure 28 and Figure 29. The temperature 
measurements are sent to the cloud via MQTT and are the input of the temperature predictor, which displays 
the trend of an increasing temperature. This prediction is the input of the risk assessment block along with the 
seismic event sent by the IHES sensing units. The risk assessment block evaluates the predicted temperature, 
and it considers that is risky as it surpasses the weather agency parameter bounds. At the same time, it realizes 
that there is a seismic event. Thereby, according to the logic explained in equation (5) it raises an avalanche 
warning, which is sent to openHAB via MQTT. As we can observe in Figure 30 the avalanche risk warning is 
properly displayed in openHAB. 
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FIGURE 30. INTEGRATION IN UC3 TESTBED: AVALANCHE WARNING WHEN THERE ARE BOTH 

SEISMIC EVENTS AND RISKY TEMPERATURE EVENTS. 
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6 SUB USE CASE 3: PATTERN-BASED SENSING 
DEPENDABILITY MONITORING 

6.1 Story line 
Considering the criticality of the use case application, revolving around earthquake monitoring in public areas, 
sensor dependability is of very high importance. Therefore, and to avoid system downtime, redundant sensors 
must be deployed to ensure that even if some sensors fail, the system will continue to operate. Moreover, the 
reliability of the measurements must be monitored, to ensure that, in case of sensor(s) malfunction, this is 
detected on time. 
In this context, the 3rd sub-use case revolves around dependable unsupervised monitoring from environmental 
sensors with anomaly detection (from temperature, pressure, humidity), as well as unsupervised monitoring 
from inertial sensors with anomaly detection (from accelerometer and gyroscope). The SEMIoTICS patterns 
are leveraged in this case to provide real-time situational awareness regarding the dependability posture of 
the monitoring setup. 
In  Figure 31 a topology is depicted that corresponds to the scenario of sub use case 3, and more specifically 
the distributed anomaly vibration monitoring for earthquake detection. In this scenario, we consider that a 
Gateway is connected to N vibration sensors (where N>=2 for redundancy), which are identical. In the case of 
the specific testbed used to demonstration and validation, N=3, i.e., 3 identical sensors. At any time, all of 
them are deployed in the same vicinity and are simultaneously operational to provide the needed redundancy.  
A key SEMIoTICS enhancement in this regard is the use of the pattern-driven capabilities of SEMIoTICS to 
autonomously, at the field layer, reason on sensing system‘s dependability posture, informing the operators at 
the backend in real time. The Dependability property reasoning is decomposed to: 
 

1) a Fault Tolerance property, based on monitoring the availability of redundant sensors (i.e., the 
availability of at least 2 active sensors), and  

2) a Reliability property, monitoring sensor readings’ reliability (i.e., consistency between received 
sensor readings, to detect malfunctioning sensors) 
 

To showcase the above, the demonstration and validation scenario features sensor failures in terms of both 
the sub-properties (Fault Tolerance & Reliability) and a combination of those, with intermittent sensors’ 
restoration, visualising the consequent changes in the dependability posture of the deployment for the operator 
at the SEMIoTICS backend GUI.  
In terms of implementation, the above is achieved by deploying a lightweight Field Pattern Engine with MQTT 
integration that runs on Gateway, and which integrates pattern rules allowing to reason locally about the 
dependability properties of the anomaly detection setup. The backend visualisation of the Dependability state 
is enabled by the deployment of the Pattern Orchestrator & GUI components. More details on the 
implementation aspects are provided in the subsections that follow. 
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FIGURE 31. SUB USE CASE 3 TOPOLOGY AND KEY ELEMENTS 

 

6.2 Scope and objectives 
The overarching aim and objective of the sub-use case is to demonstrate in practice how the pattern-driven 
monitoring capabilities of SEMIoTICS can be used to autonomously, locally at the field layer (the layer at the 
focus of UC3), reason on sensing system‘s dependability posture, providing a real-time view of the sensing 
dependability posture of the system to the SEMIoTICS operators at the backend. 
Specific objectives include: 
 

• Provide autonomous & lightweight pattern reasoning capabilities at the field layer 
• Define and use sensing dependability-focused pattern rules that combine sensor reliability and fault-

tolerance aspects 
• Define and integrate fault-tolerance -related monitoring capabilities 
• Define and integrate reliability -related monitoring capabilities 
• Integrate with field layer SEMIoTICS deployment devices and associated messaging bus 
• Provide connectivity with SEMIoTICS GUI, enabling the visualization of sensing dependability posture 

in real time. 
 

6.3 Interaction with SEMIoTICS framework and components 
A sequence diagram detailing the sub use case 3 interactions realising the field layer pattern-based sensing 
dependability monitoring is provided in Figure 32 and Figure 33. 
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FIGURE 32. PATTERN-BASED SENSING DEPENDABILITY MONITORING SEQUENCE (1/2) 
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FIGURE 33. PATTERN-BASED SENSING DEPENDABILITY MONITORING SEQUENCE (2/2) 

As shown in the above figure, the lightweight Field Pattern Engine monitors (through the MQTT broker): 
• the liveness messages from the three sensors (“heartbeats”), leveraging this information to reason 

about the fault tolerance of the sensing system. 
• The readings provided by the three sensors, assessing the deviation between said readings, and 

leveraging this information to reason about the Reliability of the sensing system. 
The above messages are then used to reason on the overall dependability posture of the sensing system. The 
status of the pattern reasoning and the associated properties is relayed to the SEMIoTICS backend, via 
interaction between the Field Pattern Engine and the Pattern Orchestrator. The latter then relays that 
information to the SEMIoTICS GUI for visualization. 
 

6.3.1 COMPONENTS 
Other than the sensors and field gateway itself, with the various capabilities described in the previous 
subsections, the specific sub-use case is implemented through the deployment of:  

(i) the Field Pattern Engine which can locally reason about the dependability properties of the anomaly 
detection setup, comprising a lightweight instance of Pattern Engine with MQTT integration to be 
able to interact with the MQTT broker.  

(ii) the Pattern Orchestrator component, with a supporting role at the SEMIoTICS Backend (for 
bootstrapping and visualisation proxy purposes).  

(iii) the SEMIoTICS GUI, and the pattern visualisation part in specific, deployed at the backend for 
pattern status visualisation (and UC homogeneity) purposes. 

While Cycle 1 efforts focused on the integration of the field-level components (i.e., integrating the Pattern 
Engine with the Gateway and MQTT Broker, reasoning on the sensor properties), Cycle 2 focused on also 



780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017 
Deliverable D5.11 Demonstration and validation of IHES- Generic IoT (Cycle 2) 
Dissemination level: Public  

 

51 
 

integrating (ii) and (iii) above in the sub use case, followed by the validation and demonstration of the sub use 
case, and UC3 as a whole. 
It should be noted that while components (ii) and (iii) are included to facilitate deployment and provide a more 
homogeneous setup and use of SEMIoTICS components across use cases (even in the case of use case 3, 
which is horizontal, focusing on the field layer), these are optional; the full sequence and associated 
dependability monitoring capabilities could be implemented without these components. Such a simpler 
deployment could be achieved if the orchestration and pattern rule are preconfigured at the Field Pattern 
Engine. In both cases, though, the dependability reasoning happens independently at the field layer, without 
any knowledge or reasoning capabilities assumed of other layers, thus demonstrating SEMIoTICS’ approach 
of semi-autonomous operation of each layer. 
 

6.3.2 PATTERNS SPECIFICATION 
Other than the components themselves, an important part in realising the sub-use case is the configuration of 
the pattern components through the specification of the orchestration and associated pattern rules, leveraging 
the SEMIoTICS pattern language (see D4.8 – “SEMIoTICS SPDI Patterns (final)”). 
In specific, the topology depicted in Figure 31 is described using the SEMIoTICS orchestration specification 
language as shown in Figure 34. 

 
FIGURE 34. SUB USE CASE 3 ORCHESTRATION SPECIFICATION IN SEMIOTICS LANGUAGE 

Other than the orchestration specification, several pattern rules are needed to verify the dependability property 
within the sub use case 3 setup as described above. Following the approach detailed within D4.8, these 
patterns are expressed in the form of Drools rules, while some additional rules are necessary for the verification 
of the desired property. The whole dependability property verification property is shown in Figure 35. 
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FIGURE 35. PATTERN-BASED DEPENDABILITY REASONING PROCESS (PROPERTY 

DECOMPOSITION & VERIFICATION) 
 
As shown in the figure above, the first pattern-Drools rule that is triggered is the Dependability Decomposition 
(“A” in Figure 35), through which two new properties are created: Fault Tolerance and Reliability. This rule is 
shown in Figure 36. 

