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1 INTRODUCTION 
The Internet of Things (IoT) aims to connect everything and everyone, everywhere to everything and everyone 
else. It enables innovative applications for daily life activities, such as healthcare, industrial automation, smart 
city administration, etc.  Due to the fact that the IoT paradigm is on the way to dominate in the aforementioned 
use cases, many issues need to be addressed to act in advance of the rapid developments. As an example, 
automating the networking and backend, improve interoperability among the devices and increase the security 
and privacy of the applications.  
 

Regarding the networking and backend automation, SEMIoTICS adopts the SDN/NFV technologies that enable 
network abstraction. SDN seeks to separate network control functions from network forwarding functions, while 
NFV seeks to abstract network forwarding and other networking functions from the hardware on which it runs. 
Thus, both depend heavily on virtualization to enable network design and infrastructure to be abstracted in 
software and then implemented by underlying software across hardware platforms and devices. When SDN 
executes on an NFV infrastructure, SDN forwards data packets from one network device to another. At the 
same time, SDN's networking control functions for routing, policy definition and applications run in a virtual 
machine somewhere on the network. Thus, NFV provides basic networking functions, while SDN controls and 
orchestrates them for specific uses. The deployment of SDN and NFV under the SEMIoTICS framework 
together with the performance testing and KPI validation are described in Sections 3.1 and 3.2 of this 
deliverable, respectively. 
 
Furthermore, interoperability is necessary to bridge the diverse technologies of sensors, actuators and 
communication hardware at the field layer through a gateway. Novel management frameworks for supporting 
the entire lifecycle of IoT applications in an automated manner are essential towards resource description and 
discovery, reservation and bootstrapping, interfacing, experimental control and monitoring. IoT orchestration 
and management can leverage already mature technologies, such as cloud computing and federated 
heterogeneous testbed facilities. 
 
An important challenge that arises in this context is the exchange of information about the provided resources 
with their types and characteristics. Existing works rest upon certain interfaces and syntactic data models with 
arbitrary extensions and identifiers, which aggravate the management of heterogeneous resources across 
autonomous testbeds. To tackle this issue, it is proposed that management of the resources be based on their 
semantics, i.e. their underlying meaning and relations, while specific descriptions, data models and necessary 
interactions are abstracted.  In other words, heterogeneous resources are described in a formalized manner 
to build a basis for their management. The deployment of semantic bootstrapping, interfacing, and 
interoperability under the SEMIoTICS framework together with the performance testing and KPI validation are 
described in Section 3.3 of this deliverable. 
 
Although with the aforementioned technologies it is possible to provide a functional and high -performing IoT 
platform capable of delivering an outstanding performance in any critical use case, there is still an imperative 
issue that needs to be thoroughly investigated. As the digital transformation extends into business operations 
both online and in a world full of physical devices, securing the IoT cannot be an afterthoug ht. IoT growth is 
helping to drive established digitization trends in mobile, cloud, and data with the ability to get better visibility 
and control over the physical world – for consumers as well as industrial applications. However, given the IoT-
led exposure to the real world, many industries can become vulnerable to security threats creating a massive 
barrier to digital transformation. Recent analyses of security attacks show:   

• >300% increase in malware loaded onto IoT devices (Source: Kaspersky Labs, New Trends in the 
World of IoT Threats 2018.) 

• 600% Increase in IoT device attacks (Source: Symantec Internet Security Threat Report 2018.) 
 
Without proper security in IoT, organizations risk lasting damage to brand reputation, as well as serious 
business consequences from data breaches and violations of governmental regulations and privacy poli cies. 
Thus, SEMIoTICS has proposed an advanced toolset that tackles security and privacy, as described in Section 
3.4.1. Moreover, SPDI properties monitoring, in the context of the SEMIoTICS Pattern-driven SPDI monitoring 
and adaptation, aims to SPDI guarantees for the IoT deployments operation, as discussed in Section 3.4.2. 
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Leveraging the above building blocks, in this deliverable we undertake an initial integration of the already 
deployed SEMIoTICS components of Cycle 2 that will deliver the aforementioned functionalities, as described 
in Section 2. This will be the first step of Task 5.3, with the second being the setup and testing of the fully 
integrated components into a final testbed that delivers the promised advantages under the scope of 
SEMIoTICS in Cycle 3 (final) and validates the proposed SEMIoTICS KPIs.  

1.1 PERT chart of SEMIoTICS tasks 

36 months Leader: SAG

31.12.202001.01.2018

WP1: Project Management

23 months Leader: ST-I

30.11.201901.01.2018

WP2: Requirements and Architecture for 
Smart Sensing and Smart Actuation

24 months Leader: SAG

30.04.202001.05.2018

WP3: Smart objects and networks

25 months Leader: FORTH

30.06.202001.06.2018

WP4: Pattern-driven smart behavior of 
IIoT with End-to-End Security and Privacy

24 months Leader: ENG

31.12.202001.01.2019

WP5: System Integration and Evaluation

36 months Leader: SAG

31.12.202001.01.2018

T1.1: Project coordination 36 months Leader: FORTH

31.12.202001.01.2018

T1.2: Project technical and innovation 
management

36 months Leader: SAG

31.12.202001.01.2018

T1.3: Coordination with EU programme 
level activities

3 months Leader: STS

31.03.201801.01.2018

T2.1: Analysis of emerging business and 
technical IoT value drivers

4 months Leader: SAG

30.04.201801.01.2018

T2.2: Specification of use case scenarios 
& applications and their requirements

4 months Leader: ST-I

30.06.201801.03.2018

T2.3: Specification of infrastructure 
requirements

18 months Leader: BS

31.12.201901.07.2018

T2.4: SEMIoTICS architecture design

22 months Leader: SAG

29.02.202001.05.2018

T3.1: Software defined Aggregation, 
Orchestration and cloud networks

22 months Leader: CTTC

29.02.202001.05.2018

T3.2: IIoT Network Function Virtualization

22 months Leader: SAG

29.02.202001.05.2018

T3.3: Semantics-based bootstrapping & 
interfacing

22 months Leader: STS

29.02.202001.05.2018

T3.4: Network-level semantic 
Interoperability

22 months Leader: IQU

30.04.202001.07.2018

T3.5: Implementation of Field-level 
middleware & networking toolbox

23 months Leader: STS

30.04.202001.06.2018

T4.1:Architectural SPDI patterns

22 months Leader: ENG

30.04.202001.07.2018

T4.2: Monitoring, prediction and 
diagnosis

22 months Leader: ST-I

30.04.202001.07.2018

T4.3: Embedded Intelligence and local 
analytics

22 months Leader: FORTH

30.04.202001.07.2018

T4.4: End-to-End Semantic 
Interoperability

22 months Leader: BS

30.06.202001.09.2018

T4.6: Implementation of SEMIoTICS 
backend API

22 months Leader: UP

30.04.202001.07.2018

T4.5: End-to-End Security and Privacy

5 months Leader: UP

31.10.201901.06.2019

T5.1: KPIs and Evaluation Methodology

15 months Leader: BS

31.08.202001.06.2019

T5.2: Software system integration

20 months Leader: IQU

31.08.202001.01.2019

T5.3: IIoT Infrastructure set-up and 
testing

13 months Leader: SAG

31.12.202001.12.2019

T5.4: Demonstration and validation of 
IWPC- Energy scenario

13 months Leader: ENG

31.12.202001.12.2019

T5.5: Demonstration and validation of 
SARA-Health scenario

13 months Leader: ST-I

31.12.202001.12.2019

T5.6: Demonstration and validation of 
IHES-Generic IoT scenario

36 months Leader: CTTC

31.12.202001.01.2018

T6.1: Impact Creation and Dissemination 31 months Leader: ENG

31.12.202001.06.2018

T6.2: Exploitation of results

24 months Leader: SAG

31.12.202001.01.2019

T6.3: Standardization
36 months Leader: CTTC

31.12.202001.01.2018

WP6: Impact, Dissemination and 
Standardization

 
Please note that the PERT chart is kept on task level for better readability. 
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2 SEMIOTICS OVERARCHING TESTBED 

2.1 SEMIoTICS overarching testbed design 

In this section, we present the overarching design of the SEMIoTICS testbed, being composed of a Backend 
layer, an SDN/NFV Orchestration layer, and a Field layer. Frameworks and APIs designed within WP3 and 
WP4, which include the NFV, SDN, Semantic Interoperability and Pattern Engine frameworks , are first 
deployed and evaluated in the SEMIoTICS testbed environment. Afterwards they can be leveraged by use-
cases on extended versions of the testbed, to showcase more advanced scenarios. SEMIoTICS’ use case 
applications are built in the form of IIoT services, or VNFs, related to smart monitoring and actuation that are 
managed autonomically by the SEMIoTICS infrastructure. Thus, functionalities such as establishing 
connectivity to a service, negotiating transport protocols and networking paths, as well as service scale -out 
and load balancing functions will be totally transparent for IoT applications . Moreover, they are handled by the 
respective frameworks of the SEMIoTICS infrastructure under the control of the Pattern Orchestrator (e.g., the 
networking policies are implemented by the SDN framework, Service policies by the NFV framework, etc.).  In 
what follows, this deliverable contributes the testing methodology and preliminary test results for the main 
SEMIoTICS components of the overarching SEMIoTICS testbed. Furthermore, the IIoT infrastructures setup 
at partners’ premises, that are involved in these tests, are also de tailed as part of this deliverable. 
 

 
FIGURE 1: SEMIOTICS TESTBED OVERARCHING DESIGN 

 

2.2 SEMIoTICS components integration 

Alongside the IIoT infrastructures at partners’ premises, a SEMIoTICS integration testbed is also under 
development, to integrate individual components after their successful validation and verification. The physical 
infrastructure of the SEMIoTICS integration testbed currently includes the following hardware components 
and is constantly upgraded: 

• One 6-core 64-bit server with 32 GB RAM hosts the OpenStack Controller and Network services, 
related to Management, Orchestration and SDN control. 
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• One 4-core 64-bit server with 32 GB RAM hosts the ETSI OSM NFVO management services. 

• Two 6-core 64-bit servers with 32 GB RAM act as the Compute Nodes, or Cloud hypervisors, that host 
all IIoT services and VNFs in dedicated Virtual Machines (VMs). 

• One 4-core 64-bit server with 8 GB RAM acts as a resource constrained MEC node that hosts Edge 
VNFs. 

• One Odroid C2 Single-Board Computer (SBCs) acts as the Field layer Virtualized IoT gateway. An 
802.15.4 radio module is employed to interconnect Field devices (smart sensors) with the gateway. 

• Field layer smart sensors that transmit temperature, humidity, light intensity and vibration values 
wirelessly over 802.15.4 and BLE. Smart Light actuators are also used for demonstration purposes.  

• SDN access switches are employed at the Network layer, to implement the SDN Data plane.  
 

 
FIGURE 2: SEMIOTICS TESTBED PHYSICAL INFRASTRUCTURE 

 

 SDN/NFV ORCHESTRATION LAYER 
The SEMIoTICS integration testbed leverages an OpenStack VIM, an OpenDaylight SDN controller, and an 
ETSI MANO stack. In this testbed, dedicated controller nodes host the VIM, SDN and MANO services in 
Containers. Containers is an emerging virtualization solution which allows services to run almost to the "bare 
metal" with minimal performance penalties, but with the requirement that they share the same kernel with the 
host (in this case the Controller node). IIoT services are implemented in the form of VNFs, that are managed 
by an ETSI compliant MANO stack, which handles the automatic deployment and lifecycle management of 
services, based on performance KPIs from a Telemetry system. Moreover, VNFs can be individually scaled, 
i.e., multiple instances can be deployed to meet user demand and migrated to a different hypervisor for 
optimization purposes. For example, to meet service KPIs, a VNF may have to be moved to a hypervisor with 
a lower CPU load, or to an Edge hypervisor to reduce latency. IIoT services are generally assigned dedicated 
Virtual Tenant Networks (i.e., VTNs) that are managed by the SDN Controller. 

 
 

 FIELD LAYER 
Our testbed Field layer includes a virtualized IIoT gateway that interconnects a set of senso rs and actuators 
with the backend cloud. Our IoT gateway supports KVM virtualization, enabling us to push VNFs down to the 
gateway tier. This allows services with ultra-low latency requirements to be pushed in very close proximity to 
the IIoT devices, hence minimizing latency. For the field-layer smart sensors, we employ battery operated 
802.15.4 and BLE devices that perform periodic measurement of CO2, Temperature, Vibration and Light (Lux) 
values. Sensor values are encapsulated in IPv6 packets and transmitted to the IIoT gateway via MQTT. The 
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actuators are commercial Philips Hue Smart Lights that are connected to the IIoT gateway via a Hue bridge. 
The Sensors and Actuators are communicating with the respective VNFs that are hosted at the Cloud or IIoT 
gateway hypervisors. Furthermore, the integration testbed leverages Semantic models, presented in Section 
3.3, to annotate data that is exchanged between Things, as well as to describe capabilities of Things in a 
machine interpretable format. Our gateway serves as a semantic mediator in the task of integrating semantics 
of brownfield industrial devices and IoT things. More specifically, at the input, the gateway accepts data from 
diverse field devices. At the output, it provides an API to access semantically-annotated data along with 
descriptions of capabilities of connected devices. The API is based on the W3C WoT upcoming standard, and 
Things are specified in the WoT TD format. TD is semantically annotated with iot.schema.org, as it  has been 
thoroughly described in Deliverable 3.3 and Section 3.3.  
 
{ 
  "@context": [ "http://www.w3.org/ns/td", 
              {"iot": "http://iotschema.org/"} ], 
  "@type" : [ 
      "Thing", "iot:LightControl", "iot:BinarySwitchControl" 
  ], 
  "id": "urn:dev:wot:lamp", 
  "name": "WirelessLamp", 
  "description" : "WirelessLamp uses JSON-LD 1.1 serialization", 
  "securityDefinitions": { 
      "basic_sc": {"scheme": "basic", "in":"header"} 
  }, 
  "security": ["basic_sc"], 
  "properties": { 
    "status" : { 
      "@type" : "iot:SwitchStatus", 
      "type": "string", 
      "forms": [{ 
         "href": mqtt://192.168.1.11:1883/house/lamp/status, 
         "mediaType": "application/json"}] 
    } 
  }, 
  "actions": { 
     "toggle" : { 
     "@type" : "iot:ToggleAction", 
     "forms": [{ 
        "href": mqtt://192.168.1.11:1883/house/lamp/toggle, 
        "mediaType": "application/json"}] 
     } 
  }, 
  "events":{ 
    "overheating":{ 
      "@type" : "iot:TemperatureAlarm", 
      "data": {"type": "string"}, 
      "forms": [{ 
          "href": "mqtt://192.168.1.11:1883/house/lamp/oh", 
          "subprotocol": "longpoll" 
      }] 
    } 
  } 
} 

FIGURE 3: THING DESCRIPTION ANNOTATED WITH IOT.SCHEMA.ORG 
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For verification purposes, in our testbed, we deployed the Smart Light as a Thing that is automatically 
registered in the database with the reception of an MQTT availability message, as soon as it connects to the 
network. In detail, a listener at the IIoT gateway receives the availability MQTT message “ON” and retrieves 
the Thing Description from the local database, as seen in FIGURE 3. The result of the discovery is shown in 
the Thingweb Directory immediately, as seen in FIGURE 4. Thus, the TD is registered at the Thing Directory 
that allows searching for a Thing based on its metadata, properties, actions or events. In FIGURE 5, we show 
the JSON format of the TD and the address that it has been given to the Thing by the Thingweb directory. 
Through this platform it is also possible to update the TD and even generate a servient based on a discovered 
Thing. 
 

 
FIGURE 4: THING DISCOVERY 
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FIGURE 5: TD OF THE WIRELESS SMART LIGHT 

3 SEMIOTICS TESTBED COMPONENTS 
 
This is the section of the deliverable that describes the SEMIoTICS components employed at the overarching 
testbed. After a short description of the component architecture (more details can be found in the respective 
deliverables of WP3 and WP4), we provide the testing methodology to introduce the reader to the methods 
that will be employed to undertake the performance evaluation and KPI validation.  

3.1 SEMIoTICS Software Defined Networking Controller (SSC) 

 COMPONENT ARCHITECTURE 
SEMIoTICS SDN Controller comprises the architectural components contained as depicted in FIGURE 6. Each 
of the depicted components was implemented by the time of writing the deliverable, with the majority of 
components to be used / showcased in SEMIoTICS Use Cases 1 and Use Case 2 (excluding Clustering 
Manager only, which is to be showcased in a lab environment).  
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FIGURE 6: SSC ARCHITECTURE AS PER TASK 3.1 (D3.1) 

To test the basic function and evaluate the general performance of functions relevant for the two Use Cases, 
we focus here on the realization of an exemplary scenario resembling the final Use Case 1 prototype - an 
integration of the IoT Gateway with corresponding end-points and an exemplary field layer application. We 
specifically evaluate the Bootstrapping Manager, Pattern Engine, VTN Manager, Path Manager and Resou rce 
Manager’s operation. Using the interaction between these components, infrastructural services and QoS-
enabled end-to-end path configurations are installed with minimal user intervention – apart from the request 
specification in Pattern Engine.  
 

Note: In the integration tests discussed below, we do not rely on the external Pattern Orchestration instance 
to feed the SSC with QoS connectivity requests. Instead we rely on requests defined in a few exemplary scripts. 
To support the complete Use Case 1 workflow, Pattern Orchestrator will be integrated in the final demonstrator. 

 TESTING METHODOLOGY 
3.1.2.1 INTEGRATION METHODOLOGY 
To validate the correctness of implemented modules during implementation, we have deployed an emulated 
testbed comprising of an arbitrary number of Docker containers hosting individual Open vSwitch instances with 
OpenFlow 1.3.1 support. Thus, basic functionality such as VTN addition and removal, as well as addition and 
removal of individual connectivity pattern instances is achieved using unit  tests without interaction with the 
physical setup. 
However, the Use Case 1 will rely on deployment of physically attached end-devices and should depict the 
correct SSC operation when deployed against physical network switching equipment. To this end, we h ave 
deployed a 6-switch physical network comprised of 6x OpenFlow 1.3.1 switch instances, deployed using the 
kernel-space forwarding daemon of Open vSwitch and the corresponding OpenFlow agent. The switch 
instances are executed on 1 Gbps Banana PI R1 hardware devices. Each switch is equipped with 4 physical 
RJ45 interfaces, as shown on devices (encircled by green box) in FIGURE 7. 
Additionally, we deployed an LTE router attached to switch OF:104, acting as the gateway to backend layer 
services. The SSC is deployed on the SIMATIC IPC427E industrial PC running Linux, equipped with a recent 
Intel i7 Processor and 16 GB of DDR4 RAM. 
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FIGURE 7: INITIAL NETWORKING DEPLOYMENT TOWARDS USE CASE 1 REALIZATION 

 
To evaluate an initial implementation of the SSC, we compile and install its components based on current code 
check-out (December, 2019) with the IoT Gateway solution developed in D3.3 and evaluate the IoT Gateway 
application providing semantic mediation for inter-connected sensor (camera) and actuator devices (streamer 
device). An extension of the application demonstrated here is intended for the Use Case 1 deployment  in its 
final form, i.e., interconnecting greenfield sensory devices and a brownfield programmable logic controller 
(PLC). Nevertheless, discovery of grease leakage based on camera-taken photos, processed in a remote unit, 
will be shown in the Use Case 1 as well. 
To evaluate intermediate integration of current subset of IoT Gateway components (i.e., the Semantic Edge 
Platform and Semantic API & Protocol binding) we deployed: a) an IP-enabled camera as envisioned end-point 
sensor; b) the combination of Semantic Edge Platform based on RED-Node and semantic API bindings to 
expose data using the WoT Thing description interface; and c) the internet gateway used in bootstrapping of 
the RED-Node framework. Additional details on the tested applications are discussed in Section 3.3. 
 
3.1.2.2 SYSTEM BOOTSTRAPPING 
 
After initial bootup of the devices, the switches must first discover the SSC. We assume the switches are 
configured with IP address of the SSC and the port which SSC is listening on for new OpenFlow connections. 
Indeed, the controller/port configurations in the Open vSwitch implementation persists after reboots, hence a 
single-time configuration was necessary to achieve this functionality.  Bootstrapping Manager can alternatively 
deploy the DHCP server and provide the switches with automatically derived IPv4 addresses but we assume 
manual IPv4 configuration of management interfaces of the switches for lowered complexity of the 
demonstration.  
 
