
 
 
 780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017 

   

 
 
 
 
 
 
 
 
 
 
 
 

SEMIoTICS 
 
 

Deliverable D5.7 
Software system integration (Cycle 2) 

 
 

Deliverable release date 31.08.2020 

Authors 1. Arne Broering, Darko Anicic, Jan Seeger (SAG)  
2. Eftychia Lakka, Nikolaos Petroulakis, Emmanouil Michalodimitrakis 
(FORTH)  
3. Konstantinos Fysarakis, Iasonas Somarakis, Manolis Chatzimpyrros, 
Georgia Koutsouri (STS) 
4. Domenico Presenza (ENG) 
5. Felix Klement, Korbinian Spielvogel, Henrich C. Pöhls (UP) 
6. Mateusz Kamiński, Jakub Rola, Michał Rubaj, Bartłomiej Lipa (BS) 
7. Prodromos Vasileios (IQU) 

Responsible person Bartłomiej Lipa (BS) 

Reviewed by Bartłomiej Lipa (BS), Mateusz Kamiński (BS), Konstantinos Fysarakis 
(STS), Emmanouil Michalodimitrakis, Emmanouil Papoutsakis (FORTH), 
Kostas Ramantas (IQU). Felix Klement (UP)  

Approved by PTC Members (Vivek Kulkarni, Nikolaos Petroulakis, Ermin Sakic, Mirko 
Falchetto, Domenico Presenza, Christos Verikoukis) 
PCC Members (Vivek Kulkarni, Nikolaos Petroulakis, Christos Verikoukis, 
Georgios Spanoudakis, Domenico Presenza, Danilo Pau, Joachim 
Posegga, Darek Dober, Kostas Ramantas, Ulrich Hansen) 

Status of the Document Final 

Version 1.0 

Dissemination level Public 

  

Ref. Ares(2020)4506683 - 31/08/2020



780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017 
Deliverable D5.7 Software system integration (Cycle 2) 
Dissemination level: [Public]  

 

 

2 
 
 

Table of Contents 
 Introduction ............................................................................................................................................ 6 

 PERT chart of SEMIoTICS ............................................................................................................. 7 
 Integration approach and methodology .................................................................................................. 8 

 Divide the platform functions into components and assign them to the right partner  ....................... 8 
 Define the interface of each component ......................................................................................... 8 
 Declare and define the communication/dependencies among all components ................................ 9 
 Continuous Integration / Continuous Deployment ........................................................................... 9 

2.4.1. CI/CD Tools used in SEMIoTICS ...........................................................................................10 
2.4.2. Continuous Integration (CI) pipeline .......................................................................................10 
2.4.3. Continuous Deployment (CD) pipeline ...................................................................................10 

 Integration description and implementation progress .............................................................................11 
 Integration flows delivered in cycle 1 .............................................................................................11 

3.1.1. Pattern Engine integration with Orchestrators at all levels ......................................................11 
3.1.2. Field devices integration ........................................................................................................12 
3.1.3. GUI integration ......................................................................................................................13 
3.1.4. Pattern Orchestrator integration with Recipe Cooker ..............................................................19 
3.1.5. Pattern Orchestrator integration with the SDN/NFV for Service Function Chaining .................22 
3.1.6. Integration of Semantic Backend Validator with other components .........................................28 

 Integration flows delivered in cycle 2 .............................................................................................33 
3.2.1. GUI integration with Security Manager ...................................................................................33 
3.2.2. GUI Integration with Monitoring Component ...........................................................................40 
3.2.3. Backend Pattern Engine integration with Security Manager ...................................................47 
3.2.4. Monitoring Component Integration  with Pattern Engine .........................................................49 
3.2.5. Recipe Cooker integration with Thing Directory......................................................................51 
3.2.6. Backend Semantic Validator integration .................................................................................53 

 Interoperability with external IoT platforms ............................................................................................56 
 General Approach .........................................................................................................................56 
 Integration with FIWARE ...............................................................................................................59 

4.2.1. Methodology of FIWARE component verification ....................................................................59 
4.2.2. Evaluation process with selected general enablers ................................................................60 
4.2.3. Group 1: Security-related GEs ...............................................................................................60 
4.2.4. Group 2: NGSI-based components ........................................................................................61 
4.2.5. Group 3: SDN and NFV - related components........................................................................64 
4.2.6. Group 4: Database related components .................................................................................64 
4.2.7. Conclusion ............................................................................................................................65 

4.3 Integration with CloE-IoT ..............................................................................................................66 



780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017 
Deliverable D5.7 Software system integration (Cycle 2) 
Dissemination level: [Public]  

 

 

3 
 
 

 Integration with MindSphere ..........................................................................................................68 
 Integration with OpenHAB .............................................................................................................69 

 Validation..............................................................................................................................................71 
 Related Project Objectives and Key Performance Indicators (KPIs) ...............................................71 
 SEMIoTICS implementation requirements .....................................................................................71 

 Conclusion ............................................................................................................................................73 
 

 
  



780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017 
Deliverable D5.7 Software system integration (Cycle 2) 
Dissemination level: [Public]  

 

 

4 
 
 

