

 780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

SEMIoTICS

Deliverable D5.2
Software system integration (Cycle 1)

Deliverable release date 31.1.2020

Authors
1. Arne Broering, Darko Anicic, Jan Seeger (SAG)
2. Eftychia Lakka, Nikolaos Petroulakis, Emmanouil Michalodimitrakis
(FORTH)
3. Konstantinos Fysarakis, Iasonas Somarakis (STS)
4. Domenico Presenza (ENG)
5. Felix Klement, Korbinian Spielvogel, Henrich C. Pöhls (UP)
6. Piotr Kowalski, Łukasz Ciechomski, Jakub Rola, Michał Rubaj, Urszula
Stawicka (BS)
7. Prodromos Vasileios (IQU)

Responsible person Łukasz Ciechomski (BS)

Reviewed by
Urszula Rak (BS), Łukasz Ciechomski (BS), Konstantinos Fysarakis
(STS), Emmanouil Michalodimitrakis, Emmanouil Papoutsakis (FORTH),
Kostas Ramantas (IQU). Felix Klement (UP)

Approved by
PTC Members (Vivek Kulkarni, Nikolaos Petroulakis, Ermin Sakic, Mirko
Falchetto, Domenico Presenza, Verikoukis Christos)
PCC Members (Vivek Kulkarni, Nikolaos Petroulakis, Christos Verikoukis,
Georgios Spanoudakis, Domenico Presenza, Danilo Pau, Joachim
Posegga, Darek Dober, Kostas Ramantas, Ulrich Hansen)

Status of the Document Final

Version 1.0

Dissemination level Public

Ref. Ares(2020)624114 - 31/01/2020

https://upload.wikimedia.org/wikipedia/commons/b/b7/Flag_of_Europe.svg
Rex

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D5.2 Software system integration (Cycle 1)
Dissemination level: [Public]

2

Table of Contents

 Introduction .. 5

 PERT chart of SEMIoTICS ... 6

 Integration approach and methodology .. 7

 Divide the platform functions into components and assign them to the right partner 7

 Define the interface of each component ... 7

 Declare and define the communication/dependencies among all components 8

 Continuous Integration / Continuous Deployment ... 8

2.4.1. CI/CD Tools used in SEMIoTICS .. 9

2.4.2. Continuous Integration (CI) pipeline .. 9

2.4.3. Continuous Deployment (CD) pipeline .. 9

 Integration description and implementation progress ...10

 Integration flows delivered in cycle 1 ...10

3.1.1. Pattern engine integration with orchestrators at all levels ...10

3.1.2. Field devices integration ..11

3.1.3. GUI integration ..12

3.1.4. Pattern orchestrator integration with recipe cooker ..18

3.1.5. Pattern Orchestrator integration with the SDN/NFV for Service Function Chaining 21

3.1.6. Integration of Semantic Backend Validator with other components ...27

 Interoperability with external IoT platforms ..32

 General Approach ...32

 Integration with FIWARE ...35

4.2.1. Methodology of FIWARE component verification ..35

4.2.2. Evaluation process with selected general enablers ..36

4.2.3. Group 1: Security-related GEs ...36

4.2.4. Group 2: NGSI-based components ..37

4.2.5. Group 3: SDN and NFV - related components..40

4.2.6. Group 4: Database related components ...41

4.2.7. Conclusion ..42

4.3 Integration with CloE-IoT ..42

 Integration with MindSphere ..44

 Integration with OpenHAB ...45

 Validation..47

 Related Project Objectives and Key Performance Indicators (KPIs) ...47

 SEMIoTICS implementation requirements ...48

 Conclusion ..49

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D5.2 Software system integration (Cycle 1)
Dissemination level: [Public]

3

TABLE 1 ACRONYM TABLE

Acronym Definition

API Application Programming Interface

CI Continuous Integration

CD Continuous Delivery

WP Work Package

IoT Internet of Things

KPI Key Performance Indicator

PERT Program Evaluation Review Technique

UML Unified Modelling Language

SPDI Security & Privacy & Dependability & Interoperability

NFV Network Functions Virtualization

VNF Virtualized network function

SME Small and Medium Enterprises

IIoT Industrial Internet of Things

REST Representational state transfer

W3C The World Wide Web Consortium

GUI Graphical User Interface

WoT Web of Things

JSON JavaScript Object Notification

HTTP Hypertext Transfer Protocol

JSON-LD JavaScript Object Notation for Linked Data

URL Uniform Resource Locator

GW Gateway

PO Pattern Orchestrator

ANTLR4 Another Tool for Language Recognition

SDN Software-Defined Networking

SFC Service Function Chaining

VIM Virtualized Infrastructure Manager

OVS Open vSwitch

OSM Open Source MAO

BSV Backend Semantic Validator

GWSM Gateway Semantic Mediator

SAPB Semantic API & Protocol Binding

https://pl.wikipedia.org/wiki/Representational_state_transfer
https://pl.wikipedia.org/wiki/Uniform_Resource_Locator

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D5.2 Software system integration (Cycle 1)
Dissemination level: [Public]

4

TD Thing Directory

GE General Enabler

PEP Policy Enforcement Point

PDP Policy Decision Point

XACML eXtensible Access Control Markup Language

RDF Resource Description Framework

DB Database

OSGi Open Services Gateway initiative

OWL Web Ontology Language

OSSOSS Operations Support System

BSS Business Support System

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D5.2 Software system integration (Cycle 1)
Dissemination level: [Public]

5

 INTRODUCTION

This deliverable describes the first outcomes of the Task 5.2 which is focusing on the software integration of
the SEMIoTICS framework components.

System integration is a process of bringing together the component sub-systems and ensuring that the whole
system can deliver its functionalities. The SEMIoTICS architectural solution consists of building blocks
responsible for different functionalities of framework logic. As such, the SEMIoTICS framework may be
leveraged in various configurations, depending on the specific needs of the real -life scenarios. Task 5.2. is
focusing on the delivery of the integration flows necessary for 3 use cases identified w ithin the project. Hence,
it consists of integration of the components of identified 3 IIoT layers (including field -level middleware,
networking toolbox, backend API) as well as leveraged IoT platforms (including FIWARE). Components
developed within SEMIoTICS in principle are making direct calls to external subsystems (deployed with
SEMIoTICS framework), so they should also be treated from the perspective of integration as subsystems.
Additionally, integration in SEMIoTICS particularly focuses on ensuring SPDI properties as a core SEMIoTICS
functionality.

As a general scope, the SEMIoTICS framework integration involves all components developed in WP3 and
WP4. Moreover, additional effort is put on components enabling interoperability with targeted external IoT
platforms. As a result of this process, the integrated framework provides the basis for evaluating the
effectiveness of the SEMIoTICS approach in real-life scenarios and trial operations in domains targeted by the
project (T.5.4, T.5.5, and T.5.6). Particular emphasis is on the automated processes of Continuous Integration
and Continuous Delivery (CI/CD) which the integration process is based on.

The deliverable is structured as follows:

• Section 2 covers the approach to the integration taken within this project.

• Section 3 presents the integration flows which have been delivered within the first cycle of the task works

• Section 4 describes the approach for the IoT platforms interoperability

• Section 5 is the validation section where one can see what objectives and KPIs are pertinent to the work
presented within this deliverable

• Section 6 features the concluding remarks

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D5.2 Software system integration (Cycle 1)
Dissemination level: [Public]

6

 PERT chart of SEMIoTICS

The PERT chart below provides a graphical representation of the project's timeline, allowing the bre akdown
of each individual task in the project for analysis.

36 months Leader: SAG

31.12.202001.01.2018

WP1: Project Management

23 months Leader: ST-I

30.11.201901.01.2018

WP2: Requirements and Architecture for
Smart Sensing and Smart Actuation

24 months Leader: SAG

30.04.202001.05.2018

WP3: Smart objects and networks

25 months Leader: FORTH

30.06.202001.06.2018

WP4: Pattern-driven smart behavior of
IIoT with End-to-End Security and Privacy

24 months Leader: ENG

31.12.202001.01.2019

WP5: System Integration and Evaluation

36 months Leader: SAG

31.12.202001.01.2018

T1.1: Project coordination 36 months Leader: FORTH

31.12.202001.01.2018

T1.2: Project technical and innovation
management

36 months Leader: SAG

31.12.202001.01.2018

T1.3: Coordination with EU programme
level activities

3 months Leader: STS

31.03.201801.01.2018

T2.1: Analysis of emerging business and
technical IoT value drivers

4 months Leader: SAG

30.04.201801.01.2018

T2.2: Specification of use case scenarios
& applications and their requirements

4 months Leader: ST-I

30.06.201801.03.2018

T2.3: Specification of infrastructure
requirements

18 months Leader: BS

31.12.201901.07.2018

T2.4: SEMIoTICS architecture design

22 months Leader: SAG

29.02.202001.05.2018

T3.1: Software defined Aggregation,
Orchestration and cloud networks

22 months Leader: CTTC

29.02.202001.05.2018

T3.2: IIoT Network Function Virtualization

22 months Leader: SAG

29.02.202001.05.2018

T3.3: Semantics-based bootstrapping &
interfacing

22 months Leader: STS

29.02.202001.05.2018

T3.4: Network-level semantic
Interoperability

22 months Leader: IQU

30.04.202001.07.2018

T3.5: Implementation of Field-level
middleware & networking toolbox

23 months Leader: STS

30.04.202001.06.2018

T4.1:Architectural SPDI patterns

22 months Leader: ENG

30.04.202001.07.2018

T4.2: Monitoring, prediction and
diagnosis

22 months Leader: ST-I

30.04.202001.07.2018

T4.3: Embedded Intelligence and local
analytics

22 months Leader: FORTH

30.04.202001.07.2018

T4.4: End-to-End Semantic
Interoperability

22 months Leader: BS

30.06.202001.09.2018

T4.6: Implementation of SEMIoTICS
backend API

22 months Leader: UP

30.04.202001.07.2018

T4.5: End-to-End Security and Privacy

5 months Leader: UP

31.10.201901.06.2019

T5.1: KPIs and Evaluation Methodology

15 months Leader: BS

31.08.202001.06.2019

T5.2: Software system integration

20 months Leader: IQU

31.08.202001.01.2019

T5.3: IIoT Infrastructure set-up and
testing

13 months Leader: SAG

31.12.202001.12.2019

T5.4: Demonstration and validation of
IWPC- Energy scenario

13 months Leader: ENG

31.12.202001.12.2019

T5.5: Demonstration and validation of
SARA-Health scenario

13 months Leader: ST-I

31.12.202001.12.2019

T5.6: Demonstration and validation of
IHES-Generic IoT scenario

36 months Leader: CTTC

31.12.202001.01.2018

T6.1: Impact Creation and Dissemination 31 months Leader: ENG

31.12.202001.06.2018

T6.2: Exploitation of results

24 months Leader: SAG

31.12.202001.01.2019

T6.3: Standardization
36 months Leader: CTTC

31.12.202001.01.2018

WP6: Impact, Dissemination and
Standardization

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D5.2 Software system integration (Cycle 1)
Dissemination level: [Public]

7

 INTEGRATION APPROACH AND METHODOLOGY

SEMIoTICS is a complex framework consisting of various components developed by multiple parties. To allow
the software component integration, the state-of-the-art approach for developing complex systems has been
used. The components have been assigned to most expert consortium partners in order to coordinate the
proper integration.
The above-mentioned approach allows the semi-independent and self-paced development of each partner.
However, it also creates the challenge of the integration of all components. The solution for this challenge is
the microservices approach architecture and their API. This section describes how the consortium manages
the process of integrating all components into one whole working platform on the backend level.