Both switches and the SSC’s management interfaces are thus configured in the same IP subnet to omit the 
routing. After the switches have initiated an OpenFlow session to the controller, the Bootstrapping Manager 
initiates the bootstrapping procedure in the newly switches, i.e., provisioning them with default flow rules used 
for in-band control channel communication. FIGURE 8 showcases the SSC’s UI containing resulting discovered 
topology (including deployed endpoints). Access to the UI and all other REST-enabled functions of the SSC 
require HTTPS digest authentication. 
 



780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017 
Deliverable D5.3: IIoT Infrastructure set-up and testing (Cycle 1) 
Dissemination level: [public]  

 

12 
 

 
FIGURE 8: THE DISCOVERED TOPOLOGY AND END-DEVICES IN THE SSC AFTER CONNECTING 

THREE END-POINTS, BOOTING UP THE SWITCHES AND THEIR SUCCESSFUL ESTABLISHMENT OF 
OPENFLOW 1.3.1 SESSIONS WITH THE SSC. 

The performance tests related to the total bootstrapping time are presented in Section below.  
 
3.1.2.3 VIRTUAL TENANT NETWORK INSTANTIATION 
 

To interconnect the end-points, we require a Virtual Tenant Network enabling the connectivity of all admitted 
components of the application: a) an IP-enabled camera; b) the RED-Node based service capability discovery 
framework and c) the internet gateway used in bootstrapping of the RED-Node framework. 
 
The formulation of the VTN script used in the integration scenario accordingly comprises three according 
interface definitions, a definition of a shared virtual bridge and the tenant definition. The exemplary VTN 
establishment script used in the test scenario is as follows (comments contained inline):  
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# VTN Parameters 
tenant_name=vtn1 
bridge_name=vbr1 
interface1=1 
interface2=2 
interface3=3 
 
#physical mapping 
node_1=openflow:104 
nodeport_1=1 
 
node_2=openflow:106 
nodeport_2=2 
 
node_3=openflow:105 
nodeport_3=3 
 
# Creating a VTN tenant. 
curl --user "admin":"admin" -H "Content-type: application/json" -X POST \ 
http://localhost:8181/restconf/operations/vtn:update-vtn -d \ 
'{ 
    "input":{ 
        "tenant-name":"'$tenant_name'" 
    } 
}' 
echo ' ' 
sleep 0.2 
 
# Creating a VTN bridge. 
curl --user "admin":"admin" -H "Content-type: application/json" -X POST \ 
http://localhost:8181/restconf/operations/vtn-vbridge:update-vbridge -d \ 
'{ 
    "input":{ 
        "tenant-name":"'$tenant_name'", 
        "bridge-name":"'$bridge_name'" 
    } 
}' 
echo ' ' 
sleep 0.2 
 
➔ Repeat for each interface …. 
 
# Creating a vInterface, adding it to a bridge/tenant mapping. 
curl --user "admin":"admin" -H "Content-type: application/json" -X POST \ 
http://localhost:8181/restconf/operations/vtn-vinterface:update-vinterface -d \ 
'{ 
    "input":{ 
        "tenant-name":"'$tenant_name'", 
        "bridge-name":"'$bridge_name'", 
        "interface-name":"'$interface1'" 
    } 
}' 
sleep 0.2 
 
➔ Repeat for each interface …. 
 
# Mapping a vInterface to a port. 
curl --user "admin":"admin" -H "Content-type: application/json" -X POST \ 
http://localhost:8181/restconf/operations/vtn-port-map:set-port-map -d \ 
'{ 
    "input":{ 
        "tenant-name":"'$tenant_name'", 
        "bridge-name":"'$bridge_name'", 
        "interface-name":"'$interface1'", 
        "node":"'$node_1'", 
        "port-id":"'$nodeport_1'" 
    } 
}' 
sleep 0.2 
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The addition of the above VTN is expected to occur once per system deployment, hence the related manual 
effort is minimal. The establishment of the VTN results in creation of default point to point flows. Using these, 
the camera and Semantic Edge Platform are capable of exchanging data, i.e., exposing camera’s data via the 
protocol binding API to the external apps. 
 
3.1.2.4 QOS-ENABLED E2E FLOW INSTANTIATION 
 

To establish the QoS-enabled connectivity between declared end-points of the evaluated test scenario, we 
rely on instantiation of the according pattern instances using the SSC’s Pattern Engine. The Pattern Engine 
interacts with the VTN Manager to evaluate the mapping of end-points to the specified VTN, and if satisfied, 
notifies the Path Manager module of the path request. The Path Manager then computes the corresponding 
path fulfilling the QoS constraints and notifies the Resource Manager of the flow rules, as well as the associated 
queue mapping for each hop on the computed path. Thus, an end-to-end path can be established with 
deterministic queueing defined individually for each hop on the path. Resource Manager finally installs the fl ow 
rules and the end-point connectivity is enabled. 
 
The corresponding QoS pattern instantiation script used in integration testing of a QoS-enabled service path 
interconnecting the IP camera and IoT Gateway comprises the following content:  
 

  
The request properties are contained in the following line "17 True 100 10 1542 44:4e:6d:f9:1f:fa 
f0:79:59:27:4d:a1 10.50.50.254 10.50.50.2 0" and comprise (in order of appearance): 

▪ The request identifier 
▪ The requirement for bi-directionality of installed paths 
▪ The required bandwidth share in Kbps 
▪ The requested end-to-end delay requirement in milliseconds 
▪ The input traffic burst in max. Kbps 
▪ The source MAC address 
▪ The destination MAC Address 
▪ The source IP address 
▪ The destination IP address 
▪ The requirement for resilient path establishment 

 
After establishment of the above flow, the referenced end-points with given MAC addresses as identifiers in 
the flow rules in network are guaranteed the requested QoS requirements (bandwidth and delay). Given that 
the input traffic arrivals are shaped as per promised maximal traffic burst and sending rate and do not exceed 
the requested rate. 
 
 
 
 

curl --user "admin":"admin" -H "Content-type: application/json" -X POST \ 
http://127.0.0.1:8181/restconf/operations/patternengine:addFact -d \ 
'{ 
     "input": { 
         "recipe_id": "recipe1", 
         "fact_id": "factid17", 
         "fact_from": "orchestrator", 
         "fact_message": "17 True 100 10 1542 44:4e:6d:f9:1f:fa f0:79:59:27:4d:a1 10.50.50.254 10.50.50.2 0", 
         "fact_type": "qospathrequest" 
     } 
}' 
echo ' ' 
sleep 0.2 
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 PERFORMANCE TEST AND KPI VALIDATION 
We briefly summarize the initial results taken to bootstrap depicted network (which i.e., is also to be used in 
the final Use Case 1 demonstrator), as well as the time taken to establish the end-to-end path installations 
with provided QoS guarantees. 

 
FIGURE 9: OBSERVED PATH COMPUTATION AND INSTALLATION TIME 

The ECDF in Fig. depicts the elapsed time taken by the SDN controller to schedule and/or embed a point - to-
point communication service with QoS guarantees. Such a service can be used to serve any generic point-to-
point communication relationship in Use Cases 1 and 2. It comprises the time to accept and parse the request, 
compute the QoS - constrained path inside the Path Manager component, as well as to implement and validate 
the installation flow rules using the Resource Manager. 
The ECDF depicts the probability of embedding the flow rules under a given time -constraint. The portrayed 
embedding is based on a relatively limited sample size of 20 flow embeddings but should serve as a good 
representative of the expected controller performance. 
 

 
FIGURE 10: OBSERVED NETWORK BOOTSTRAPPING TIME 
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FIGURE 10 depicts the ECDF of experimental measurements of the total time duration taken to bootstrap the 
control plane in the Use Case 1 topology in in-band manner. The bootstrapping time comprises the following 
phases: 

1. OpenFlow session establishment and initial rule installation to support LLDP, OpenFlow, SSH,  
ARP packet propagation 
2. Procedure of disabling the (R)STP in safe manner on each OpenFlow switch using SSH channel  
3. Procedure of re-routing the control flows for purpose of enabling resilience. 

 
While further tuning of timeouts related to, in particular, phase two of bootstrapping, could improve the total  
waiting period, the portrayed bootstrapping time is sufficient  for industrial networks, that rarely, if ever, 
experience a total shutdown or reboot following the initial deployment.  
 
The switches are connected to the SSC, and configured one by-one (i.e. the switch closest to the controller is 
configured first, then the neighboring switch and subsequently all other switches as well). Each switch will try 
to connect to the SDN controller, independent of the state of connection of its neighbor. In the case of a failure 
(connect rejection), the interval between two consecutive attempts will increase exponentially until it reaches 
a maximum value. 
 
 

 RELATION TO NETWORKING REQUIREMENTS 
 
With the above shown connectivity and bootstrapping implementation, we demonstrate the implementation of 
requirements (mostly revolving around providing the VTN network instantiation, QoS connectivity for 
interacting flows and network bootstrapping): 
R.GP.1, R.GP.3, R.GP.6, R.S.2, R.S.77, R.NL.8, R.BC.12, R.NL.9, R.BC.13, R.NL.1, R.NL.2, R.NL.3, 
R.NL.4, R.NL.7/R.BC.10, R.UC1.1, R.UC1.3, R.UC1.4, R.UC2.3, R.UC2.15, R.UC2.17 

 
In the remainder of project, with implementation of Use Case 1 Cycle 1 and Cycle 2 demonstrators, we 
additionally implement, achieve and demonstrate the following requirements:  
R.GP.4, R.GP.5, R.GP.7, 
 
Finally, due to missing relation to Use Cases, we do not address the following requirements in Use Cases 
due to considerable efforts associated with required system development. Nevertheless, we will showcase 
the initial results to handling these requirements in the lab environment: 
R.GP.2 / R.UC1.7, R.UC1.5 & R.UC1.6 (only in lab environment) 
 

3.2 Network Function Virtualization (NFV) 

 COMPONENT ARCHITECTURE 
 
The SEMIoTICS NFV Component encompasses the NFV Management and Orchestration (NFV MANO) and 
NFV Infrastructure (NFVI), as defined in FIGURE 11. That is, the set of controllers and managers (NFV 
MANO), and the set of hardware used for virtualizing network functions  (also referred to as compute nodes1) 
at all layers of the SEMIoTICS architecture, respectively.  
 
Together, SDN and NFV are able to realize customizable isolated network environments, where processing 
endpoints (i.e. VNFs) are dynamically instantiated at precise compute nodes in the SEMIoTICS architecture.  
Network traffic is then directed towards such VNFs, which may be standalone or part of a custom Service 
Function Chain (SFC) to reach a desired endpoint, be processed or consumed. In this section, SEMIoTICS 

 
1 The reference to compute nodes encompasses all hardware capable of providing virtual compute, network 
and storage resources to the NFV VIM, and therefore are included in the NFVI.  
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NFV Component is described based on its current implementation on the project. Furthermore, sequence 
diagrams for common procedures, APIs and their relation to other SEMIoTICS components are overviewed. 
To conclude, we present: i) a testing methodology for evaluating the deployment of the component, ii) present 
a methodology for its eventual integration with other SEMIoTICS off-location components, and iii) summarizes 
the evaluation results through implementation. 

 
FIGURE 11 ETSI NFV REFERENCE ARCHITECTURE 

 
 

3.2.1.1 NFV COMPONENT AS HARDWARE 
As mentioned in the introduction of this section, here the components defined in FIGURE 11 are mapped to 
an example network topology. For exemplifying purposes, the network topology describing SEMIoTICS’ Use 
Case 3 (UC 3) will be used, see FIGURE 12. References to the SEMIoTICS architecture and FIGURE 11 will 
be made, as well as highlights to common NFV Components’ APIs. 
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FIGURE 12 USE CASE 3 SYSTEM ARCHITECTURE (FROM D2.4) 

 
Going down an abstraction layer that is from FIGURE 11 to hardware, requires a real use case. For that 
reason, UC 3 system architecture (shown in FIGURE 12) will serve as a starting point. In it, it is possible to 
identify SEMIoTICS Architecture’s three layers, as well as the components involved in the realization of the 
UC. 
 
In FIGURE 12, the Field Layer is composed of two type of devices: Field Devices, and IoT Gateway. The 
formers are sensors equipped with an embedded intelligence component and not virtualization -capable. The 
latter are indeed virtualization-capable nodes, which are able to run all or some of their services as VNFs. 
Going up SEMIoTICS System Architecture, the NFV Orchestration Layer summarizes the collection of NFV 
MANO elements involved in the UC. Finally, the Application Orchestration Layer hosts the backend VNFs 
supporting the UC. 
 
From the aforementioned overview it is easy to highlight the domain of the NFV Component, i.e. virtualization -
capable nodes (NFVI). The following FIGURE 13 maps UC 3 elements and virtualization requirements2 to a 
preliminary network topology describing the NFVI of such UC as defined in FIGURE 12. FIGURE 13 also 
highlights the elements of the SEMIoTICS architecture that would fall within the NFV Component’s domain 
(denoted here as NFVI). Starting from the Field layer, the IoT Gateway hosts the VNFs that enable its 
functionality in said UCs. Other services at the backend are realized as VNFs at the Application Orchestration 
Layer. Notice that this layer also hosts NFV MANO and the SEMIoTICS SDN Controller (SSC).  FIGURE 13 
serves as a reference network topology, mainly because it considers the Field and Application Orchestration 
Layers for VNF instantiation. 
 

 
2 Network, compute, storage. 
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FIGURE 13 ENVISIONED NFVI SUPPORTING UC3 

3.2.1.2 NFV OPERATIONS 
NFVI is evidenced in FIGURE 13. Virtualization-capable nodes throughout the SEMIoTICS Architecture permit 
the orchestration of VNFs from a centralized location (i.e. NFV MANO). UC owners, or the Global Pattern 
Orchestrator may trigger NFV Component’s APIs to: onboard descriptors, orchestration, and retrieve NFV 
telemetry. 
 

• Descriptor onboarding: as described in D3.2, for the NFV Orchestrator (NFVO) to orchestrate a 
Network Service it requires a blueprint, or descriptor to be loaded (onboarded). Before onboarding, 
authorized components such as the Pattern Orchestrator may modify the descriptors in order for  the 
to-be-orchestrated NS to comply with a specific pattern or constraint3. FIGURE 14 shows a message 
sequence diagram of a VNF descriptor onboarding. 

 
FIGURE 14 VNF DESCRIPTOR ONBOARDING 

 
3 For ways to modify Network Services, refer to Section 4.7 in D3.2. 
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• Orchestration: once descriptors are onboarded, NFVO, via its Service and Resource Orchestration 
functions gather available resources from the VIM and then schedules the instantiation/creation of the 
required services specified in the descriptors. FIGURE 15, from D3.2, shows the message sequence 
diagram of a VNF orchestration. 

 
FIGURE 15 VNF ORCHESTRATION 

 

• NFV Telemetry: via well-defined endpoints, authorized components may trigger NFVO’s or VIM’s APIs 
in order to gather telemetry metrics from running NS4, or the NFVI, respectively. The former can be 
gathered via the Os-Ma-Nfvo endpoint at the NFV MANO (see FIGURE 11), while the latter is exposed 
as a telemetry endpoint at the VIM manager. FIGURE 16 summarizes the physical location of the 
aforementioned API endpoints, as well as the information they provide. 

 
4 Subject to metrics definition at descriptor level. 



780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017 
Deliverable D5.3: IIoT Infrastructure set-up and testing (Cycle 1) 
Dissemination level: [public]  

 

21 
 

 
FIGURE 16 NFVO AND VIM ENDPOINTS FOR TELEMETRY AND OTHER OPERATIONS 

 
The aforementioned operations are achieved through well specified API endpoints. The following excerpt from 
D2.5 gathers the API enabled in the NFV Component for different operations in SEMIoTICS:  
 

• At NFVO: 
o VNF Telemetry relay to OSS/BSS. 
o VNF/NS instance termination. 
o VNF/NS instantiation. 
o VNF/NS descriptor onboarding. 

• At VIM: 
o Terminate VNFs. 
o Remove network connection between VNFs. 
o Configure network connection between VNFs. 
o Create network connection between VNFs. 
o Gather NFVI telemetry. 
o Gather VNF telemetry. 
o NFVI resource allocation/release/update. 

 
Designing procedures leveraging such APIs ensures QoS constraints are met, as well as provide dynamicity 
and customization to NS (e.g. by other SEMIoTICS components such as the Pattern Orchestrator). 
 

 TESTING METHODOLOGY 
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Testing the NFV Component implies the description of network topologies in terms of NFV NS descriptors , 
which in turn imply the realization of functionalities via VNFs. At this point in the project, two main tests were 
performed involving the NFV Component: simple service instantiation, and data processing leveraging tenant 
networks and multiple clouds. In this section, these two tests are going to be overviewed (as they appear in 
full detail in D3.2 and D3.5, respectively). Additionally, the foreseeable integration methodology and tests are 
going to be described outside D3.2 for the first time. 
 

3.2.2.1 SERVICE INSTANTIATION 
It is a good practice to describe each NS in terms of a simple drawing. The following FIGURE 17 shows an 
example diagram describing “test-cn”, a VNF composed of three Virtualization Deployment Units (VDU), i.e. 
Virtual Machines. 
 

 
FIGURE 17 EXAMPLE VNF DESCRIPTION DIAGRAM 

 
FIGURE 17 shows three VDUs, each one equipped with two network interfaces. The ones connected from 
their respective VDU to the External Connection Point (ECP) are referred to as external interfaces (e.g. for 
management purposes, or for exposure to external networks), while the others are connected to Internal 
Connection Points (ICP) via virtual links. Internal interfaces enable communication among VDUs within a 
VNF. The figure only shows minor (incomplete) details regarding networking and VDU source image, but more 
details may be specified, such as: vCPUs, memory, storage, monitoring parameters, scaling parameters and 
thresholds, etc. These are relevant parameters that need to be known before a descriptor could be written. 
 
Having a descriptor for such VNF requires compliance with SEMIoTICS NFV MANO platform, specifically with 
the NFVO. SEMIoTICS NFVO, i.e. OSM, provides an ETSI compliant Information Model (IM) 5 for the 
specification of VNFs and NS via descriptors. An example of VNF and NS descriptor is provided in Section 
3.3.1 of D3.2. 
 

3.2.2.2 TENANT NETWORKS AND PLACEMENT 

 
5 https://osm.etsi.org/wikipub/index.php/OSM_Information_Model 
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SEMIoTICS NFV Component can be leveraged to place computing agents precisely where they are needed 
within the architecture. In D3.5, a testbed emulating the layers of SEMIoTICS was deployed to mimic a smart 
monitoring and actuation scenario. In it, two tenant networks were created, each holding the sensing and 
actuation VNFs, respectively. Experiments were setup to dynamically modify in real time the attainable 
throughput in each tenant network (refer to FIGURE 18). Additionally, leveraging precise placement 
instructions an additional test attempted to register the different network delays between a Field device and 
a destination VNFs located either at the IoT Gateway (Field Layer or Local Cloud), or in the Cloud. 
 

 
FIGURE 18 IIOT SERVICES AND TENANT NETWORKD (FROM D3.5) 

 
3.2.2.3 INTEGRATION METHODOLOGY 
As mentioned at the beginning of this section, SEMIoTICS NFV Component is composed of two elements: a 
set of manager/controllers (NFV MANO, VIM), and compute nodes (NFVI). Both elements need to have IP 
connectivity among them. That is, NFV MANO (NFVO and VIM) must have IP connectivity with the rest of the 
NFVI. Integration tests for the NFV Component may also involve the description of a SEMIoTICS Use Case 
via NFV descriptors. This way, a centralized NFVO may trigger the destination VIM’s API to orchestrate the 
service on top of a NFVI.  
 
An integration test methodology would involve granting IP connectivity to other SEMIoTICS components to 
the NFV MANO and NFVI. There are two configurations in which this could be done: 
 

1. Allow an external NFVO to register the local VIM. 
2. Allow external access to local NFV MANO. 

 
The first option would allow an external NFVO to orchestrate VNFs in the local NFVI (via the local VIM). This 
way, NFVO configuration and management would be carried out by an external partner. The second option 
allows access to a partner (via SSH) to the local NFV Component. This way a single NFVO is maintained, 
and metrics collection at the NFVO would be gathered more effic iently. 
 

 PERFORMANCE TEST AND KPI VALIDATION 
 
3.2.3.1 SERVICE INSTANTIATION RESULTS 
After NS and VNF descriptor onboarding and effective service orchestration procedures, a working NS is 
shown to be running in Section 3.3.1 of D3.2. The reader is referred to the aforementioned section and 
deliverable in order to gather more details about descriptors, onboarding, GUI interfaces for OSM including: 
VIM registered, descriptor onboarding and NS status. 
 