TABLE 1 ACRONYM TABLE 
 

Acronym Definition 

API Application Programming Interface 

CI Continuous Integration 

CD Continuous Delivery 

WP Work Package 

IoT Internet of Things 

KPI Key Performance Indicator 

PERT Program Evaluation Review Technique 

UML Unified Modelling Language 

SPDI Security & Privacy & Dependability & Interoperability 

NFV Network Functions Virtualization 

VNF Virtualized network function 

SME Small and Medium Enterprises  

IIoT Industrial Internet of Things 

REST Representational state transfer 

W3C The World Wide Web Consortium 

GUI Graphical User Interface 

WoT Web of Things 

JSON JavaScript Object Notification 

HTTP Hypertext Transfer Protocol 

JSON-LD JavaScript Object Notation for Linked Data 

URL Uniform Resource Locator 

GW Gateway 

PO Pattern Orchestrator 

ANTLR4 Another Tool for Language Recognition 

SDN Software-Defined Networking 

SFC Service Function Chaining 

VIM Virtualized Infrastructure Manager 

OVS Open vSwitch 

OSM Open Source MAO 

OAuth2 Open Standard for Authentication Version 2 

BSV Backend Semantic Validator 

GWSM Gateway Semantic Mediator 
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SAPB Semantic API & Protocol Binding 

TD Thing Directory 

GE General Enabler 

PEP Policy Enforcement Point 

PDP Policy Decision Point 

XACML eXtensible Access Control Markup Language 

RDF Resource Description Framework 

DB Database 

OSGi Open Services Gateway initiative 

OWL Web Ontology Language 

OSSOSS Operations Support System 

BSS  Business Support System 
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 INTRODUCTION  
This document is a continuation of Document D5.2 and describes the next cycle of the Task T5.2 which focused 
on the software integration of the SEMIoTICS framework components.  
 
In general, the integration approach of the SEMIoTICS framework components has not changed. This 
document describes additional components developed in WP3 and WP4, complementing document D5.2. As 
a result of this process, the integrated framework provides the basis for evaluating the effectiveness of the 
SEMIoTICS approach in real-life scenarios and trial operations in domains targeted by the project (T.5.4, T.5.5, 
and T.5.6). Particular emphasis is given on the automated processes of Continuous Integration and Continuous 
Delivery (CI/CD) which the integration process is based on. 
 
The deliverable is structured as follows:  

• Section 2 covers the approach to the integration taken within this project.  
• Section 3 presents the integration flows which have been delivered within the first cycle of the task works 
• Section 4 describes the approach for the IoT platforms interoperability 
• Section 5 is the validation section where one can see what objectives and KPIs are pertinent to the work 

presented within this deliverable  
• Section 6 features the concluding remarks 

Compared to document D5.2, a new chapter 3.2 was added to describe the integration of the components delivered 
in Cycle 2. 

Further details on the integration of Use case specific SEMIoTICS components can be found in the following 
documents: 

• D5.4 and D5.9 Demonstration and validation of IWPC-Energy (Cycle 1 & 2)  
• D5.5 and D5.10 Demonstration and validation of SARA-Health (Cycle 1 & 2) 
• D5.6 and D5.11 Demonstration and validation of IHES-Generic IoT (Cycle 1 & 2) 

  



780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017 
Deliverable D5.7 Software system integration (Cycle 2) 
Dissemination level: [Public]  

 

 

7 
 
 

 PERT chart of SEMIoTICS  
The PERT chart below provides a graphical representation of the project's timeline, allowing the breakdown 
of each individual task in the project for analysis. 
 