In more detail, the integration process has been divided into three steps:

1. Divide the platform functions into components and assign them to the right partner
2. Define the API of each component
3. Declare and define the communication/dependence among each component

Each of these steps is further elaborated in the subsections that follow.

 Divide the platform functions into components and assign them to the right partner

The first step in the developing process was straightforward. Once the architecture of the platform has be en
established, each functionality has been divided into small components and assigned to the appropriate
partner. The process of the assignment was based on the expertise and technologies brought into the project
by each partner.
Figure 1 above shows the result of the first step. The platform is divided into 3 layers, each layer is divided
into components and each component is assigned to the relevant partners.

 Define the interface of each component

While developing each component, partners were defining the API of their part of the platform. To document
this, each partner was also updating the corresponding UML component diagram, but without marking the
connection between components. This allowed all parties involved in the project to follow the changes in the

FIGURE 1. STATE AFTER STEP 2.1

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D5.2 Software system integration (Cycle 1)
Dissemination level: [Public]

8

API. In cases of a party having doubts or objections to another partner's component interface, the issue was
clarified between involved parties. This process was self-organized and self-administrated. The dependencies
among the components can be found in a Deliverable D2.5 SEMIoTICS High-Level Architecture (final). The
initial API specification without covering component interactions was chosen on purpose; the lack of
connections makes the diagram more readable, and simpler. Figure 2 below shows this approach of
documenting components with their endpoints, but no connections between endpoints.

FIGURE 2 REPRESENTATIVE COMPONENTS WITH ENDPOINTS

 Declare and define the communication/dependencies among all components

The most challenging part of developing a complex platform based on microservices is to ensure that
components are able to interconnect whenever necessary. To make it possible and manageable it was decided
to modify the standard UML component diagram. All identified endpoints have been merged into one diagram
and the data flow has been shown between components (Figure 3). Information about the usage of specific
endpoints was shown on separate sequence diagrams developed during working on use cases and discussions
between interested partners. This task was the most complex and engaging for every partner in the consortium.
The workflow in this task is described below:

1. The appointed partner (coordinator) prepared the first version of the flow diagram based on previously
published deliverables and internal project documents.

2. Every partner rises their objections (if any) about the flows to the coordinator
3. The coordinator resolves the conflicts and prepares the new version of the graph
4. Steps 2-3 are repeated until all concerns are addressed

FIGURE 3 SAMPLE DIAGRAM OF FLOW BETWEEN TWO COMPONENTS

 Continuous Integration / Continuous Deployment

The microservices structure of the platform allows applying the continuous integration and continuous
deployment philosophy. It allows each partner to implement small changes in code and allows for a fast
response when changes occur in another partner's requirements.
This philosophy leads to a better code quality and less time spent by introducing automatization in the building
and deployment process. It also encourages developers to publish even small improvements in code by
simplifying and automatizing the tedious process of testing and deployment.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D5.2 Software system integration (Cycle 1)
Dissemination level: [Public]

9

The opportunity to use the automated pipelines is available for all consortium members. The process is
presented in more detail in the subsections that follow, and it can be tailor-made for every partner.

2.4.1. CI/CD TOOLS USED IN SEMIOTICS

The tools used to automatize the process of developing and deployment of the platform include:

- GitLab as the code repository1
- Jenkins as a simple CI server2
- Docker as a container platform3
- GitLab Container Registry as a registry of containers images4
- Kubernetes as a runtime environment for containers5

2.4.2. CONTINUOUS INTEGRATION (CI) PIPELINE

The CI idea within the SEMIoTICS project is presented in Figure 4. The proposed project pipeline is based on
the standard CI pipeline. The main difference is that the desired product is a Docker image. At first, the pipeline
is started manually. As it is shown in the table below pipeline starts at Jenkins, then the new code is fetched
from the GitLab repository, the code is compiled, tested and build. At the end of the process , a docker image
is pushed to the Docker or GitLab image registry.

Start Get

code

Compile Test Build Push image

FIGURE 4 CI PIPELINE

2.4.3. CONTINUOUS DEPLOYMENT (CD) PIPELINE

The overall CD idea within the SEMIoTICS project is presented in Figure 5. At first, the pipeline is started
manually. Firstly, in order to start the pipeline, the changes need to be committed to Gitlab. As it is shown in
the table below, the pipeline starts at Jenkins, then cluster configuration files are pulled from GitLab. Next,
Jenkins plugin plan changes, then apply changes and deploy them on Kubernetes cluster. Kub ernetes gets a
declarative configuration of the cluster and are then responsible for other actions – e.g. obtaining images from
the Docker registry (if a Docker registry is private, the special Secret resource needs to be created to pull the
image).

Start Get config Plan changes Apply changes Deploy

FIGURE 5 CI PIPELINE

1 https://about.gitlab.com
2 https://jenkins.io
3 https://www.docker.com
4 https://about.gitlab.com/blog/2016/05/23/gitlab-container-registry/
5 https://kubernetes.io

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D5.2 Software system integration (Cycle 1)
Dissemination level: [Public]

10

 INTEGRATION DESCRIPTION AND IMPLEMENTATION

PROGRESS

Within cycle one, the consortium decided to focus on the integration development related to the core
functionality of SPDI patterns and their distribution across all 3 identified layers of SEMIoTICS framework as
well as the pattern definition and visualization. Hence, a number of integrations of Pattern Engine and Pattern
Orchestrator with components across three layers are described in the following sections.
Field devices bootstrapping as one of the core flows required for any other functionality is descr ibed below
while the integration flows required for the brownfield devices are going to be detailed in the further cycle.
The second area of focus for cycle one was the semantic interoperability within and externally to the
SEMIoTICS framework which means between the integral SEMIoTICS components as well as with external
IoT platforms such as CLOE-IOT, MindSphere, OpenHab, and FIWARE.
Details of specific integration flows may be found in the below subsections.

 Integration flows delivered in cycle 1

3.1.1. PATTERN ENGINE INTEGRATION WITH ORCHESTRATORS AT ALL LEVELS

The Pattern Engine is responsible for reasoning on the Security, Privacy, Dependability , and Interoperability
(SPDI) properties across all layers of the SEMIoTICS architecture. For this reason, variants of Pattern Engine
are implemented in the backend, in the network, and in the field layer. Patterns are inserted, modified, executed
or retracted at design as well as at runtime. These interactions are conducted with the help of Pattern
Orchestrator. Apart from the interaction of Pattern Orchestrator with the Pattern Engines across all layers,
there is also the interaction between NFV Orchestrator and the Backend Pattern Engine. Currently, this
interaction is limited only for verifying that any required VNFs are instantiated in order to satisfy a related SPDI
property. In Table 2, the interaction of Pattern Engines with the Orchestrators along with a small description is
presented.

TABLE 2 PATTERN ENGINE INTERACTIONS WITH ORCHESTRATORS

Pattern Engine Orchestrators used by
Pattern Engine

Description of interactions

Backend Pattern Engine

Pattern Orchestrator

Pattern Orchestrator is sending the
pattern requirements and receives
the status of the requirement after
the Pattern Engine has reasoned
based on the facts and rules stored
in the Pattern Global Repository

NFV Orchestrator

The Pattern Engine is getting the
available VNFs from NFV
orchestrator when a related pattern
requirement is received.

SDN Pattern Engine Pattern Orchestrator

Pattern Orchestrator is sending the
pattern requirements and receives
the status of the requirement after
the Pattern Engine has reasoned
based on the facts and rules stored
in the SDN Pattern Repository

Field Pattern Engine Pattern Orchestrator

Pattern Orchestrator is sending the
pattern requirements and receives
the status of the requirement after
the Pattern Engine has reasoned
based on the facts and rules stored
in the Field Pattern Repository

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D5.2 Software system integration (Cycle 1)
Dissemination level: [Public]

11

As it is shown in the following sequence diagram (Figure 6), the Pattern Orchestrator will choose to send the
SPDI requirement to one or more Pattern Engines depending on the case. This will trigger a sequence of
events that consists of several steps. Every Pattern Engine uses the available information from the monitoring
components in each layer and in combination with the rules and facts already stored in Pattern Repository also
in the same layer, reasons for the final status of the said requirement. In addition, the Pattern Engines that
exist in the network layer as well as in the field layer, propagate their facts not only to their local Pattern
Repository but at the Global Pattern repository as well. When the requirement is related to some VNFs then
interaction with the NFV orchestrator will also occur in order for the final requirement status to be formed.
For the needs of the communication between Pattern Engine and the Orchestrators , POST service requests
have been developed such as addFact, insertRule and factUpdate.

FIGURE 6 SEQUENCE DIAGRAM FOR PATTERN ENGINES INTERACTION WITH ORCHESTRATORS

3.1.2. FIELD DEVICES INTEGRATION

Figure 7 shows a sequence diagram of activities that occur during the bootstrapping process. The goal of this
process is to integrate a new device in the SEMIoTICS platform by using SEMIoTICS IIoT Gateway. Figure 7
represents an updated version of a sequence diagram that was presented in the Deliverable D3.3 (see Figure
16). The update is concerned with the introduction of a new component “Semantic Edge Platform” (SME).
SME plays multiple purposes in the architecture. It provides a convenient user interface for configuring
SEMIoTICS IoT Gateway. Further, SME provides a convenient development environment for creating new
Apps with a newly bootstrapped device. Finally, it provides a mechanism to semantically annotate brownfield
devices.

Once the process in Figure 7 is completed, it is possible to create new applications based on data from the
new device, as well as the data from other available devices in the platform. In order to achieve this goal,
SEMIoTICS IoT Gateway needs to make the device data accessible, and it has to provide a full semantic
description of the device, i.e., semantics about device capabilities, its data, communication protocols,
contextual information (e.g., location, a domain of use), etc.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D5.2 Software system integration (Cycle 1)
Dissemination level: [Public]

12

In the bootstrapping process, different classes of the device are distinguished. The first class consists of
devices that already have a Web-based RESTful interface, and are described by W3C Thing Description. The
second class comprises of all other devices that yet need to be made accessible over a Web-based RESTful
interface. These devices do not have a semantic description, or it exists, but needs to be mapped to
standardized semantic IoT models. For further details, an interested reader is referred to as SEMIoTICS
Deliverable D3.3.

So far, the bootstrapping process has been implemented and demonstrated for the first class of devices. The
implementation of the second class is in progress.