3.2.3.2 TENANTS NETWORKS AND PLACEMENT RESULTS 
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As described in the previous section, two tests were to be carried out: 
 

1. Live Network throughput modification. 
2. Measurement of delays between local and global cloud. 

 

 
FIGURE 19 THROUGHPUT MEASUREMENT VS. TIME FOR VNF1 AND VNF2 

 
FIGURE 19, extracted from D3.5, shows the results of a network throughput modification at time t=11s. That 
is, at the beginning of the experiment both VNFs were able to achieve the same throughput towards a cloud 
destination (1 Gbps external link, therefore 500 Mbps is achieved by each VNF). Nevertheless, at the specified 
time the VIM’s SDN Controller (Neutron) is instructed to modify the distribution of available bandwidth via the 
corresponding API, effectively lowering VNF1’s throughput to around 300 Mbps . As the experiment was 
performed under saturated traffic, the rest of the available bandwidth is consumed by VNF2. 
 
Regarding VNF placement as a way of lowering delay, measurements of Round-Trip Time (RTT) were 
performed between a Field device and the local cloud, as well as from the Field device to a cloud instance.  
Details about the experiment can be found in Section 5.2.2 of D3.5; FIGURE 20 shows RTT in milliseconds 
for a growing link load. Notice that each curve specifies the location of the destination VNF. Results show that 
as links get congested, placing the service VNF further away from the Field device results in higher RTT. 
 
 

 
FIGURE 20 PACKET DELAY VS. LOAD FOR DIFFERENT VNF PLACEMENT OPTIONS 

 
3.2.3.3 INTEGRATION PRELIMINARY RESULTS 
Complete integration with the SEMIoTICS platform is still to be done. Nevertheless, the infrastructure able 
to realize both of the options presented in Section 2.2.2.3 is up a running. 

0

100

200

300

400

500

600

700

800

-2 3 8 13 18 23 28

Th
ro

u
gh

p
u

t 
(M

b
p

s)

Time (s)

VNF1 (Sensing)

VNF2 (Actuation)

0

10

20

30

40

50

60

70

80

90

100

0,3 0,4 0,5 0,6 0,7 0,8

P
ac

ke
t 

D
e

la
y 

(m
s)

Link Load

Local cloud

Remote Cloud

IoT Gateway



780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017 
Deliverable D5.3: IIoT Infrastructure set-up and testing (Cycle 1) 
Dissemination level: [public]  

 

25 
 

 
An OpenVPN server (referred to as Router/Firewall in FIGURE 21) was setup, and credentials were generated 
and shared with the SEMIoTICS integrator partner. The topology allowing such workflow is shown in FIGURE 
21. 
 

 
FIGURE 21 OPENVPN TUNNEL TO ALLOW INTEGRATION WITH THE NFV COMPONENT 

 
As can be seen from FIGURE 21, partners may either use their own NFVO and register the local VIM, or SSH 
through the VPN-VLAN towards OSM VM to use the local NFVO and therefore the whole local SEMIoTICS 
NFV Component. IP connectivity to the orchestrated VNFs is also guaranteed. 

3.3 SEMIoTICS Field layer and Gateway 

 COMPONENT ARCHITECTURE 
Field layer is, in general, responsible for hosting different types of devices (greenfield- and brownfield- 
devices). Semantic-based bootstrapping & interfacing is a set of components at the field layer that enable 
bootstrapping and hosting of these different types of devices. This goal is to be achieved over an interface, 
which is unified (applies to all types of devices) and is semantically described (eases the use of devices’ data 
in applications).  
 

Components related to the semantic-based bootstrapping & interfacing are marked in FIGURE 22. These 
components are agreed with other SEMIoTICS project partners in the work on SEMIoTICS architecture, see 
FIGURE 1 and Section 2.3 in SEMIoTICS deliverable D2.4.  
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FIGURE 22: MARKED COMPONENTS RELATED TO THE SEMANTICS-BASED BOOTSTRAPPING & 

INTERFACING 

FIGURE 23 shows the sequence diagram for semantic-bootstrapping and interfacing of field devices in 
SEMIoTICS. In the bootstrapping process we distinguish two different classes of device. The first class consists 
of devices that already have a Web-based RESTful interface and are described by W3C Thing Description. 
The second class comprise of all other devices that yet need to be made accessible over a Web-based RESTful 
interface. These devices do not have a semantic description, or it exists, but needs to be mapped to 
standardized semantic IoT models. This is a case, for example, with brownfield devices. In order to realize IoT 
applications, it is convenient to map these brownfield descriptions into description based on standardized IoT 
semantic models.  

Let us consider now a sequence diagram of activities that occur during the bootstrapping of WoT device, see 
FIGURE 23. The user performs the first step during the initialization of a new device. This assumes provision 
of information such as an IP address, device capability, domain of use, location etc. Since the device already 
has a Thing Description (TD), this information is directly put in its TD. The device can then be registered with 
SEMIoTICS IIoT Gateway (with GW Semantic Mediator, which is an internal component of the Gateway). The 
Mediator will create a Device Node for each interaction pattern of the device. Device Node is a programable 
component that enables interaction with the device. The Mediator automatically generates Device Nodes, 
based solely on information from devices’ TDs. Generated Device Nodes can then be installed in Semantic 
Edge Platform. From that moment on, the device can be used in Edge and Cloud-based applications via 
interactions provided by its Device Nodes. Thus, Device Nodes represent a means for an application to 
programmatically access device’s functionality via Semantic Edge Platform. The Mediator automatically 
generates Device Nodes, based solely on information from devices’ TDs. Generated Device Nodes can then 
be installed in Semantic Edge Platform. From that moment on, the device can be used in Edge and Cloud-
based applications via interactions provided by its Device Nodes. 

In comparison to the sequence diagram for bootstrapping and interfacing of field devices in deliverable D3.3, 
here we have added a component called Semantic Edge Platform (SME), see Section 3.5.8 in de liverable 
D2.5. SME eases the interaction with SEMIoTICS IoT Gateway (graphic user interface for network scanning 
and user input, e.g., IP address range etc.), including the interaction with Local Thing Directory too.  
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FIGURE 23: SEQUENCE DIAGRAM FOR SEMANTIC-BOOTSTRAPPING AND INTERFACING OF FIELD 

DEVICES IN SEMIOTICS 

 

If a brownfield device needs to be initialized, then a user in addition to previously mentioned information needs 
to specify metadata related to the communication protocol and the encoding format. This information will be 
important part of a Thing Description and is used by SEMIoTICS IoT Gateway to realize the protocol binding. 
At this point in time brownfield integration has not been provided yet.  

It is worth of noting that certain activities in the sequence diagram are accomplished over Software Defined 
Network (SDN), see FIGURE 23. Thus, we tested the integration of SEMIoTICS IoT Gateway with SEMIoTICS 
Software Defined Networking Controller, see Section 3.1.    

In the following we will detail each component in regard to its currently available and deployable functionality.  

3.3.1.1 SEMANTIC API & PROTOCOL BINDING 

Semantic API & Protocol Binding is a component responsible for binding different protocol and exposing 
common semantic API located at the Generic IoT Gateway layer.  This functionality is needed in order to 
integrate brownfield devices into a common IoT access layer. Technology-wise, the functionality is based on 
W3C Web of Things (WoT) API6. 

In the following we give API that is implemented and tested in SEMIoTICS IoT Gateway (GW). The current 
implementation is focused only on greenfield devices, i.e., no protocol binding is required yet. 

 
6 https://www.w3.org/TR/wot-scripting-api/  

https://www.w3.org/TR/wot-scripting-api/
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SEMIoTICS greenfield device (e.g., Raspberry Pi with attached an IP camera) implements the following 
interface for starting the camera in a WoT servient, see TABLE 1. Note that a method for starting a camera is 
semantically annotated with iotschema.org mark-up for a camera7. 

TABLE 1: WOT SERVIENT – GREENFIELD DEVICE INTERFACE 

1. let thing = WoT.produce({ 
2. title: "SEMIoTICS Thing", 
3. description: "Camera", 
4. "@context": ["https://www.w3.org/2019/wot/td/v1", {"iot": "http://iotschema.org/" }], 
5.    "@type": "iot:StartRecording", 
6.    "iot:capability": "iot:Camera", 
7.    actions: { 
8.      startCamera: { 
9.         description: "Start recording the video.)" 
10.      } 
11.    } 
12. }); 
13. thing.setActionHandler( 
14.    "startCamera", 
15.    (params, options) => { 
16.       // Code that implements an Action, e.g., "startCamera". 
17.       // Removed for the sake of simplicity. 
18.    }); 

The greenfield device does not require the protocol binding. In the next version of this deliverable we will 
extend the servient to support a protocol binding for a brownfield device.  

A client, which needs to access a newly plugged (greenfield) device, can access Thing Description (TD) of the 
plugged device in order to discover its functionality. This can be achieved by providing the IP address of the 
device in the method fetch, see TABLE 2. 

TABLE 2: FETCHING A THING DESCRIPTION 

19. WoTHelpers.fetch("http://semiotics.things.org:8080/ipcamera").then( async (td) => { 
20.     let thing = await WoT.consume(td); 
21. }).catch( (err) => { console.error("Fetch error:", err); }); 
22.  

By examining the fetched TD a client, for example finds an action called startCamera. The client can then use 
the API to invoke the action, see TABLE 3. 

TABLE 3: INTERACTING WITH THING (CAMERA) 

1. // start the camera 
2. await thing.invokeAction("startCamera"); 

3.3.1.2 LOCAL THING DIRECTORY  
The purpose of Local Thing Directory is to store semantic description of Things locally in the Generic IoT 
Gateway. In Section 3.3.1.1 we have seen how the gateway (or any other client) can retrieve a Thing 
Description (TD). During the device registration process, the gateway stores a TD in the Local Thing Directory. 

 
7 http://iotschema.org/Camera 

http://iotschema.org/Camera
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For the implementation of this component we use the open source implementation from W3 C8. FIGURE 24 
shows the API available from our local deployment of Thing Directory in the GW.  

 

 
FIGURE 24: OVERVIEW OF THING DIRECTORY API 

FIGURE 25 details the API related to the Thing Description registration. After fetching a TD (see TABLE 2), 
the GW uses this method to store a TD in Local Thing Directory. 

 
8 https://github.com/thingweb/thingweb-directory  

https://github.com/thingweb/thingweb-directory
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FIGURE 25: API FOR REGISTRATION OF THING DESCRIPTION 

 
An existing TD can be discovered from Local Thing Directory, e.g., via a SPARQL query, see FIGURE 26.  
 

 
FIGURE 26: API FOR DISCOVERY OF THING DESCRIPTION 

 
3.3.1.3 GW SEMANTIC MEDIATOR 

The goal of semantic integration (see SEMIoTICS deliverable D3.3) is to enable realization of new IoT 
applications that have not been envisioned at the time of engineering of an existing automation system. In the 
current implementation (for greenfield devices) the mediator does need to integrate device’s semantics as the 
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device already has (semantically annotated) Thing Description. Thus, its function is just to make a device 
programmatically accessible in accordance with the meta-data from Thing Description. It means that for each 
interaction pattern from the TD, GW Semantic Mediator will create a Device Node of the device. Device Node 
is a programable component that enables interaction with the device. For example, i f a TD of a device contains 
inclinometer property and an action for IP camera, then the mediator may generate two nodes: one for reading 
the current inclination data, and another one for streaming the video from the camera. So generated Device 
Nodes can be installed in Semantic Edge Platform and used in Edge and Cloud-based applications. TABLE 4 
shows our script that generates and installs Device Nodes. 

TABLE 4: CREATING DEVICE NODES 

1. npm install 
2. rm -rf ~/.node-red/package-lock.json 
3. rm -rf GeneratedNodes/* 
4. for file in IPshapes/* ; do 
5.     node  NodeGen.js --file=$file 
6.     sleep 2 
7. done 
8. mkdir -p ~/.node-red/SchemaNodes 
9. for d in GeneratedNodes ; do 
10.     cp -R $d ~/.node-red/SchemaNodes/ 
11. done 
12. npm install --prefix ~/.node-red ~/.node-red/SchemaNodes/GeneratedNodes/* 
13. npm install 
14. rm -rf ~/.node-red/package-lock.json 
15. rm -rf GeneratedNodes/* 
16. for file in IPshapes/* ; do 
17.     node  NodeGen.js --file=$file 
18.     sleep 2 
19. done 
20. mkdir -p ~/.node-red/SchemaNodes 
21. for d in GeneratedNodes ; do 
22.     cp -R $d ~/.node-red/SchemaNodes/ 
23. done 
24. npm install --prefix ~/.node-red ~/.node-red/SchemaNodes/GeneratedNodes/* 

In order to integrate brownfield devices, in the next version of the mediator we will integrate semantics from 
existing brownfield devices into IoT semantic model (our model is iotschema.org9). If a brownfield device does 
not have any semantic description, then we will need to make sure that iotschema.org covers necessary 
semantics to create semantic description for that device. The mediator will provide Semantic Nodes (in addition 
to Device Nodes). Semantic Nodes will be graphic components that are availab le in Semantic Edge Platform 
for the purpose of creating semantically annotated Thing Description for a brownfield device. They will be 
automatically generated from the IoT semantic model (iotschema.org), and will enable a user (without expertise 
in semantic technologies) to configure a device, i.e., to choose offered values from the semantic model via a 
graphic component. Once a user has semantically configured a brownfield device over the Semantic Nodes, 
the mediator will automatically generate a Thing Description. From that moment on, it will be possible to 
discover a device over its TD and Local Thing Directory. Further on, it will be possible to acces s the device 
over API & Protocol Binding. To this goal, we work on a common semantic access layer between brownfield 
devices and new IoT devices. 

3.3.1.4 SEMANTIC EDGE PLATFORM 

Semantic Edge Platform (SME) provides a convenient user interface for different components of IoT Gateway, 
which are accessible over API but not necessarily have a user interface. Thus, for example SME enables a 
user to configure SEMIoTICS IoT Gateway, choose a network interface, define an IP address range when 

 
9 http://iotschema.org/docs/full.html 

http://iotschema.org/docs/full.html
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scanning a network for new devices, and initiate the device bootstrapping process. FIGURE 27 shows API of 
IoT Gateway, which is accessible over Semantic Edge Platform. 

 
FIGURE 27: API OF IOT GATEWAY EXPOSED OVER SEMANTIC EDGE PLATFORM 

FIGURE 28 presents the method that is used for scanning a network, where new devices are to be 
bootstrapped. 
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FIGURE 28: API OF IOT GATEWAY TO START BOOTSTRAPPING 

FIGURE 29 shows the API, which enables a user to terminate the network scanning. For large networks this 
process may take a long time. On the other hand, sometimes a user knows, which devices are supposed to 
appear during the scan. Thus, as soon as new devices appear, the process may be halted.  
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FIGURE 29: API OF IOT GATEWAY TO STOP SCANNING THE NETWORK 

FIGURE 30 depicts the API for registering each new device. The method interacts with other gateway’s 
component, i.e., it fetches device’s Thing Description, stores it in TD Directory, invokes the GW Semantic 
Mediator to create a Device Node for the device, and finally installs the node in SME, thereby making it 
programmatically accessible in SME over WoT API. 
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FIGURE 30: API OF IOT GATEWAY TO REGISTER A NEW WOT DEVICE 

 

 TESTING METHODOLOGY 

In order to test the IoT Gateway with all its components we have deployed it on Siemens SIMATIC IPC227E 
(Nanobox), which is an industrial PC with Intel(R) Celeron(R) CPU N2930 @ 1.83GHz × 4, 8 GB RAM, and 
Ubuntu Linux 18.04. Power Supply makes sure that the Nanobox is powered with enough electricity supply. 
Further on, a WoT Device, which is to be bootstrapped was implemented on Raspberry Pi 3 B+ with 
BCM28370B SoC: 1,4 GHz, quad-core ARM-Cortex A53 CPU, 1 GB RAM, and 5 GHz WLAN 802.11 ac, 2,4 
GHz WLAN 802.11 b/g/n. WoT Device has an IP 8 Megapixel camera with video 1920 x 1080 Pixel @ 30 fps. 
Both Nanobox and WoT Device are connected over the same SDN network (see Section 3.1). FIGURE 31 
shows this deployment set up. 
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FIGURE 31: INITIAL BOOTSTRAPPING DEPLOYMENT TOWARDS USE CASE 1 REALIZATION 

Once the WoT Device is powered up it will connect itself (over WLAN) to the network. Nanobox is also running 
in the same network and is ready to bootstrap newly plugged devices. In order to test the process, we have 
developed a set of API tests, see TABLE 5. 

TABLE 5: IOT GATEWAY API TESTS 

Semantic API & Protocol Binding 

# fetch 

      ✓ should reject with 404 error when Thing Description is not available on WoT device at default  

          location (IP_Address/td); 

      ✓ should fetch Thing Description from WoT device with 200 OK.  

# invokeAction 

      ✓ should reject with 404 error if the action does not exist; 

      ✓ should reject with 400 error if the action was not called correctly (e.g., wrong parameters);  

      ✓ should invoke an action on a WoT Device, e.g., start a camera, with 200 OK status.  

Local Thing Directory 

# td 

      ✓ should reject with 400 when attempting to register a device with incorrect Thing Description;  

      ✓ should reject with 500 when attempting to register a device and an Internal Server Error occurs in  

         Local Thing Directory; 

      ✓ should create an entity by id, which points to registered Thing Description (with 201 OK status). 

# td-lookup/sem 

      ✓ should reject with 400 when attempting to query Local Thing Directory with an incorrect semantic  

          query; 

      ✓ should reject with 500 when attempting to query Local Thing Directory and an Internal Server Error  

          occurs; 

      ✓ should return results in response to a semantic query (with 200 OK status).  

GW Semantic Mediator 

# install 

      ✓ should reject with error FALSE when a new Device Node cannot be created and installed in SME; 

      ✓ should create a Device Node and install it in SME (with status TRUE). 

Semantic Edge Platform 

# startScan 

     ✓ should reject with 401 error if the network scanning is unauthorized;  

Nanobox 
PC 

WoT Device 
PC 

Power Supply 
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     ✓ should reject with 403 error if the network scanning is forbidden (e.g., a request is temporally  

         rejected by the gateway); 

      ✓ should reject with 400 error if the request is badly formed; 

      ✓ should start scanning the network for new devices with the status 200 OK. 

# stopScan 

      ✓ should reject with 401 error if the network scanning is unauthorized;  

      ✓ should reject with 403 error if the network scanning is forbidden (e.g., a request is temporally  

         rejected by the gateway); 

      ✓ should reject with 400 error if the request is badly formed; 

      ✓ should stop scanning the network for new devices with the status 200 OK. 

# registerDevice 

      ✓ should reject with 401 error if the access to the device is unauthorized;  

      ✓ should reject with 403 error if the device is not accessible (e.g., temporally not available); 

      ✓ should reject with 400 error if the request is badly formed; 

      ✓ should register a new device with the status 200 OK. 

 

 PERFORMANCE TEST AND KPI VALIDATION 
 

In this section we present results of a typical testing workflow, i.e., what happens when a user plugs a new 
WoT device. These results are not really performance test. As the bootstrapping occurs prior to the run time 
of an application, the performance of the process (in a sense of run time) is not important. Rather we are 
interested in in a bootstrapping process that gets completed with minimal user intervention. Thus, in this section 
we will present a testing procedure we have completed to validate the implementation of IoT Gateway. 

A user starts the interaction with the gateway over Semantic Edge Platform. Methods startScan and stopScan, 
see TABLE 5 and FIGURE 32, are first to be tested. After defining the network range to be scanned, the user 
hits the “Start scan” button (FIGURE 32) and gets a list of new devices to be registered by the gateway. This 
occurs if the test goes well. Otherwise the test produces errors as specified in TABLE 5. 
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FIGURE 32: TESTING IOT GATEWAY FROM SEMANTIC EDGE PLATFORM 

FIGURE 33 shows the results from the network scanning. The user may now choose a device and press the 
“Use selected devices” button. The method to be executed and tested is now registerDevice, see TABLE 5 
and FIGURE 32. The method will try to fetch a Thing Description (TD) from the device, pass it to GW Semantic 
Mediator, and store it in Local Thing Directory. If the process goes well, the status 200 OK will be returned. 
Otherwise an error will be thrown, see TABLE 5. 
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FIGURE 33: RESULT FROM NETWORK SCANNING 

Once GW Semantic Mediator receives a TD, it will try to generate one or more Device Nodes and install them 
in Semantic Edge Platform. This process is automated as all semantic meta-data needed for Device Nodes 
generation are contained in the TD. After installation of nodes, a user  may start interacting with the device, 
i.e., to start using it in an application.  