 
FIGURE 36. DEPENDABILITY DECOMPOSITION DROOLS RULE 
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Subsequently, for the Reliability property a verification rule is needed (“C” in Figure 35), and one was defined 
accordingly. As shown in Figure 37, the defined rule applies on a merge orchestration of two sensors and 
assesses the deviation of their readings. 

 
FIGURE 37. RELIABILITY VERIFICATION DROOLS RULE 

The Fault Tolerance decomposition (“B1” in Figure 35), on the other hand, dictates the creation of 2 more 
heartbeat properties (as shown in Figure 38) and, therefore, two more verification rules are needed for 
Heartbeat verification (“B2” in Figure 35) and Fault Tolerance verification (“B2” in Figure 35). These two rules 
are shown in Figure 39 and Figure 40 respectively. 

 
FIGURE 38. FAULT TOLERANCE DECOMPOSITION DROOLS RULE 

 

.  
FIGURE 39. HEARTBEAT VERIFICATION DROOLS RULE 
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FIGURE 40. FAULT TOLERANCE VERIFICATION DROOLS RULE 

 
The verification of the Heartbeat property takes place whenever there is a heartbeat originated from our 
sensors. The verification of a Fault tolerance property of a merge of 2 sensors takes place whenever both have 
a heartbeat property that is valid. These rules lead to the final Dependability Verification rule (“D” in Figure 35) 
which, if triggered, verifies the dependability property. For this to happen, both Fault Tolerance and Reliability 
properties must be valid, as shown in Figure 41. 
 

 
FIGURE 41. DEPENDABILITY VERIFICATION DROOLS RULE 

6.4 Validation 
6.4.1 LOCAL TESTBED VALIDATION 
A local testbed was setup to integrate and test the sub use case 2, prior to integration with the main UC3 
testbed, emulating the topology shown in Figure 31. The core component, other than the sensors, gateway, 
MQTT broker and other parts common to the other sub-use cases, is the Field Pattern Engine. The 
technologies used to implement Field Pattern Engine include Java, Maven and Spring Boot. Moreover, as 
detailed in deliverable D4.8, the Pattern Engine integrates the Drools Business Rules Management System 
(BRMS) solution to implement its reasoning capabilities. Moreover, the Field Pattern Engine is extended for 
UC3 via integration of the Eclipse Paho Java Client, an MQTT client library written in Java. Finally, the Docker 
platform is used for packaging and running the Pattern Engine application. Leveraging the testbed deployed 
for this purpose, the integration and functionality of the components was validated through implementation of 
the sequence diagram shown in Figure 32 and Figure 33, excluding interactions with backend components 
(which were implemented in Cycle 2). 
Figure 42 shows a screenshot of the simulated sensors (IHES nodes) transmitting their heartbeats, once 
instantiated, to the ihes/node/$mac/out/events/heartbeat topic of the MQTT broker, where $mac is the MAC 
address of each of the sensing nodes. 
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FIGURE 42. SIMULATED IHES NODES (PUBLISHING HEARTBEATS AT 

IHES/NODE/$MAC/OUT/EVENTS/HEARTBEAT TOPIC) 
 
Figure 43 shows the orchestration information, as relayed to the Field Pattern Engine for bootstrapping 
purposes. In the final scenario (Cycle 2), these will be relayed by the Pattern Orchestrator component at the 
backend, though they can also be sent via a script or be pre-encoded into the Pattern Engine, if a completely 
autonomous operation is envisioned. 
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FIGURE 43. PATTERN ORCHESTRATION INFORMATION RELAYED TO FIELD PATTERN ENGINE 

 
Finally, Figure 44 and Figure 45 showcase the heartbeat messages as received and relayed by the broker, 
and how these are received and trigger reasoning actions at the Field Pattern Engine, respectively.  
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FIGURE 44. MQTT BROKER RELAYING HEARTBEATS 

 

 
FIGURE 45. FIELD PATTERN ENGINE (SUBSCRIBED TO BROKER; RECEIVING UPDATES & 

REASONING ON DEPENDABILITY PROPERTY) 
6.4.2 INTEGRATED TESTBED VALIDATION & DEMONSTRATION 
Following the local testing, the implemented pattern components were transferred and integrated into the main 
UC3 testbed, while elaborating on the capabilities both from the perspective of the Dependability property 
verification and the associated pattern rules (to support the full set of reasoning capabilities presented in 
subsection 6.3.2), as well as from the perspective of the deployment and integration with the SEMIoTICS 
backend components involved in the sub use case (namely, the Pattern Orchestrator and the SEMIoTICS 
GUI). The final testbed configuration was as defined in section 3 above.  
The use of the said testbed implements a scenario, aiming to demonstrate and validate the full coverage of 
the interactions specified in subsection 6.3, the reasoning capabilities presented in subsection 6.3.2, and the 
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satisfaction of the sub use case 3 objectives as defined in subsection 6.2. This validation and demonstration 
process has been recorded in the form of a video integrating both the testbed view, as well as the GUI view 
into a single screen (to facilitate presentation). The key steps of this process are presented below, including 
the associated scenes from said video recording. 
As shown in Figure 46 and Figure 47, at the starting phase (“Phase 0”) all 3 sensors are active (see insert of 
actual setup in said figure) and their readings are consistent; therefore, the GUI shows the Dependability 
property is satisfied (shown with green color and marking 1/1 properties as satisfied). 
 

 
FIGURE 46. STARTING PHASE – ALL 3 SENSORS ACTIVE & READINGS CONSISTENT 

(DEPENDABILITY SATISFIED) 
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FIGURE 47. STARTING PHASE (PHASE 0) OVERVIEW AND PROPERTY REASONING 

 
As a first step post-instantiation (Phase 1; see Figure 48), sensors #1 and #2 are disconnected to emulate the 
sensors’ failure (e.g., batteries are depleted, or the sensors are destroyed, either simultaneously or within a 
relatively short timeframe). Once a number of “heartbeats” are not received by those two sensors at the Pattern 
Engine (through monitoring the corresponding topics at the MQTT Broker), a reasoning process is triggered to 
re-assess the satisfaction of the Fault Tolerance property (and by extension the Reliability and Dependability 
properties). Since the setup now only has one operational sensor, neither fault tolerance nor reliability can be 
guaranteed. Therefore, the Dependability fails. An overview of this Phase and the associated properties’ status 
reasoning are shown in Figure 49. The view of this property change, as visualized on the SEMIoTICS GUI, is 
depicted in Figure 50. 
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FIGURE 48. PHASE 1 – SENSORS #1 & #2 GOING OFFLINE 

 

 
FIGURE 49. PHASE 1 OVERVIEW AND PROPERTY REASONING 
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FIGURE 50. PHASE 1 – DEPENDABILITY PROPERTY FAILURE (GUI VISUALISATION) 

 
On Phase 2, Sensor #1 is restored (see Figure 51). As the Field Pattern Engine resumes receiving “heartbeats” 
from that sensor, reasoning is triggered and the Fault Tolerance (and, consequently, the Dependability 
property) is restored, as two sensors are now active (Sensors #1 and #3); see the properties’ status in Figure 
52 and the associated GUI visualization in Figure 53. 
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FIGURE 51. PHASE 2 – SENSOR #1 RESTORED 

 

 
FIGURE 52. PHASE 2 OVERVIEW AND PROPERTY REASONING 
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FIGURE 53. PHASE 2 – DEPENDABILITY PROPERTY RESTORED (GUI VISUALISATION) 

 
In the 3rd and final phase, one of the two remaining operational sensors begins to malfunction (see Figure 54). 
More specifically, we introduce a fault in the sensing of Sensor #3, causing a deviation between the readings 
between said active sensors. This triggers a reasoning on the Reliability property (and consequently the 
Dependability properties) at the Field Pattern Engine. As shown in Figure 55, due to the significant deviation 
in the sensor readings, the Reliability property is not satisfied. Moreover, as one sensor is offline (Sensor #2) 
and another sensor is malfunctioning (Sensor #3), only one sensor remains operational (Sensor #1). 
Consequently, the Dependability property is not satisfied either. This change is promptly reflected on the 
SEMIoTICS GUI, as shown in Figure 56.  