36 months Leader: SAG

31.12.202001.01.2018

WP1: Project Management

23 months Leader: ST-I

30.11.201901.01.2018

WP2: Requirements and Architecture for 
Smart Sensing and Smart Actuation

24 months Leader: SAG

30.04.202001.05.2018

WP3: Smart objects and networks

25 months Leader: FORTH

30.06.202001.06.2018

WP4: Pattern-driven smart behavior of 
IIoT with End-to-End Security and Privacy

24 months Leader: ENG

31.12.202001.01.2019

WP5: System Integration and Evaluation

36 months Leader: SAG

31.12.202001.01.2018

T1.1: Project coordination 36 months Leader: FORTH

31.12.202001.01.2018

T1.2: Project technical and innovation 
management

36 months Leader: SAG

31.12.202001.01.2018

T1.3: Coordination with EU programme 
level activities

3 months Leader: STS

31.03.201801.01.2018

T2.1: Analysis of emerging business and 
technical IoT value drivers

4 months Leader: SAG

30.04.201801.01.2018

T2.2: Specification of use case scenarios 
& applications and their requirements

4 months Leader: ST-I

30.06.201801.03.2018

T2.3: Specification of infrastructure 
requirements

18 months Leader: BS

31.12.201901.07.2018

T2.4: SEMIoTICS architecture design

22 months Leader: SAG

29.02.202001.05.2018

T3.1: Software defined Aggregation, 
Orchestration and cloud networks

22 months Leader: CTTC

29.02.202001.05.2018

T3.2: IIoT Network Function Virtualization

22 months Leader: SAG

29.02.202001.05.2018

T3.3: Semantics-based bootstrapping & 
interfacing

22 months Leader: STS

29.02.202001.05.2018

T3.4: Network-level semantic 
Interoperability

22 months Leader: IQU

30.04.202001.07.2018

T3.5: Implementation of Field-level 
middleware & networking toolbox

23 months Leader: STS

30.04.202001.06.2018

T4.1:Architectural SPDI patterns

22 months Leader: ENG

30.04.202001.07.2018

T4.2: Monitoring, prediction and 
diagnosis

22 months Leader: ST-I

30.04.202001.07.2018

T4.3: Embedded Intelligence and local 
analytics

22 months Leader: FORTH

30.04.202001.07.2018

T4.4: End-to-End Semantic 
Interoperability

22 months Leader: BS

30.06.202001.09.2018

T4.6: Implementation of SEMIoTICS 
backend API

22 months Leader: UP

30.04.202001.07.2018

T4.5: End-to-End Security and Privacy

5 months Leader: UP

31.10.201901.06.2019

T5.1: KPIs and Evaluation Methodology

15 months Leader: BS

31.08.202001.06.2019

T5.2: Software system integration

20 months Leader: IQU

31.08.202001.01.2019

T5.3: IIoT Infrastructure set-up and 
testing

13 months Leader: SAG

31.12.202001.12.2019

T5.4: Demonstration and validation of 
IWPC- Energy scenario

13 months Leader: ENG

31.12.202001.12.2019

T5.5: Demonstration and validation of 
SARA-Health scenario

13 months Leader: ST-I

31.12.202001.12.2019

T5.6: Demonstration and validation of 
IHES-Generic IoT scenario

36 months Leader: CTTC

31.12.202001.01.2018

T6.1: Impact Creation and Dissemination 31 months Leader: ENG

31.12.202001.06.2018

T6.2: Exploitation of results

24 months Leader: SAG

31.12.202001.01.2019

T6.3: Standardization
36 months Leader: CTTC

31.12.202001.01.2018

WP6: Impact, Dissemination and 
Standardization
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 INTEGRATION APPROACH AND METHODOLOGY 
SEMIoTICS is a complex framework consisting of various components developed by multiple parties. To allow 
the software component integration, the state-of-the-art approach for developing complex systems has been 
used. The components have been assigned to most expert consortium partners in order to coordinate the 
proper integration. 
The above-mentioned approach allows the semi-independent and self-paced development of each partner. 
However, it also creates the challenge of the integration of all components. The solution for this challenge is 
the microservices approach architecture and their API. This section describes how the consortium manages 
the process of integrating all components into one whole working platform on the backend level. 
 
In more detail, the integration process has been divided into three steps:  

1. Divide the platform functions into components and assign them to the right partner  
2. Define the API of each component  
3. Declare and define the communication/dependence among each component 

Each of these steps is further elaborated in the subsections that follow. 

 Divide the platform functions into components and assign them to the right partner 
The first step in the developing process was straightforward. Once the arch itecture of the platform has been 
established, each functionality has been divided into small components and assigned to the appropriate 
partner. The process of the assignment was based on the expertise and technologies brought into the project 
by each partner. 
Figure 2-1 shows the result of the first step. The platform is divided into 3 layers, each layer is divided into 
components and each component is assigned to the relevant partners. 

 Define the interface of each component  
While developing each component, partners were defining the API of their part of the platform. To document 
this, each partner was also updating the corresponding UML component diagram, but without marking the 
connection between components. This allowed all parties involved in the project to follow the changes in the 

FIGURE 2-1. STATE AFTER STEP 2.1 
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API. In cases of a party having doubts or objections to another partner's component interface, the issue was 
clarified between involved parties. This process was self-organized and self-administrated. The dependencies 
among the components can be found in a Deliverable D2.5 SEMIoTICS High-Level Architecture (final). The 
initial API specification without covering component interactions was chosen on purpose; the lack of 
connections makes the diagram more readable, and simpler. Figure 2-2 below shows this approach of 
documenting components with their endpoints, but no connections between endpoints. 
 

 
FIGURE 2-2 REPRESENTATIVE COMPONENTS WITH ENDPOINTS 

 

 Declare and define the communication/dependencies among all components 
The most challenging part of developing a complex platform based on microservices is to ensure that 
components are able to interconnect whenever necessary. To make it possible and manageable it was decided 
to modify the standard UML component diagram. All identified endpoints have been merged into one diagram 
and the data flow has been shown between components (Figure 2-3). Information about the usage of specific 
endpoints was shown on separate sequence diagrams developed during working on use cases and discussions 
between interested partners. This task was the most complex and engaging for every partner in the consortium. 
The workflow in this task is described below: 
 
1. The appointed partner (coordinator) prepared the first version of the flow diagram based on previously 

published deliverables and internal project documents.  
2. Every partner raises their objections (if any) about the flows to the coordinator 
3. The coordinator resolves the conflicts and prepares the new version of the graph  
4. Steps 2-3 are repeated until all concerns are addressed 
 

 
FIGURE 2-3 SAMPLE DIAGRAM OF FLOW BETWEEN TWO COMPONENTS 

 Continuous Integration / Continuous Deployment 
The microservices structure of the platform allows applying the continuous integration and continuous 
deployment philosophy. It allows each partner to implement small changes in code and  allows for a fast 
response when changes occur in another partner's requirements. 
This philosophy leads to a better code quality and less time spent by introducing automatization in the building 
and deployment process. It also encourages developers to publish even small improvements in code by 
simplifying and automatizing the tedious process of testing and deployment. 
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The opportunity to use the automated pipelines is available for all consortium members. The process is 
presented in more detail in the subsections that follow, and it can be tailor-made for every partner. 
 