FIGURE 7 SEQUENCE DIAGRAM FOR BOOTSTRAPPING AND INTERFACING SEMIOTICS FIELD

LEVEL DEVICES

3.1.3. GUI INTEGRATION

Graphical User Interface is a module that overlays some components of the SEMIoTICS projects. Its main
purpose is to support the visualization of individual components and the presentation of collected data in one
IoT platform. A detailed description of GUI architecture and interactions between internal and external
components were included in D4.7 in section 4.5. According to the project assumptions, GUI integrates with
Thing Directory, WoT compliant field devices, and Pattern Orchestrator. Due to that fact, the description of
each integration is provided in a separate subsection below.

3.1.3.1. GUI integration with Thing Directory

This module is responsible for basic visualization of Things currently registered in Thing Directory. A list of all
Things is not stored in the GUI database, so only the Thing Directory provides a current state of devices

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D5.2 Software system integration (Cycle 1)
Dissemination level: [Public]

13

connected to the IoT platform. To receive data, GUI through an internal component sends HTTP request to
Thing Directory’s API and in the response - the body gets JSON with specific information. To avoid problems
with the device description, maintain consistency and uniform format in the platform, GUI uses the JSON-LD
standard in the above-mentioned communication. After getting data from Thing Directory, the JSON
description needs to be translated into a user-friendly form. For this purpose, mapping to a previously defined
object is used, so that the user can easily browse devices with their attributes. Moreover, GUI provides support
for the SPARQL filter for easy searching in Thing Directory. This component also allows for adding new things
and remove existing ones directly through the platform. It is not the main way to register new devices to the
platform, but it can be additional functionality to support the Thing Directory. Sequence diagrams illustrating
interactions between GUI and Thing Directory are depicted in the diagrams below (Figure 8, Figure 9)

FIGURE 8 SEQUENCE DIAGRAM, DISPLAY ALL DEVICES FROM THING DIRECTORY

As it is shown in the diagram above (Figure 8), when the user wants to show or filter devices a GET request
from GUI is sent to Thing Directory and the returned data is translated from JSON-LD format to model that
can be presented in the platform. A similar flow occurs when the user registers a new thing through a
dedicated window in GUI. The definition of Thing Description in JSON-LD standard is sent by the POST
method directly to Thing Directory where is validated and added to the existing list.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D5.2 Software system integration (Cycle 1)
Dissemination level: [Public]

14

FIGURE 9 SEQUENCE DIAGRAM, DELETE THING

The above diagram (Figure 9) demonstrates the process of removing the Thing from the Thing Directory. The
user needs to get a list of things registered in Thing Directory as mentioned in the previous diagram and then
can select a list of the device to delete. After confirmation, for each thing, GUI sends one by one POST
requests with Thing id as parameter. When the operation is completed, the user gets a message with success
or errors that have occurred.

3.1.3.2. GUI integration with WoT compliant field devices and Semantic API & Protocol Binding

The need to integrate GUI with Semantic API & Protocol Binding resulted from the ability to connect Brown
Field Devices to the SEMIoTICS platform. For this type of device, receiving real-time data or triggering actions
is not possible without a special mediator that can provide an endpoint to get different requests (GET methods
to return properties values and POST methods to control actions). This component is not used to connect with
WoT devices which have their endpoints and GUI can receive data directly without using additional
components. As it was mentioned above, before reading values from devices in real-time, actuate any action
and collect data at a set frequency, GUI component must get URL addresses of each endpoint. For this
purpose, a thing description from Thing Directory in the JSON-LD standard is translated to assign actions and
properties of the device to the correct URL address. As a result of the mapping, a new data object is created,
what ensures quick communication with the Semantic API & Protocol Binding component. Diagrams below
present interactions between the described components.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D5.2 Software system integration (Cycle 1)
Dissemination level: [Public]

15

FIGURE 10 SEQUENCE DIAGRAM, READ REAL-TIME DATA FROM DEVICE

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D5.2 Software system integration (Cycle 1)
Dissemination level: [Public]

16

FIGURE 11 SEQUENCE DIAGRAM, CONTROL ACTION

3.1.3.3. GUI interaction with Pattern Orchestrator (PO)

The work on integrating the GUI with Pattern Orchestrator started with determining the JSON model to send
data between them. It was a crucial step to enable parallel work by partners. The aim of this integration was
to support Pattern Orchestrator in monitoring the current state of SPDI patterns from all recipes and location
SPDI patterns in an individual layer. In Pattern Orchestrator component, a dedicated endpoint was created for
GUI that provides combined data with SPDI patterns and recipes. An example of the JSON model that was
created for this communication is depicted below.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D5.2 Software system integration (Cycle 1)
Dissemination level: [Public]

17

FIGURE 12 EXAMPLE OF JSON RETURNED FROM PATTERN ORCHESTRATOR

As it is shown in Figure 12 the model data contains a list of defined recipes with all nodes(e.g. links, sequences,
nodes) combined with SPDI patterns defined for them. All patterns are assigned to one of the possible layers
(backend, network, gateway) or to one of three cross layers that are between standard layers. To receive data
from PO special HTTP method called getSPDIData was developed. When PO receives a request, it merges
data from the external component (e.g. Recipe Cooker) and returns a response in JSON format. GUI translates
this data to show it in two possible ways, as patterns with assigned to layers or as a node graph. Creating a
graph from a JSON description required the implementation of new algorithms to be able to show the graph in
a similar form to Recipe Cooker. Detailed description with example views was included in the D4.7 document
in section 4.3.4 and interaction between components is depicted below.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D5.2 Software system integration (Cycle 1)
Dissemination level: [Public]

18

FIGURE 13 SEQUENCE DIAGRAM, SHOW SPDI PATTERNS

3.1.4. PATTERN ORCHESTRATOR INTEGRATION WITH RECIPE COOKER

This integration is responsible for translating IoT and service orchestrations, which represent concrete recipes,
into patterns and passing them to pattern engines on each layer. The Pattern Orchestrator module features an
underlying semantic reasoner able to understand the internal components of IoT Service orchestrations
expressed using the pattern language (D4.1, Section 3.3), received from the Recipe Cooker module and
transform them into architectural patterns. The patterns that are created are then communicated to the
corresponding Pattern Engines (as defined in the Backend, Network, and Field layers), taking into
consideration the components under their control (e.g. passing Network-specific patterns to the Pattern Engine
present in the SDN controller). As a result, automated configuration, coordination, and management of the
SEMIoTICS patterns are achieved across different layers and service orchestrations.

The components of the SEMIoTICS architecture that are involved in the process described above are the
Recipe Cooker, the Pattern Orchestrator and a translator component between them. The main aim of this
translator component is to express an instantiated recipe in a way that is understandable by the Pattern
Orchestrator. For that reason, the IoT application model as described in D4.1 has been created, advocated an
orchestration-based approach, where the interactions between application components are specified as
orchestrations (Sequences, Merges, Choices, Splits, etc.). A high-level view of the key components and their
interfacing is depicted in Figure 14, while the interactions of the aforementioned components are visualized in
the sequence diagram in Figure 15.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D5.2 Software system integration (Cycle 1)
Dissemination level: [Public]

19

FIGURE 14 PATTERN ORCHESTRATION; KEY INTERFACES AND COMPONENT INTERACTIONS

FIGURE 15 SEQUENCE DIAGRAM, COMMUNICATION BETWEEN RECIPE COOKER AND PATTERN

ORCHESTRATOR

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D5.2 Software system integration (Cycle 1)
Dissemination level: [Public]

20

As it is shown in the sequence diagram above, the user defines the recipe (i.e., the application flow) and
specifies the expected capabilities of ingredients, such as input and output data types. The Recipe Cooker
tool is utilized for this specification. After this step the instantiation of the recipe takes place. “Instantiation”
refers to the replacement of abstract components with concrete available components. The recipe is then
deployed. The recipe deployment triggers the transmission of the recipe instance to the Pattern Translation
Middleware. What follows is the description of the recipe instance in terms of the pattern language. This
procedure is depicted in the sequence diagram as a self-call to the Pattern Translation Middleware activation,
labeled as “Recipe to pattern”. Translation from Node-RED JSON format into the pattern language is realized
through a series of graph transformation steps, where nodes from the recipe are collapsed into an
orchestration of the pattern language (Sequence, Merge, etc.), until the graph has only a single node left. The
transformation steps are then translated into the pattern language.

In sequence, the recipe expressed as the pattern is transmitted to Pattern Orchestrator. For that purpose, a
POST service request has been developed. It is called insertRecipe request. Pattern Orchestrator receives a
request from Recipe Cooker, which includes a recipe description in JSON format. Such a request is depicted
in Figure 16. Under “recipeID” a unique string that acts as an identifier is provided, while under “recipe” label
lays the recipe description itself. The recipe instance depicted in Figure 16 is very simple and consists of two
software components that are placed in sequence, which means that the output of the former is consumed as
input by the latter.

FIGURE 16 INSERT RECIPE REQUEST

Eventually, the IoT deployments described using the pattern language will be sent and stored in the Pattern
Engines of the three layers (Backend, Network, and Field). For that reason, they need to be translated to
Drools; to achieve this they are used as input to an ANTLR4 lexer, parser and listener, which is part of Pattern
Orchestrator. These programs create a Drools fact for every orchestration activity, control flow operation and
property. The Drools facts are then inserted in the KnowledgeBase of Drools, a repository of all the
application’s knowledge definitions. Sessions are created from the KnowledgeBase in which data can be
inserted and process instances started. A knowledge session is a way to interact with Drools and the core
component to fire Drools rules. Rules themselves are also held in a Knowledge session. The information that
is stored in the KnowledgeBase is used for reasoning.

During the first step of the translation of an IoT application orchestration to Drools facts , the ANTLR4 lexer
recognizes keywords and transforms them into tokens. The created tokens are used by the ANTLR4 parser
for creating the logical structure, i.e. the parse tree. Next, the ANTLR4 listener allows communic ation with
Drools every time a node in the parse tree is entered. The listener takes information from the tokens and
sends it to Drools. For this communication, a POST request has been created, named “addFact”. This
procedure is depicted in the sequence diagram as a synchronous invocation to the Pattern Engines’ activation,
labelled as “add requirement”.

As soon as the Drools facts reach one of the Pattern Engines, instances are created from the corresponding
Java classes and the received information is stored at the class attributes. During the last step, the created
java instances are inserted as facts into the knowledge session. These Drools facts are used by Drools rules,
which are fired when a condition is met.