780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017 
Deliverable D5.11 Demonstration and validation of IHES- Generic IoT (Cycle 2) 
Dissemination level: Public  

 

64 
 

 
FIGURE 54. PHASE 3 – SENSOR #3 MALFUNCTION (ERRONEOUS READINGS) 

 

 
FIGURE 55. PHASE 3 OVERVIEW AND PROPERTY REASONING 
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FIGURE 56. PHASE 3 – DEPENDABILITY PROPERTY FAILURE (GUI VISUALISATION) 
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7 OVERALL KPIS AND REQUIREMENTS VALIDATION 
In this section are reported the UC3 applicable KPIs derived from the project wide table in section 3 of 
deliverable D5.1. In Table 1 all the requirements impacting UC3 are reported as an extract from the project 
wide one. All together these KPIs contributes to the complete set of KPIs identified in task 5.1 as of relevance 
for the specific UC3 scenario or for the SEMIoTICS components that this scenario will use. 
The planned methodology of KPI evaluation is contained in D5.1 and is omitted here for brevity. 
 

7.1 UC3 Related Requirements 
In this section we consider the set of requirements that were originally described in deliverable D2.3 (al. M. F., 
November 2018) within the context of the SEMIoTICS framework. Furthermore, some key requirements 
pertinent to the pattern-driven operation demonstrated within UC3 are also included. 
 

TABLE 1. REQUIREMENTS PLACED ON USE CASE 3 AS PER D2.3 

Req-ID 
 

Description Reference Fulfilment 

R.GP.1 

End-to-end connectivity between 
the heterogeneous IoT devices 
(at the field level) and the 
heterogeneous IoT Platforms (at 
the backend cloud level) 

D2.5, D5.11 

This has been achieved by deriving 
the UC3 architecture from 
SEMIoTICS one has it has been 
described in D2.5 

R.GP.2 

Scalable infrastructure due to the 
fast-paced growth of IoT devices 

Section 3 

The architecture tackled herein is 
highly scalable. Namely, on the one 
hand, the number of IoT GWs can 
scale to face the growth of IoT 
devices. Moreover, the global data 
aggregation and storage 
implemented at the cloud level 
provides more scalability, as it 
resides on top of virtual resources 
controlled by the VIM at the NFV 
MANO. Thereby, more virtual 
computing and storage resources 
can be easily allocated when needed 
for the scalability purposes. 

R.GP.3 

High adaptation capability to 
accommodate different QoS 
connectivity needs (e.g., low 
latency, reliable communication) D3.1, D3.2, D3.5 

This has been achieved thanks to 
the VIM Connector, NFV 
Orchestrator, Virtualized 
Infrastructure Manager, and VNF 
Manager components introduced in 
D3.1 and D3.2 and integrated into 
UC3 testbed. 

R.NL.1/R.BC.1 

Controller Node requirement: At 
least 6 CPU cores and 32 GB 
RAM Section 3.2 

This is in line with the requirements 
that have already reported above for 
e.g., the OpenStack controller. Note 
that, in addition, it is required that the 
controller nodes have around 100 
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GB of storage memory see section 
3.2. 

R.NL.2/R.BC.2 

Controller Node requirement: At 
least 2 Network interfaces Section 3 

This is a requirement applicable to 
the computer holding the controller, 
e.g., the OpenStack controller, see 
section 3.3 

R.NL.3/R.BC.3  
 

Controller Node Requirement: 
Linux OS 

Section 3 The controller nodes at the NFV 
MANO context, e.g., the OpenStack 
controller, require Linux OS. 

R.BC.4 
Controller Node Requirement: 
Solid State Disk (SSD) of at least 
256 GB 

Section 3 SSD storage used exclusively in 
UC3 testbed 

R.NL.5/R.BC.5/ 
R.BC.6/ 
R.BC.7 

Hypervisor Nodes Requirement: 
At least 4 CPU cores and 8 GB 
RAM, at least 2, 1Gbps Network 
interfaces. 

Section 3.2 This is fulfilled or in line with the 
requirements for the compute nodes 
of the NFVI, see section 3.2. 

R.NL.6/R.BC.8/ 
R.BC.9 

Hypervisor Nodes: KVM and 
Linux 
Containers (LXD) must be 
supported by the Hypervisor 
Linux OS 

Section 3.2 This is fulfilled in the compute nodes 
that form the NFVI, e.g., at the cloud 
level. 

R.BC.11 

Virtual Network requirement: 
Support for GRE, VLAN, and 
VXLAN tunnels for virtual tenant 
networking. 

Section 3.3 UC3 leverages Virtual Tenant 
Networking through Neutron APIs, 
which support GRE, VLAN and 
VXLAN protocols. VXLAN tunnels 
were leveraged in UC3. 

R.BC.12/R.NL.8 

The VIM and Virtual Network 
frameworks must support 
Interfaces that enable VM tenant 
networking 

Section 3.3 UC3 Testbed supports Virtual 
Tenant Networking. 

R.BC.13/R.NL.9 

Interface between the VIM and 
the SDN controller to allow 
Tenant Network Slicing 

Section 3.3 Interfacing between the VIM and 
SDN is accomplished through 
Neutron APIs, which facilitates 
Virtual Tenant Networking in UC3 

R.BC.14/R.NL.10 

Interfaces among the MANO 
entities (NFO, RO, NFVO) and 
the VIM must ensure seamless 
interoperability among different 
entities of the Backend Cloud 

Section 3.3 Interfacing between backend cloud 
VNFs (e.g., for data visualization, 
aggregation, and analytics) and 
gateway VNFs is accomplished via 
Virtual Tenant Networking 

R.BC.16 
Prediction mechanism based on 
the data stored in the cloud 

Section 5 This has been addressed in UC3 sub 
scenario 2 “collaborative edge cloud 
for avalanche warning” 

R.BC.17 
Quantitative/statistical analysis of 
the cloud data 

Section 5 This has been addressed in UC3 sub 
scenario 2 “collaborative edge cloud 
for avalanche warning” 



780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017 
Deliverable D5.11 Demonstration and validation of IHES- Generic IoT (Cycle 2) 
Dissemination level: Public  

 

68 
 

R.BC.19 

The backend layer should 
feature pattern-driven cross-layer 
orchestration capabilities 

D4.8 

UC3 – and sub-use case 3 in 
specific, focuses on Field Layer and 
only involves a simple pattern-driven 
orchestration that is defined at 
bootstrap phase; nevertheless, the 
Pattern Orchestrator component 
deployed within said sub use case to 
enable this functionality can be 
leveraged to provide more complex 
cross-layer orchestration 
capabilities, if needed. 

R.BC.20 

The backend layer must 
aggregate intra-layer as well as 
inter-layer SPDI status 
information to enable local and 
global intelligence reasoning and 
adaptation D4.8, D4.2 

The Pattern Orchestrator component 
deployed at the Backend layer (see 
sub use case 3) aggregates SPDI-
related information from the Field 
layer. While this is only used for 
visualisation purposes (as the UC 
focused on Field layer autonomous 
reasoning), this aggregation of SPDI 
status information is a necessary 
enabler for the inter-layer reasoning 
(along with the deployment of a 
Backend pattern engine). 

R.FD.1 Field devices SHOULD be able to 
get data from the environment 
through sensors (sensors). 

Sections 3 and 4  Sensing Devices based on STM32 
CLOUD-JAM boards used in UC3 
are equipped with both 
environmental and inertial sensors.  

R.FD.2 Field devices SHOULD be able to 
process data in near real time 
(process units). 

Section 4 
D4.10 

This has been achieved by IHES 
Devices thanks to the LEA 
component deployed within them. 
Please refer also to KPIs 4.4 and 4.5 

R.FD.4 Field devices SHOULD use a 
global clock for time 
synchronization. 

Section 4 
D4.10 

This has been achieved by using 
global clock provided by epoch time 
with millisecond precision that has 
been implemented in UC3 LEA 
components. 

R.FD.5 Field devices SHOULD be able to 
interact with SEMIoTICS IIoT/IoT 
gateway dedicated components 

Section 6 IHES Devices interacts with Pattern 
Engine and IHES Supervisor MQTT 
Proxy, LocalDB SEMIoTICS 
gateway components. 

R.FD.6 Field devices MUST interoperate 
using a standard communication 
protocol like Rest APIs, COAP, 
MQTT. 