The method to be tested during this process is “install”, see TABLE 5. Since this component does not have a 
RESTful interface, the result is shown in command line (see FIGURE 34 after installing a camera and 
microphone from Use Case 1).   

 

 
FIGURE 34: RESULT FROM GW SEMANTIC MEDIATOR 

FIGURE 35 shows a Device Node for device that has a camera. After bootstrapping the device, a node called 
“startcamera” is available and can be tested in an application flow as shown in FIGURE 35. Of course, the 
node “stopcamera” has been generated and installed as well.  

FIGURE 35 also shows test messages after starting the camera, see the debug console. This is a standard 
way to test a node in Node-RED. Alternately we have tested the camera using the Node-RED Dashboard, see 
FIGURE 36. 
 



780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017 
Deliverable D5.3: IIoT Infrastructure set-up and testing (Cycle 1) 
Dissemination level: [public]  

 

40 
 

 
 

 
FIGURE 35: TEST FLOW FOR CAMERA 

 

 
FIGURE 36: CAMERA TESTED IN THE NODE-RED DASHBOARD 
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The bootstrapping process of a new greenfield device, e.g., a camera, with our approach takes no more than 
3 minutes. This includes, the network scanning, discovery, the procedure for creating a programable interface 
with the new device, and finally the procedure to make the device discoverable in Local and Global Thing 
Directory. This process is significantly shorter in comparison to procedures done with traditional engineering 
tools, where it takes an hour or more to complete the same task. We will provide evaluation results in the final 
version of this deliverable (once we implement the bootstrapping process for brownfield devices too). But we 
can already now claim that we meet the KPI 6.1 (Reduce manual interventions required for bootstrapping of 
smart object in each use case domain by at least 80%). 

Finally, let us see tests result from Local Thing Directory. FIGURE 37 shows the command line excerpt after 
registration of a TD (execution of the “td” method from TABLE 5). The directory creates a new resource for the 
registered TD with 201 OK status. 

 
FIGURE 37: TD REGISTRATION 

 
FIGURE 38 shows a user interface of Local Thing Directory. First, it shows an interface for manual registration 
of a TD (a user may copy/paste a TD and test the “td” method. Second, it shows an interface for semantic 
lookup, see the method “td-lookup/sem”. FIGURE 38 also shows an example query for discovering all TDs that 
are annotated with Capability Camera10. Finally, FIGURE 38 shows a TD resource, which was retrieved as a 
query result from Local Thing Directory. If a user clicks on the resource, then it will be displayed in a Web 
browser (as shown in FIGURE 39). We have created Thing Descriptions for all required field devices in 
SEMIoTICS. They are semantically annotated with iotschema.org. Thus, we completed KPI 2.1 (Delivery of 
semantic descriptions for all the 6 types of smart objects which are necessary for the usage scenarios). 
 

 
10 http://iotschema.org/Camera  

http://iotschema.org/Camera
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FIGURE 38: TD LOOKUP 

 
 

 
FIGURE 39: TD RETRIEVED AFTER LOOKUP 

 
The presented work constitutes the contribution towards fulfilling the project’s requirements regarding 
SEMIOTIC’s objective 2 (development of semantic interoperability mechanisms for smart objects, networks 
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and IoT platforms). The work also contributes to objective 6 (development of a reference prototype of the 
SEMIoTICS open architecture, demonstrated and evaluated in all use cases, and delivery of the respective 
open API.). But this work will be continued in D3.9 where the brownfield (domain -specific) integration will be 
addressed. Additionally, the relevant KPI 2.1 (Delivery of semantic descriptions for all the 6 types of smart 
objects which are necessary for the usage scenarios) and KPI 6.1 (Reduce manual interventions required for 
bootstrapping of smart object in each use case domain by at least 80%) are examined. The final validation of 
objectives and corresponding KPIs will be presented in D3.9 (Bootstrapping and interfacing SEMIoTICS field 
level devices (final)) and D3.11 (the final version of this deliverable). 
 

 RELATION TO NETWORKING REQUIREMENTS 
 

With the above shown functionality of IoT Gateway, we demonstrate the implementation of requirements 
(mostly revolving around the bootstrapping and interfacing of SEMIoTICS field level devices for greenfield 
devices): 
R.FD.5, R.FD.6, R.FD.7, R.FD.8, R.FD.12, R.UC1.8, R.UC1.10, R.UC1.12 
 
With the presented implementation we also contribute to tasks that are use case-specific: 
R.GP.1, R.UC1.1, R.UC1.11, R.UC2.5, R.UC2.6, R.UC3.2, R.UC3.9, R.UC3.12, R.UC3.13, R.UC3.14, 
R.UC3.15, R.UC3.16, R.UC3.17. 
 
Finally, requirements that are yet to be addressed in D3.9 (mostly revolving around the bootstrapping and 
interfacing of SEMIoTICS field level devices for brownfield devices) are: 
R.FD.13, R.UC1.9, R.UC1.13. 
 
 

 SEMANTIC INTEROPERABILITY 
 

The interoperability between the SEMIoTICS framework and other IoT platforms, such as FIWARE, 
MindSphere and CloE IoT, works in two directions. The first direction is originating from other IoT platforms, 
moving towards the SEMIoTICS framework. In that way, SEMIoTICS is able to use the  exposed interfaces of 
the said IoT platforms, in order to take advantage of IoT devices whose descriptions are available in 
repositories outside SEMIoTICS framework.  
 
On the other hand, the second direction is originating from the SEMIoTICS framework, moving towards other 
IoT platforms. In a similar way, the said platforms utilize the SEMIoTICS’ exposed interfaces of selected 
components in order to employ IoT smart objects and services.  
 
One of the selected components that has exposed interfaces, is the Thing Directory, which is a global version 
of the Local Thing Directory described in section 3.3.1.2, above. The said IoT smart objects are called Things 
and their description resides in the Thing Directory. The interface of Thing Directory, can be used to retrieve 
the already stored semantic description of Things. The Thing Description of the corresponding Thing that is 
returned, complies with the iotschema and can be used for consumption f rom other IoT platforms.  
 
Another component that has exposed interfaces, is the Pattern Orchestrator which along with the Pattern 
Engines, offers the verification of SPDI/QoS properties as a service to be used from the other IoT platforms. 
In that way an external IoT platform may utilize the said service, in order to ver ify the SPDI/QoS properties in 
an existing workflow that is comprised of IoT smart objects (IoT service workflow). The IoT service workflow in 
question is described in a dedicated language that the Pattern Orchestrator understands and is given as input. 
Pattern Orchestrator exchanges information with the Pattern Engines in order to check if a specific property 
holds throughout the whole workflow and corresponds accordingly.  
 
Finally, SDN controller, another component of SEMIoTICS, is also exposed in the scope of offering a service 
which provides means of managing available OpenFlow devices in the other IoT platforms.  
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3.3.5.1 COMPONENT ARCHITECTURE 
Regarding the first direction, the key components of the SEMIoTICS architecture related to interoperability 
with external IoT platforms (see FIGURE 40) that are involved in this process are: 

• Recipe Cooker which is responsible for cooking (creating) recipes reflecting user requirements , 

• Pattern Orchestrator which is in charge of the automated configuration, coordination, and 
management of different patterns (in this case Interoperability patterns) and their deployment,  

• Pattern Engine (Backend) which allows the insertion, modification, execution, and retraction of 
patterns through the Pattern Orchestrator,  

• Backend Semantic Validator (BSV) which resolves semantic interoperability issues and  

• Thing Directory (Backend) which is the repository of knowledge containing the necessary Thing 
models 

 
FIGURE 40 KEY COMPONENTS OF THE SEMIOTICS ARCHITECTURE RELATED TO 

INTEROPERABILITY WITH EXTERNAL IOT PLATFORMS 

The below motivating example with FIWARE is used for the description and analysis of the development of the 
proposed approach. The main concept begins from Recipe Cooker (Backend). During runtime, a recipe/flow 
can be designed by the user in Recipe Cooker; this flow represents an interaction between two Things i.e. 
FIWARE Sensor, SEMIoTICS Thermostat. The aim is to check the semantic interoperability between the 
specific nodes to ensure the aforementioned communication. For that reason, Recipe Cooker sends the 
“cooked” recipe to the Pattern Orchestrator in order to transform it into architectural patterns (in this case 
interoperability patterns). The Pattern Engine (Backend) receives the interoperability requirement from Pattern 
Orchestrator, as it is responsible to enable the capability to insert, modify, execute and retract patterns. The 
next step of Pattern Engine (Backend) is to examine the semantic interoperability for any links in the recipe/flow 
(in this example there is only one link/wire, the connection between FIWARE Sensor and SEMIoTICS 
Thermostat). Thus, for any link, Pattern Engine (Backend) triggers the BSV. 
The above approach of the semantic interoperability mechanisms between SEMIoTICS and external IoT 
platforms is highlighted by sequence diagram, in FIGURE 41. 
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FIGURE 41 SEQUENCE DIAGRAM OF INTEROPERABILITY WITH EXTERNAL IOT PLATFORMS 

The following is a detailed description of each component and API for the interaction between them based on 
the above sequence diagram. 

- Recipe Cooker (Backend) – Pattern Orchestrator (Backend) Step 1: 
The Recipe Cooker which is responsible for cooking (creating) recipes reflecting user requirements, send the 
recipe in Pattern Orchestrator using a POST method request. Particularly, this POST parameters includes the 
recipe/flow (JSON format), as body and the header is application/json. The structure is presen ted in FIGURE 
42. 
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FIGURE 42 API INTERACTION BETWEEN RECIPE COOKER (BACKEND) – PATTERN ORCHESTRATOR 

(BACKEND) 

 
- Pattern Orchestrator (Backend) – Pattern Engine (Backend) Step 2: 

The next step is the request from Pattern Orchestrator to Pattern Engine (Backend) in order to send the 
Interoperability requirement using a POST method with the following parameters (see FIGURE 43). 
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FIGURE 43 API INTERACTION BETWEEN PATTERN ORCHESTRATOR (BACKEND) – PATTERN 

ENGINE (BACKEND) 

 
- Pattern Engine (Backend) Backend Semantic Validator (Backend) Step 3: 

The BSV component receives a request from the Pattern Engine (Backend) to check the semantic 
interoperability between two Things (link) in JSON-LD/JSON format. The JSON-LD/JSON Parser is 
implemented as part of the BSV, to analyze the received input and extract the meaningful information from 
these set of data. The communication between the said components is achieved using the POST method 
(FIGURE 44). This step is not yet fully implemented. Currently the BSV is tested using Postman. The requests 
made by Postman will later be replaced by requests made by the Pattern Engine. 
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FIGURE 44 API INTERACTION BETWEEN PATTERN ENGINE (BACKEND) – BACKEND SEMANTIC 

VALIDATOR (BACKEND) 

- Backend Semantic Validator (Backend) – Thing Directory or Other IoT Platform Step4: 
After that, the BSV begins the procedure to tackle the semantic interoperability issues between these two 
Things from the said recipe/flow. In order to give this answer, the semantic description for any Thing is 
required (for FIWARE Sensor and SEMIoTICS Thermostat). For that reason, it sends two requests: 

1. SPARQL query to Thing Directory in order to receive the Thing Description of SEMIoTICS Thermostat 
(see FIGURE 26 in Section 3.3) and 

2. GET method to the Orion Context Broker FIWARE platform to receive the context data Description of 
FIWARE Sensor. The query parameters are highlighted in FIGURE 45. The response consists of 
JSON with the FIWARE Sensor attributes (type, metadata elements). 

 

 
FIGURE 45 POSTMAN GET REQUEST TO THE ORION CONTEXT BROKER FIWARE PLATFORM 
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Based on this information, the BSV could decide for the interoperability between the Things and harmonize 
the semantic model capabilities with the registration of extra Adaptor Nodes in the recipe. Particularly, there 
are three possible results. Firstly, the link source and destination are interoperable, so the BSV updates the 
Pattern Engine (Backend) with the TRUE response. Secondly, the link source and destination are not 
interoperable and the BSV can add Adaptor Nodes in order to guarantee the interoperability. In this case, 
BSV not only sends the TRUE response in Pattern Engine (Backend), but also updates the recipe in Recipe 
Cooker using the corresponding Adaptor Nodes. Lastly, the link source and destination are not interoperable 
and BSV does not have the required information to develop the Adaptor Nodes; hence, the Pattern Engine 
(Backend) receives the FALSE response by the BSV. 
 

3.3.5.2 TESTING METHODOLOGY 
In order to test the functionalities of all the said components of SEMIoTICS, as they are described in previous 
subsection, we use the Proxmox Virtual environment to create Virtual Machines (VMs). The created VMs have 
some hardware and software requirements, which are shown in TABLE 6 below. 
 

TABLE 6 VM REQUIREMENTS 

Component Software CPU Memory Disk 
Recipe Cooker Ubuntu 16.04 LTS 2 cores 4 GB 5 GB 
Pattern Orchestrator Ubuntu 16.04 LTS 2 cores 4 GB 5 GB 
Pattern Engine (Backend) Ubuntu 16.04 LTS 2 cores 4 GB 10 GB 
BSV Ubuntu 16.04 LTS 2 cores 4 GB 10 GB 
Thing Directory Ubuntu 16.04 LTS 2 cores 4 GB 5 GB 
Orion Context Broker 
FIWARE 

Ubuntu 16.04 LTS 2 cores 4 GB 5 GB 

 
Thus, every component that is included in the interaction between SEMIoTICS and other IoT platforms, could 
be run on a modest Ubuntu VM and exchange data using the APIs that have already described in the previous 
section. The overall deployment is scalable and sufficient for real-time operation. A preliminary version of the 
proposed setting is implemented, thus FIGURE 46, FIGURE 47, FIGURE 48 and FIGURE 49 present 
screenshots of running VMs. 
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FIGURE 46 VM RECIPE COOKER 

 

 
FIGURE 47 VM THING DIRECTORY 
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FIGURE 48 VM BSV 

 
FIGURE 49 VM ORION CONTEXT BROKER FIWARE 
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3.3.5.3 PERFORMANCE TEST AND KPI VALIDATION 
In this section, we present results of a typical testing workflow, based on the methodology that was described 
in the previous subsections. More specifically, the user designs a recipe/flow in Recipe Cooker; this flow 
represents an interaction between two Things i.e. FIWARE Sensor, SEMIoTICS Thermostat. The overall 
functionality is to check the semantic interoperability between these specific nodes to ensure the 
aforementioned communication between them. For that reason,  

- Recipe Cooker sends the “cooked” recipe to the Pattern Orchestrator in order to transform it int o 
architectural patterns (in this case interoperability patterns) 

- Pattern Engine (Backend) receives the interoperability requirement from Pattern Orchestrator, as it is 
responsible to enable the capability to insert, modify, execute and retract patterns . This component 
should examine the semantic interoperability for the link/wire between FIWARE Sensor and 
SEMIoTICS Thermostat in the recipe/flow; for that reason, it triggers the BSV  

- BSV takes the sematic metadata of two Things using the Thing Directory and Orion Context Broker 
FIWARE. Based on this information, the BSV could decide for the interoperability between the Things 
and harmonize the semantic model capabilities with the registration of extra Adaptor Nodes in the 
recipe and send back to Pattern Engine the corresponding response. Except that, if the link/wire 
source and destination are not interoperable and the BSV can add Adaptor Nodes in order to 
guarantee the interoperability, BSV should update the initial recipe in Recipe Cooker. 

The following figures demonstrate the initial status of the recipe and the final structure taking to advantage 
the BSV procedure in which tackles the semantic interoperability issues between these two Things. 
 

 
FIGURE 50 RECIPE INTERACTION EXAMPLE FIWARE – SEMIOTICS BEFORE SEMANTIC VALIDATION 
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FIGURE 51 RECIPE INTERACTION EXAMPLE FIWARE – SEMIOTICS AFTER SEMANTIC VALIDATION 

 
With the above shown functionality of the interoperability between SEMIoTICS and other IoT platforms, we 
focus on address some of the related project objectives corresponding the interoperability, such as  

• the definition of SEMIoTICS semantic mediators mechanisms, with the purpose of resolving, if 
possible, conflicts among the semantic models used in the semantic annotations of the patterns, 

• the development of data transformation techniques and validation mechanisms to ensure semantic 
interoperability, 

• the definition of the mappings between datatypes used in SEMIoTICS, to ensure that data flow is 
possible between smart objects that are linked in the composition structure defined by the pattern  

 
The overall procedure constitutes the initial contribution towards fulfilling the project’s requirements regarding 
SEMIOTIC’s objective 2 (development of semantic interoperability mechanisms for smart objects, networks 
and IoT platforms). Additionally, the relevant KPI 2.2 (Delivery of data type mapping and ontology alignment 
and transformation techniques that realize semantic interoperability) and KPI 2.3 (Validated semantic 
interoperability between the SEMIoTICS framework and 3 IoT platforms, including FIWARE)  are examined. 
The final validation of objectives and corresponding KPIs will be presented in the D4.11 “Semantic 
interoperability mechanisms for IoT (final)”. 
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3.4 Backend components  

 SECURITY AND PRIVACY 
3.4.1.1 COMPONENT ARCHITECTURE 
The Backend Security Manager was deployed for ensuring security and safety along all other components. 
The Backend Security Manager helps SEMIoTICS to tackle the security and privacy problems that arise from 
the multi-tenant scenarios in a variety of levels, i.e., from the networking layer to the application layer. The 
components of the Security Manager (at the level of the backend and additionally at the network - and field-
level) are controlled by the Backend Security Manager component. The components allow SEMIoTICS to 
achieve the required functionality in order to: 

• provide mechanisms to authenticate users and manage their identities , 

• provide mechanisms to manage identities of other entities, e.g., sensors , 

• support use case applications to enforce access to privacy-sensitive information within the application, 

• support use case applications to enforce access to privacy-sensitive information when the data is 
stored in a cloud server, e.g., by using attribute-based encryption and lightweight encryption algorithms 
and finally, 

• provide mechanisms to configure and manage SEMIoTICS end-to-end secure networking capabilities. 
 

All those requirements are covered and managed by one or more of the different software modules of the 
Backend Security Manager. 
 

As we have dockerized the complete Backend Security Manager, as described in Deliverable 4.7, it was easily 
deployed to the Kubernetes cluster. 
 
 
 
➔ ENTITY (INCL. USER) AUTHENTICATION 

In order to take access control decision, the security manager needs to know which entity is requesting which 
access. In order to become assured of the entity mechanisms for entity authentication need to be provided by 
the Security Manager. To handle the authentication requests of users and other entities alike, the Security 
Manager is additionally an OAuth2 provider. OAuth in Version 2.0 is a standardized (specification and 
associated RFCs developed by the IETF OAuth WG can be found on 
https://datatracker.ietf.org/wg/oauth/documents/) framework for user authentication and was published in 
October 2012. It is considered an industry standard and is state of practice.  
 
The project wide integration was easily manageable, as the other components of SEMIoTICS can use existing 
client implementations to use SEMIoTICS identity management and authentication services offered by the 
security manager in the backend. In essence, applications requiring authentication services need to register 
as an OAuth2 client with the security manager and then can defer users to the SEMIoTICS authentication 
endpoint. The former approach also helps when users have only access to a browser (or a mobile device), 
because the OAuth protocol was developed with this in mind. Additionally, applications without explicit user 
interaction, e.g., batch or cron-jobs, can authenticate towards the security manager by providing the client 
credentials they have, or by user a username and password tuple for a valid user. The general architecture of 
the OAuth-related component of the SEMIoTICS Security Manager in the backend is depicted in FIGURE 52. 
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FIGURE 52: SECURITY MANAGER IDM ARCHITECTURE 
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➔ WORKFLOWS AND INTERACTIONS WITH OTHER SEMIOTICS COMPONENTS  

 

 

FIGURE 53 WORKFLOW FOR UNAUTHORIZED LOCATION RETRIEVAL 

 
FIGURE 53 depicts in the highlighted area the interaction of the Backend Security Manager with the Pattern 
engine. The goal is that the Pattern Engine is able to check that the current policy used to make the decisions 
inside the Backend Security Manager, is conforming to the SPDI Patterns as specified by the application. This 
is done by the Pattern Engine based on the information about the required SPDI patterns the system should 
conform to. Pattern Engine periodically makes requests to the Security Manager (like get Authorized 

List) to obtain certain information about the currently enforced policy. Based on the response, it uses rules 

Drools Engine) specific to the SPDI patterns to reason on the answers received from the Security Manager. 
The reasoning allows the Pattern Engine to identify if the Policy being enforced in SEMIoTICS is compliant; 
it is able to reflect this to the outside via an API call that will allow other components to retrieve the SPDI 

status.  