The requirement status is returned by the Pattern Engines as an answer to Pattern Orchestrator for every
“add requirement” invocation. The received answer is then transmitted by the Pattern Orchestrator to the
Recipe Cooker.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D5.2 Software system integration (Cycle 1)
Dissemination level: [Public]

21

3.1.5. PATTERN ORCHESTRATOR INTEGRATION WITH THE SDN/NFV FOR SERVICE FUNCTION
CHAINING

One of the scopes of SEMIoTICS is to provide security guarantees through the traffic forwarding via different
network security functions by applying the Service Function Chaining (SFC; as detailed in deliverable D2.5
and D3.2). Considering the different types of traffic reaching the backend where the chaining of services will
take place, a variety of intricacies can be observed such as of low trust and low priority, low bandwidth and
latency, medium trust but high priority, medium trust and of low priority, and finally high trust and high priority,
as low latency and relatively high bandwidth. To achieve this goal, the SEMIoTICS framework has integrated
a number of different software components in all the layers as can be seen in Figure 17 . Apart from the layer
separation (application, network or field), the involved components can be separated into two types,
expressed also with different colors, with red the design of the control flow components and with blue the
runtime data flow involved components.

FIGURE 17 INTEGRATION OF PATTERN FRAMEWORK AND SERVICE FUNCTION CHAINING

The design of an efficient control flow mechanism is required to be used not only to verify SFC and VNFs but
also to instantiate them for assuring the SPDI requirements (KPI 2.1) based on the enforcement of the
respective SPDI patterns. When an SFC cannot be verified, the required VNFs are requested by the VIM via
NFV Orchestrator to identify them or to instantiate them if they do not exist. More specifically, the components
which are involved in the control flow are:

• The Pattern orchestrator is able to forward pattern rules and trigger the SFC requirements to the
pattern engine

• The Pattern engine (backend and SDN) for enabling the pattern rules to address the SFC
requirements such as instantiate or verify SFCs

• The SFC manager in the SDN controller to identify and configure service function chains

Switches

Network
Function
Services

Sensors
Actuators

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D5.2 Software system integration (Cycle 1)
Dissemination level: [Public]

22

• The SDN Controller: is responsible to interact with the switches and the VNFs together with the pattern
engine and the SFC manager.

• The NFV orchestrator to identify available VNFs as instantiated in the VIM.

The procedure of instantiation and the identification of the respective SFCs and the VNFs based on the
patterns is depicted in the Figure 18 including the following interactions with the components of the
SEMIoTICS architecture. Pattern orchestrator forwards a specific chain request to the pattern engine for
forwarding the traffic between entities through a specific chain of functions. Pattern engine forwards this
request to the SFC manager which is located in the SDN controller responding to the pattern engine whether
the chain exist or not. If the chain exists, then a respond of the chain satisfaction is returned to the pattern
orchestrator. If the chain does not exist, then a requested is forwarded to the VIM asking whether the service
functions exist or not. If functions exist in the VIM, then the chain can be instantiated in the SFC Manager and
a respond of the chain satisfaction is returned to the pattern orchestrator. If functions do not exist in the VIM
then, a function instantiation request is forwarded to the NFV Orchestrator, which is responsible to instantiate
them in the VIM. Then, the chain can be instantiated in the SFC Manager and a respond of the chain
satisfaction is returned to the pattern orchestrator.

FIGURE 18 SEMIOTICS SFC CONTROL FLOW

The integration of the different components that participate in the control flow configuration especially with
the pattern engine and the SFC Manager is done through the exposed interfaces of the SFC manager where

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D5.2 Software system integration (Cycle 1)
Dissemination level: [Public]

23

the pattern engine can send and receive requests. More specifically, SFC manager exposes REST interfaces
able to instantiate the respective Service Functions and Chains by the insertion of respective templates in
JSON formats. In addition, the ACL, the classifiers and the forwarders can be defined based on the respective
REST interfaces. In the Table 3, the JSON syntax of data which is expected by the SFC manager and the
address is provided.

TABLE 3 SFC COMPONENTS AND JSON TEMPLATES

Service Function (SF)

JSON Syntax
(data)

"service-function": [{"name","ip-mgmt-address", "rest-uri","type", "nsh-aware", "sf-data-
plane-locator": [{"name","port","ip","transport", "service-function-forwarder"}] }]

URL (uri) /restconf/config/service-function:service-functions/

Service Function Forwarder (SFF)

JSON Syntax
(data)

"service-function-forwarder": [{"name","service-node", "service-function-forwarder-
ovs:ovs-bridge": {"bridge-name"}, "sf-data-plane-locator": [{"name","port","ip","transport",
"service-function-forwarder"}] }], "service-function-dictionary": [
{"name", "sff-sf-data-plane-locator": {"sf-dpl-name", "sff-dpl-name" }}]

URL (uri) /restconf/config/service-function-forwarder:service-function-forwarders

Classifier

JSON Syntax
(data)

"service-function-classifier": [{"name","scl-service-function-forwarder": [{"name",
"interface"}], "acl":{"name","type"}]

URL (uri) /restconf/config/service-function-classifier:service-function-classifiers/

Service Function Chain

JSON Syntax
(data)

"service-function-chain": [
{"name", "symmetric", "sfc-service-function": [
{"name", "type"}, {"name", "type"}]

URL (uri) /restconf/config/service-function-chain:service-function-chains/

Regarding the data flow, traffic classification is based on the predefined SFC for providing secure chains to
forward the different kind of traffic of this use case (KPI 5.2). Through the definition of said chains, each of
the traffic types gets routed through a chain of service functions tailored to its intrinsic requirements and
characteristics, such as QoS and trust levels, and, by extension, its desired SPDI properties. These services
are "stitched" together to create a service chain, with numerous options for adaptations when required (e.g.
to adapt to link failures). The flexible traffic steering towards network functions enabled by SFC can also be
leveraged to integrate novel, adaptable security services, such as steering suspicious traffic to security
appliances. The deployment of these enhanced security concepts is in line with the enhanced protection
requirements of certain sensitive application domains, such as critical infrastructures, given that the old
paradigm of perimeter defences and trusted internal networks is obsolete, as recent attacks have
demonstrated. Considering the latter, another important element in the operation of the above is the SPDI -
based management of the various involved components and their compositions, through the Pattern-based
framework that is in the core of the SEMIoTICS approach. In addition, the involved components in data flow
are the following:

• The Use case field devices can contain sensors and actuators.

• The Open Virtual Switches (OVS) are programmable switches supporting OpenFlow rules able to
interact with the SDN Controller. Two main roles of OVS switches as classifiers (to classify the traffic)
and as forwarders (to forward the traffic to the respective VNF). An OVS switch can be Virtual (i.e. as
a Virtual or Physical).

• The Virtual Network Functions (VNFs) are responsible to manage the traffic and express the service
functions as described previously. That may include a firewall, IDS, Load-Balancer, Deep Packet
Inspection (DPI) or a honeypot hosted by the VIM and handled both by the SFC manager and the NFV
orchestrator.

• The Use case application are responsible to interact with the distributed field layer use case devices.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D5.2 Software system integration (Cycle 1)
Dissemination level: [Public]

24

The procedure, depicted in Figure 19, presents the traffic classification either from a use case device or an
application through a number of different service function (security VNFs) that constitute a chain. The classifier
is responsible to identify the type of traffic based on specific predefined ACLs including characteristics such
as IP and port, to forward to the respective chain.

FIGURE 19 SEMIOTICS SFC DATA FLO

There are a number of different methods to use the exposed interfaces and to insert the required S FC
configurations in the SFC Manager. Each of these methods is related to application that uses these interfaces.
The exposed REST APIs interface is used with a Python function to PUT configurations (ie, classifiers,
forwarders etc.) from the command line enabling semi-dynamic configurations in the SFC Manager as
presented in Figure 20.

FIGURE 20 REST CALLS SFC CONFIGURATION IN PYTHON

On the other hand, JAVA is required to GET or PUT configurations (i .e. chains, functions, ACLs etc.) as
required or provided by the pattern rules enabling dynamic configurations in the SFC Manager via REST APIs
as expressed in Figure 21 and Figure 22.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D5.2 Software system integration (Cycle 1)
Dissemination level: [Public]

25

FIGURE 21 GET REST CALL FOR SFC CONFIGURATION IN JAVA

FIGURE 22 PUT REST CALL FOR SFC CONFIGURATION IN JAVA

The instantiation of the service functions to configure the data flow in the SFC Manager can be given by the
insertion of a JSON file such as the one depicted in Figure 23. The file is inserted by the use of either the
deployed PYTHON function or the JAVA supporting either the semi-dynamic or the dynamic one in relation
also with the enabled pattern rule. In the list of the service functions, the firewall, the DPI, the IDS and the
Load balance have been defined as the most crucial ones to enable the SPDI properties required by eac h
chain to guarantee. Each VNF has a unique IP address which is required for the configuration and integration
with the other functions interacting also with the use case devices and apps. The insertion of the service
functions in the SFC manager can be given as follows:

put(controller, port, /restconf/config/service-function:service-functions/, service-functions, True)

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D5.2 Software system integration (Cycle 1)
Dissemination level: [Public]

26

FIGURE 23 SERVICE FUNCTION JSON DATA SFC CONFIGURATION

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D5.2 Software system integration (Cycle 1)
Dissemination level: [Public]

27

The instantiation of a sequence of functions can constitute a service chain as can be seen in Figure 24. Similar
to the insertion of service functions in the SFC manager through the exposed service function REST interface,
service chains can be inserted by the use of the PYTHON or JAVA functions.

put(controller, port, “/restconf/config/service-function-chain:service-function-chains/”, service-function-chain, True)

FIGURE 24 SERVICE CHAIN JSON DATA SFC CONFIGURATION

Finally, the last step of the software integration for function chaining is based on the instantiation of the SFC
when a VNF does not exist or is failed in the VIM (OpenStack). In this case, the pattern engine uses the
exposed by the NFV orchestrator (OSM) interface to instantiate a VNF based on the VNF catalog of all usable
VNFDs (VNF Descriptors) as described in the D3.2. The role of the pattern engine in this case is to react as
the OSS/BSS (Operations Support System and Business Support System) to support service chaining
requirements either at design or at runtime.

3.1.6. INTEGRATION OF SEMANTIC BACKEND VALIDATOR WITH OTHER COMPONENTS

The main purpose of the Backend Semantic Validator (BSV) component is to tackle the semantic
interoperability issues that arise in the SEMIoTICS framework (see Deliverable D4.4), at the application
orchestration layer. In fact, the component is responsible for the mapping between data types to ensure that
data flow is possible between smart objects (Things, i.e. Sensor, Actuator). Moreover, semantic
transformation methods (Adaptor Nodes) have been developed with the purpose of resolving, if possible,
conflicts among the semantic annotations.
The components of the SEMIoTICS architecture that are involved in this process are the BSV which is
responsible for semantic validation mechanisms; the Thing Directory component that are the repository of
knowledge containing the necessary Thing models; the Recipe Cooker component, which is responsible for
cooking (creating) recipes reflecting user requirements on different layers (cloud, edge, network) as well as
transforming recipes into understandable rules for each layer and includes the Adaptor Nodes t o resolve
semantic conflicts. It uses the Thing Directory with all the models required to create these rules. At the field
layer, the GW Semantic Mediator (GWSM) component for the semantic mapping between different data
models; the Semantic API Protocol Binding (SAPB) component for binding different protocol and exposing a
common semantic API located at the Generic IoT Gateway layer (see Table 4).