Section 4.3 
D4.10 

UC3 Testbed uses MQTT as 
communication protocol at Field 
Level. 

R.FD.7 Field devices MUST use 
standardize interoperable 
message format (e.g., JSON, 
etc.). 

Section 4.3 
D4.10 

UC3 Devices uses standard JSON 
serialized packets to exchange 
messages with other Field 
components. 
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R.FD.9 Field devices MUST be able to 
communicate with the IIoT 
Gateway / other architectural 
components. 

Sections 3 and 4 This requirement is fulfilled and 
demonstrated by UC3 IoT Gateway 
components 

R.FD.10 Field devices SHOULD minimize 
data traffic. 

Section 4 
D4.10 

This requirement is fulfilled and 
demonstrated by Local Analytics 
component in IHES Devices. 

R.FD.11 Field devices SHOULD minimize 
energy consumption. 

Section 4 
D4.10 

The actual distributed processing 
deployed on STM32 MCU sensing 
devices ensure a power 
consumption in the milliwatts range 
where centralized backend analytics 
is on the range of hundreds of Watts. 
Also reducing data traffic over the 
network thanks to the local 
processing ensure further power 
savings. 

R.FD.14 

The field layer must feature SPDI 
pattern reasoning local 
embedded intelligence 
capabilities 

D4.8, D4.10 Validated through sub-use case 3, 
whereby Field-layer SPDI pattern 
reasoning is the focus. Showcased 
through the deployment of 
lightweight Pattern Engine at the 
Field Gateway, providing 
Dependability property monitoring 
and autonomous, through 
monitoring and reasoning on the 
sub-properties of Fault Tolerance 
and measurement Reliability. 

R.FD.15 

The field layer must aggregate 
intra-layer monitored information 
to enable local intelligence 
reasoning and adaptation 

D4.8, D4.2 Validated through sub-use case 3, 
whereby Field-layer Dependability 
reasoning is showcased. The 
lightweight Field Pattern Engine 
deployed at the Field Gateway 
integrates monitoring capabilities 
allowing it to aggregate evidence 
regarding the fault tolerance and 
reliability of the sensing system 
(which, in turn, enables reasoning on 
said properties).  

R.P.1 The collection of raw data MUST 
be minimized. 

Section 4 
D4.10 

This has been achieved thanks to 
the local processing done by LEA 
module directly mapped on IHES 
Sensing Devices 

R.P.2 The data volume that is collected 
or requested by an IoT application 
MUST be minimized (e.g., 
minimize sampling rate, amount 
of data, recording duration, 
different parameters). 

Section 4.3 
D4.10 

This is ensured by UC3 layered 
intelligence where all data and 
recordings are kept / stored in IoT 
Gateway (InfluxDB) and available to 
the backend services on request.  
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R.P.3 

Storage of data MUST be 
minimized. 

Section 4 LocalDB Component on IoT 
Gateway allows configurable 
policies to aggregate data thanks to 
the InfluxDB infrastructure. 

R.P.5 

As much data as possible MUST 
be processed at the edge to hide 
data sources and not reveal user 
related information to adversaries 
(e.g., user’s location). 

Section 4 
D4.10 

This has been achieved thanks to 
the local processing done by LEA 
module directly mapped on IHES 
Sensing Devices 

R.UC3.1 

IoT Sensing unit shall be able to 
embed environmental (e.g., 
temperature, pressure, humidity, 
light) and inertial sensors 
(accelerometer, gyroscope). 

D4.10 IHES Sensing device has built-in 
sensors compliant with this 
requirement. 

R.UC3.2/ 
R.UC3.15 

IIoT Sensing unit shall be able to 
interface to the IIoT Sensing 
gateway to coordinate with it. A 
standard IP based (i.e., TCP 
transport) 1 to many M2M 
communication protocol must be 
adopted to properly handle node 
communication with components 
in the gateway. 

D4.10 This has been achieved by 
implementing the UC3 LEA 
Components at Field / Gateway level 
in UC3 sub scenarios 1, 2 and 3 

R.UC3.3 

IIoT Sensing unit shall be able to 
learn a model from observed data 
in an unsupervised manner. In 
particular, IoT Sensing unit shall 
be equipped with a low power 
(tens/hundreds of mw range) 32 
bits MCU to support unsupervised 
learning and unsupervised 
statistical processing. 

D4.10 This has been achieved by 
implementing the UC3 LEA 
Components at Field / Gateway level 
in UC3 sub scenario 1 

R.UC3.4 

IIoT Sensing unit shall be able to 
detect relevant changes from the 
learned model and report them to 
IIoT Sensing gateway. 

D4.10 This has been achieved by 
implementing the UC3 LEA 
Components at Field / Gateway level 
in UC3 sub scenario 1 

R.UC3.5 

IIoT Sensing unit shall be able to 
adapt to a new model if IIoT 
sensing gateway requires this. 

D4.10 This has been achieved by 
implementing the UC3 LEA 
Components at Field / Gateway level 
in UC3 sub scenario 1 

R.UC3.6 

IIoT Sensing gateway shall be 
able to coordinate a set of IIoT 
sensing units by finding any 
correlation btw them according to 
observed data, models 

D4.10 This has been achieved by 
implementing the UC3 LEA 
Components at Gateway level (IHES 
Supervisor Component) and in UC3 
sub scenario 1 

R.UC3.7 
IIoT Sensing gateway shall be 
able aggregate relevant events 
(i.e., changes) coming from 

Section 4 
and  

This has been addressed in UC3 sub 
scenario 1. 
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whichever of connected IIoT 
sensing units deciding if they are 
global or local changes 

D4.10 

R.UC3.8 

IIoT Sensing gateway may have 
the capability to exchange 
relevant information (i.e., events) 
between itself, the cloud, and the 
sensing units with some 
connectivity capabilities 

Section 5 and 6 This has been addressed in UC3 sub 
scenarios 2 and 3. 

R.UC3.9 

IIoT Sensing web GUI may be 
able to display correlations 
between connected IIoT Sensing 
units and the status related to 
each IIoT sensing unit. 

Section 4.3.4 This has been addressed in UC3 
openHAB UC3 App. 

R.UC3.10 

IIoT Sensing web GUI may be 
able to display logging about 
relevant events detected by 
connected IIoT Sensing units 
reporting info about unit ID, type 
of data and type of event 
detected. 

Section 4.3.4 This has been addressed in UC3 
openHAB UC3 App. 

R.UC3.11 

IoT Sensing unit shall be able to 
run Artificial neural networks on 
the MCU in real time at the sensor 
data rate of choice. 

Section 4 
and  
D4.10 

This has been addressed in UC3 sub 
scenario 1. 

R.UC3.12  
 

IoT Sensing unit shall be able to 
run lightweight statistical model 
analysis algorithms on the MCU 
not in real time at the sensor data 
rate of choice. 

Section 4 
and  
D4.10 

This has been addressed in UC3 sub 
scenario 1. 

R.UC3.13 

MCU into IoT Sensing unit should 
be associated with a high-level 
tool for automatic generation of 
optimized code to support pre 
trained neural networks. 

Section 4 
and  
D4.10 

This has been addressed in UC3 sub 
scenario 1. 

R.UC3.14 

MCU IoT Sensing unit shall be 
able to run neural network online 
training at the sensor data rate of 
choice. 

Section 4 
and  
D4.10 

This has been addressed in UC3 sub 
scenario 1. 

R.UC3.16 

IoT Sensing gateway shall be 
equipped with a low power 
embedded CPU (100s of mW to 
W). 

Section 4 
And  
D4.10 

This has been addressed in UC3 sub 
scenario 1. 

R.UC3.17 

IoT Sensing gateway shall be 
able to negotiate capabilities, 
notify, start and shutdown any 
Sensing unit at any point in time. 

Section 4 
and  
D4.10 

This has been addressed in UC3 sub 
scenario 1. 
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R.UC3.18 

IoT Sensing gateway shall be 
capable to run Linux (e.g., Ubuntu 
OS) and standard graphics and 
browser libraries. 

Section 4 This has been addressed in UC3 sub 
scenario 1. 

R.UC3.19 
IoT Sensing gateway should be 
able to support http and standard 
protocols for cloud interfacing. 

Section 5 This has been addressed in UC3 sub 
scenario 2. 