 
What you can see in the non-highlighted area of FIGURE 53 is that the doctor’s initial request to a service 
(not depicted in FIGURE 53) is intercepted by the Sidecar Proxy acting as a policy enforcement point (PEP). 
This shows that the Sidecar Proxy gets the permission details for the incoming request from the Security 
Manager. Asking the local Security Manager is only needed if the service would be exposed by the field level 
and after the synchronization and evaluation of the Security Manager. Based on this information the PEP will 
then decide what to do with the request or response. 
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FIGURE 54 WORKFLOW FOR ADJUSTING POLICY DYNAMICALLY TO ALLOW LOCATION RETRIEVAL 
IN HEALTH CRITICAL EVENTS 

 
FIGURE 54 shows how the local embedded intelligence running in the field level monitors the patient and 
depending on the status the policy will get updated accordingly to dynamically adapt to current events. In the 
case of no health critical events being detected and everything is normal, the policy is being kept very strict 
and compliant to the SPDI patterns (area highlighted in green in FIGURE 54). In case of a critical event the 
policy is adjusted and certain additional monitoring is triggered regarding the patient’s location. The policy 
update in the case of use case 2 would allow more access, e.g. access to location, by weakening the policy, 
even to a point where it might not conform to the normal SPDI patterns. The flow depicted in FIGURE 54 in 
the yellow area then shows that a doctor can be authorized in the alternate case; this shows how SEMIoTICS 
can dynamically adjust security and privacy policies, e.g. grant access to a previously unauthorized service 
during a limited time that a critical event is ongoing. In the case the policy will deny access the PDP (the 
Sidecar proxy) will block the access as depicted in the bluely highlighted area.  
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➔ IMPLEMENTATION OF AND INTERACTION WITH THE AUTHENTICATION COMPONENT 
 
In the following we quickly provide some overview of how to interact with the SEMIoTICS Backend Security 
Manager to obtain a token if you are authorized to obtain such a token.  

 
 

TABLE 7: EXAMPLE OF AUTHENTICATING USING JAVASCRIPT CLIENT AND RECEIVE THE TOKEN 

1. function authenticateClient(protocol,host,port,client,secret) {   
2.    
3.   var auth = "Basic " + new Buffer(client + ":" + secret).toString("base64");   
4.   request({   
5.         method : "POST",   
6.         url : protocol+"://"+host+":"+port+"/oauth2/token",   
7.         form: {   
8.           grant_type:'client_credentials'   
9.         },   
10.         headers : {   
11.           "Authorization" : auth   
12.        }   
13.   },   
14.   function (error, response, body) {   
15.         if(error)   
16.           throw new Error(error);   
17.         var result = JSON.parse(body);   
18.         var token = result.access_token;   
19.         var type  = result.token_type;   
20.         console.log("kind of token obtained: "+type);   
21.         console.log("token obtained: "+token);   
22.         getInfo(protocol,host,port,token,"client");   
23.         getInfo(protocol,host,port,token,"user");   
24.   });   
25. }   

 
To authenticate a client e.g. in Javascript the developer of the other components of SEMIoTICS that want 
to interact with the Security Manager’s IDM-related component simply defines a function that calls the 
/oauth2/token endpoint with a POST request. To do so they define the protocol, the host and corresponding 
port of the Security Manager. The authorization variable defined in the header of the request is the based64-
encoded client’s secret. If the authentication was successful, the Security Manager returns a token for the 
authenticated client and the token type.    
This complete request can also be sent as a simple curl request as shown in TABLE 8 at line 1. The 
obtained return values - in case the user with the name MySemioticsClient2 with the password 
Ultrasecretstuff is authenticated successfully - can be seen in the lines 2 – 5: the answer contains the 
access_token as well as the token_type. 

 
TABLE 8: EXAMPLE OF AUTHENTICATION USING CURL AND RECEIVE THE TOKEN 

1. curl  -X POST -u MySemioticsClient2:Ultrasecretstuff -
d grant_type=client_credentials http://localhost:3000/oauth2/token   

2. {   
3.   "access_token":"1A9HeY99gSYTA2o0MxIhi8pM0UVG ... rWXvrc9nqSdlj1vsEQE3INQyR0bRODEl",   
4.   "token_type":"Bearer"   
5. }  
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TABLE 9: UPDATING A POLICY 

23. tokens.find(username + '!@!' + auth_type, function (_error, token) {   
24.     sm= require('security-manager-sdk')({   
25.         api: conf.api_url,   
26.         idm: conf.idm_url,   
27.         token: token   
28.     });   
29.     sm.policies.pap.set({   
30.         entityId: username + '!@!' + auth_type,   
31.         entityType: 'user',   
32.         field: 'location',   
33.         policy: conf.policies['fallen']   
34.     }).then(function (r) {   
35.         return res.status(200).send({   
36.             text: 'Sucessfully set status to fallen'   
37.         });   
38.     }).catch(function (err) {   
39.         return res.status(err.response.status).send({   
40.             text: err.response.data.error   
41.         })   
42.     });   
43. }); 

 
TABLE 9 shows how dynamic policy update using an SDK we have internally developed to be used to 
implement the policy-related functions inside of the SEMIoTICS Security Manager. First the Security Manager 
reads the provided token and checks if it is valid. Then we use the policy set function to update the policy to 

the given policy in the conf.policies[‘fallen’] variable, this activates that a policy decision can take this status 
into account and thus react to the dynamic situation that the patient has fallen. While updating the policy we 
also must provide the corresponding entityId and the entityType as well as the field (location) for which 

we intend to update the policy. As the setter function returns a Javascript promise we can use the .then and 

.catch clauses to further process our call. 

 
 
 
➔ API OF THE BACKEND SECURITY MANAGER IN SWAGGER 

 
We have distributed within SEMIoTICS the complete Interface description (AP) described in swagger using 
YAML-language. Swagger allows us to define the function names, the variables but also the structure of 
variables (e.g. lists or arrays) and would allow the software developers to automatically generate code for their 
clients. 
Of course, also the responses and the response codes are fully specified via YAML. In the following Figure we 
have shown just how some of the information can rendered from the YAML. There are tools like online tool 
http://editor.swagger.io, which can also automatically render a clickable client in the web browser when 
supplying the swagger file.  
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➔ ATTRIBUTE BASED ENCRYPTION 
 
Attribute-Based Encryption (ABE) determines the authorization of a user to decrypt encrypted data based on the 
user attributes. That means that the decryption of a ciphertext is only possible if the user can present that the user 
possesses a set of attributes; these attributes are enclosed in the user’s decryption key. Cryptographically the 
encryption fails unless the decryption keys attributes match the attributes of the ciphertext. This means that the 
attributes required are encoded during the encryption of the data. UP started implementing a REST API 
endpoint (as seen in FIGURE 56) to make available the needed ABE functionality; the cryptographic 
functionality is based upon the open source library OpenABE library that provides a variety of attribute-based 
encryption algorithms. With this API SEMIoTICS is enabled to seamlessly incorporate ABE technology into the 
Security Manager. This can then be used where appropriate to secure information. This ensures that the 
information can only be accessed by a certain entity or by a group of entities with the requested set of attributes, 
e.g. only entities with the attribute "doctor" are able to access encrypted medical data. At the current state of 
development cycle, UP focused on integrating the calls to the API endpoint in order to adopt ABE in the SEMIoTICS 
Security Manager.  
 
 
 
 
  

FIGURE 55: SECURITY MANAGER IDM ARCHITECTURE 
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FIGURE 56 OVERVIEW OF THE ABE REST-API 

 
3.4.1.2 TESTING METHODOLOGY 
To provide an overall tested functionality of the API we wrote software-based tests to evaluate the correct 
behavior. We therefore differentiate between 11 categories which are Entities API (with policies), Entities API, 
Groups API, List APIs, API for setting policies, Group Actions, Group API with policies, PEP read & write tests 
and overall API validation tests. 

 
3.4.1.3 PERFORMANCE TEST AND KPI VALIDATION 

Entities API (with policies) 
#createEntity and readEntity() 

      ✓ should reject with 404 error when data is not there 

      ✓ should create an entity by id and return the same afterwards 

#set attribute and read Entity() 

      ✓ should reject with 404 error when attempting to update data that is not there 

      ✓ should update an entity by id and return the proper values afterwards 

#delete and readEntity() 

      ✓ should reject with 404 error when attempting to delete data is not there 

      ✓ should delete an entity by id 

#search entity by attribute value 

      ✓ should reject with 404 error when there is no entity with attribute value and type 

      ✓ should get an entity based on attribute value and type 

      ✓ should not resolve with an entity when  attribute values and type match but entity_type does not  

#set and read Policies 

      ✓ set policy for entity 

      ✓ delete policy for entity (46ms) 

Entities API 
#createEntity and readEntity() 

      ✓ should reject with 404 error when data is not there 

      ✓ should create an entity by id and return the same afterwards 
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      ✓ should reject with 400 when attempting create an entity with an undefined attribute type in strict 

mode 
#set attribute and read Entity() 

      ✓ should reject with 404 error when attempting to update data that is not there 

      ✓ should reject with 400 an update when the new attribute is forbidden by the schema in strict mode 

      ✓ should reject with 409 an update when the new attribute is forbidden by the schema 

      ✓ should update an entity by id and return the proper values afterwards 

      ✓ should remove an attribute that is allowed by the schema and return relevant information 

      ✓ should reject with 400 when attempting to remove an attribute that is required by the schema 

#delete and readEntity() 

      ✓ should reject with 404 error when attemtpting to delete data is not there 

      ✓  an entity by id 

#search entity by attribute value 

      ✓ should reject with 404 error when there is no entity with attribute value and type 

      ✓ should get an entity based on attribute value and type 

      ✓ should get an entity based on attribute value and type and entity_type 

      ✓ should not resolve with an entity when  attribute values and type match but entity_type does not  

Groups API 
#createGroup  and readGroup() 

      ✓ should reject with 404 error when group is not there 

      ✓ should create a group by id and return the same afterwards 

#delete and read Group() 

      ✓ should reject with 404 error when attemtpting to delete data is not there 

      ✓ should delete a group  by id 

#add entity to group 

      ✓ should reject with 404 error when attempting to add a non existing entity to a group 

      ✓ should reject with 404 error when attempting to add an existing entity to a non existing group 

      ✓ should resolve with a modified entity after adding it to a group 

#remove entity from a  group 

      ✓ should reject with 409 error when attempting to remove a non existing entity from a group 

      ✓ should reject with 404 error when attempting to remove an existing entity from a non existing group 

      ✓ should resolve with a modified entity without the group  after removing the entity from a group 

where it was 

      ✓ should resolve with two modified entities with one having no group and the other is still in the 

group, while adding both and removing one of them form the group 
List APIs 

#list entities by entity type 

      ✓ should reject with 404 error when there is no entity in the database 

      ✓ should get an entity based on its type 

#ListGroups() 

      ✓ should reject with 404 error when group is not there 

      ✓ should return a  group after its creation 

      ✓ should return all  groups 

API (set Policies in PAP) 
#CreateEntity() 

      ✓ should enable any non-set subfield of actions field in the policy structure to be read and written 

according to the default policy in actions 

      ✓ should set the highest level for the policy hierarchy to read only (not admin and not owner check) 

      ✓ should enforce meta policies in the configuration of attributes (policies.role) as meta policies  

UsedLessThan lock 
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#readEntity() 

      ✓ should stop resolving with the password, after five actions on the password field 

GROUP ACTIONS 

    ✓ should return user entity "elisa" with password attribute for owner elisa 

    ✓ should return user entity "elisa" without password attribute for user admin 

    ✓ should return user entity "elisa" with password attribute for group member bob 

Groups API with policies 
#createGroup  and readGroup() 

      ✓ should reject with 404 error when group is not there 

      ✓ should create a group by id and return the same afterwards 

#delete and read Group() 

      ✓ should reject with 404 error when attemtpting to delete data is not there 

      ✓ should delete a group  by id 

#add entity to group 

      ✓ should reject with 404 error when attempting to add a non existing ent ity to a group 

      ✓ should reject with 404 error when attempting to add an existing entity to a non existing group 

      ✓ should resolve with a modified entity after adding it to a group 

#remove entity from a  group 

      ✓ should reject with 409 error when attempting to remove a non existing entity from a group 

      ✓ should reject with 404 error when attempting to remove an existing entity from a non existing group 

      ✓ should resolve with a modified entity without the group  after removing the en tity from a group 

where it was 
API (PEP Read test) 

#readEntity() 

      ✓ should resolve with a declassified entity for different users (password not there)  

      ✓ should resolve with a declassified entity for different users for nested properties 

(credentials.dropbox not there) 

      ✓ should resolve with the complete entity when the owner reads it including inner properties 

(credentials.dropbox) 

      ✓ should resolve with the complete entity when the owner reads it  

      ✓ should resolve with the entity when attempting to create an entity with the proper role 

#findEntitiesByAttribute() 

      ✓ should resolve with an array without entities for which the attributes used in the query are not 

allowed to be read by the policy 
API (PEP Write Test) 

#createEntity() 

      ✓ should reject with 403 and conflicts array in the object when attempting to create an entity without 

the proper role 

      ✓ should resolve with the entity when  attempting to create an entity with the proper role  

#setAttribute() 

      ✓ should reject with 403 and conflicts array when attempting to update  an entity's attribute without 

the proper role and not owner 

      ✓ should reject with 403 and conflicts array when an owner (non-admin) attempts to update  his own 

role 

      ✓ should resolve  when attempting to update  an entity attribute with the proper role 

#deleteEntityAttribute() 

      ✓ should resolve  when attempting to update  an entity attribute with the proper role  

API (Validation test) 

    ✓ should reject with 400 an entity when with an existing type but with an attribute missing 

    ✓ should reject with 409 when attempting to create an entity with a forbidden attribute name 

#createEntity() 
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      ✓ should reject with 400 when an entity with a non-existing kind of entity is passed 

      ✓ should create an entity when an entity a proper type and schema are provided 

 

 SEMIOTICS PATTERN ORCHESTRATOR AND ENGINE 
3.4.2.1 COMPONENT ARCHITECTURE 
 
FIGURE 57 below depicts the Pattern Engine related components distributed among the three layers of the 
SEMIoTICS architecture. Pattern Orchestrator and one of the three Pattern Engines are lying at the Application 
Orchestration Layer, at the Backend. A second Pattern Engine is located at the SDN/NFV orch estration layer 
in the SDN controller. The last Pattern Engine can be found at the Field layer, at the IoT Gateway.  
Pattern Orchestrator is a module that features a semantic reasoner able to understand instantiated Recipes, 
received from the Recipe Cooker and transform them into composition structures (orchestrations). Backend 
Pattern Engine enables the capability to insert, modify, execute and retract patterns at design or at runtime . 
Moreover, it may receive fact updates from the individual Pattern Engines present at the lower layers (Network 
& Field), allowing it to have an up-to-date view of the SPDI state of said layers and the corresponding 
components. Pattern Engine at the SDN controller offers the same functionality allowing entities that interact 
with the controller to be managed based on SPDI patterns at design and at runtime. Pattern Engine at the Field 
layer, since it is deployed on the IoT/IIoT gateway that has limited capabilities, is a lightweight version of the 
Backend Pattern Engine. 
 

 
FIGURE 57: PATTERN RELATED COMPONENTS IN SEMIOTICS ARCHITECTURE 
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3.4.2.2 APIS 
FIGURE 58 shows the interactions that take place among the pattern related components. As we can see, 
Pattern Orchestrator interacts with all the Pattern Engines of the three SEMIoTICS layers. The purpose of this 
interaction is to dispatch the created Drools facts and can take place via the common API exposed by the 
Pattern Engines. 

 
FIGURE 58: INTERACTIONS AMONG PATTERN RELATED COMPONENTS 

 
Moreover, the said API is used by the SDN controller and Field Pattern Engine that send at runtime fact updates 
to the Backend Pattern Engine, allowing the latter to have an up-to-date view of the SPDI state of SDN layer 
and the corresponding components. The main web services exposed from the Backend Pattern Engine API 
are: 

▪ addFact 
▪ factRemove 
▪ factUpdate 
▪ factStatus 
▪ insertRule 

 
The above correspond to the creation, retrieval, deletion of facts and creation of rules. In more detail, the 
addFact REST service is used by the Pattern Orchestrator for the communication of new Drools facts of a new 
IoT Service orchestration. It can also be used by the Pattern Engines of the Network and Field layers in the 
case of new fact discovery. In any case the JSON that is sent, is based on the Fact Java class that can be 
seen in the code snippet below, in FIGURE 59. 
 

 
FIGURE 59: FACT JAVA CLASS ATTRIBUTES USED IN REST SERVICES JSON 
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Moreover, the factRemove is used in order for a fact to be deleted from the Drools Memory o f the Backend 
Pattern Engine. The factUpdate is used again by the Pattern Orchestrator in case some changes need to be 
applied to a Drools Fact. The factStatus REST service returns the current status of a special type of Drools 
facts, the instances of Property class. These instances are used to describe SPDI and QoS properties for the 
components of an IoT Service orchestrator. This REST service could also be used for the visualization of the 
SPDI properties of an orchestrator in the SEMIoTICS GUI. Finally, the insertRule REST service is used only 
by the Pattern Orchestrator to communicate Drools Rules to the Pattern Engines for the reasoning of the SPDI 
and QoS properties.   
The interaction among the pattern related and other components (NFV orchestrator, monitoring) can also be 
seen in the sequence diagram of FIGURE 60.  
 

 
FIGURE 60: PATTERN RELATED COMPONENTS INTERACTIONS 

 
As we can see, the Pattern Orchestrator chooses to send the SPDI requirement to one or more Pattern Engines 
depending on the case. The requirement is in the form of a property on an orchestration component. This 
triggers a sequence of events that consists of several steps. Every Pattern Engine uses the available 
information from the monitoring components in each layer and in combination with the rules and facts already 
stored in Pattern Repository also in the same layer, reasons for the final status of the said requirement. In 
addition, the Pattern Engines that exist in the network layer as well as in the field layer, propagate their facts 
not only to their local Pattern Repository, but at the Global Pattern repository as well, at the Backend layer. 
When the requirement is related to some VNFs, interaction with the NFV orchestrator also occurs in order for 
the final status requirement to be formed. 
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3.4.2.3 TESTING METHODOLOGY 
 
In order to test the functionalities of all the Pattern related components of SEMIoTICS, as they are described 
above, we use the Proxmox Virtual environment (FIGURE 62) to create Virtual Machines (VMs) hosted in an 
INTEL NUC (FIGURE 61). The created VMs have some hardware and software requirements, which are shown 
in TABLE 10 below. 

 
TABLE 10: VM REQUIREMENTS 

Component Software CPU Memory Disk 
Pattern Orchestrator Ubuntu 16.04 LTS 2cores 4 GB 5 GB 

Backend Pattern 
Engine 

Ubuntu 16.04 LTS 2 cores 4 GB 10 GB 

SDN Pattern Engine Ubuntu 16.04 LTS 2 cores 4 GB 10 GB 

     
 

 

FIGURE 61 INTEL NUC 

  

Intel Nuc 

Power supply 

Ethernet connection 
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FIGURE 62 PROXMOX ENVIRONMENT 

Moreover, a virtual network topology is created using Mininet (FIGURE 63). This network topology consists of 
the OpenDaylight SDN Controller (OSC), one openflow switch (s1) and two hosts. The hosts correspond to 
two Raspberry Pi boards that are part of the testing orchestration described below.   

 

 
FIGURE 63: MININET NETWORK TOPOLOGY 

 
The first step of our testing methodology is to send a request to Pattern Orchestrator, which is expected to 
receive instantiated orchestrations of IoT services (i.e. Recipes). We use Postman as an API client to send 
these requests to the exposed REST API of the Pattern Orchestrator and view the returned responses. 
Postman allows us to create REST requests with the needed headers and the body we are interested in. 
FIGURE 64 below is an example of such a REST request.  
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FIGURE 64: POSTMAN REST INSERTRECIPE REQUEST 

 
As we can see, the REST request for sending an orchestration along with a requirement uses the POST 
method. The URL that is used is http://[OrchestratorIP]/insertRecipe. In the body of the request, there is a 
Recipe object with two field names, the recipeID and the recipe. The former is used as an identifier for all the 
Pattern related components, to distinguish each of the incoming recipes. The latter is the description of the 
recipe itself, which includes three element types. The first element type refers to all the involved components 
of the orchestration. The second element type refers to the way the said components communicate with each 
other and can be either links or orchestrations such as sequences, merges, splits and choices. Finally, the 
last element type refers to the SPDI/QoS properties of the components. When these properties are to be 
checked whether they hold or not, they are called requirements. 
 