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D5.2 Software system integration (Cycle 1)
Dissemination level: [Public]

28

TABLE 4 LIST OF COMPONENTS THAT INTERACT WITH THE BSV COMPONENT

Component Components
that will be

used/consumed
by this

component

Layer of
component
that will be
consumed

Description of interactions

Backend Semantic
Validator

Thing Directory Backend Searching for the necessary Thing
models in Thing Directory component,
in order to detect any potential
semantic conflicts between the
interacting domains

Recipe Cooker Backend Connecting with Recipe Cooker to
resolve these semantic conflicts using
the Adaptor Nodes that configure an
Interaction Pattern in accordance with
the application's requirements.

Semantic API &
Protocol Binding

Field Transferring the translated request to
the Semantic API & Protocol Binding
component which is responsible to
trigger the GW Semantic Mediator in
the filed layer, in order to send the
request in an appropriate format to the
target Thing (actuator).

The functionality of this component consists of three basic steps:

1. Searching for the necessary Thing models in the Thing Directory component to detect any potential
semantic conflicts between the interacting domains.

2. Connecting with Recipe Cooker and Semantic Edge Platform (in the field) to resolve these semantic
conflicts using the Adaptor Nodes that configure an Interaction Pattern in accordance with the
application's requirements.

3. Transferring the translated request to the Semantic API & Protocol Binding component which is
responsible to trigger the GW Semantic Mediator in the filed layer to send the request in an appropriate
format to the target Thing (actuator).

The procedure of the semantic interoperability mechanisms between the backend and the field layer is
highlighted by a sequence diagram, in Figure 25

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D5.2 Software system integration (Cycle 1)
Dissemination level: [Public]

29

FIGURE 25 SEQUENCE DIAGRAM FOR SEMANTIC INTEROPERABILITY MECHANISMS

At the moment, in cycle 1, the first and the second step of the functionality of this component have been
developed. This implementation includes the interaction of BSV with the Recipe Cooker and Thing Directory
at the application orchestration layer. Particularly, based on the component requirements, two main POST
service requests have already been developed; the validateData and the validateRecipeFlow POST request
service for the first and the second step of the above functionality respectively.

• validateData POST service request (see Figure 26): it receives a request from the IoT application, in
JSON-LD/JSON format. The JSON-LD/JSON Parser is implemented as part of the BSV component,
in order to analyze the received input and extract the meaningful information from these set of data.
After that, the BSV interacts with the Thing Directory component; this stage consists of two
procedures, the TD discovery of the specific Thing and the TD registration for the case that this Thing
is not included in the Thing Directory. In the first case, the send GET function is developed that uses
HttpURLConnection to send an HTTP GET request to Thing Directory in order to get the search result.
For this discovery, SPARQL query can be used to retrieve TDs based on their IDs and should be
percent-encoded. Depending on the above result, if the TD of the Thing is not in the Thing Directory,
a POST request in Thing Directory was implemented for the registration of the new TD.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D5.2 Software system integration (Cycle 1)
Dissemination level: [Public]

30

FIGURE 26 SEQUENCE DIAGRAM - FIRST POST SERVICE REQUEST BSV

• validateReciepFlow POST service request (see Figure 27): it receives a request from Recipe Cooker
in JSON format (the recipe flow). This request aims to trigger BSV to check for any interoperability
conflicts between the two Things of the specific recipe. Next, the BSV component connects with the
Thing Directory component to ensure that these specific Things have already been registered in order
to receive information on their TDs. This is a required step, otherwise, the BSV cannot resolve
semantic differences and ensure that data flow is possible between them. The BSV parses the TDs
to discover for the semantic interoperability between the connected Things. In this phase, there are
two possible cases, the interacting Things used the same data transformation techniques and the
interacting Things used the different data transformation techniques. In the second case, the BSV
searches in Recipe Cooker for the corresponding Adaptor Node. If the Adaptor Node does not exist,
the BSV should develop and add it in the Recipe Cooker. Finally, the BSV sends the response back
to Recipe Cooker, using JSON format, with the updated flow, which has a new “wire” with the Adaptor
Node between two initial Things (ingredients) of the recipe. The updated flow can be impor ted and
saved by the Recipe Cooker. The advantage of this process is that after resolving the semantic ally
interoperable conflicts between these two specific Things, in any future interaction that will be required
for these, the Adapter Node will be added to the corresponding recipe to ensure semantic
interoperability.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D5.2 Software system integration (Cycle 1)
Dissemination level: [Public]

31

FIGURE 27 SEQUENCE DIAGRAM - SECOND POST SERVICE REQUEST BSV

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D5.2 Software system integration (Cycle 1)
Dissemination level: [Public]

32

 INTEROPERABILITY WITH EXTERNAL IOT PLATFORMS

 General Approach

This section presents the general approach and the interaction of SEMIoTICS components in order to enable
the interoperability between targeted external IoT platforms (i.e., FIWARE, AREAS, and MindSphere) with
SEMIoTICS framework. The following motivating example with FIWARE is used for the description and
analysis of the development of the proposed approach.
The components of the SEMIoTICS architecture (see Figure 28) that are involved in this process are:

• Recipe Cooker which is responsible for cooking (creating) recipes reflecting user requirements,

• Pattern Orchestrator which is in charge of the automated configuration, coordination, and
management of different patterns (in this case Interoperability patterns) and their deployment,

• Pattern Engine (Backend) which allows the insertion, modification, execution , and retraction of
patterns through the Pattern Orchestrator,

• Backend Semantic Validator (BSV) which resolves semantic interoperability issues and

• Thing Directory (Backend) which is the repository of knowledge containing the necessary Thing
models.

FIGURE 28 SEMIOTICS ARCHITECTURE – INTEROPERABILITY WITH EXTERNAL IOT PLATFORMS

COMPONENTS

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D5.2 Software system integration (Cycle 1)
Dissemination level: [Public]

33

During runtime, a recipe/flow can be designed by the user in Recipe Cooker; this flow represents an interaction
between two Things i.e. FIWARE Sensor, SEMIoTICS Thermostat (Figure 29). The main aim is to check the
semantic interoperability between the specific nodes, to ensure the aforementioned communication. For that
reason, Recipe Cooker sends the “cooked” recipe to the Pattern Orchestrator in order to transform it into
interoperability patterns. The Pattern Engine (Backend) receives the interoperability requirement from Pattern
Orchestrator, as it is responsible to enable the capability to insert, modify, execute and retract patterns. The
next step of Pattern Engine (Backend) is to examine the semantic interoperability for any links in the
recipe/flow (in this example there is only one link/wire, the connection between FIWARE Sensor and
SEMIoTICS Thermostat). Thus, for every link, Pattern Engine (Backend) triggers the BSV.

FIGURE 29 RECIPE INTERACTION EXAMPLE FIWARE – SEMIOTICS BEFORE SEMANTIC VALIDATION

Following this, the BSV begins the procedure to tackle the semantic interoperability issues between these two
Things. Firstly, the semantic description for each Thing is required, for that reason , it sends two requests:

• getThings request to Thing Directory in order to receive the Thing Description of SEMIoTICS
Thermostat and

• getElements request to the FIWARE platform to receive the Element Description of FIWARE Sensor.

Based on this information, the BSV is able to decide for the interoperability between the Things and harmonize
the semantic model capabilities with the registration of extra Adaptor Nodes in the recipe. Particularly, there
are three possible results. First: the link source and destination are interoperable, so the BSV replies to the
Pattern Engine (Backend) with the TRUE response. Second: the link source and destination are not
interoperable and the BSV can add Adaptor Nodes in order to guarantee interoperability. In this case, BSV
not only sends the TRUE response in Pattern Engine (Backend) but also updates the recipe in Recipe Cooker
using the corresponding Adaptor Nodes (Figure 30). Third: the link source and destination are not
interoperable and BSV does not have the required information to develop the Adaptor Nodes; hence, the
Pattern Engine (Backend) receives the FALSE response by the BSV.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D5.2 Software system integration (Cycle 1)
Dissemination level: [Public]

34

FIGURE 30 RECIPE INTERACTION EXAMPLE FIWARE – SEMIOTICS AFTER SEMANTIC VALIDATION

The above approach of the semantic interoperability mechanisms between SEMIoTICS external IoT platforms
is highlighted by a sequence diagram, in Figure 31. It should be clarified that the term Link does not
correspond to a network physical link but to a path between its source and its destination, which may include
more than one physical link and other network components among them.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D5.2 Software system integration (Cycle 1)
Dissemination level: [Public]

35

FIGURE 31 SEQUENCE DIAGRAM OF INTEROPERABILITY WITH EXTERNAL IOT PLATFORMS

 Integration with FIWARE

4.2.1. METHODOLOGY OF FIWARE COMPONENT VERIFICATION

The verification process has been divided into three steps.
As a first step, the GEs which are not related to SEMIoTICS framework were eliminated as not useful.
Moreover, since SEMIoTICS project’s ambition is to deliver the solution with high impact and possibilities of
further exploitation, it was decided that FIWARE components that are deprecated or no longer supported, will
not be used in the project. Finally, components which would not compile properly, without errors would not be
used either. As a result, the final choice of 9 General Enablers was deeply investigated for possible use in
SEMIoTICS framework:

o PEP Proxy – Wilma
o Authorization PDP – Authzforce

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D5.2 Software system integration (Cycle 1)
Dissemination level: [Public]

36

o Identity Management – Keyrock
o Publish/Subscribe Context Broker – Orion Context Broker
o IoT Agent
o IoT Discovery
o NetIC
o Data Visualization – Knowage
o Object Storage

The analysis was taking into consideration technology used for development, what interface is offered by GE,
what are specific implementation requirements and how such GE may potentially affect other components of
SEMIoTICS framework.

4.2.2. EVALUATION PROCESS WITH SELECTED GENERAL ENABLERS

In this section, the results of the investigation are presented. According to functionalities or used technology,
GEs were grouped into four categories. The first group consists of security-related components (PEP Proxy
Wilma, Identity Management – Keyrock, and Policy Manager AuthzForce). In the second group, there are
components using NGSI data format (IoT Agent, IoT Discovery, Context Broker). The third group contains
only one FIWARE component which is related to SDN and NFV – NetIC. In the fourth category, General
Enablers which are related to Database (Data Visualization – Knowage and Data management system Object
Storage) have been included.

4.2.3. GROUP 1: SECURITY-RELATED GES

In this group are PEP Proxy Wilma, Identity Management – Keyrock and Policy Manager AuthzForce.

4.2.3.1. Functionality summary

PEP Proxy WILMA

Privacy in FIWARE can be assured through the usage of the PEP Proxy WILMA. In order to provide fully
functional security and privacy component, it needs to be combined with other security components such as
Keyrock and AuthzForce. WILMA ensures that only permitted users will be able to access the Generic
Enablers or REST services. As WILMA is a backend component with no frontend interface, one must use the
Identity Management GE web interface for user and application management and roles or permissions
configurations. For a request validation, PEP Proxy interacts with the Identity Management and Authorization
PDP GE by verifying appropriate parameters depending on the defined security level6.