R.UC3.20 The specific M2M protocol 
adopted on UC3 is based on 
MQTT. A MQTT broker service 
will be available to dispatch 
messages between the 
coordinating Sensing gateway 
and its associated Sensing units. 

Section 3 This approach has been adopted in 
UC3 testbed 

R.UC3.21 A use case specific serialized 
message protocol is required to 
coordinate the gateway and its 
associated units and exchange 
data / events / anomalies 
between them. JSON will be the 
preferred serialization format 
adopted. 

Sections 4, 5 
and 6 

This has been addressed in UC3 sub 
scenarios 1, 2 and 3. 

R.UC3.22 Each connected IHES sensing 
unit should send to the gateway a 
keep alive signal on a specified 
period (e.g., few seconds) to 
notify the gateway it is correctly 
working. The sensing gateway 
should detect by this mean any 
non-working sensing unit and 
reconfigure the system 
accordingly. 

Section 6 This has been addressed in UC3 sub 
scenario 3. 

R.UC3.23 Sensing units and sensing 
gateway should share a common 
clock (i.e., global reference time), 
precise up to milliseconds, to 
properly classify events and data 
acquired during the processing. 
This global reference time will be 
negotiated when a sensing unit 
node will join a given gateway. 
Internally the system will work 
scheduling activities according to 
this global reference time. 

Section 3 This approach has been adopted in 
UC3 testbed 

R.UC3.24 Sensing units may be equipped 
with dedicated FW to detect 
relevant sensors malfunctioning 
and report that to the gateway 

Section 6 This has been addressed in UC3 sub 
scenario 3 through instantiation of 
specific patterns instead of mapping 
on FW device. 
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7.2 UC3 KPIs Summary 
In reported Table 2 have been summarized all the related KPIs involving the UC3 sub scenario 1 – field level 
deployment of LEA component. In following sub sections, a clear overview of each KPI has been reported , 
where needed, with the relevant measures and results obtained, as well as the methodology used to assess 
them. 
 

TABLE 2. USE CASE 3 KPIS SUMMARY 

KPI-ID KPI Description Reference Fulfilment 

KPI-1.1 Number of SPDI Patterns D4.8 

In UC3 the focus was on showcasing 
the Dependability monitoring and 
verification, introducing a new 
complex rule that considered Fault 
Tolerance and measurement 
Reliability. A total of 6 pattern rules 
are used (Dependability, Fault 
Tolerance, Reliability composition and 
decomposition rules), as detailed in 
subsection 6.3.2. These are adapted 
and enhanced from the pattern 
specification approach and full list of 
SPDI patterns specified within D4.8. 

KPI-1.2 Pattern Language D4.8 

Pattern-based Dependability 
monitoring and reasoning capabilities 
showcased within UC3 (sub UC3) 
leverage the SEMIoTICS pattern 
language and associated IoT 
orchestration specification approach 
defined within D4.8. 

KPI-2.1 Semantic descriptions for 
objects D4.1 

Semantic description of IHES devices 
sensors for interoperability has been 
provided in D4.11 Section 4.3.3 

KPI-2.3 Semantic interoperability with 
IoT platforms 

Section 5 
D4.11 Subsection 
4.3.3 

UC3 leverages on standard MQTT 
infrastructure to handle real-time data 
and events communication between 
different used components and 
moreover as a proxy to handle 
communication between the field 
layer and the services located in UC3 
backend. Furthermore, the IHES 
devices have been semantically 
described by providing the TD also as 
proper WoT devices to allow 
improved interoperability with 
potentially any 3rd party services that 
relies on this W3C open standard. In 
this particular scenario the WoT 
servient must be hosted in IoT 



780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017 
Deliverable D5.11 Demonstration and validation of IHES- Generic IoT (Cycle 2) 
Dissemination level: Public  

 

74 
 

gateway since for legacy SW 
middleware constraints it could not 
be deployed on IHES devices 
directly.  

KPI-3.1.1 
Generating monitoring 
strategies in the 3 targeted IoT 
platforms 

Section 5 

UC3 leverages openHAB IoT platform 
for cloud-based visualization of time 
series data, to allow monitoring of 
environmental and acceleration 
parameters. UC2 and UC1 leverage 
on Chloe IoT and MindSphere 
respectively, amounting to 3 IoT 
platforms in total. 

KPI-3.1.3 Performing predictive 
monitoring with accuracy > 80% Section 5.4.1 

Highly accurate temperature predictor 
at the backend cloud, within the 
context of avalanche early warning 
system. 

KPI-4.1 Delivery of lightweight ML 
algorithms 

Section 7.2.3 
D4.10 

A total of 5 different lightweight 
algorithms has been deployed on 
IHES sensing units as part of the LEA 
component mapped on MCU. 
These algorithms have been detailed 
and characterized in D4.10 

KPI-4.2 

Delivery of adaptation 
mechanisms that support 
proactive and reactive, as well 
as horizontal and vertical 
adaptation actions, related to 
network, smart objects and IoT 
platforms with an adaptation 
time of 15ms 

D4.8 

Pattern rules used within sub use case 
3 (see subsection 6.3.2), along with 
the associated pattern components 
able to reason on said pattern rules 
and facts are key enablers for 
triggering adaptations to changes in 
the fault tolerance, reliability and 
dependability posture of the smart 
objects implementing the sensing 
system. The actual adaptation time 
will depend on the adaptation strategy 
adopted and can be from near-real 
time (e.g., for adaptation to ignore 
inputs from malfunctioning sensors) to 
longer adaptation times (e.g., when a 
manual sensor replacement is 
required). Testing indicates that the 
minimal reasoning delays allow for 
automated adaptation within 15ms. 

KPI-4.4 Detection time of less than 10 
ms 

Section 7.2.4 
D4.10 

This 10ms figure is to ensure the 
real-time Local Embedded Analytics 
processing on Field Device level on 
UC3. 
This KPI has been verified as part of 
the validation of the LEA component 
(CDT test) detailed in D4.10 
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KPI-4.4.1 Delivery of repeatable Change 
Detector Section 7.2.6 

This is an additional KPI identified 
during T5.6 integration introduced to 
ensure that similar input data on 
different devices or at different time 
produce an equivalent estimation on 
the thresholds used by CDT tests. 
Thus, the detector, trained in similar 
condition should provide similar 
thresholds. This is a key point to 
enable system capabilities reported 
in UC3 sub use case 1. 

KPI-4.4.2 

Comparison false positive rate 
of auto regressive (AR) models 
vs neural network models for a 
defined set of changes 

Section 7.2.7 

This is an additional KPI identified 
during T5.6 integration needed to 
better characterize the analytics at 
field layer in UC3. Improvement of at 
least 20% in false positive rate – ESN 
vs AR3 

KPI-4.5 

Complexity of back propagation 
on feed forward autoencoder 
neural network4   vs ST-I 
proprietary adaptation mode5   
based on NN 

Section 7.2.8 

Derived from generic Improvement of 
at least 20% in minimum adaptation 
time – ESN vs Autoencoder 

KPI-6.1 

Reduce manual interventions 
required for bootstrapping of 
smart object in each use case 
domain by at least 80%. 

Appendix 9, see 
also Sections 3 and 
5. 

The bootstrapping service for the 
smart objects involves the availability 
of other functional blocks, such as the 
MQTT broker/publisher/subscriber at 
the IoT GW/backend. An 
implementation of these functional 
blocks in the form of 
VNFs automates its availability for the 
bootstrapping process. In this regard, 
note that the NFV MANO automatizes 
the creation of the VNFs and its 
deployment on top of the NFVI in the 
form of VMs. Also, it automatizes the 
configuration, software installation 
and programs executions in the VM at 
boot time. Therefore, such operations 
are expected to eliminate user 
intervention completely. 