2.4.1. CI/CD TOOLS USED IN SEMIOTICS 
The tools used to automatize the process of developing and deployment of the platform include: 

- GitLab as the code repository1 
- Jenkins as a simple CI server2 
- Docker as a container platform3 
- GitLab Container Registry as a registry of containers images4 
- Kubernetes as a runtime environment for containers5 

 
2.4.2. CONTINUOUS INTEGRATION (CI) PIPELINE 
The CI idea within the SEMIoTICS project is presented in Figure 2-4. The proposed project pipeline is based 
on the standard CI pipeline. The main difference is that the desired product is a Docker image. At first, the 
pipeline is started manually. As it is shown in the table below pipeline starts at Jenkins, then the new code is 
fetched from the GitLab repository, the code is compiled, tested and build. At the end of the process , a docker 
image is pushed to the Docker or GitLab image registry. 
 

Start Get 
code 

Compile Test Build Push image  

      

       
FIGURE 2-4 CI PIPELINE 

 
2.4.3. CONTINUOUS DEPLOYMENT (CD) PIPELINE 
The overall CD idea within the SEMIoTICS project is presented in Figure 2-5. At first, the pipeline is started 
manually. Firstly, in order to start the pipeline, the changes need to be committed to Gitlab.  As it is shown in 
the table below, the pipeline starts at Jenkins, then cluster configuration files are pulled from GitLab. Next, 
Jenkins plugin plan changes, then apply changes and deploy them on Kubernetes cluster. Kubernetes get s a 
declarative configuration of the cluster and are then responsible for other actions – e.g. obtaining images from 
the Docker registry (if a Docker registry is private, the special Secret resource needs to be created to pull the 
image). 

Start Get config Plan changes Apply changes Deploy 
     

 
 

  
 

FIGURE 2-5 CD PIPELINE 
  

 
 
1 https://about.gitlab.com 
2 https://jenkins.io 
3 https://www.docker.com 
4 https://about.gitlab.com/blog/2016/05/23/gitlab-container-registry/ 
5 https://kubernetes.io 
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 INTEGRATION DESCRIPTION AND IMPLEMENTATION 
PROGRESS 

Within cycle one, the consortium decided to focus on the integration development related to the core 
functionality of SPDI patterns and their distribution across all 3 identified layers of SEMIoTICS framework as 
well as the pattern definition and visualization. This is a crucial aspect for achieving the objective of multi-
layered embedded intelligence and enablers the semi-autonomous operation of the assets within the different 
layers. Hence, a number of integrations of Pattern Engine and Pattern Orchestrator with components across 
three layers are described in the following sections. 
Field devices bootstrapping as one of the core flows required for any other functionality is described below 
while the integration flows required for the brownfield devices are going to be detailed in the further cycle. 
The second area of focus for cycle one was the semantic interoperability within and externally to the 
SEMIoTICS framework which means between the integral SEMIoTICS components as well as with external 
IoT platforms such as CLOE-IOT, MindSphere, OpenHab, and FIWARE. Details of specific integration flows 
may be found in the subsections that follow.  
Within Cycle 2, the partners were to prepare the integrations not performed in the previous cycle. The work 
focused on preparing communication GUI with the Security Manager and the Monitoring Component. Thanks 
to the former, data processed in the SEMIoTICS project were protected against unauthorized access.   
Moreover, as part of Cycle 2, the partners performed tasks related to integration with Recipe Cooker, Thing 
Directory and Backend Semantic Validator. 

 Integration flows delivered in cycle 1 
3.1.1. PATTERN ENGINE INTEGRATION WITH ORCHESTRATORS AT ALL LEVELS  
The Pattern Engine is responsible for reasoning on the Security, Privacy, Dependability, and Interoperability 
(SPDI) properties across all layers of the SEMIoTICS architecture. For this reason, variants of Pattern Engine 
are implemented in the backend, in the network, and in the field layer. Patterns are inserted, modified, executed 
or retracted at design as well as at runtime. These interactions are conducted with the help of Pattern 
Orchestrator. Apart from the interaction of Pattern Orchestrator with the Pattern Engines across all layers, 
there is also the interaction between NFV Orchestrator and the Backend Pattern Engine. Currently , this 
interaction is limited only for verifying that any required VNFs are instantiated in order to satisfy a related SPDI 
property. In Table 2, the interactions of Pattern Engines with the Orchestrators along with a small description 
are presented. 

TABLE 2 PATTERN ENGINE INTERACTIONS WITH ORCHESTRATORS 
Pattern Engine Orchestrators used by 

Pattern Engine 
Description of interactions 

Backend Pattern Engine 

Pattern Orchestrator 

Pattern Orchestrator is sending the 
pattern requirements and receives 
the status of the requirement after 
the Pattern Engine has reasoned 
based on the facts and rules stored 
in the Pattern Global Repository 

NFV Orchestrator 

The Pattern Engine is getting the 
available VNFs from NFV 
orchestrator when a related pattern 
requirement is received. 