 
FIGURE 65: TEST ORCHESTRATION 
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In more detail, the recipe that use in the testing methodology includes two Raspberry Pi boards (Hosts), named 
PiB and PiA, which are connected through a switch with two physical links (Physical link1 and physical link2). 
This is depicted in the first part (Physical topology) of the FIGURE 65, which is our test orchestration.  
The intermediate part shows the software components that are installed in the two Raspberry Pi boards. Two 
software components are deployed in the first one, an ImageCapturing software and an Image Decoder 
software. As far as the second Raspberry Pi board is concerned, a Display Image software is deployed.  
The last part of the figure, Orchestration description, shows how the software components communicate and 
the QoS properties they own. Those in PiB are connected with an orchestration Link (Link0) and they are in 
Sequence (Seq0), meaning that the output of the first becomes the input of the second. Link0 corresponds to 
a communication that is achieved due to their deployment at the same host.  Regarding their properties, a QoS 
property for the maximum bandwidth at which they can send and receive data is assigned to both of them, with 
value 11400000 bps (qosbandwidth). This property is also assigned to the Link between the two software 
components. The Display Image software has the same QoS property. Additionally, there is an orchestration 
Link (Link1) between Seq0 and Display Image. This Link does not correspond to a network physical link but to 
a path between its source and its destination, which may include more than one physical links and other 
network components among them. SDN Pattern Engine undertakes the assignment to find ou t the said path to 
the orchestration Link and additionally, to validate its property. In the orchestration used in our testi ng 
methodology the Link1 corresponds to two physical links and a switch between them as we can see in FIGURE 
65. As a result, Seq0 and Display Image connected with Link1 form Seq1. Finally, the last Property that is  
mentioned in the request is the QoS property that refers to the whole orchestration. According to it, we want 
to know if the minimum bandwidth throughout the whole test orchestration is 5Mbps.   
Patter Orchestrator receives the incoming Recipe and creates instances of the corresponding Java classes 
(Host, Softwarecomponent, Link, Sequence, Property), which correspond to Drools facts in the Pattern Engine. 
These Java instances are then sent to the SDN Pattern Engine through one of its REST APIs, called addFact. 
The request for sending a Drools fact uses the POST method and the URL is http://[PatternEngineIP]/ 
patternengine:addFact. In the body of the request, there is a Fact object with five field names presented in the 
TABLE 11 below. 

TABLE 11: FIELD NAMES OF FACT OBJECT 

Name  Description  Valid values 
recipeID the ID of the recipe the fact belongs to  (e.g. “WF1”) 
factID the identifier of the fact object itself  (e.g. “WF1-1”) 
from originated SEMIoTICS component sender  (e.g. “Orchestrator”) 
factMessage the fact itself  (e.g. “DisplayImage”) 
type the object type of the fact  (e.g. “Softwarecomponent”) 

 
Pattern Engine receives all the Java instances sent by the Pattern Orchestrator. Each of  the received instances 
are inserted into the working memory of the Drools Rule Engine, as Drools facts. Being there, they can trigger 
Drools Rules that are pre-inserted in the Pattern Engine. Based on the orchestration presented in FIGURE 64, 
the following Drools facts are created: 
 

TABLE 12: DROOLS FACTS DERIVED FROM THE TESTING ORCHESTRATION 

# Type Description 
1 Softwarecomponent ImageCapturing 0 piB 
2 Softwarecomponent ImageRecorder 0 piB 
3 Softwarecomponent DisplayImage 9999 piA 
4 Host piB b8:27:eb:4b:0a:7c 10.0.1.12 
5 Host piA b8:27:eb:ae:aa:31 10.0.1.11 
6 Link Link0 ImageCapturing ImageRecorder 
7 Link Link1 Seq0 DisplayImage 
8 Sequence Seq0 StartStream ImageRecorder Link0 
9 Sequence Seq1 Seq0 DisplayImage Link1 
10 Property qosbandwidth 1.0E8 in_processing PiB true 
11 Property qosbandwidth 1.0E8 in_processing PiA true 
12 Property qosbandwidth 1.0E8 in_processing Link0 true 
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13 Property qosbandwidth 5000000.0 end_to_end Seq1 false 
 
Whenever the SDN Controller Pattern Engine receives a Property that refers to a Host, it creates the 
corresponding Property for each of the software components that are deployed at that host. In our case, a 
qosbandwidth Property is created for the two software components of Host PiB and the software component 
of PiA (TABLE 13). 
 

TABLE 13: ADDITIONAL DROOLS FACTS CREATED BY PATTERN ENGINE 

# Type Description 
10 Property qosbandwidth 1.0E8 in_processing ImageCapturing true 
11 Property qosbandwidth 1.0E8 in_processing ImageRecorder true 
12 Property qosbandwidth 1.0E8 in_processing DisplayImage true 

 
The last Property Drools Fact refers to the whole test orchestration and corresponds to our  QoS requirement. 
Based on this Property, the Drools Rules will fire and the Pattern Engine will reason on the QoS property of 
the orchestration and will respond to Pattern Orchestrator.   
We should mention here that there is no need for the Pattern Orchestrator to create an instance of the 
corresponding Java class of type Property for Link1, although it is necessary for the Drools Rules we use for 
this test. This Fact is created by the SDN Controller Pattern Engine itself and is added to the working memory  
of Drools Rule Engine.  
The Rules used for our test were pre-inserted and are shown in the code snippet below.  
 

rule "Sequence Decomposition" salience 100 

    when 

        $SEQ: Sequence($rId:=recipeID, $sId:=placeholderid, $pA:=placeholdera, $pB:=placeholderb, $orchLink:=orchlink) 

        $PR1: Property($rId:=recipeID, $sId:=subject, $prname:=propertyname, $prcategory:=category, $prvalue1:=value,  satisfied==false) 

    then 

        insert(new Property($rId, $prname+$prcategory+$pA, $prname, "required", $prcategory, $prvalue1, "datastate", $pA, "verificationtype", "means", false)); 

        insert(new Property($rId, $prname+$prcategory+$pB, $prname, "required", $prcategory, $prvalue1, "datastate", $pB, "verificationtype", "means", false)); 

        insert(new Property($rId, $prname+$prcategory+$orchLink, $prname, "required", $prcategory, $prvalue1, "datastate", $orchLink, "verificationtype", "means", false)); 

End 

 

rule "Sequence Bandwidth Verification" salience 200 

    when 

        Placeholder($pA:=placeholderid) 

        $PR1: Property ($pA:=subject, category=="qosbandwidth", $prvalue1:=value,  satisfied==true) 

        Placeholder($pB:=placeholderid) 

        $PR2: Property ($pB:=subject, category=="qosbandwidth", $prvalue2:=value,  satisfied==true) 

        Link ($rId:=recipeID, $orchLink:=linkid) 

        $PR3: Property ($rId:=recipeID, $orchLink:=subject, category=="qosbandwidth", $prvalue3:=value, satisfied==true) 

        $SEQ: Sequence($rId:=recipeID, $sId:=placeholderid, $pA:=placeholdera, $pB:=placeholderb, $orchLink:=orchlink) 

        $PR4: Property ($rId:=recipeID, 

$sId:=subject, category=="qosbandwidth", $prvalue4:=value, $prvalue4<=$prvalue1, $prvalue4<=$prvalue2, $prvalue4<=$prvalue3, satisfied==false) 

    then 

        modify($PR4){satisfied=true}; 

end 

 

//////////////////////////////// Network Drools Rules ////////////////////////////////// 

 

rule "SDN Bandwidth Verification Atomic" salience 303 

    when 

        SDNLink($sdnLinkId:=linkid, $src:=placeholdera, $dst:=placeholderb) 

        Property($sdnLinkId:=subject, category=="qosbandwidth", $prvalue1:=value, satisfied==true) 

        Link($rId:=recipeID, $linkId:=linkid, $src:=placeholdera, $dst:=placeholderb) 

        $PR:Property($rId:=recipeID, $linkId:=subject, category=="qosbandwidth", $prvalue2:=value, $prvalue2<=$prvalue1, satisfied==false) 

    then 

        modify($PR){value=$prvalue1, satisfied=true}; 

end 
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rule "SDN Bandwidth Verification" salience 302 

    when 

        SDNLink($lId:=linkid, $src:=placeholdera, $node:=placeholderb) 

        Property($lId:=subject, category=="qosbandwidth", $prvalue1:=value, satisfied==true) 

        Link($rId:=recipeID, $lId2:=linkid, $node:=src, $dst:=dst) 

        Property($rId:=recipeID, $lId2:=subject, category=="qosbandwidth", $prvalue2:=value, satisfied==true) 

        Link($rId:=recipeID, $lId3:=linkid, $src:=src, $dst:=dst, $lId3!=$lId2) 

        $PR:Property($rId:=recipeID, $lId3:=subject, category=="qosbandwidth", $prvalue3:=value, $prvalue3<=$prvalue2, $prvalue3<=$prvalue1, satisfied==false) 

    then 

        modify($PR){value=Math.min($prvalue1, $prvalue2), satisfied=true}; 

end 

 

rule "SDN Bandwidth Decomposition" salience 301 

    when 

        SDNLink($lId:=linkid, $src:=placeholdera, $node:=placeholderb) 

        Property($lId:=subject, $prname:=propertyname, $prcategory:=category, $prcategory=="qosbandwidth", $prvalue1:=value, satisfied==true) 

        isPath($node, $dst, $prcategory;) 

        Link($rId:=recipeID,$sId:=linkid, $src:=src, $dst:=dst) 

        Property($rId:=recipeID, $sId:=subject, $prcategory:=category, $prvalue2:=value, $prvalue2<=$prvalue1, satisfied==false) 

    then 

        Link l1 = new Link($rId, $src+$node, $src+$node, $src, $node, $src, $node); 

        insert(l1); 

        Property prA = new Property($rId, 

$prname+$prcategory+l1.getLinkid(), $prname, "required", $prcategory, $prvalue1, "datastate", l1.getLinkid(), "verificationtype", "means", true); 

        insert(prA); 

        Link l2 = new Link($rId, $node+$dst, $node+$dst, $node, $dst, $node, $dst); 

        insert(l2); 

        Property prB = new Property($rId, 

$prname+$prcategory+l2.getLinkid(), $prname, "required", $prcategory, $prvalue2, "datastate", l2.getLinkid(), "verificationtype", "means", false); 

        insert(prB); 

end 

 

query isPath(String a, String b,String c) 

    SDNLink(a, b; checkPropertyName(c)) 

    or 

    SDNLink(z,b;checkPropertyName(c)) and isPath(a,z,c;) 

end 

 

 
The first rule, Sequence – Decomposition, is fired for every Sequence in our testing orchestration that has a 
SPDI/QoS property and creates a property of the same category and the same value for every component of 
the Sequence. Every time the second rule, Sequence Bandwidth Verification, is fired, verifies a qosbandwidth 
Property of a Sequence. According to the rule, if i) all the components of a Sequence, i.e. two Placehol ders 
and a Link between them, have a Property of qosbandwidth category ($PR1, $PR2, $PR3); and ii) the value 
of the orchestration Property ($prvalue4) is lower than the values of the Properties of the Sequence 
components ($prvalue1, $prvalue2, $prvalue3), then the corresponding Property of the Sequence in question 
is verified. 
After the initial insertRecipe request, the status of the Properties Drools Facts is as it is shown in step 1 in 
FIGURE 66. The first rule that is triggered is the Sequence Decomposition rule for Seq1. The presence of the 
unverified qosbandwidth Property creates Properties of the same category and the same value for the three 
components Seq0, Link1, DisplayImage (step 2 in FIGURE 66). Our goal is to verify the qosbandwidth Property 
of Seq1, and for this we need the Sequence Bandwidth Verification rules to run. In order the said rule to run 
for Seq0, we need an unverified qosbandwidth Property for Seq0 and verified qosbandwidth Properties for all 
the three components of Seq0, i.e. ImageCapturing, Link0 and ImageRecorder. The three verified Properties 
are provided by the initial insertRecipe request and the run of the previous rule crea ted the unverified 
qosbandwidth Property for Seq0. The result of the rule is the verification of qosbandwidth Property for Seq0 
(step 3 in FIGURE 66).  
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The SDN Controller Pattern Engine verifies the qosbandwidth Property of Link1 (step 4 in FIGURE 66). As we 
have already mentioned above, Link1 corresponds to a path from the source of the link to its destination, which 
in our test topology consists of two physical links and a switch between them (FIGURE 65). This information 
becomes available to SDN Controller Pattern Engine, leveraging the Network Drools Rules. The purpose of 
these rules is to discover the path that forms the said orchestration Link and examine if the SPDI/QoS property 
of the Link holds for each component of the path. If the above are in effect, the rules verify the SPDI/QoS 
property of the aforementioned Link.  
After that, the Sequence Bandwidth Verification rule is triggered again for Seq1 this time. All the three 
components of Seq1, i.e. Seq0, Link1 and DisplayImage, have a Property of category qosbandwidth that is 
already verified. The verified Property of DisplayImage was part of the initial insertRecipe request. As a result, 
the qosbandwidth Property of Seq1 is also verified due to the rule triggering (step 5 in FIGURE 66).  
At this point, Pattern Engine has reasoned the QoS property of the test orchestration and has produced the 
result, which is returned as a response back to Pattern Orchestrator.  
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FIGURE 66: SEQUENCE OF DROOLS RULES TRIGGERING 
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3.4.2.4 PERFORMANCE TEST AND KPI VALIDATION 
 
According to the methodology described in subsection 3.4.2.3, it is expected: 

1. the described in the insertRecipe components, communications and properties of the test 
orchestration to be communicated to the SDN Controller Pattern Engine 

2. the qosbandwidth Property of the test orchestration (minimum bandwidth) to be verified according to 
the response that reaches firstly the Pattern Orchestrator and secondly the Postman client  

3. the pre-inserted Drools Rules of the SDN Controller Pattern Engine to be triggered 
 

 
FIGURE 67: PATTERN ORCHESTRATOR RESPONSE TO POSTMAN CLIENT 

 
Regarding the first outcome, all the test orchestration components are successfully communicated to the SDN 
Controller Pattern Engine and this is confirmed by the response that reaches the Postman client. As we can 
see in FIGURE 67, all hosts, links, softwarecomponents, sequences and properties are “Added” to the working 
memory of the SDN Controller Pattern Engine. This response is created by the SDN Controller Pattern Engine 
and is sent to the Pattern Orchestrator for each Drools fact. Pattern Orchestrator assembles all of them and 
sends them as a response to the Postman client.  
Moreover, the same Figure shows the verification of the qosbandwidth Property of the whole test orchestration. 
The id of the qosbandwidth Property in the request was Prop5. The “true” that is depicted at the lowest part of 
the Figure for the Property with id Prop5, verifies that this Property holds. 
Finally, the triggering of the Drools Rules is shown in FIGURE 68. As we can see, the Sequence – 
Decomposition rule for Seq1 is the first rule that is triggered. The output of the rule is shown in the red rectangle 
labeled with the number 1. After that, the Network Drools Rules run for  the verification of the qosbandwidth 
Property of Link1. Their output is included in the red rectangle labeled with the number 2. The last rule that is 
triggered is the Sequence Bandwidth Verification rule, which runs twice for Seq0 and Seq1 and verifies their 
properties. Once again, the output of this rule is shown in the red rectangle labeled with the number 2.  
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FIGURE 68: SCREENSHOT WITH THE OUTPUT OF THE TRIGGERED DROOLS RULES 

 
 
The described implementation above is the init ial contribution towards fulfilling the R.GP.4 R.UC1.1 R.UC1.3 
of project requirements as well as KPI-1.1, KPI-1.2. 
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 BACKEND ORCHESTRATION 
3.4.3.1 TEST BED - KUBERNETES 
 
In order to simplify the need for usage of different components in the backend, an  integrated testbed for 
backend in form of Kubernetes cluster was deployed on BlueSoft’s premises. Currently, backend components 
are being deployed one by one and then onboarded on the Jenkins pipelines to ensure that each deployment 
is correct and free of human error. Thanks to the set-up partners can access APIs of backend components 
without the need for replicating the component infrastructure on their environments. Kubernetes requires 
deployment on multiple nodes which can be divided into two categories: master nodes and normal nodes. The 
main role of the master is control of the whole cluster, all the management tools are deployed there, the master 
should not host any non-essential applications. The rest of the nodes are typical nodes for different appl ication 
deployments. Kubernetes handles app to node associations, but the user is still responsible for controlling the 
available resources (CPU, memory, and storage). Our cluster holds 3 nodes (1 master and 2 app nodes) and 
can be extended in the future if needed. The specification of the nodes can be found in the table below. 

 
Table 14: Kubernetes cluster technical details 

Name Master Node 1 Node 2 

Total space 1000 GB 230 GB 200 GB 

CPU   Genuine Intel, 4 
cores, 2.5 GHz, 
Cache 16 MB   

Genuine Intel, 4 
cores, 2.500 GHz, 
Cache 16 MB   

Genuine Intel, 4 
cores, 2.5 GHz, 
Cache 16 MB   

Operational System CentOS 7 Linux 
(Core) 

CentOS 7 Linux 
(Core) 

CentOS 7 Linux 
(Core) 

Virtual Machine Yes Yes Yes 

RAM 8 GB 8 GB 8 GB 

 

Nodes are using virtual machines deployed on a dedicated physical server. Specification of the server can be 
found in table below, currently, the not whole server is utilized but it should change in upcoming months.  
 

Table 15: Server technical details 

Brand and Model Dell R730 

CPU Intel Xeon 2x E5-2680 v3 2.7 GHz, Cache 20MB 

RAM 64 GB 

Total space 8 TB 

 
 
The additional virtual machine was created for Jenkins's deployment. Jenkins takes care of deployment for 
backend components running pipelines which executes the following steps (FIGURE 69): 

• build an application from Gitlab code 

• build sidecars for application (if needed)  

• run automatic tests if the exists 

• prepare docker image from build 

• save the image in the registry 

• deploy image in Kubernetes 
 
Example pipeline code can be found on the screens below.  
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FIGURE 69: AN EXAMPLE OF JENKINS PIPELINE 

    
Such an approach guarantees less deployment time and higher quality deploys with fewer errors thanks to 
automatic testing. Bellow, there are details for Jenkins's virtual machine. 
 

Table 16: Jenkins machine technical details 

Name Jenkins 

Total space 232 GB 
CPU Genuine Intel, 4 cores, 2500 MHz, Cache 16 MB 
OS CentOS 7 Linux (Core) 

Virtual Machine Yes 
RAM 6 GB 
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The deployment is shown in the diagram below. Both Kubernetes and Jenkins are in the same internal BlueSoft  
network with the firewall in front of it. The firewall opens only required ports and filters incoming traff ic. Only 
white-listed IP addresses can access the instances.  
 

 
FIGURE 70: DEPLOYMENT DIAGRAM 

 
 
3.4.3.1.1 ADMINISTRATION 
 
 

Multiple tools allow for interaction with the Kubernetes cluster. Here are the 3 most popular not 
requiring additional products installations:  

• kubectl - CLI client which allows connecting to Kubernetes, components are created above 
the API 

• Kubernetes API  
• Kubernetes dashboard - additional component connecting to Kubernetes API giving a visual 

representation of the cluster.  
 
kubectl 
The Kubernetes command-line tool, allows you to run commands against Kubernetes clusters. You 
can use kubectl to deploy applications, inspect and manage cluster resources, and view logs 11. It 
also allows remote access to the cluster, with a personal key. 
 
Kubernetes dashboard 

 
11 https://kubernetes.io/docs/reference/kubectl/overview/ 
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The dashboard is a web-based Kubernetes administration console. You can use Dashboard to deploy 
containerized applications to a Kubernetes cluster, troubleshoot your containerized application, and 
manage the cluster resources12. The dashboard is used to monitor the state of the cluster e.g. state 
of applications, cluster resources, etc. It also provides information about any errors that occurred. In 
the figure below the view of the Kubernetes dashboard is presented. 
 

 
FIGURE 71 STATE OF DEPLOYED APPLICATIONS PRESENTED WITH KUBERNETES DASHBOARD 

 
 
3.4.3.1.2 SECURITY 

 

The security of the cluster has been taken into account while creating the testbed. Currently, security is 
implemented on multiple layers to protect the testbed. Access is blocked for different users depending on the 
layer. 
 