KPI-6.3 Delivery of 3 prototypes of 
IIoT/IoT applications Section 4.3.4 

openHAB platform has been adopted 
in UC3 as the IoT Platform to 
implements the system visualization 
UC3 smart sensing application 

 
3 Both ESN (Echo State Network) and AR are models developed by STMicroelectronics specifically for UC3 
4 Autoencoder reference model has been developed by ST specifically for UC3 as initial reference for self-
learning design 
5 Use case specific adaptation modes have been developed by ST-I as part of UC3 T4.3 activities 
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KPI-7.1 Provision the SEMIoTICS 
building blocks 

Section 3, 4, 5 and 
6 

UC3 has provided 3 specific new 
components to the SEMIoTICS 
framework, 2 components have been 
improved to integrate for 
interoperability the specific MQTT 
flow of UC3. Finally, several 
components have been used to 
implement UC3 testbed 
functionalities with an overall TRL 4 
maturity level being the UC3 testbed 
validated in laboratory environment. 
The TRL level of each component 
used in UC3 are reported there for 
completeness:   
UC3 App - TRL4 
Backend orchestrator – TRL6 
Pattern Orchestrator – TRL4 
GUI – TRL6 
NFV Orchestrator – TRL6 
VNF Manager – TRL6 
Virtualized Infrastructure Manager – 
TRL6 
Pattern Engine – TRL4 
Local embedded intelligence – TRL4 
Supervisor and Local DB – TRL4 

 
7.2.1 KPI 1.1 - NUMBER OF SPDI PATTERNS 
Pattern-driven SPDI management is at the core of the SEMIoTICS security-by-design approach. This KPI has 
been satisfied by the delivery of the final set of SPDI patterns in Section 4 of deliverable D4.8. As aggregated 
in subsection 4.6 of said deliverable, 49 patterns are delivered in total, covering all key SPDI properties and 
different data states and cases of platform connectivity.  
Furthermore, in UC3 the focus was on showcasing the Dependability monitoring and verification, introducing 
a new complex rule that considered Fault Tolerance and measurement Reliability . To implement and showcase 
the associated Dependability monitoring and reasoning, a total of 6 pattern rules are defined and used 
(Dependability, Fault Tolerance, Reliability composition and decomposition rules), as detailed in subsection 
6.3.2. 
 

7.2.2 KPI-1.2 – PATTERN LANGUAGE 
This KPI is satisfied through the delivery of the final version of the pattern language as presented in detail in 
Section 3 of D4.8, developed to accommodate all the needs of the SEMIoTICS pattern definition and reasoning.  
The Dependability reasoning capabilities demonstrated in UC3 leverage the SEMIoTICS pattern language and 
the associated IoT orchestration specification approach. 
 

7.2.3 KPI-4.1 - DELIVERY OF LIGHTWEIGHT ML ALGORITHMS 
LOCAL EMBEDDED ANALYTICS COMPONENT 
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As part of Task 4.3 efforts, the UC3 Local Embedded Component wrapping all UC3 Generic IoT needed 
functionalities. This component has been deployed in task 5.6 as a dedicated MCU device firmware including 
these new algorithms: 

• An online training for neural model (ESN). 
• An online predictor using (online) trained neural model (ESN). 
• A model-free change detection (CDT6) test applied to residual signal. 
• A change-point method to (CPM7) validate the detected change 
• A fine-tuning algorithm tailored to the online training stage, to compute automatic thresholds for 

triggering the CDT and CPM stages 
 

7.2.4 KPI-4.2 - ADAPTATION MECHANISMS WITH AN ADAPTATION TIME OF 15MS 
PATTERN-DRIVEN ADAPTATIONS 
Pattern rules used within sub use case 3 (see subsection 6.3.2), along with the associated pattern components 
able to reason on said pattern rules and facts, are key enablers for triggering adaptations to changes in the 
fault tolerance, reliability and dependability posture of the smart objects implementing the sensing system.  
Considering the above, testing indicates that the minimal reasoning delays of the pattern mechanisms allow 
for automated adaptation within 15ms. In more detail, in the testbed setup detail in section 6, testing over a 
number of 100 reasoning events (including sensor failures, sensor malfunction and sensor recovery events) 
yield a reasoning time of ~12ms on average, with a typical delay of ~10ms for most cases, and some outlier 
events at ~15ms (which affected the average time). These outlier events are attributed to the timing of the 
interrupts that the MQTT client embedded into the field-layer Pattern Engine introduces when it receives data 
and could, potentially, be further tuned. 
Nevertheless, it is evident from said testing that automated, pattern-driven adaptations within the limit of 15ms 
are possible in most instances. Nevertheless, it should be noted that the actual adaptation time will depend on 
the adaptation strategy adopted and can be from near-real time, within the 15ms limit (e.g., for adaptation to 
ignore inputs from malfunctioning sensors), to longer adaptation times for more complex scenarios and e.g., 
when a manual sensor replacement is required – in which case, adaptation times of 15ms are anyway not 
realistically possible. 

7.2.5 KPI-4.4 – DETECTION TIME LESS THAN 10MS 
TEST CONDITIONS 
Detection Time is defined as the time in which LEA component in MCU firmware performs all the needed 
phases to identify from the input data series if a potential change in the signal could be reported as a (local) 
change or not. 
For this experiment the Detection Time was profiled on the ST X-NUCLEO F401RE board using developed 
analytics firmware encompassing the ESN model developed in task 4.3. 
 
RESULTS 
The measured Detection Time is on average around 8/9 ms for each processed sample from the sequence 
(acquisition data rate was set to 5Hz, thus on average less than 50ms on a second are consumed by this 
stage). Thus, the LEA component is deployed in ST MCU FW enables real time processing at Field Device 
level. 
 

7.2.6 KPI 4.4.1 – DELIVERY OF REPEATABLE CHANGE DETECTOR 

 
6 CDT models are developed by ST specifically for UC3 scenarios 
7 CPM models are developed by ST specifically for UC3 scenarios 
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TEST CONDITIONS 
The Change Detector repeatability is defined as the ability of the CDT algorithm to compute same thresholds 
during the CDT thresholds estimations when the same predictive models are trained in the same conditions. 
In this experiment the goal is to achieve a Standard Deviation / Mean below 10%. This means that, on average, 
thresholds should vary less than 10% if the same models are trained in the same conditions. 
For this experiment the thresholds have been computed using the UC3 LEA component mapped on X-NUCLEO 
F401RE MCU Board, retrieving data from the 3-axes accelerometer stacked on the MCU board leaning on a 
desk. 
 
RESULTS 
In table below, the experimental results are reported. 
Numbers in the table refers to mean values of 20 different trainings done using a 3-axis accelerometer setup. 
 

TABLE 3. KPI 4.4 RESULTS REPEATABLE CDT 

 X Y Z 

CDT Threshold (Mean) 52.65 43.32 144.26 

 CDT Threshold (Std. Dev) 4.91 3.6 17.6 

(St. Dev / Mean) % 9.33% 8.3% 12.27% 

 
The mean percentage over the three accelerometer axes is 9.96%. 
 
CONCLUSIONS 
The CDT deployed algorithm on the UC3 Local Embedded Intelligence component can estimate equivalent 
thresholds from same model under same conditions. 
 

7.2.7 KPI 4.4.2 – DETECTED CHANGES FALSE POSITIVE RATE COMPARISON (AR MODELS VS ESN 
MODELS) 

CONSIDERED MODELS 
In the experiment ST-I compare the following models:  

• Autoregressive model: 
◦ order: 5 
◦ regression: least squares 

• (ESN) Neural model: 
◦ model class: Echo State Network 
◦ reservoir: 35 neurons 

DATASET 
A dedicated dataset composed of several sequences from accelerometer data captured at 5Hz for 70 seconds. 
We consider the time instant T* a change if in that time instant we add an exogenous signal to the original 
signal. The exogenous signal has been defined as:  

• fault: adding random noise ns, with ns ∈ U(0, 70) (uniform distribution) 
• incremental: adding ramp noise with a coefficient β = 4 · (r − 2) with r ∈ U (0, 4) 
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• stuck-at: signal became value c, with c equal to the last input value before the change 
 
THRESHOLD based CDT 
A threshold-based CDT (Change Detection Test) has been developed to find the changes in the acquired data 
signals. The threshold-based CDT is configured on an initial training sequence to automatically define its 
threshold value with no hand-crafted thresholds.  
Given K as the residual and σk as the sample standard deviation over K, the threshold has been defined as 
follows: 
 Th = p σk 
where p is a multiplicative factor. 
 
CHANGES definition  
During the operational phase, a change is detected when the CDT algorithm verifies whether the residual 
between the measurement and the prediction provided by the learned AI nominal model overcomes the 
computed threshold. 
 