SDN Pattern Engine Pattern Orchestrator 

Pattern Orchestrator is sending the 
pattern requirements and receives 
the status of the requirement after 
the Pattern Engine has reasoned 
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based on the facts and rules stored 
in the SDN Pattern Repository 

Field Pattern Engine Pattern Orchestrator 

Pattern Orchestrator is sending the 
pattern requirements and receives 
the status of the requirement after 
the Pattern Engine has reasoned 
based on the facts and rules stored 
in the Field Pattern Repository 

 
As shown in the sequence diagram of Figure 3-1, the Pattern Orchestrator will choose to send the SPDI 
requirement to one or more Pattern Engines depending on the orchestration requirements (e.g., sending 
network-related requirements to the network pattern engine, if such requirements are included within the 
orchestration specification). This will trigger a sequence of events that consists of several steps. Every Pattern 
Engine uses the available information from the monitoring components in each layer and in combination with 
the rules and facts already stored in Pattern Repository also in the same layer, reasons for the final status of 
the said requirement. In addition, the Pattern Engines that exist in the network layer as well as in the field 
layer, propagate their facts not only to their local Pattern Repository but at the Global Pattern repository as 
well. When the requirement is related to some VNFs then interaction with the NFV orchestrator will also oc cur 
in order for the final requirement status to be formed. 
For the needs of the communication between Pattern Engine and the Orchestrators , POST service requests 
have been developed such as addFact, insertRule and factUpdate. 
 

 
FIGURE 3-1 SEQUENCE DIAGRAM FOR PATTERN ENGINES INTERACTION WITH ORCHESTRATORS 
 

3.1.2. FIELD DEVICES INTEGRATION 
Figure 3-2 shows a sequence diagram of activities that occur during the bootstrapping process. The goal of 
this process is to integrate a new device in the SEMIoTICS platform by using SEMIoTICS IIoT Gateway. Figure 
3-2 represents an updated version of a sequence diagram that was presented in the Deliverable D3.3 (see 
Figure 16). The update is concerned with the introduction of a new component “Semantic Edge Platform” 
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(SME). The SME has multiple purposes in the architecture: (i) it provides a convenient user interface for 
configuring SEMIoTICS IoT Gateway; (ii) it provides a convenient development environment for creating new 
Apps with a newly bootstrapped device, and; (iii) it provides a mechanism to semantically annotate brownfield 
devices. 

Once the process in Figure 3-2 is completed, it is possible to create new applications based on data from the 
new device, as well as the data from other available devices in the platform. In order to achieve this goal, 
SEMIoTICS IoT Gateway needs to make the device data accessible, and it has to provide a full semantic 
description of the device, i.e., semantics about device capabilities, its data, communication protocols, 
contextual information (e.g., location, a domain of use), etc. 

In the bootstrapping process, different classes of the device are distinguished. The first class consists of 
devices that already have a Web-based RESTful interface and are described by W3C Thing Description. The 
second class comprises of all other devices that yet need to be made accessible over a Web-based RESTful 
interface. These devices do not have a semantic description, or it exists, but needs to be mapped to 
standardized semantic IoT models. For further details, an interested reader is referred to  as SEMIoTICS 
Deliverable D3.3. 

So far, the bootstrapping process has been implemented and demonstrated for the first class of devices. The 
implementation of the second class is in progress and will be delivered in Cycle 2 

 

 
FIGURE 3-2 SEQUENCE DIAGRAM FOR BOOTSTRAPPING AND INTERFACING SEMIOTICS FIELD 

LEVEL DEVICES 
 
3.1.3. GUI INTEGRATION 
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The Graphical User Interface is a module that overlays some components of the SEMIoTICS projects. Its main 
purpose is to support the visualization of individual components and the presentation of collected data in one 
IoT platform. A detailed description of GUI architecture and interactions between internal and external 
components were included in D4.7 in section 4.5. According to the project assumptions, GUI integrates with 
Thing Directory, WoT compliant field devices, and the Pattern Orchestrator. Due to that fact, the description of 
each integration is provided in a separate subsection below. 

3.1.3.1. GUI integration with Thing Directory 

This module is responsible for basic visualization of Things currently registered in Thing Directory. A list of all 
Things is not stored in the GUI database, so only the Thing Directory provides a current state of devices 
connected to the IoT platform. To receive data, the GUI through an internal component sends HTTP requests 
to the Thing Directory’s API and in the response - the body gets JSON with specific information. To avoid 
problems with the device description, maintain consistency and uniform format in the platform, GUI uses the 
JSON-LD standard in the above-mentioned communication. After getting data from Thing Directory, the JSON 
description needs to be translated into a user-friendly form. For this purpose, mapping to a previously defined 
object is used, so that the user can easily browse devices with their attributes. Moreover, the GUI provides 
support for the SPARQL filter for easy searching in Thing Directory. This component also allows for adding 
new things and remove existing ones directly through the platform. It is not the main way to register new 
devices to the platform, but it can be additional functionality to support the Thing Directory. Sequence diagrams 
illustrating interactions between GUI and Thing Directory are depicted in Figure 3-3 and Figure 3-4. 
 