Cluster node access 
Nobody from outside of BlueSoft can access cluster node using ssh, and management is currently done by 
BlueSoft due to our experience with the technology. Each user uses a personal key to log in to the machine 
so every action can be traced.  
 
Cluster management 
To ensure proper access to cluster resources the namespace SEMIoTICS has been created. Cluster 
management can be done using API or kubectl tool. The installation uses the RBAC model of privileges limited 
only to SEMIoTICS namespace (FIGURE 72). Access to cluster APIs is hidden behind the aforementioned 
firewall and granted only to whitelisted IPs or cider blocks of the partner. Additionally, only the required ports 
are opened, if the port is not used it is blocked on the firewall.   

 
12 https://kubernetes.io/docs/tasks/access-application-cluster/web-ui-dashboard/ 
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FIGURE 72:SCRIPT FOR ADDING PRIVILEGES IN SEMIOTICS NAMESPACE TO USER JENKINS 

 
 
Application remote access or inner application to application access 
 
An application that is dedicated to the user containing a graphical user interface or API. In both cases, the 
security manager will be used. User authentication will be done in the next cycles, but API access is done 
using PEP and Security Manager (these components are extensively described in deliverable 4.5).   

• Security Manager – SEMIoTICS component responsible for authentication decisions and necessary 
security checks at the backend layer. It stores and decides on security policies across all SEMIoTICS 
components. 

• PEP - Policy Enforcement Point. The sidecar component is responsible for intercepting HTTP requests. 
It is a sidecar application that is deployed as a standalone app next to the primary application and also 
as a second container in a pod in Backend Orchestrator. 

 
3.4.3.2 COMPONENT ARCHITECTURE 
Backend orchestrator (Jenkins + Kubernetes) in SEMIoTICS is responsible for orchestrat ion and management 
of components in the backend layer. The diagram below shows Backend Orchestrator and all components 
currently deployed by it. 
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FIGURE 73 COMPONENTS RELATED TO THE BACKEND ORCHESTRATION 

 
Kubernetes deployments are done using YAML files in the specific format required by Kubernetes. Deployment 
specifies application additionally if components need to expose API additional resources are required for inner 
API or API which can be accessed outside of Kubernetes. FIGURE 74 and FIGURE 75 depict an example of 
Kubernetes Deployment and Service resources YAML files. The deployment file specifies the namespace in 
which the application is going to be deployed, as well as, how many replicas of the pod should be running, 
which image to use to build container and how much resources allocated to it. The service file specifies the 
way of how to expose a pod outside of the cluster. 
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FIGURE 74:THE GUI:BACKEND DEPLOYMENT FILE 

 

 
FIGURE 75: THE GUI – BACKEND SERVICE FILE 
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Service resource file specifies the port and the type of service that exposes the pod with the application. In the 

example above, the application is expected to run on port 31000. After successful deployment, it can be 

checked by performing an HTTP request to the specified address (FIGURE 76). If the deployment of pod fails, 

the cause of failure will be shown in pod’s logs (FIGURE 79). 

 

3.4.3.3 TESTS 
 
The functional tests of Backend Orchestrator and Jenkins will be focused entirely on the deployment of 
components. All tests presume that the cluster is working correctly. As test scenario deployment will be made, 
which will be further verified by API calls. TABLE 17below holds a list of all the test scenarios. 
 

  
TABLE 17 FUNCTIONAL TESTS SCENARIOS FOR KUBERNETES AND JENKINS 

GUI  

/deployment/semiotics/back-deployment, /deployment/semiotics/front-deployment  

✓ After a successful deployment, the application is running on the specified address (if it exposes an API) It has 

to be checked manually using a tool like POSTMAN or even web browser. If the application doesn’t have an API, 
the information about success can be seen in the logs.  

✓ After a successful deployment, the response contains information about the deployed application.  

✓ After a failed deployment, the response of the HTTP request should be ‘Could not get any response’. Because 

of the variety of factors that have an impact on the success of the deployment, it’s impossible to predict the cause 
of the failure.  

Security Manager  

/deployment/semiotics/security-manager-deployment  

✓ After a successful deployment, the application is running on the specified address (if it exposes an API) It has 

to be checked manually using a tool like POSTMAN or even web browser. If the application doesn’t have an API, 
the information about success can be seen in the logs.  

✓ After a successful deployment, the response contains information about the deployed application.  

✓ After a failed deployment, the response of the HTTP request should be ‘Could not get any response’. Because 

of the variety of factors that have an impact on the success of the deployment, it’s impossible to predict the cause 
of the failure.  

Thing Directory  

/deployment/semiotics/thing-directory-deployment  

✓ After a successful deployment, the application is running on the specified address (if it exposes an API) It has 

to be checked manually using a tool like POSTMAN or even web browser. If the application doesn’t have an API, 
the information about success can be seen in the logs.  

✓ After a successful deployment, the response contains information about the deployed application.  

✓ After a failed deployment, the response of the HTTP request should be ‘Could not get any response’. Because 

of the variety of factors that have an impact on the success of the deployment, it’s impossible to predict the cause 
of the failure.  

KNOWAGE  

/deployment/semiotics/knowage-deployment  

✓ After a successful deployment, the application is running on the specified address (if it exposes an API) It has 

to be checked manually using a tool like POSTMAN or even web browser. If the application doesn’t have an API, 
the information about success can be seen in the logs.  

✓ After a successful deployment, the response contains information about the deployed application.  

✓ After a failed deployment, the response of the HTTP request should be ‘Could not get any response’. Because 

of the variety of factors that have an impact on the success of the deployment, it’s impossible to predict the cause 
of the failure.  



780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017 
Deliverable D5.3: IIoT Infrastructure set-up and testing (Cycle 1) 
Dissemination level: [public]  

 

85 
 

Thing Simulator  

/deployment/semiotics/thing-simulator-deployment  

✓ After a successful deployment, the application is running on the specified address (if it exposes an API) It has 

to be checked manually using a tool like POSTMAN or even web browser. If the application doesn’t have an API, 
the information about success can be seen in the logs.  

✓ After a successful deployment, the response contains information about the deployed application.  

✓ After a failed deployment, the response of the HTTP request should be ‘Could not get any response’. Because 

of the variety of factors that have an impact on the success of the deployment, it’s impossible to predict the cause 
of the failure.  

Thing Worker  

/deployment/semiotics/thing-worker-deployment  

✓ After a successful deployment, the application is running on the specified address (if it exposes an API) It has 

to be checked manually using a tool like POSTMAN or even web browser. If the application doesn’t have an API, 
the information about success can be seen in the logs.  

✓ After a successful deployment, the response contains information about the deployed application.  

✓ After a failed deployment, the response of the HTTP request should be ‘Could not get any response’. Because 

of the variety of factors that have an impact on the success of the deployment, it’s impossible to predict the cause 
of the failure.  

 

 
FIGURE 76 RESPONSE AFTER SUCCESSFUL DEPLOYMENT 
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FIGURE 77  EXAMPLE OF SUCCESSFUL RESPONSE USING KUBERNETES API 
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FIGURE 78 EXAMPLE OF A SUCCESSFUL RESPONSE USING KUBERNETES API 
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FIGURE 79 BACKEND ORCHESTRATOR LOGS AFTER DEPLOYMENT FAILURE 

 
After having the certainty that Kubernetes deployment works, the same test scenarios should be performed 
using Jenkins pipelines. These scenarios are pretty similar to the scenarios above but use Jenkins  instead of 
APIs. Jenkins catches all of the errors on each test step. Jenkins can show the result using a graphical interface 
which can be found below. 
 
 

 
FIGURE 80: A SUCCESSFUL PIPELINE IN JENKINS GRAPHICAL INTERFACE 

  
 

 
FIGURE 81:AN UNSUCCESSFUL PIPELINE IN JENKINS GRAPHICAL INTERFACE 
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 DATA VISUALIZATION 
The main purpose of data visualization in SEMIoTICS is the graphic presentation of the most important 
information gathered and generated by the components. More information on how the visualization is done 
can be found in Deliverable 4.7. Considering the various content of the presented data, the visualization in the 
SEMIoTICS includes the following parts: 

• Thing directory user interface 

• Pattern visualization 

• Sensor data gathering 

• Data visualizations using FIWARE  
The GUI is the main module that provides a graphical interface for individual components to show data in on 
IoT platform. According to the project assumptions, GUI integrates with Thing Directory, WoT compliant field 
devices, Pattern Orchestrator and Knowage that is one of the FIWARE Generic Enablers. All types of 
integration are shortly presented below. 
 

• Integration GUI with Thing Directory 
This integration was created to provide a graphical interface for Thing Directory API to visualize all 
devices connected to the SEMIoTICS platform. To receive data, GUI through an internal component 
sends HTTP request to Thing Directory ’s API and in the response gets JSON with specific information. 
To avoid problems with the device description, maintain consistency and uniform format in the 
platform, GUI uses the JSON-LD standard in the above-mentioned communication. After that, the 
JSON description is translated into a user-friendly form. For this purpose, mapping to a previously 
defined object is used. It enables a user to watch all devices in table form with the possibility to filter 
by attributes and properties. Moreover, GUI provides support for the SPARQL filter to search devices 
directly Thing Directory. This component also allows for adding new things and remove existing ones 
directly through the platform.  
 

• Integration with Pattern Orchestrator 
This integration aimed to support Pattern Orchestrator in monitoring the current state of SPDI patterns 
from all recipes and location SPDI patterns in an individual layer. In the Pattern Orchestrator 
component, a dedicated endpoint was created for a GUI that provides combined data with SPDI 
patterns and recipes. At this stage of a project, GUI uses a mocked response from Pattern 
Orchestrator as it is not deployed on Backend Orchestrator yet. GUI translates this data to show it in 
two possible ways, as patterns with assigned to layers or as a node graph. To avoid problems with 
the incompatible data, a dedicated JSON model was created. 
 

• Integration for providing sensor data gathering 
A dedicated window was created in GUI to interact with all types of sensors and devices registered in 
the Thing Directory. This view enables the user to show current values of things properties, collect 
data with set frequency and actuate actions. Because GUI should communicate not only with Green 
Field devices but also with Brown Field Devices, so it was integrated with Semantic API & Protocol 
Binding. This component allows interacting with things that do not support JSON-LD format. As 
Semantic API & Protocol Binding has not been developed yet, so to test integration a special Thing 
Simulator component was created. It uses the same methods as Semantic API & Protocol 
Binding,(GET methods to return properties values and POST methods to control actions).  
 

• Integration with Knowage 
Integration with Knowage, which is one of the FIWARE Generic Enabler, was created to visualize 
collected data from SEMIoTICS on powerful and efficient dashboards. On these dashboards, users 
can create various types of widgets like charts, tables, images, documents or own HTML elements. 
Knowage is embedded in GUI as a frame so does not require redirection to another page. To allow 
Knowage to have access to the collected data, the thing details view in GUI has been adapted to allow 
the creation of new datasets when data collection is started. GUI creates dataset through API provided 
by Knowage and after this operation, datasets are available to use on dashboards. Additionally, GUI 
enables the user to create and manage more than one dashboard. A new view with a dashboards list 
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allows the user to create, delete, view, edit and filter dashboards by names or by dynamically created 
tags. 

 
3.4.4.1 THING DIRECTORY USER INTERFACE 
 
Thing Directory provides multiple APIs to interact with. Below can be found the list of all APIs which are used 
by GUI component:  

• Getting a list of registered devices with description. 

• Filtering things using the SPARQL filter. 

• Registering new devices using the description in JSON-LD format. 

• Deleting devices. 
Figures below (FIGURE 82, FIGURE 83, FIGURE 84, FIGURE 85) show the effects of integration between 
GUI and Thing Directory components. 
 

 
FIGURE 82  LIST OF ALL DEVICES REGISTERED IN THING DIRECTORY 
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FIGURE 83  THING DETAILS 

 
 

 

 
FIGURE 84  REGISTRATION OF A NEW DEVICE 
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FIGURE 85 SEARCHING A DEVICE USING SPARQL FILTER  
 
 
3.4.4.1.1 COMPONENT ARCHITECTURE 
 

Components necessary for providing the Thing Directory user interface are depicted in  FIGURE 86. There are 
highlighted Thing Directory component in the backend layer that provides API mentioned in 3.4.4.1 and GUI 
component from the backend layer which visualizes this API. A detailed description of the integration between 
these two components as described in section 3.4.4. Data that is received from Thing Directory is not stored 
in a GUI database until the user does not start collect ing data from things. Only then the simplified description 
of the thing is saved in the database to identify collected data with them.   



780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017 
Deliverable D5.3: IIoT Infrastructure set-up and testing (Cycle 1) 
Dissemination level: [public]  

 

93 
 

 
FIGURE 86 COMPONENTS TAKING PART IN INTEGRATION WITH THING DIRECTORY 

Sequence diagrams showing integration GUI with Thing Directory are presented below.  
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FIGURE 87 SEQUENCE DIAGRAM, DISPLAY ALL DEVICES FROM THING DIRECTORY 

 

 
FIGURE 88 SEQUENCE DIAGRAM, DELETE THING FROM THING DIRECTORY 

3.4.4.1.1 TESTS 
 
The functional test focuses on calling API exposed by GUI Backend. All the tests   
 
Table 18 Functional tests scenarios for Thing Directory 

GUI Integration with Thing Directory 
/getAllThings, /filterAllThings 
✓ should return results in response when there’s at least one thing description registered in Thing Directory 

(with 200 OK status) 

✓ should return an error if there’s none registered in Thing Directory (with 400 Bad request)  

✓ should return an error if there a thing registered in Thing Directory is invalid mapped (with 400 Bad 

request) 

/addThing 
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✓ should return a success message when request body has got a proper format and its JSON (with 200 

OK status) 

✓ should return an error when request body has got an improper format or it is not JSON (with 400 Bad 

request status) 
 

/getThing 

✓ should return a result in response if thing description has been registered in Thing Directory (with 200 

OK status) 

✓ should return an error when a registered thing description has got an improper format (with 400 Bad 

request status) 

 

/deleteThing 

✓ should return a result in response if the thing with given id has been registered in Thing Directory (with 

200 OK status) 

✓ should return an error when a given thing id doesn’t ma tch with anything description in Thing Directory 

(with 400 Bad request status) 
 

 
 
Integration test are currently being implemented. Below there are examples of API calls.  

 

 
FIGURE 89: EXAMPLE OF AN UNSUCCESSFUL HTTP REQUEST 
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FIGURE 90:EXAMPLE OF A SUCCESSFUL HTTP REQUEST 

 

 
FIGURE 91: EXAMPLE OF A SUCCESSFUL HTTP REQUEST 
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FIGURE 92:EXAMPLE OF A SUCCESSFUL HTTP REQUEST 

 
 
 
 

 
FIGURE 93: EXAMPLE OF AN UNSUCCESSFUL HTTP REQUEST 
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FIGURE 94:EXAMPLE OF A SUCCESSFUL HTTP REQUEST 

 
FIGURE 95:EXAMPLE OF AN UNSUCCESSFUL HTTP REQUEST 

 
 
 
3.4.4.2 PATTERN VISUALIZATION 
 
The aim goal of pattern visualization was to present and monitor in GUI SPDI patterns stored by Pattern 
Orchestrator. These patterns are presented in two forms, as a view with layer assignment and as graph 
representation. To get data, the GUI component communicates with Pattern Orchestrator using one single 
API, which at this stage of the project is mocked by the JSON object response. It enables to create the entire 
pattern handling mechanism.  
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FIGURE 96 SPDI PATTERN MONITORING VIEW 

 

 
FIGURE 97 SPDI PATTERN TABLE 
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FIGURE 98 SPDI GRAPH VIEW 

 
3.4.4.2.1 COMPONENT ARCHITECTURE 

 
FIGURE 99 presents components responsible for pattern monitoring. In this case, the communication is  
between two components from the backend layer, GUI and Patter Orchestrator. As it was mentioned in section 
3.4.4 GUI sends a request to single Pattern Orchestrator API to receive extended JSON description to 
visualize patterns and recipes in graph form. As this API provides combined data from Pattern Orchestrator 
and Recipe Cooker, GUI sends only one request instead of two to different components. This reduces the risk 
of possible errors related to the integration of subsequent components. The data received is immediately 
processed by subcomponents of GUI and shown to the user. Information about patterns and recipes are not 
stored in the GUI database.  
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FIGURE 99 COMPONENTS RELATED TO PATTERN VISUALIZATION 

 
Sequence diagram that present communication between GUI and Pattern Orchestrator to visualize patterns 
is depicted in FIGURE 100. 
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FIGURE 100 SEQUENCE DIAGRAM, SHOW SPDI PATTERNS 

3.4.4.2.2 TESTS 
 
Integration between GUI and Pattern Orchestrator is still in progress because the PO is not deployed in 
Backend Orchestrator yet. API for getting patterns is prepared in both components as well as a common format 
for data exchange. The method to map JSON in the GUI is depicted in FIGURE 101. At this stage, the GUI 
component visualizes a mocked response from PO API and an example of JSON is presented in FIGURE 102.  
 
Table 19 Functional tests scenarios for Pattern Orchestrator 

Pattern Orchestrator (integration in progress) 

#getSPDIPatterns 

✓ Should reject with 403 error if user attempt to get patterns without proper role  

✓ Should reject with 404 error if is not able to return patterns 

✓ Should reject with 400 error if request is incorrect 

✓ Should reject with 500 error if internal error occurs 

✓ Should return JSON with patterns with 200 status  

 

 
FIGURE 101 METHOD TO MAP JSON IN GUI 
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FIGURE 102 EXAMPLE OF JSON OBTAINED FROM PO 

 
 
3.4.4.3 SENSOR DATA GATHERING 
This integration was done to control all types of devices (Brown Field Devices and Green Field Devices) 
connected to the SEMIoTICS platform. It allows starting collecting data from a property of a selected device 
with the frequency set by the user and with a limit date and viewing the current property values of devices or 
sensors. It also enables to actuate different types of actions defined for the thing. FIGURE 103 below depicts 
the view for the management of data gathering. 
 

 
FIGURE 103 VIEW TO THE MANAGEMENT OF DATA GATHERING 

 
3.4.4.3.1 COMPONENT ARCHITECTURE 
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Architecture for sensor data gathering that is presented in FIGURE 104 contains GUI component from backend 
layer, Thing Directory from backend layer, Semantic API & Protocol Binding from field layer and Simulated 
Sensor from field layer which simulates physical sensor. This integration enables to fully control devices which 
means read real-time data (FIGURE 105) and actuate actions (FIGURE 106). GUI component communicates 
with devices in two different ways, depending on the type of device as it was presented in section 3.4.4. For 
greenfield devices, GUI sends requests directly to things that provide a single API for each action and property. 
For brownfield devices, GUI communicates with Semantic API & Protocol Binding from the field layer which 
needs GW Semantic Mediator to translate data from thing. At this stage of project physical devices are mocked 
by Java simulator e.g. Simulated Sensor. Data from mocked devices is collected by the GUI subcomponent 
(Thing Worker) and stored in the database when the user decides to start gathering information. The sequence 
diagram showing collecting data is depicted in FIGURE 107. 

 

 
FIGURE 104 COMPONENTS RELATED TO SENSOR DATA GATHERING 
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FIGURE 105 SEQUENCE DIAGRAM, READ REAL-TIME DATA FROM DEVICE 
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FIGURE 106 SEQUENCE DIAGRAM, ACTUATE ACTION 
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FIGURE 107 SEQUENCE DIAGRAM, COLLECT DATA FROM DEVICE 

 

 
3.4.4.3.2 TEST 
 

Table 20 Functional tests scenarios for Thing Simulator. 

GUI Integration with Thing Simulator 

/getMonitoredValues 

✓ should return results in response when address is valid (with 200 OK status)  

✓ should return null when address is invalid (with 200 OK status) 

 

/executeAction 

✓ should return results in response when address is valid (with 200 OK status)  

✓ should return an error message in response when address is invalid or request body is invalid (with 400 

Bad request status) 

 
Functional tests have been made using Mockito library. The tests check GUI and Thing Simulator API. The 
integration with brownfield devices through Semantic API & Protocol Binding will be implemented in the next 
scope. 
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FIGURE 108:EXAMPLE OF API FUNCTIONAL TEST 

 
FIGURE 109: EXAMPLE OF API FUNCTIONAL TEST 
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FIGURE 110:EXAMPLE OF GUI - THING SIMULATOR INTEGRATION 

 

 
FIGURE 111: EXAMPLE OF GUI - THING SIMULATOR INTEGRATION 
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3.4.4.4 DATA VISUALIZATIONS USING FIWARE  
 

Integration GUI component with FIWARE  Knowage was created to visualize all data collected from devices 
and sensors on extended dashboards. It allows the user to create an unlimited number of dashboards form a 
wide selection of ready-made widgets. Data on dashboards are used from datasets created during gathering 
data from sensors. Figures below (FIGURE 112, FIGURE 113) show two dashboards, first with random data 
to show Knowage capabilities and second based on data from SEMIoTICS. 
. 