Identity manager Keyrock

Using Keyrock in a conjunction with other security components such as PEP Proxy and Authzforce allows
adding OAuth2-based authentication and authorization security to services and applications.
One of the main functionalities of this Generic Enabler is to enable developers to add identity management
(authentication and authorization) to their applications based on FIWARE identity. This is enabled by use of
the OAuth2 protocol7. The FIWARE Keyrock Generic Enabler set up all common features of an identity
management system so that other components are able to use standard authentication mechanisms to accept
or reject requests based on industry-standard protocols8.

6 https://fiware-pep-proxy.readthedocs.io/en/latest/
7 https://fiware-idm.readthedocs.io/en/latest/
8 https://documenter.getpostman.com/view/513743/RWMLLRui?version=latest

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D5.2 Software system integration (Cycle 1)
Dissemination level: [Public]

37

AuthzForce

The Generic Enabler AuthzForce provides a multi-tenant RESTful API for policy administration points as well
as for policy decision points. The API follows the REST architecture style and complies with XACML v3.0.
This GE plays the role of a Policy Decision Point (PDP)9. AuthzForce helps to externalize the authorization
logic and take advantage of flexible and standard-compliant Attribute-Based Access Control features. The
main feature is the authorization policy decision evaluation. It evaluates authorization decisions b ased on
XACML policies and attributes related to a given access request. The configuration of the XACML policies to
be evaluated by the GE happens at the authorization policy administration point (PAP). The GE also provides
some extensibility points e.g. for attribute providers aka PIPs (Policy Information Points). This makes it
possible to plug custom attribute provides into the PDP engine to allow it to retrieve attributes from other
attribute sources (e.g. remote service) than the input XACML Request dur ing evaluation10.

4.2.3.2. Feasibility study

PEP Proxy WILMA

WILMA is capable of providing acces to GEs or REST services only for FIWARE users what is a significant
limitation in the context of the SEMoTICS project where numerous types of users will need to be granted
access.

Identity manager Keyrock

Keyrock GE is limited to the smooth cooperation only with the FIWARE GEs environment while Security
Manager incorporated into SEMIoTICS architecture can handle all the functionalities offered by the Keyrock
generic enabler and more. Security Manager brings OAuth2-based authentication directly out of the box.
Another aspect that speaks for the Security Manager is that the Security Manager is also compatible with IoT
devices which clearly fits better to the SEMIoTICS IoT concept. The entity storage module of the Security
Manager currently supports LevelDB and MongoDB as storage providers for storing the entities. Due to the
way it was designed, it is also very easy to extend it to other storage concepts.

AuthzForce

The PDP and PAP in the Security Manager of the SEMIoTICS architecture support also the same structure
as introduced by AuthzForce. With the REST Entity API there is also a simple module to enforce proper
policies. Moreover, the attribute-based encryption for the Security manager is currently under development
within the project that will further increase the security aspect compared to the capabilities of AuthzForce.

4.2.3.3. Feasibility study outcomes

A combination of all of the abovementioned analysis outcomes brought the consortium to the decision that
integration with GE from security group does not bring any value-added as the components involved in the
architecture, namely Security Manager is a more flexible solution, is not limited to support only FIWARE
components, provides wider capabilities and guarantees a higher level of security in the platform.

4.2.4. GROUP 2: NGSI-BASED COMPONENTS

IoT Agent, IoT Discovery and Orion Context Broker belong to this group because they require the NGSI -LD
data model. They are responsible for communication, and information acquisition of IoT devices in FIWARE.

4.2.4.1. Functionality summary

Orion Context Broker

9 https://fimac.m-iti.org/6d.php
10 https://authzforce-ce-fiware.readthedocs.io/en/latest/

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D5.2 Software system integration (Cycle 1)
Dissemination level: [Public]

38

As it is mentioned in the official website11 the Orion Context Broker is an implementation of the
Publish/Subscribe Context Broker GE, providing the NGSI9 and NGSI10 interfaces. Using these interfaces,
clients can perform several operations:

• register context producer applications, e.g. a temperature sensor within a room

• update context information, e.g. send updates of temperature

• get a notification when context information changes take place (e.g. the temperature has changed) or
receive the value with a given frequency (e.g. to get the temperature value every minute)

• query context information. The Orion Context Broker stores context information updated from applications,
so queries are resolved based on that information.

To work properly and store basic data, the Context Broker requires persistent storage, such as MongoDB,
which is recommended for this solution.

IoT Discovery

Within IoT Discovery12 Generic Enabler, two software components are offered: the NGSI-9 server, as well as
the Sense2Web platform. The NGSI-9 server provides a repository for the storage of NGSI data and allows
conformant clients to register context information about sensors and things and discover context information
using ID, attribute, attribute domain, and entity type. Such clients may include the other FIWARE GEs as well,
in particular, the Data Handling GE, the Device Management GE for registration, and the IoT Broker for
discovery.
The Sense2Web software component is a platform which offers a semantic repository for IoT providers to
register and manage semantic descriptions (in RDF/OWL) about their "things", whether they will be
sensor/actuator devices, virtual computational elements (e.g. data aggregators) or virtual repre sentations of
any physical entity. On the other hand, it enables clients to discover these registered IoT elements by
retrieving descriptions in RDF. It supports a probabilistic search mechanism that provides recommended and
ranked search results for queries that don’t provide exact matching property values. Further, it supports
semantic querying via SPARQL and an association mechanism that associates things and sensors based on
their shared attribute (e.g. temperature) and spatial proximity, which can then be queried via SPARQL.

IoT Agent

IoT Agent is a Generic Enabler (GE) in FIWARE Reference Architecture13. It is a component that allows a
group of devices to send their data to and be managed from a Context Broker using their own native protocols.
The Context Broker management of the entire lifecycle of context information including updates, queries,
registrations, and subscriptions. IoT Agents are not only responsible for the communication aspect but are
also concerned with the security issues of the FIWARE platform (authentication and authorization) and provide
other common services to the device programmer.
Each IoT Agent provides a north-bound interface, which is used for Context Broker interactions and all
interactions beneath this port occur using the native protocol of the attached devices. Essentially, this concept
enables a standard interface to all IoT interactions north from an IoT Agent (no matter which (proprietary)
protocol is used by the attached device. The standard interface used for this purpose is NGSI-LD14.

4.2.4.2. Feasibility study

Context Broker

11 https://catalogue-server.fiware.org/enablers/publishsubscribe-context-broker-orion-context-broker
12 https://fiware-iot-discovery-ngsi9.readthedocs.io
13 https://fiware-tutorials.readthedocs.io/en/latest/iot-agent/index.html
14 https://www.etsi.org/deliver/etsi_gs/CIM/001_099/009/01.01.01_60/gs_CIM009v010101p.pdf

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D5.2 Software system integration (Cycle 1)
Dissemination level: [Public]

39

Many of the Orion Context Broker functionalities could be potentially used in SEMIoTICS project, hence this
component has been investigated in detail. The first attempt at testing took place in December 2018 with
negative results15. Basic functionalities did not work according to the documentation provided by the authors
and moreover support from FIWARE was not able to solve the issue16. After nine months there a second
attempt to examine the component has taken place. The new version of the software has solved the issue
and the component was working properly. Thus, the Context Broker may have been subjected to further
analysis of its use in the project.
One of the difficulties in using this component is another format of thing description. Context Broker uses
simple JSON and in SEMIoTICS project, JSON-LD is used. FIWARE is recently switching to NSGI-LD
specification to enhance relationships between entities, but currently, it is up to the logic of the application (in
this case SEMIoTICS platform) to navigate between entity relationships. It means that an additional
component for mappings between these two formats is required. The main differences are shown in the
diagrams below.

FIGURE 32 NGSI V2 DATA MODEL

FIGURE 33 NGSI LD DATA MODEL AFTER MAPPING SIMPLE JSON

Furthermore, some functionalities of the Context Broker are covered by components already existing in
SEMIoTICS. Thing Directory component enables a client to register new things to platforms, quickly search
the repository using SPARQL filter or even delete devices. To update or read context information from
brownfield devices, the Semantic API&Protocol Binding component can be used while other devices do not
require any additional components. Moreover, Sematic API&Protocol Binding offers simple handling of all
actions for the device.
However, Context Broker component can be used for monitoring the SEMIoTICS platform. Sending
notifications or context information changes is a functionality that does not exist in a project yet. Users could
define special queries or expressions to be notif ied only if selected property or group of properties has
changed. What is more, the Context Broker provides collecting data from devices with a set frequency and
store in the database, so it can be useful for historic data visualization.

15 https://github.com/telefonicaid/fiware-orion/issues/3374
16 https://stackoverflow.com/questions/53710837/conflict-error-when-obtaining-attributes-in-fiware-orion-
context-broker

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D5.2 Software system integration (Cycle 1)
Dissemination level: [Public]

40

IoT Discovery

For the SEMIoTICS system, this software component is not usable as the NGSI-9 format does not play a role
in the component interactions defined in the architectural setup. In the SEMIoTICS systems, the discovery
and metadata exchange for things goes beyond the generic RDF/OWL usage. Instead, it is proposed to use
the W3C Web of Things format of “Thing Descriptions”17, which can be represented in RDF but represents a
semantically narrow format specifically designed for expressing thing metadata. Similarly, there is a dedicated
discovery component, the Thing Directory18, that has been defined and implemented in the context of the
W3C Web of Things suite of recommendations. This component has been selected for the SEMIoTICS
architecture to cover the functionality of thing discovery, as its interface finely tuned to best support this
specific purpose. In comparison, the Sense2Web component offers an all -purpose interface, with
functionalities that go beyond the project’s needs and hence would bloat the complexity of in teractions.

IoT Agent

Only a few IoT Agents already exist. For example, for bridging HTTP/MQTT messaging (with a JSON and
UltraLight2.0 payload) and NGSI, as well as for bridging Lightweight M2M and LoRaWAN with NGSI. IoT
Agents for other protocols can be developed. Semantic IoT Gateway in SEMIoTICS architecture is responsible
for the functionality of IoT Agents. The component provides a standardized semantic -based interface for the
integration of brownfield devices, as well as for the integration of any other IoT devices.

4.2.4.3. Feasibility study outcomes

In SEMIoTICS - a W3C standard “Web of Things” (WoT) is promoted, according to which the device interface
is described with, so-called, “Thing Description”19 (TD). An implementation of a WoT API, including protocol
mappings (binding), also exist for this standard20. The model of TD is based on the concept of Interaction
Patterns, as constructs that enable interactions with a thing (device). TD distinguishes Properties, Events,
and Actions. The model further specifies security and other kinds of metadata. There has been a big
contribution of the Consortium members and SEMIoTICS project itself to the creation of W3C standard. In the
proposal to SEMIoTISC, it was declared to promote the W3C WoT standard so the project can not incorporate
this group of general enablers into the SEMIoTICS platform. However, the Context Broker provides notification
functionalities that could be used by SEMIoTICS. For this purpose, it is considered to develop a bridge towards
NGSIv2 (which was defined by FIWARE and is provided by the Context Broker) . Further verification is
currently conducted to validate the use of Context Broker notification functionality as a part of SEMIoTICS
platform.