 
FIGURE 3-3 SEQUENCE DIAGRAM, DISPLAY ALL DEVICES FROM THING DIRECTORY 

 
As shown in Figure 3-3, when the user wants to show or filter devices a GET request from the GUI is sent to 
Thing Directory and the returned data is translated from JSON-LD format to model that can be presented in 
the platform. A similar flow occurs when the user registers a new thing through a dedicated window in the GUI. 
The definition of Thing Description in JSON-LD standard is sent by the POST method directly to Thing Directory 
where is validated and added to the existing list. 
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FIGURE 3-4 SEQUENCE DIAGRAM, DELETE THING 

 
Figure 3-4 demonstrates the process of removing a “Thing” from the Thing Directory. The user needs to get a 
list of things registered in Thing Directory as mentioned in the previous diagram and then can select a list of 
the device to delete. After confirmation, for each thing, the GUI sends one by one POST requests with Thing 
id as parameter. When the operation is completed, the user gets a message with success or errors that have 
occurred. 
 

3.1.3.2. GUI integration with WoT compliant field devices and Semantic API & Protocol Binding 

The need to integrate GUI with Semantic API & Protocol Binding resulted from the ability to connect Brown 
Field Devices to the SEMIoTICS platform. For this type of device, receiving real-time data or triggering actions 
is not possible without a special mediator that can provide an endpoint to get different requests (GET methods 
to return properties values and POST methods to control actions). This component is not used to connect with 
WoT devices which have their endpoints and GUI can receive data directly without using additional 
components. As it was mentioned above, before reading values from devices in real-time, actuate any action 
and collect data at a set frequency, GUI component must get URL addresses of each endpoint. For this 
purpose, a thing description from Thing Directory in the JSON-LD standard is translated to assign actions and 
properties of the device to the correct URL address. As a result of the mapping, a new data object is created, 
what ensures quick communication with the Semantic API & Protocol Binding component. Figure 3-5 and 
Figure 3-6 present interactions between the described components. 
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FIGURE 3-5 SEQUENCE DIAGRAM, READ REAL-TIME DATA FROM DEVICE 
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FIGURE 3-6 SEQUENCE DIAGRAM, CONTROL ACTION 

 

3.1.3.3. GUI interaction with Pattern Orchestrator (PO) 

The work on integrating the GUI with Pattern Orchestrator started with determining the JSON model to send 
data between them. It was a crucial step to enable parallel work by partners. The aim of this integration was 
to support Pattern Orchestrator in monitoring the current state of SPDI patterns from all recipes and location 
SPDI patterns in an individual layer. In Pattern Orchestrator component, a dedicated endpoint was created for 
GUI that provides combined data with SPDI patterns and rec ipes. An example of the JSON model that was 
created for this communication is depicted in Figure 3-7. 
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FIGURE 3-7 EXAMPLE OF JSON RETURNED FROM PATTERN ORCHESTRATOR 

 
As shown in Figure 3-7, the model data contains a list of defined recipes with all nodes (e.g. links, sequences, 
nodes) combined with SPDI patterns defined for them. All patterns are assigned to one of the possible layers 
(backend, network, gateway) or to one of three cross layers that are between standard layers. To receive data 
from PO special HTTP method called getSPDIData was developed. When PO receives a request, it merges 
data from the external component (e.g. Recipe Cooker) and returns a response in JSON format. The GUI then 
translates this data to show it in two possible ways, as patterns with assigned to layers or as a node graph. 
Creating a graph from a JSON description required the implementation of new algorithms to  be able to show 
the graph in a similar form to Recipe Cooker. Detailed descriptions with example views can be found in 
deliverable D4.7 (section 4.3.4), while the interaction between components is depicted in Figure 3-8. 
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FIGURE 3-8 SEQUENCE DIAGRAM, SHOW SPDI PATTERNS 

 
3.1.4. PATTERN ORCHESTRATOR INTEGRATION WITH RECIPE COOKER 
This integration is responsible for translating IoT and service orchestrations, which represent concrete recipes, 
into patterns and passing them to pattern engines on each layer. The Pattern Orchestrator module features an 
underlying semantic reasoner able to understand the internal components of IoT Service orchestrations 
expressed using the pattern language (see deliverable D4.1, Section 3.3), received from the Recipe Cooker 
module and transform them into architectural patterns. The patterns that are created are then communicated 
to the corresponding Pattern Engines (as defined in the Backend, Network, and Field layers), taking into 
consideration the components under their control (e.g. passing Network-specific patterns to the Pattern Engine 
present in the SDN controller). As a result, automated configuration, coordination, and management of the 
SEMIoTICS patterns are achieved across different layers and service orchestrations.  
 
The components of the SEMIoTICS architecture that are involved in the process described above are the 
Recipe Cooker, the Pattern Orchestrator and a translator component between them. The main aim of this 
translator component is to express an instantiated recipe in a way that is understandable by the Pattern 
Orchestrator. For that reason, the IoT application model, as described in D4.1, has been created, based on an 
orchestration-based approach, where the interactions between application components are specified as 
orchestrations of activities (supporting Sequences, Merges, Choices, Splits etc.). A high-level view of the key 
components and their interfacing is depicted in Figure 3-9, while the interactions of the aforementioned 
components are visualized in the sequence diagram in Figure 3-10. 