According to this experimental setup the following variables has been considered (see Figure 57): 

• T0: time instant the experiment starts 
• T*:  time instant the change happens 
• T ref: time instant the model detects the change 
• T̂: time instant the experiment ends 
 

TEST CONDITIONS 
 

 
FIGURE 57. KPI 4.5 TEST CONDITIONS 

 
During the experiment, when the model detects a change at time instant Tref, there are 3 different possible 
outcomes that could happen: 

• False positive when: T0 < Tref < T* 
• Correct Prediction when: T* < Tref < T̂ (with a detection delay (dd) equal to t – T*) 
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• False negative when: Tref > T̂ 
 
With these new definitions, the False Positive Rate (FPR) is computed as follows: 
 FPR = FP / M 
 
where M that represents the number of experiments.  
For this experiment the two models (AR vs ESN) have been benchmarked on the X-NUCLEO F401RE8 MCU 
board computing the FPR.  
 
RESULTS 
In this section the results of the experiments performed are reported using: 

• Training samples = 100 samples 
• p = 2.5 (Table 4) and p = 5 (Table 5) 
• M = 200  
• T̂ = 350 

 
TABLE 4. KPI 4.5 RESULTS (P = 2.5) 

 Fault Incremental Stuck-at 

 FPR FNR dd FPR FNR dd FPR FNR dd 

AR 100% - - 100% - - 100% - - 

ESN 5% - 40,7 0,8% - 97,3 13% 29% 21,7 

 
 

TABLE 5. KPI 4.5 RESULTS (P = 5.0) 

 Fault Incremental Stuck-at 

 FPR FNR dd FPR FNR dd FPR FNR dd 

AR 81% -  70% -  63% - 50,5 

ESN - - 40,7 - - 49,5 - 32% 21,7 

 
CONCLUSIONS 
According to the experimental findings the ESN model used for prediction modelling improves the FPR more 
than 20% with respect to the AR model as required by KP-I definition. 
 

 
8 https://www.st.com/en/evaluation-tools/nucleo-f401re.html 
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7.2.8 KPI 4.5 – AUTOENCODER BACK PROPAGATION COMPLEXITY VS ESN ONLINE TRAINING 
ADAPTION MODEL 

This is a specific adaption from generic KPI as originally stated in D5.1. This KPI is defined as “The adaptation 
response time should bring at least a 20% improvement over the baseline of each domain ”. In the context of 
UC3 the adaptation has been implemented as part of the unsupervised learning implemented at field device 
level as part of the LEA component. The complexity has been evaluating by comparing the adopted UC3 model 
ESN training vs a standard autoencoder backpropagation process. 
 
CONSIDERED MODELS 
In this experiment the following models has been considered for signal prediction tasks:  

• Neural model 1: 
◦ type: Autoencoder (Reference SOTA) 
◦ neurons: 18 (for the encoder) 
◦ inputs: 50 (this is set as observation window size since autoencoder is a non-recursive neural 

network) 
 

• Neural model 2 (UC3 adopted): 
◦ type: Echo State Network 
◦ neurons: 35 (for the ESN reservoir) 
◦ inputs: 3 (three axes accelerometer (X, Y, Z) input samples) 

 
TEST CONDITIONS 
The minimum adaptation time is defined as the time in which a model can make the inference process from 
the acquired (X, Y, Z) input data samples. 
The two models have been mapped on the STM32 JAM-CLOUD board, and code has been instrumented in 
order to measure the acquisition time from the input data sample to the computat ion of the associated output 
data predictions (X’, Y’, Z’).  
 
RESULTS 
In this section we reported the results of the experiments measured by using X-CUBE-AI tools v4.1.0 integrated 
into STM32CubeMX 5.3: 
 

TABLE 6. KPI 4.5 RESULTS 

 Adaptation Time (ms) Input 

Auto 
Encoder 
Model 

0.428 50 

ESN Model 0.0273 3 
 
 
CONCLUSIONS 
The ESN models adopted in UC3 improve the minimum adaptation time more than 20% with respect a standard 
Auto Encoder model. The maximum adaptation time is not reported in table above, as it’s well known by an 
expert in the field of Deep Learning that back propagation learning based procedure applied to an autoencoder 
vs training ESN model double at least by 2 the training complexity compared to ESN models. 
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7.2.9 KPI-6.3 DELIVERY OF 3 PROTOTYPES OF IIOT/IOT APPLICATIONS 
OpenHAB platform has been adopted in UC3 as the IoT Platform to implements the system visualization UC3 
smart sensing application as reported in Table 2 – see KPI 6-3. 

7.2.10 KPI-7.1 PROVISION THE SEMIOTICS BUILDING BLOCKS 
All components deployed in UC3 reaches a TRL4 level maturity since the UC3 testbed have been deployed in 
a lab environment. No matter, some of the used UC3 components are at a higher stated TRL level since they 
are based on technology that has been tested also in real conditions. The complete overview of each single 
component used in UC3 are reported in Table 2 – see KPI 7-1.   
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8 CONCLUSION 
8.1 Lessons Learned 
8.1.1 OBSERVED OBSTACLES 
During the consolidation of the UC3 we realize how critical in such scenario is the availability of methodologies 
and tools for deploying local embedded intelligence to the device level, where the devices are extremely low 
power MCU units. Nowadays there are not yet any de-facto framework that covers that area. The complex 
cloud infrastructures solutions providers such as Amazon with their analytics tools, Microsoft Azure, or IBM do 
not currently have any solution for integration seamlessly the local embedded intelligence with existing 
backend services. In this layered and distributed intelligence scenario the communication and networking of 
the results of the analytics is of paramount importance. The right communication patterns and an open 
framework where the outcomes of the local analytics (together with the ones already widely available at cloud 
infrastructure) could be easily integrated to be exploited coherently according to the desired scenario are 
somehow a key technical challenge not yet fully addressed in the IoT community. 
In this respect we think that in SEMIoTICS we were able to provide a potential solution to the problem by 
providing a general methodology for the deployment of AI analytics on devices (see D4.10 section about DL 
tools overview), a layered, scalable, and interoperable communication infrastructure based on MQTT 
publish/subscribe pattern and finally a vertical integration of the system with its monitorability thanks to the 
designed dependability patterns.  
  

8.1.2 POTENTIAL IMPROVEMENTS 
As described in this UC3 scenario, the developed testbed is one of the possible verticalization of the generic 
IoT edge computing infrastructure, addressing a very specific scenario. It was developed to propose an 
understandable scenario offering a potential solution to the challenges mentioned in section 8.1.1. We know 
that thanks to the SEMIoTICS modular infrastructure it is possible to derive other use cases in other application 
fields area such as smart building management and IIoT and industries 4.0 use cases. One possible 
improvement is for example to add semi-autonomous actuation upon a relevant event detected by the layered 
intelligence (e.g., to stop elevators in a building where an alert has been triggered). Another potential 
improvement is a tighter integration with 3rd party services like weather forecasting services, or earthquakes 
monitoring, or also the possibility to cluster together more local LAN IHES services to not monitor a single 
building but also a district area, or even possibly a city with a fine-grained understanding of the events 
generated by all of these subsystems adding further trend analytics on top of what has been done in the sub 
use case 2. 
    

8.2 Concluding Remarks 
This deliverable D5.11 presented the final version of the UC3 testbed demonstrator alongside the complete 
presentation of the executive status activities done in task 5.6 “Demonstration and validation of IHES- Generic 
IoT (Final)”. This document is intended in this respect as an executive summary and report all the key details 
related to the UC3 integration activities done in order to finalize the integration of the whole UC3 testbed 
demonstrator within SEMIoTICS architecture, as originally designed and declared in D2.5 final architecture 
design. 
For convenience, we had identified three sub use case scenarios that have been incrementally integrated in 
task 5.6 and that, all together, demonstrate the whole set of capabilities of the UC3 scenario. 
The three sub use cases have been declared by providing for each one of them the links with relevant design 
documentation already discussed in former deliverables, and their relationship with the SEMIoTICS 
components and infrastructure has been provided as well.  
This document concludes the cycle 1) and cycle 2) integration activities done in task 5.6. 
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9 APPENDIX TESTING OF THE END-TO-END MQTT 
COMMUNICATION IN NFV 

In this section, we explain the testing and implementation of an end-to-end MQTT communication system in 
the framework of NFV, which is depicted in FIGURE 58. This was used to test the MQTT communication at 
the backend cloud in section 5. That is, we create a VNF that contains the functionalities required for an end-
to-end MQTT communication: the MQTT publisher, MQTT broker and MQTT subscriber, which we call VNF3. 
Then, this VNF3 is deployed within the NFV testbed. Moreover, the VNF3 is managed by the NFV MANO, 
which is implemented by the OSM9 and OpenStack controller nodes. Finally, note that the VNF3 is deployed 
on top of the virtualized resources exposed by the OpenStack compute node, which represents the NFVI.  