4.2.5. GROUP 3: SDN AND NFV - RELATED COMPONENTS

In this group, only NetIC General Enabler is put. This is only one component in the FIWARE platform that
provides functionalities in the network layer.

4.2.5.1. Feasibility study

The FIWARE Network Information and Control (NetIC) Generic Enabler is intended to prov ide abstract access
to heterogeneous open networking devices. It exposes network status information and it enables a certain
level of programmability within the network (depending on the type of network and the applicable control
interface). This programmability may also enable network virtualization, i.e., the abstraction of the physical
network resources as well as their control by a virtual network provider. Potential users of NetIC interfaces
include network service providers or other components of FIWARE, such as cloud hosting. Network operators,
virtual network operators, and service providers may access (within the constraints defined by their contracts
with the open network infrastructure owners) the open networks to both retrieve information and sta tistics
(e.g. about network utilization) and also to set control policies and optimally exploit the network capabilities.

17 https://w3c.github.io/wot-thing-description/
18 https://github.com/thingweb/thingweb-directory
19 https://w3c.github.io/wot-thing-description/
20 https://github.com/eclipse/thingweb.node-wot

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D5.2 Software system integration (Cycle 1)
Dissemination level: [Public]

41

4.2.5.2. Feasibility study outcomes

In SEMIoTICS, the functions of NetIC are covered by tools of the SEMIoTICS SDN Controller and the Network
Function Virtualization component which are the core technologies to be developed within the SEMIoTICS
project. Hence, using NetIC would fully double the functionalities already covered by SDN/NFV layer of
SEMIoTCIS architecture.

4.2.6. GROUP 4: DATABASE RELATED COMPONENTS

In this group, two components that are related to the databases KNOWAGE and Object Storage are included.
The first one is stand-alone tools for analyzing and visualizing big data sets. Object storage is a tool for
database management.

4.2.6.1. Functionality summary

Knowage

Knowage is a powerful and complex tool for data set analysis and visualization. It can run analysis on data
available from numerous online and offline DB, java classes from application, files or web apps through their
API. Knowage allows creating various types of visualizations starting from simple tables, through many types
of graphs ending on interactive maps. It offers many business analytics tools like periodic reporting, business
predictions, and interactive cockpit. Knowage has many built-in pre-configured functions like sorting, grouping
and other statistic functions. Using those included functionalities requires only a few conf iguration steps from
the user, like pointing which column in the table is an attribute a which is a measurement.

Object Storage

Object Storage is one of the Generic Enablers within FIWARE. It is used for redundant and scalable data
storage using clusters of standardized servers to store petabytes of accessible data. It is a long-term storage
system for large amounts of static data that can be retrieved and updated. Object Storage of OpenStack that
the GE of FIWARE is completely based on, as mentioned in the FIWARE wiki21.

4.2.6.2. Feasibility study

Knowage

Knowage provides a REST API with an endpoint for many functionalities which can be used for faster and
more robust integration with SEMIoTICS components. This approach covers the expectation for components
in the SEMIoTICS platform. None of the already developed components provide such wide capabilities. Take
into consideration the above-mentioned features provided by KNOWAGE we are eager to integrate this open-
source software into SEMIoTICS platform.

Object Storage

Object Storage uses a distributed architecture with no central point of control, providing greater scalability,
redundancy, and permanence. Objects are written to multiple hardware devices and can be files, databases
or other datasets that need to be archived. Objects are stored in named locations known as containers.
Containers and objects can have metadata associated with them, providing details of what the data
represents. Similar to files in a traditional file system - objects in an object store belong to a certain user
(account). This GE is ideal for cost effective, scale-out storage. It provides a fully distributed, API-accessible
storage platform that can be integrated directly into applications or used for backup, archiving, and data
retention.

4.2.6.3. Feasibility study outcomes

The use of the Knowage capabilities is planned to be leveraged in GUI component. Delivery of a dashboard
visualizing the data from IoT devices is planned. Leveraging Knowage allows GUI user to benefit from the
wide range of widgets available in the Knowage cockpit component. This powerful tool is to be used to present

21 https://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/Object_Storage_Open_RESTful_API_Specification

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D5.2 Software system integration (Cycle 1)
Dissemination level: [Public]

42

data collected from field devices. Object Storage is to be responsible for the management of the database. It
coordinates the usage of disc space, creating backups, archiving and data retention.

4.2.7. CONCLUSION

SEMIoTICS platform is to be integrated with two General Enablers offered by FIWARE framework. They are
advanced and robust components. This integration will improve the capabilities of the SEMIoTICS framework.
Additional benefits from this integration process are the propagation of open-source FIWARE components
along with IoT enthusiasts and professionals in the IoT sector and enhance interest in FIWARE General
Enablers as components that can be incorporated in many future projects as robust, safe and easy to use
components.
Development of bridge between SEMIoTICS Monitoring Component and Context Broker may allow bringing
some of the features provided in the FIWARE platform to SEMIoTICS users and vice versa.

4.3 Integration with CloE-IoT

The CloE - IoT platform aims to simplify the integration of highly distributed, complex and robust IoT
solutions exploiting computational resources both in the cloud and at the edge. CloE-IoT is developed by
ENG to support its IoT projects and products. Starting from 2020 the CloE-IoT platform is part of the Digital
Enabler ecosystem22.
The CloE - IoT platform offers APIs to access a set of functionalities specifically targeting common IoT
requirements (connectivity, device management, security, data storage, etc.) allowing developers to focus
on their domain-specific requirements (Figure 34).

FIGURE 34 CLOE-IOT SOFTWARE LAYERS

The CloE-IoT platform supports applications with time- and safety-critical requirements by allowing
application logic to be deployed on resource-constrained edge gateways (e.g. smartphones, vehicles,
mobile robots): with CloE-IoT platform functionalities available locally even in case of failure of
communication with CloE-IoT cloud nodes. (Figure 35.)

22 https://www.eng.it/en/our-platforms-solutions/digital-enabler

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D5.2 Software system integration (Cycle 1)
Dissemination level: [Public]

43

FIGURE 35 CLOE-IOT GATEWAY HOSTING APPLICATION LOGIC

The CloE-IoT platform supports applications that need to manage the trade-off between different
requirements (e.g. reliability, power consumption, latency, fault -tolerance) by allowing both application logic
and platform features to be distributed over a cluster of CloE-IoT enabled gateways (Figure 35 CloE-IoT
gateway hosting application logic)

FIGURE 36 CLOE-IOT DISTRIBUTED APPLICATION

For what the integration with the SEMIoTICS framework is concerned, the most relevant one is the Client
API, the Model API, and the Event API:

• The Client API allows an application to discover the IoT devices registered in an instance of the CloE
- IoT platform. IoT devices register itself into a CloE - IoT node using the LwM2M protocol.

• The Model API allows an application to retrieve the resources exposed by registered devices via their
object model (i.e. a data structure wherein each element represents a resource, or a group of
resources, belonging to a device).

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D5.2 Software system integration (Cycle 1)
Dissemination level: [Public]

44

• The Event API allows applications to be periodically notified about the state of the resources hosted
by the IoT registered devices. Notifications are pushed towards applications using the WebSocket
protocol.

• The integration with the SEMIoTICS framework is achieved by developing a new agent bridging the
CloE-IoT services exposing the above-mentioned APIs with the corresponding components of the
SEMIoTICS framework. In particular:

• the Device Manager (exposing the Client API) is to be extended to connect to the SEMIoTICS Thing
Directory.

• the Model Provider (exposing the Model API) is to be extended to be able to retrieve Thing
Descriptions from the SEMIoTICS Semantic Mediator.

• The Event Manager (exposing the Event API) is to be extended to support the WoT standard and
hence to manage events raised by the devices discovered via the SEMIoTICS Thing Directory.

At the same time, the development of a specific signaller (see SEMIoTICS Deliverable D4.2 - “SEMIoTICS
Monitoring, Prediction and Diagnosis Mechanisms (first draft)”) is to make the CloE-IoT platform observable
by the SEMIoTICS Monitoring Component. In particular, this signaler will make it possible for the
SEMIoTICS Monitoring Component to observe events generated by the CloE-IoT Event Manager via the
FIWARE NGSI v2 interface.

 Integration with MindSphere

SEMIoTICS IoT Gateway is a component that will be integrated with MindSphere, which is the IoT operating
system from Siemens23. The gateway, among others, provides a mechanism to semantically annotate
bootstrapped devices (if a semantic description for them does not exist). The same semantic description of
devices can be used for creating digital representation in MindSphere. This procedure is supposed to take
place during the onboarding process of a device or an automation system.

MindSphere provides its own information model that is called the Asset Data Model24. The model distinguishes
notions of Asset, Aspect, and Datapoint. An Asset is a digital representation of a machine or an automation
system with one or multiple automation units (e.g. PLC) connected to MindSphere. Aspects are data modeling
mechanisms for Assets. Aspects are grouping related data points based on their logical association.
Datapoints are points that provide certain functionality, thereby providing and/or consuming data. Examples
of the datapoints are electric "power", "current", "voltage" etc.

23 https://siemens.mindsphere.io/en
24 https://documentation.mindsphere.io/resources/pdf/asset-manager-en.pdf

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D5.2 Software system integration (Cycle 1)
Dissemination level: [Public]

45

FIGURE 37 SEQUENCE DIAGRAM – INTEGRATION OF IOT GATEWAY AND MINDSPERE

Figure 37 shows a simplified sequence diagram related to the onboarding process of a device that has already
been bootstrapped and for which a Thing Description already has been created, see Section 3.1.2. A user
may initiate the onboarding process via Semantic Edge Platform as soon as a Thing Description (TD) has
been created for a device. Following the semantics provided in TD, SEMIoTICS IoT Gateway (via Semantic
Edge Platform) will interact with MindSphere API in order to automatically create an Asset Data Model. In this
way, it will be ensured that the semantics created at the Edge level (by the gateway) is used at the Cloud
level too. This approach, proposed by activities in Tasks 3.3, easies creation maintenance of applications
since both Cloud- and Edge applications will be based on the same semantic model.

 Integration with OpenHAB

Use Case 3 of SEMIoTICS leverage OpenHAB 2 for sensor value visualization via charts. OpenHAB is written
in Java and uses Apache Karaf to create an Open Services Gateway initiative (OSGi) runtime environment.
Jetty is used as the HTTP server, which implements the Dashboard and Management GUI and also hosts the
OpenHAB REST API. OpenHAB is extended through “add-ons” that handle the interaction with external
sensors, data storage backends and chart libraries for sensor value visualization. Furthermore, OpenHA B
supports a scripting language to implement automation and “if-this-then-that” scenarios. For example,
automation scripts will allow us to combine measurements from multiple sensors, and generate alerts if certain
sensor values exceed the specifications.
As previously mentioned, in order to interact with sensors and actuators over the network, a RESTful service
is offered by OpenHAB, that gives access to Things, Channels and Items.