 
FIGURE 112 EXAMPLE OF THE DASHBOARD SHOWING COLLECTED DATA 

 
FIGURE 113 EXAMPLE OF THE DASHBOARD SHOWING COLLECTED DATA FROM SENSORS 

 
The user can create several dashboards, edit or delete them and list, as shown in the FIGURE 114. 
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FIGURE 114 LIST OF ALL DASHBOARDS 

 
3.4.4.4.1 COMPONENT DIAGRAM 
 
The architecture of integration with FIWARE (FIGURE 115) includes two components, GUI from the backend layer 
and Knowage also from the backend layer which is one of the FIWARE Generic Enablers. The main aim of this 
integration was to visualize all collected data on powerful and efficient Knowage dashboards. For this purpose, 
Knowage was deployed to the Backend Orchestrator and then embedded in GUI as an HTML frame that was 
detailed described in section 3.4.4.  After installation, it was also necessary to configure Knowage to use data from 
the GUI database. Knowage provides multiple APIs to interact with them. List of APIs used by GUI component is 
presented below: 

• Lista all dashboards 

• Adds a new dashboard 

• Update the dashboard 

• Delete the dashboard 

• Add a dataset 

• Login 
The first four abovementioned APIs are dedicated to supporting dashboards functionalities and allows them to 
manage dashboard by the GUI component. ‘Add a dataset’ API is used to create a dataset when the user starts 
collecting data from a sensor or device. The Last API enables to authorize the user in Knowage to get data according 
to the permission it has.   
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FIGURE 115 COMPONENTS RELATED TO THE DATA VISUALIZATION USING KNOWAGE 

3.4.4.4.2 TESTS 
 
Users Cockpit feature in SEMIoTICS platform is provided by FIWARE General Enabler named KNOWAGE. 
In order to integrate this component to GUI, its capabilities had to be tested. KNOWAGE API13 has been 
tested with creating HTTP request with Postman. 

 
 

Table 21 Functional tests scenarios for Knowage 

Documents API 

#GET /documents 

      ✓ should reject with 401 error when an authorization credential is invalid 

      ✓ should return JSON format file with documents(Cockpits) list 

#GET /documents/document_label 

      ✓ should reject with 401 error when an authorization credential is invalid  

      ✓ should reject with 404 error when attempting to document data is not there 

      ✓ should return JSON format file with cockpit details 

#DELETE /documents/document_label 

 
13 https://knowage.docs.apiary.io/#introduction/errors 
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      ✓ ✓ should reject with 401 error when an authorization credential is invalid  

      ✓ should reject with 404 error when attempting to document data is not there 

      ✓ should delete a document by label 

#UPDATE /documents/document_label 

      ✓ should reject with 401 error when an authorization credential is invalid  

      ✓ should reject with 404 error when attempting to document data is not there 

      ✓ should update a document by label 

Dataset API 

#GET /datasets 

      ✓ should reject with 401 error when an authorization credential is invalid 

      ✓ should return JSON format file with datasets list 

#GET /datasets/dataset_label 

      ✓ should reject with 401 error when an authorization credential is invalid  

      ✓ should reject with 404 error when attempting to document data is not there 

      ✓ should return JSON format file with datasets details 

#DELETE /datasets/dataset_label 

      ✓ ✓ should reject with 401 error when an authorization credential is invalid  

      ✓ should reject with 404 error when attempting to document data is not there 

      ✓ should delete a dataset by label 

#UPDATE /datasets/dataset_label 

      ✓ should reject with 401 error when an authorization credential is invalid  

      ✓ should reject with 404 error when attempting to document data is not there 

      ✓ should update a dataset by label 

 
 

4 USE-CASE SPECIFIC DEMONSTRATORS  
The following demonstrators, that showcase use-case specific functionalities, were presented as part of the 
Mid-Term Review. 

4.1 Use Case 1 demonstrator 

A demonstration scenario that relies on the SEMIoTICS pattern-driven network interface and its capabilities 
was designed and developed around Use Case 1, i.e. industrial IoT environments, and more specifically oil 
leakage detection in wind turbines through video monitoring. This was also demonstrated during the Mid -
Term Review. The overarching aim of the scenario is to distribute a complex application (composed of multiple 
tasks) to a network of IoT/Edge device and specify constraints (through patterns) on the network / 
orchestration. In this context, the developed scenario also leverages  user-friendly design and deployment of 
IoT orchestrations through a custom-built, distributed version of Node-RED14. The two key research innovation 
of the scenario and associated demonstration relate to: 1) True distribution of application flows over mult iple 
devices and representing the network perspective in Node-RED, and; 2) Automated enforcement of network 
/ orchestration constraints by defining them as SEMIoTICS patterns.  
 
In terms of the actual setup, it involves transmission of video between two Raspberry Pi credit-card sized 
embedded devices (from “piA” to “piB”), coordinated by Node-RED running on a Nanobox (industrial PC), 
while monitoring of QoS constraints with patterns. This setup is depicted in FIGURE 116. 
 

 
14 https://nodered.org/ 

https://nodered.org/
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FIGURE 116: PATTERN-ENABLED IOT ORCHESTRATIONS LEVERAGING THE PATTERN-DRIVEN 

NETWORK INTERFACE 

 
In the above, other than the user-friendly, graphical interface and distributed nature of defining the IoT 
orchestrations involved (including where / on which devices parts of a flow are deployed), we also want to 
define SPDI and QOS between these deployments (see FIGURE 117 and FIGURE 118). 
 

 
FIGURE 117. GRAPHICAL IOT ORCHESTRATION DEFINITION 

 

Bandwidth >= 128 kB/s
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FIGURE 118: THE CUSTOMISED NODE-RED GUI AND SCENARIO ORCHESTRATION DEFINITION 

 
Focusing on the network aspects, while maintaining the high-level abstractions needed for user-friendliness, 
a “Network Link” node enables direct communication between distributed Node-RED instances. Said “Network 
Link” node enables definition of QoS constraints (e.g., minimum bandwidth, latency) and the whole 
orchestration specification (a “Recipe”) and the QoS constraints are translated into the SEMIoTICS pattern 
language and sent to Pattern Orchestrator. From the latter, the information is relayed to the network (SDN) 
Pattern Engine. A high-level view of this process is shown in FIGURE 119. 
 

 
FIGURE 119: HIGH LEVEL VIEW OF SCENARIO IMPLEMENTATION SEQUENCE AND INVOLVED 
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4.2 Use Case 2 demonstrator 

E-health monitoring systems situated at homes can facilitate the monitoring of patients’ activities and enable 
the remote provision of healthcare services. They improve the quality of elder population well -being in a non-
obtrusive way, allowing greater independence, maintaining good health, preventing social isolation for 
individuals and delay their placement in institutions such as nursing homes and hospitals. In this context, the 
second use case of SEMIoTICS focuses on an ambient assisted living scenario, whereby a smart home 
environment.  
Part of the SEMIoTICS testbed was demonstrated during the Mid-Term review. The main focus of this demo 
was to provide an extension of the current SARA use case where the SEMIoTICS framework can be applied 
in order to support the following service function chaining to guarantee security and dependability based on 
the defined Security, Privacy, Dependability and Interoperability (SPDI) patterns instantiating the required i) 
Virtual Network Functions (VNFs) and ii) SFC for assuring the SPDI requirements. Traffic classification is 
based on the predefined SFC for providing secure chains to forward the different kind of traffic of this  use case. 
The procedure of instantiation and the identification of the respective SFCs and the VNFs based on the patterns 
is depicted in the Figure below: 
 

 
FIGURE 120 INSTANTIATION OF VNFS AND SFC 

This demo demonstrated the use case in the following steps: 
 

1) Present the legacy use case as the starting point. 
2) Attach this use case to the SEMIoTICS architecture. 
3) Install intermediate switches to forward traffic. 
4) Identify and/or instantiate VNFs (virtually or physically) attached to the respective switches through 

the Pattern Engine in the Backend. 
5) Instantiate SFCs based on the respective VNFs through the Pattern Engine in the SDN Controller 
6) Active demonstration of the proactive control flow instantiation and data traffic classification  in the 

developed network emulator. 
The setup of the testbed was based in the Proxmox where the different VMs hold the different service 
functions. (firewall, ids, dpi, load balancer), the virtual switches (Classifier1, Classifier2, SFF1, SFF2, 
SFF3) and the SDN controller as can be seen in Figure 121. 
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FIGURE 121 SFC TESTBED IN THE MIDTERM REVIEW 

 
Under this test-bed, the SFC deployment of the SEMIoTICS framework in the use case 2 was presented 
(Figure 122). 
 

 
FIGURE 122 SERVICE FUNCTION CHAINING IN USE CASE 2 TOPOLOGY  

 

4.3 Use Case 3 demonstrator 

Part of the SEMIoTICS testbed was demonstrated during the Mid-Term review, showcasing NFV 
functionality. In this scenario, a sensing VNF was performing real-time vibration analysis on a mini rack, with 
an on-board cooling fan. The vibration analysis was performed with a field device using a LIS2DH 3-axis 
“femto” accelerometer supplied by ST (the same is used in Use Case 3). This scenario emulates a real -world 
data center with multiple rack-mounted servers and mission critical ventilation systems that have to be 
monitored in real time, and excess vibration is an indication of impeding malfunction. A second filtering VNF, 
deployed at the virtualized IoT gateway, was responsible for implementing a moving average filter on the 
vibration measurement, suppressing noise and therefore compressing the information that had to be 
transmitted from the gateway to the cloud layer. This demonstrated the capabilities of the SEMIoTICS 
architecture in relying on local analytics functions to remove some of the burden from the cloud hypervisors, 
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and prevent bottlenecks at the network layer. The following figure shows the testbed setup used during the 
MTR. Finally, an actuation VNF was responsible for controlling a (virtual) smart light, based on the readings of 
a field layer light sensor. This VNF was also deployed at the IoT gateway, to benefit from a reduced latency 
and hence we were able to demonstrate instantaneous reaction of the smart light, as a response to changes 
to the measured Lux value. 

 

 
FIGURE 123: MID-TERM REVIEW DEMO PLATFORM AND MEASUREMENTS 

 

5 VALIDATION 
 
 
This section describes the validation features of SEMIoTICS that are related with the implementation of  the 
components and the rest topics that are presented in this document. 

5.1 Related Project Objectives and Key Performance Indicators (KPIs) 

 
The following table presents the task objectives and appropriate sections addressing those while Table 
presents the KPIs and objectives that are relevant for Task 5.3. 
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TABLE 22: TASK 5.3 OBJECTIVES 

T5.3 Objectives D5.3 Sections 

• Implementation of an overarching SEMIoTICS testbed that integrates 
technologies and components implemented during Cycle 2 

2 

• Provide the SEMIoTICS SDN controller architecture along with the testing 
methodology and the KPI validation and evaluation for Cycle 2. 

3.1 

• Provide the SEMIoTICS NFV architecture along with the testing methodology and 
the KPI validation and evaluation for Cycle 2. 

3.2 

• Present the SEMIoTICS advances at the field and gateway layer including 
semantic bootstrapping, interfacing and interoperability. Showcase the 
components architecture, provide the testing methodology, and evaluate the 
performance through KPI validation. 

3.3 

• Ensure security and safety along all other components through a backend 
security manager and a pattern orchestrator. Evaluate the performance and 
validate the KPIs. 

3.4.1, 3.4.2 

 
The KPIs and their respective SEMIoTICS objectives that are related to T5.3 are described in the following 
TABLE 23. 
 

TABLE 23: KPIS AND OBJECTIVES 

Objective KPI-ID Description Related task 

2 Semantic Interoperability KPI-2.1 
Semantic descriptions 
for 6 types of smart 
objects 

T3.3 

2 Semantic Interoperability KPI-2.3 
Semantic 
interoperability with 3 
IoT platforms 

T3.4, T4.4 

3 Monitoring Mechanisms KPI-3.1.1 
Generating monitoring 
strategies in the 3 
targeted IoT platforms 

T4.1, T4.2 

4 
Multi-layered Embedded 
Intelligence 

KPI-4.6 
Development of new 
security 
mechanisms/controls 

T4.5 

5 
IoT-aware Programmable 
Networks 

KPI-5.1 
Deployment of a multi-
domain SDN 
orchestrator 

T3.1 

5 
IoT-aware Programmable 
Networks 

KPI-5.2 
Service Function 
Chaining (SFC) of a 
minimum 3 VNFs 

T3.2, T4.1 

6 Development of a Reference 
Prototype 

KPI-6.3 Delivery of 3 prototypes 
of IIoT/IoT applications 

T3.5, T4.6, T5.2, 
T5.3 

 

5.2 SEMIoTICS implementation requirements 

The relevant SEMIoTICS requirements that are covered by the presented implementation of SEMIoTICS 
components are summarized in the next table. The full scope of requirements mapping is available in D2.5. 
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TABLE 24: REQUIREMENTS´STATUS 

Requirements 
(D5.3) 

Description Related task Status 

R.GP.1 

End-to-end connectivity between the 
heterogeneous IoT devices (at the field level) 
and the heterogeneous IoT Platforms (at the 
backend cloud level) 

T5.4-6 Delivered 

R.GP.3 
Scalable infrastructure due to the fast-paced 
growth of IoT devices 

T5.4-5 Delivered 

R.GP.4 
Detection of events requiring a QoS change 
and triggering network reconfiguration need 
by SPDI pattern 

T5.4-5 In progress 

R.GP.5 
Interaction between SDN controller and IoT 
backend cloud through a dedicated interface 
(called northbound software interface) 

T5.4 In progress 

R.GP.6 

Interaction between SDN controller and 
network nodes (e.g. switches, routers or IoT 
Gateways) through dedicated interface (called 
southbound software interface) 

T5.4 In progress 

R.FD.1 
Field devices SHOULD be able to get data 
from the environment through sensors 
(sensors). 

T5.6 In progress 

R.FD.2 
Field devices SHOULD be able to process 
data in near real time (process units). 

T5.6 In progress 

R.FD.3 
Field devices SHOULD be able to control (at 
least) a mechanism / system (actuators). 

T5.6 In progress 

R.FD.4 
Field devices SHOULD use a global clock for 
time synchronization.  

T5.6 In progress 

R.FD.5 
Field devices SHOULD be able to interact 
with SEMIoTICS IIoT/IoT gateway dedicated 
components 

T5.6 In progress 

R.FD.6 
Field devices MUST interoperate using a 
standard communication protocol like Rest 
APIs, COAP, MQTT.  

T5.5-6 In progress 

R.FD.7 
Field devices MUST use standardize 
interoperable message format (e.g. JSON, 
etc.). 

T5.5-6 In progress 

R.FD.8 
Field devices MUST support secure 
bootstrapping / registration protocol. 

T5.5 In progress 

R.FD.9 
Field devices MUST be able to communicate 
with the IIoT Gateway / other architectural 
components. 

T5.5 In progress 

R.FD.10 Field devices SHOULD minimize data traffic. T5.5-6 In progress 

R.FD.11 
Field devices SHOULD minimize energy 
consumption. 

T5.5-6 In progress 

R.FD.12 

Greenfield device is expected to expose its 
capability over a W3C Thing Description, 
which semantically describes field resources, 
and to be computationally powerful enough to 
run a node-wot servient (that exposes the 
TD). 

T5.5 In progress 

R.FD.13 
Brownfield device is assumed to consist of a 
sensor/actuator and a controller (PLC). The 
controller is expected to expose capability of 

T5.5 In progress 
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its sensor/actuator over a native brownfield 
protocol (without the need for IIoT Gateway to 
interact directly with them). 

R.FD.14 
The field layer must feature SPDI pattern 
reasoning local embedded intelligence 
capabilities 

T5.5-6 In progress 

R.S.1 
The confidentiality of all network 
communication MUST be protected using 
state-of-the-art mechanisms. 

T5.5 In progress 

R.S.2 

Authentication and authorization of the 
stakeholders MUST be enforced by the 
Network controller, e.g. through access and 
role-based lists for different levels of function 
granularities (overlay, customized access to 
service, QoS manipulation, etc.) 

T5.5 In progress 

R.S.3 
Sensors SHALL be identifiable (e.g. by a TPM 
module/smartcard) and authenticated by the 
gateway. 

T5.5 In progress 

R.S.4 
All components from gateway, via SDN 
Controller, to cloud platforms and their users 
MUST authenticate mutually. 

T5.5 In progress 

R.S.5 

Before sensitive data is being transmitted, the 
respective components SHALL be 
authenticated as defined by requirements R.S.3 
and R.S.4 

T5.5 In progress 

R.S.6 

Sensors SHALL be able to encrypt the data 
they generate, i.e. their CPU and memory 
SHALL be sufficient to perform these 
cryptographic operations. 

T5.5 In progress 

R.S.20 
Cloud platforms MUST be protected by a 
firewall against network-based attacks. 

T5.5 In progress 

R.P.1 
The collection of raw data MUST be 
minimized. 

T5.5 Delivered 

R.P.2 

The data volume that is collected or 
requested by an IoT application MUST be 
minimized (e.g. minimize sampling rate, 
amount of data, recording duration, different 
parameters). 

T5.5 Delivered 

R.P.3 Storage of data MUST be minimized. T5.5 Delivered 

R.P.4 
A short data retention period MUST be 
enforced and maintaining data for longer than 
necessary avoided. 

T5.5 In progress 

R.P.5 

As much data as possible MUST be 
processed at the edge in order to hide data 
sources and not reveal user related 
information to adversaries (e.g. user’s 
location). 

T5.5 In progress 

R.P.6 

Data MUST be anonymized wherever 
possible by removing the personally 
identifiable information in order to decrease 
the risk of unintended disclosure. 

T5.5 

In progress 

R.P.7 
Data granularity MUST be reduced wherever 
possible, e.g. disseminate a location-related 

T5.5 
In progress 



780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017 
Deliverable D5.3: IIoT Infrastructure set-up and testing (Cycle 1) 
Dissemination level: [public]  

 

122 
 

information (i.e. area) and not the exact 
address. 

R.P.8 Data MUST be stored in encrypted form. T5.5 In progress 

R.P.9 

Repeated querying for specific data by 
applications, services, or users that are not 
intended to act in this manner SHALL be 
blocked. 

T5.5 In progress 

R.P.10 

Wherever possible, information over groups 
of attributes or groups of individuals SHALL 
be aggregated (e.g. ‘the majority of people 
that visited the examined area in this time 
interval were young students’ this is sufficient 
information for an advertising application of a 
nearby shop, without requiring to process raw 
data from the personal IoT devices). 

T5.5 

In progress 

R.P.11 

The data principal SHALL be sufficiently 
informed regarding which data are collected, 
processed, and disseminated, and for what 
purposes 

T5.5 

In progress 

R.P.12 

During all communication and processing 
phases logging MUST be performed to enable 
the examination that the system is operating 
as promised 

T5.5 In progress 

R.P.13 

The user SHALL be able to control the 
privacy mechanisms (i.e. redemption period, 
data granularity and dissemination, and 
anonymization technique) 

T5.5 

In progress 
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6 CONCLUSIONS  
 
This deliverable provides the status at the end of Cycle 1 of the infrastructure setup and testing of the 
SEMIoTICS solution. In the beginning, we discussed about the overarching testbed that includes various 
components, being composed of a Backend layer, an SDN/NFV Orchestration layer, and a Field layer. Then, 
we provided the architecture of each component by giving focus on the main advancements occurred during 
the implementation and providing specific details for the characteristics that will be leveraged by each of the 
three use cases. Moreover, in order to provide an accurate and detailed performance evaluation for each 
component, we demonstrated the testing methodology and, then, we presented the results of the tests along 
with the KPI validation for each component, where applicable. In the Cycle 2 of infrastructure setup and testing 
that will be documented in Deliverable D5.8, we plan to showcase the setup and testing of the fully integrated 
components into a final testbed that delivers the promised advantages under the scope of SEMIoTICS and 
validates the proposed SEMIoTICS KPIs. This setup will support SEMIoTICS use case demos that will involve 
functional, performance and penetration testing. 