 
FIGURE 58. ILLUSTRATION OF THE IMPLEMENTATION OF THE VNF3 WITHIN THE NFV TESTBED 

 
Note that the user has only to interact with the OSM to manage the whole lifecycle of the VNF. Moreover, the 
OSM interacts internally with the OpenStack, which manages the deployment of the VNF on top of the NFVI 
in the form of a VM. Therefore, our task to set up the system of FIGURE 58.is focused to define a set of 
configuration files required by the OSM to manage the VNF lifecycle and to interact with the OpenStack. Next, 
we list these configuration files, and we explain its role: 
 

• Network Service descriptor (NSd). In OSM a VNF is always part of a network service (NS). A NS 
contains at least one VNF. Moreover, the NS is described by a configuration file in yaml format that is 
so-called NSd. It describes among other features the constituent VNFs of the NS or the links between 
the NS and the VNF. We will see more details below. 
  

• VNF descriptor (VNFd). This is the configuration file that describes the VNF, which has a yaml format. 
It describes the features of the VM that will host the VNF, the links that the VNF exposes externally to 
connect to e.g., NS and other features that we will see below. 
 

 
9 https://osm.etsi.org/ 
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• Cloud init file. This is a configuration file that will be used by the VM that will host the VNF. It specifies 
the initial behavior that the VM needs to provide. For instance, installation of software packages, 
execution of software applications, among other features. 
 

Next, we describe how we defined the NSd, VNFd and cloud init file to achieve the implementation of our 
system depicted in FIGURE 58. The explanations for the NSd and VNFd rely on the information models 
provided by OSM, whereas the explanations for the cloud init file rely on the cloud init documentation10. 

• NSd specification 
Next, we display a snapshot of the yaml file that we edited to specify the NSd. The relevant tags are described 
in the sequel. First, note that the tag “id” determines the unique identifier for the Network Service. The tag 
“constituent-vnfd” indicates which VNFs are part of the NS. In our case we have just the VNF3, whose 
identification is “vnf3_vnfd” and is specified through the tag “vnfd-id-ref”. Note that, in the vnfd the “id” tag must 
correspond with that value. Then, we have the tag “vld”, which is a description of the virtual links used by the 
NS for networking connections. In our case, note that the tag “type” is set to “ELAN”. This indicates that the 
virtual link is a service to connect VNFs. The tag “mgmt.-network” set to “true” means that this is a VIM 
management network. The tag “vim-network-name” describes the name of the network in the VIM account, in 
our case “externalNet” is the name that was given such network in the OpenStack framework. Finally, the tag 
“vnfd-connection-point-ref” describes the connection points for the virtual links towards a vnf. We can see that 
this is a connection towards our VNF3 as the tag “vnd-id-ref” is set to “vnf3_vnfd”. It is important to note that 
the connection point for the VNF is set through the tag “vnf-connection-point-ref”, whose value must correspond 
with the connection point set in the vnfd, as you can check below in the vnfd snapshot.  
 

 
10 “Cloud init documentation”. [Online]. Available: https://cloudinit.readthedocs.io/_/downloads/en/latest/pdf/ 
[Accessed December 2020]. 
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FIGURE 59. NSD TO CONFIGURE AND TO DEPLOY THE NS RELATED TO VNF3 IN THE NFV TESTBED 
 

• VNFd specification 
Next, we present the snapshot of the yaml file that we have used to specify the VNFd. We discuss in the sequel 
the important parts of this file. First, note that the “connection-point” tag indicates the external connection 
points of the VNF. Its value corresponds with the one assigned above in the NSd yaml file, within the “vnf -
connection-point-ref” tag of the “vld” list. The tag “id” is the unique identifier for the VNF and it is important to 
recall it, as it is used in the NSd. The tag “mgmt-interface” is the interface over which the VNF is managed. 
Moreover, the “cp” within it just specifies the type of management endpoint, in our case “cp” means that we 
will use a connection point. Another important tag is the “vdu”, which stands for virtual description unit, and it 
specifies the features of the VM that will host the VNF. Thereby, the “cloud-init-file” indicates the cloud init file 
that will be used by the VM. The snapshot for this cloud init file is described below. The tag “image” indicates 
the image that will be used to create the VM, in our case we will have an Ubuntu OS. The “interface” tag within 
the “vdu” tag specifies the interfaces for the vdu. Note that we define an external connection point that 
corresponds with the connection point defined for the vnfd. Last, but not least, the “vm -flavor” indicates the 
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computing, memory, and storage features of the VM that will host the VNF. Thereby, note that we define a VM 
with 1 virtual CPU, 4 GB of RAM and 5 GB of storage. 
 

 
FIGURE 60. VNFD TO CONFIGURE AND TO DEPLOY THE VNF RELATED TO VNF3 IN THE NFV 

TESTBED 
 

• Cloud init file specification 
This file is the one that specifies the initial configuration that we aim for the VM that will host  the VNF3. Note 
that its name is specified in the vnfd, as commented above. Next, we provide the snapshot of this cloud init file 
and describe its functionalities. First, note that we have a field called “users”. This allows to add users to the 
system. Note that we have added a user called “generic”. Within this user, there is an important field to be 
added, the “ssh_authorized_keys”. This is important, because here we add the public ssh keys of the users 
that will access the VM that hosts the VNF3. Afterwards, there is a field called “packages”, which indicates 
which software packages we would like to install. In our case, we indicate git to be able to download software 
from the gitlab repository. Then, we have a field called “runcmd”, which runs commands during the first boot 
of the VM. First, note that we update the database of available software packages that can be installed, through 
the “sudo apt-get update -y” command. Note that it is important to put the “-y” option otherwise, the shell will 
get stacked waiting that we say “yes” to make the update. After that, we put a set of commands to install 
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docker. These commands are based on the guidelines in the official docker webpage11. Herein docker is 
needed to implement the functionality of the VNF3. Namely, each block of the E2E MQTT chain is a docker 
container. Then, we install docker compose, as it is needed to automate the deployment, configuration, and 
execution of the docker containers that implement the E2E MQTT chain. Afterwards, we clone the gitlab 
repository that contains all the software of the E2E MQTT chain. Finally, we leverage docker compose to build 
and run all the dockers and their networking interactions that implement the E2E MQTT chain. Note that we 
store the output in a text file. This allows us to test whether the received MQTT topics correspond to the ones 
generated by the emulated IHES sensing units at the MQTT publisher side. 
 

 
FIGURE 61. CLOUD INIT FILE THAT DEFINES THE CONFIGURATION AND EXECUTIONS OF THE VM 

THAT WILL HOST THE VNF3 
 
Next, in Figure 62 it is demonstrated that we are able to onboard properly the NSd and VNFd packages into 
the library of OSM. Recall that these are a set of configuration files that describe the properties of our VNF3, 
the requirements in terms of computing and networking that it has. Also, they describe the features of the VM 
that will host the VNF3 and the initial configuration and software packages installations that we need in the 
VM. We have called the NSd and VNFd as vnf3_nsd and vnf3_vnfd, respectively. It can be observed that OSM 
has onboarded properly the NSd and VNFd, as they appear on the list of available packages in the OSM 
library. Note that the osm instruction “osm nsd-list” and “osm vnfd-list” were used. 

 
11 “Docker”. [Online]. Available: https://www.docker.com/. [Accessed July 2020]. 
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Then, in Figure 63, we trigger the instantiation of the NS that we have onboarded in OSM for our VNF3. This 
means basically that OSM will communicate with the OpenStack controller, which creates the VM that will  host 
our VNF3 on top of the virtual resources exposed by the OpenStack compute node. For that, obviously, the 
OSM takes into account the information embedded within the NSd and VNFd. Note that to trigger the NS 
instantiation we used the OSM command “osm ns-create –ns_name semiotics_vnf3 –nsd_name vnf3_nsd”. 
Observe that you must specify for the nsd_name option the name of the NSd that you want to instantiate, 
otherwise the NS will not be instantiated.  
 

 
FIGURE 62. NSD AND VNFD PACKAGES ARE ONBOARDED PROPERLY TO OSM 
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FIGURE 63. INSTANTIATION OF THE NS THAT REPRESENTS VNF3 INTO THE NFVI 
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