780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017 
Deliverable D5.7 Software system integration (Cycle 2) 
Dissemination level: [Public]  

 

 

20 
 
 

 
FIGURE 3-9 PATTERN ORCHESTRATION; KEY INTERFACES AND COMPONENT INTERACTIONS 

 

 
FIGURE 3-10 SEQUENCE DIAGRAM, COMMUNICATION BETWEEN RECIPE COOKER AND PATTERN 

ORCHESTRATOR 
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As shown in the sequence diagram above, the user defines the recipe (i.e., the application flow) and specifies 
the expected capabilities of ingredients, such as input and output data types. The Recipe Cooker tool is utilized 
for this specification. After this step, the instantiation of the recipe takes place. “Instantiation” refers to the 
replacement of abstract components with concrete available components. The recipe is then deployed. The 
recipe deployment triggers the transmission of the recipe instance to the Pattern Translation Middleware. What 
follows is the description of the recipe instance in terms of the pattern language. This procedure is depicted in 
the sequence diagram as a self-call to the Pattern Translation Middleware activation, labelled as “Recipe to 
pattern”. Translation from Node-RED JSON format into the pattern language is realized through a series of 
graph transformation steps, where nodes from the recipe are collapsed into an orchestration of the pattern 
language (Sequence, Merge, etc.), until the graph has only a single node left. The transformation steps are 
then translated into the pattern language. 
 

In sequence, the recipe expressed as the pattern is transmitted to Pattern Orchestrator. For that purpose, a 
POST service request has been developed. It is called insertRecipe request. Pattern Orchestrator receives a 
request from Recipe Cooker, which includes a recipe description in JSON format. Such a request is depicted 
in Figure 16. Under “recipeID” a unique string that acts as an identifier is provided, while under “recipe” label 
lays the recipe description itself. The recipe instance depicted in Figure 16 is very simple and consists of two 
software components that are placed in sequence, which means that the output of the former is consumed as 
input by the latter. 
 

 
FIGURE 3-11 INSERT RECIPE REQUEST 

 
Eventually, the IoT deployments described using the pattern language will be sent and stored in the Pattern 
Engines of the three layers (Backend, Network, and Field). For that reason, they need to be translated to 
Drools; to achieve this they are used as input to an ANTLR46 lexer, parser and listener, which is part of Pattern 
Orchestrator. These programs create a Drools fact for every orchestration activity, control flow operation and 
property. The Drools facts are then inserted in the KnowledgeBase of Drools, a repository of all the 
application’s knowledge definitions. Sessions are created from the KnowledgeBase in which data can be 
inserted and process instances started. A knowledge session is a way to interact with Drools and the core 
component to fire Drools rules. Rules themselves are also held in a Knowledge session. The information that 
is stored in the KnowledgeBase is used for reasoning. 
 

During the first step of the translation of an IoT application orchestration to Drools facts , the ANTLR4 lexer 
recognizes keywords and transforms them into tokens. The created tokens are used by the ANTLR4 parser 
for creating the logical structure, i.e. the parse tree. Next, the ANTLR4 listener allows communic ation with 
Drools every time a node in the parse tree is entered. The listener takes information from the tokens and sends 
it to Drools. For this communication, a POST request has been created, named “addFact”. This procedure is 
depicted in the sequence diagram as a synchronous invocation to the Pattern Engines’ activation, labelled as 
“add requirement”. 
 

As soon as the Drools facts reach one of the Pattern Engines, instances are created from the corresponding 
Java classes and the received information is stored at the class attributes. During the last step, the created 
java instances are inserted as facts into the knowledge session. These Drools facts are used by Drools rules, 
which are fired when a condition is met. 
 

 
 
6 https://www.antlr.org/ 
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The requirement status is returned by the Pattern Engines as an answer to Pattern Orchestrator for every “add 
requirement” invocation. The received answer is then transmitted by the Pattern Orchestrator to the Recipe 
Cooker.  
 

3.1.5. PATTERN ORCHESTRATOR INTEGRATION WITH THE SDN/NFV FOR SERVICE FUNCTION 
CHAINING 

One of the scopes of SEMIoTICS is to provide security guarantees through the traffic forwarding via different 
network security functions by applying the Service Function Chaining (SFC; as detailed in deliverable D2.5 
and D3.2).  Considering the different types of traffic reaching the backend where the chaining of services will 
take place, a variety of intricacies can be observed such as of low trust and low priority, low bandwidth and 
latency, medium trust but high priority, medium trust and of low priority, and finally high trust and high priority, 
as low latency and relatively high bandwidth. To achieve this goal, the SEMIoTICS framework has integrated 
a number of different software components in all the layers as can be seen in Figure 3-12 . Apart from the 
layer separation (application, network or field), the involved components can be separated into two types, 
expressed also with different colours, with red the design of the control flow components and with blue the 
runtime data flow involved components.  