• Things are entities that can be physically added to a system. They may provide more than one
function (for example, a Z-Wave multi-sensor may provide a motion detector and also measure room
temperature). Things do not have to be physical devices; they can also represent a web service or
any other manageable source of information and functionality. From a user perspective, they are
relevant for the setup and configuration process, but not for the operation. Things can have
configuration properties, which can be optional or mandatory. Such properties can be basic
information like an IP address, an access token for a web service or a device-specific configuration
that alters its behavior. Things expose their capabilities through Channels.

• Channels represent the different functions the Thing provides. Where the Thing is the physical entity
or source of information, the Channel is a concrete function from this Thing. A physical light bulb might
have a color temperature Channel and a color Channel, both providing functionality of the one light
bulb Thing to the system. For sources of information, the Thing might be the local weather with

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D5.2 Software system integration (Cycle 1)
Dissemination level: [Public]

46

information from a web service with different Channels like temperature, pressure and humidity.
Channels are linked to Items, where such links are the glue between the virtual and the physical layer.
Once such a link is established, a Thing reacts to events sent for an item that is linked to one of its
Channels. Likewise, it actively sends out events for Items linked to its Channels. Whether an
installation takes advantage of a particular capability reflected by a Channel depends on whether it
has been configured to do so. When you configure your system, you do not necessarily have to use
every capability offered by a Thing. You can find out what Channels are available for a Thing by
looking at the documentation of the Thing's Binding.

• Bindings can be thought of as software adapters, making Things available to the system. They are
add-ons that provide a way to link Items to physical devices. They also abstract away the specific
communications requirements of that device so that it may be treated more generically by the
framework.

• Items represent capabilities that can be used by applications, either in user interfaces or in automation
logic. Items have a State which may store sensor values and they may receive commands (e.g., for
actuation purposes).

After successfully deploying the Data Collection system and correctly configuring the Bindings, Channels, and
Things, third party clients simply need to send HTTP GET requests to interact with OpenHab, e.g., send ing
sensor values for visualization via its charting system.

FIGURE 38 THE OPENHAB GRAPHICAL USER INTERFACE

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D5.2 Software system integration (Cycle 1)
Dissemination level: [Public]

47

 VALIDATION

This section describes the validation features of SEMIoTICS that are related with the implementation of the
components and the rest topics that are presented in this document.

 Related Project Objectives and Key Performance Indicators (KPIs)

The following Table 5 presents the task objectives and appropriate sections addressing those.

TABLE 5 TASK 5.2 OBJECTIVES

T5.2 Objectives D5.2 Sections

• Integration, and delivery of the SEMIoTICS framework will all the components
developed by WP3 and WP4

3

• Interoperability with targeted external IoT enabling platforms (i.e., FIWARE,
AREAS and MindSphere)

4

• Continuous integration and delivery processes with deployed development
supporting tools and tools for automated platform scaling

2

The KPIs and their respective SEMIoTICS objectives that are related to Task T5.2 are described in the
following Table 6:

TABLE 6 KPIS AND OBJECTIVES

Objective KPI-ID Description Related task

1 SPDI Patterns KPI-1.1
Number of SPDI
Patterns

T4.1

1 SPDI Patterns KPI-1.2 Pattern Language T4.1

2 Semantic Interoperability KPI-2.3
Semantic
interoperability with 3
IoT platforms

T3.4, T4.4

3 Monitoring Mechanisms KPI-3.1.1
Generating monitoring
strategies in the 3
targeted IoT platforms

T4.1, T4.2

5
IoT-aware Programmable
Networks

KPI-5.1
Deployment of a multi-
domain SDN
orchestrator

T3.1

5
IoT-aware Programmable
Networks

KPI-5.2
Service Function
Chaining (SFC) of a
minimum 3 VNFs

T3.2, T4.1

6
Development of a Reference
Prototype

KPI-6.2
Leveraging upon
FIWARE assets

T5.3

6 Development of a Reference
Prototype

KPI-6.3 Delivery of 3 prototypes
of IIoT/IoT applications

T3.5, T4.6, T5.2,
T5.3

7 Promote the Adoption of EU
Technology of EU Technology
Offerings Internationally

KPI-7.1
Provision of the
SEMIoTICS framework
and building blocks

T5.2

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D5.2 Software system integration (Cycle 1)
Dissemination level: [Public]

48

 SEMIoTICS implementation requirements

The relevant SEMIoTICS requirements that are indirectly covered by the presented software integration of
SEMIoTICS components are summarized in the following Table 7. It is important to note that all the mentioned
requirements, are tracked and described in detail within relevant tasks assigned within the matrix represented
in Deliverable SEMIoTICS high level architecture (final). The requirements which are use case specific are in
details covered within the Tasks T5.4, T5.5 and 5.6 respectively.

TABLE 7 REQUIREMENTS´ CORRELATION

Requirements
(D5.3)

Description Related task Status

R.GP.4 Detection of events requiring a QoS change and triggering
network reconfiguration need by SPDI pattern

T3.1, T3.4, T3.5,
T4.1, T4.2, T5.4,
T5.5

In progress

R.GP.6 Interaction between SDN controller and network nodes (e.g.
switches, routers or IoT Gateways) through dedicated

interface (called southbound software interface)

T3.1, T3.4, T3.5,
T5.4

Delivered

R.BC.18 The backend layer must feature SPDI pattern reasoning
embedded intelligence capabilities

T3.5, T4.1 In progress

R.NL.10 Interfaces among the MANO and the VIM must ensure
seamless interoperability among different entities of the

Backend Cloud

T3.1, T3.2, T3.5 In progress

R .NL.12 The network layer must feature SPDI pattern reasoning
local embedded intelligence capabilities

T3.4, T3.5, T4.1 In progress

R.FD.9 Field devices MUST be able to communicate with the IIoT
Gateway / other architectural components.

T5.5 Delivered

R.S.2 Authentication and authorization of the stakeholders MUST
be enforced by the Network controller, e.g. through access

and role-based lists for different levels of function
granularities (overlay, customized access to service, QoS

manipulation, etc.)

T3.1, T4.1, T5.5 In progress

R.S.4 All components from gateway, via SDN Controller, to cloud
platforms and their users MUST authenticate mutually.

T3.2, T3.4, T4.1,
T4.5, T5.5

In progress

R.S.17 There MUST be an interface between the network controller
and the network administrators for the designation of the

applications’ permissions.

T4.1 Delivered

R.S.18 All network functions SHALL be mapped to application
permissions

T4.1 In progress

R.UC1.1 Automatic establishment of networking setup MUST be
performed to establish end-to-end connectivity between

different stakeholders

T3.1, T3.3, T3.4,
T4.1, T5.4

In progress

R.UC1.2 Automatic establishment of computing environment MUST
be performed in IIoT Gateway for the minimum operation of

the IIoT devices through 5G network controller based on
SDN/NFV

T5.4 In progress

R.UC1.8 Semantic and robust bootstrapping/registration of IIoT
sensors and actuators with IIoT gateway MUST be

supported.

T3.3, T4.4, T4.5,
T5.4

In progress

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D5.2 Software system integration (Cycle 1)
Dissemination level: [Public]

49

 CONCLUSION

This deliverable detailed the work performed in WP5 related to the first cycle of components’ integrations. In
order to structure and organize the work properly within task 5.2, sequence flow diagrams for common
functionalities were created as well as diagrams for each of the three use cases. From the diagrams, a
complete list of interactions between SEMIoTICS components was extracted. Such a list has allowed the
component owners to identify the necessary interactions, and to verify whether any APIs and com ponent
functionalities were missing. Due to the fact that the implementation tasks (WP3 and WP4) are ongoing,
integrations of some components have been planned for cycle 2 of Task 5.2.

The integration work carried within Task 5.2, has run in a number of parallel workstreams. The first stream has
been focusing on one of the core framework capabilities which is enabling SPDI pattern distribution to different
layers of SEMIoTICS framework as well as their definitions and visualization. The integrations of Pattern
Engines and the Pattern Orchestrator components consumed significant effort during cycle 1. Integration
between Pattern Engine and Pattern Orchestrators itself was obviously a part of the work delivered. Moreover,
the integration of the Recipe Cooker and Pattern Orchestrator was carried out, in order to give a possibility for
defining SPDI properties within the Recipe Cooker, consequently translated to specific SPDI pattern
requirements, with a GUI capable of visualising the status of the patterns in different flows modelled in the
Recipe Cooker. Furthermore, integration of the Pattern Engines and Orchestrator with the SDN/NFV toolbox
allows for providing security guarantees through the traffic forwarding via different network security functions.
Field devices bootstrapping was also covered, as one of the core flows required for any other flow to take
place in the process. Thanks to the GUI component (which is in the process of being integrated with a number
of existing SEMIoTICS components) it is currently possible to fully interact with Thing Directory, connect and
pull data from WoT compliant devices. The second part of the work was focused on semantic interoperability
with the SEMIoTICS framework as well as with IoT frameworks external to SEMIoTICS. The integration of the
Backend Semantic Validator with other components has started, in order to enable semantic interoperability
both internally (within SEMIoTICS) as well as with other IoT platforms. All of the platforms used by different
use cases were covered: CLOE-IOT, MindSphere, and OpenHab. Additionally, a feasibility study around
FIWARE GEs was performed. The results of the FIWARE feasibility study allowed the consortium to identify
specific GEs which can be leveraged by the project and ones that need to be discarded (due to different
reasons, such as ceased support for the component, not supported core standards, etc.).

Deliverable D5.2 is the first output of Task 5.2 and will be followed by further integration workstreams to be
described in the deliverable D5.7. The latter will be focusing on documenting all currently missing integrations
according to the diagrams prepared in this deliverable version. Any changes in sequence flow or architecture
will be taken into consideration, if such occur during development. Concluding the work documented in D5.7,
the framework integration will be deployed and evaluated within the testbed deployment and testing described
and delivered in Task 5.3. Additionally, as a part of Deliverable D5.7, the validation of the integration
development approach will be conducted, in order to continuously verify whether methodology modification
towards Agile approach would be beneficial for the progress and level of cooperation within the consortium. It
is foreseen that such an approach may be helpful in a detailed identification and tracking of the development
dependencies between implementation tasks performed in ongoing work packages WP3, WP4, WP5.

Deliverable D5.7 will be focusing on developing and describing all missing integrations according to the
diagrams prepared in this deliverable version. Any changes in sequence flow or architecture will be taken into
consideration if such occur. After finishing the D5.7, the framework integration will be deployed and evaluated
within the testbed deployment and testing described and delivered in Task 5.3. Additionally, as a part of
Deliverable D5.7, the validation of the integration development approach will be conducted, in order to
continuously verify whether methodology modification towards Agile approach would be beneficial for the
progress and cooperation within the consortium. It is foreseen that such an approach may be helpful in a
detailed identification and tracking of the development dependencies between implementation tasks performed
in ongoing work packages WP3, WP4, WP5.