 

FIGURE 3-12 INTEGRATION OF PATTERN FRAMEWORK AND SERVICE FUNCTION CHAINING 
 
The design of an efficient control flow mechanism is required to be used not only to verify SFC and VNFs but 
also to instantiate them for assuring the SPDI requirements (KPI 2.1) based on the enforcement of the 
respective SPDI patterns. When an SFC cannot be verified, the required VNFs are requested by the VIM via 
NFV Orchestrator to identify them or to instantiate them if they do not exist. More specifically, the components 
which are involved in the control flow are: 

Switches 

Network 
Function 
Services 

Sensors 
Actuators 
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• The Pattern orchestrator is able to forward pattern rules and trigger the SFC requirements to the 
pattern engine 

• The Pattern engine (backend and SDN) for enabling the pattern rules to address the SFC 
requirements such as instantiate or verify SFCs 

• The SFC manager in the SDN controller to identify and configure service function chains  
• The SDN Controller: is responsible to interact with the switches and the VNFs together with the pattern 

engine and the SFC manager. 
• The NFV orchestrator to identify available VNFs as instantiated in the VIM.  

 
The procedure of instantiation and the identification of the respective SFCs and the VNFs based on the patterns 
is depicted in Figure 3-13 including the following interactions with the components of the SEMIoTICS 
architecture. The Pattern orchestrator forwards a specific chain request to the pattern engine for forwarding 
the traffic between entities through a specific chain of functions. Pattern engine forwards this request to the 
SFC manager which is located in the SDN controller responding to the pattern engine whether the chain exist 
or not. If the chain exists, then a respond of the chain satisfaction is returned to the pattern orchestrator. If the 
chain does not exist, then a requested is forwarded to the VIM asking whether the service functions exist or 
not. If functions exist in the VIM, then the chain can be instantiated in the SFC Manager and a respond of the 
chain satisfaction is returned to the pattern orchestrator. If functions do not exist in the VIM then, a function 
instantiation request is forwarded to the NFV Orchestrator, which is responsible to instantiate them in the VIM. 
Then, the chain can be instantiated in the SFC Manager and a respond of the chain satisfaction is returned to 
the pattern orchestrator. 

 

FIGURE 3-13 SEMIOTICS SFC CONTROL FLOW 
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The integration of the different components that participate in the control flow configuration especially with the 
pattern engine and the SFC Manager is done through the exposed interfaces of the SFC manager where the 
pattern engine can send and receive requests. More specifically, the SFC manager exposes REST interfaces 
able to instantiate the respective Service Functions and Chains by the insertion of respective templates in 
JSON formats. In addition, the ACL, the classifiers, and the forwarders can be defined based on the respective 
REST interfaces. In Table 3, the JSON syntax of data which is expected by the SFC manager and the address 
is provided. 
 

TABLE 3 SFC COMPONENTS AND JSON TEMPLATES 
Service Function (SF) 
JSON Syntax 
(data) 

"service-function": [ {"name","ip-mgmt-address", "rest-uri","type", "nsh-aware", "sf-data-
plane-locator": [ {"name","port","ip","transport", "service-function-forwarder"}] }] 

URL (uri) /restconf/config/service-function:service-functions/ 
Service Function Forwarder (SFF) 
JSON Syntax 
(data) 

"service-function-forwarder": [ {"name","service-node", "service-function-forwarder-
ovs:ovs-bridge": {"bridge-name"}, "sf-data-plane-locator": [ {"name","port","ip","transport", 
"service-function-forwarder"}] }], "service-function-dictionary": [ 
{"name", "sff-sf-data-plane-locator": {"sf-dpl-name", "sff-dpl-name" }}] 

URL (uri) /restconf/config/service-function-forwarder:service-function-forwarders 
Classifier 
JSON Syntax 
(data) 

"service-function-classifier": [ {"name","scl-service-function-forwarder": [ {"name", 
"interface"}], "acl":{"name","type"}] 

URL (uri) /restconf/config/service-function-classifier:service-function-classifiers/ 
Service Function Chain 
JSON Syntax 
(data) 

"service-function-chain": [ 
{"name", "symmetric", "sfc-service-function": [ 
{"name", "type"}, {"name", "type"}] 

URL (uri) /restconf/config/service-function-chain:service-function-chains/ 
 

Regarding the data flow, traffic classification is based on the predefined SFC for providing secure chains to 
forward the different kind of traffic of this use case (KPI 5.2). Through the definition of said chains, each of the 
traffic types gets routed through a chain of service functions tailored to its intrinsic requirements and 
characteristics, such as QoS and trust levels, and, by extension, its desired SPDI properties. These services 
are "stitched" together to create a service chain, with numerous options for adaptations when required (e.g. to 
adapt to link failures). The flexible traffic steering towards network functions enabled by SFC can also be 
leveraged to integrate novel, adaptable security services, such as steering suspicious traffic to security 
appliances. The deployment of these enhanced security concepts is in line with the enhanced protection 
requirements of certain sensitive application domains, such as critical infrastructures, given that the old 
paradigm of perimeter defences and trusted internal networks is obsolete, as recent attacks have 
demonstrated. Considering the latter, another important element in the operation of the above is the SPDI -
based management of the various involved components and their compositions, through the Pattern-based 
framework that is in the core of the SEMIoTICS approach. In addition, the involved components in data flow 
are the following: 

• The Use case field devices can contain sensors and actuators. 
• The Open Virtual Switches (OVS) are programmable switches supporting OpenFlow rules able to 

interact with the SDN Controller. Two main roles of OVS switches as classifiers (to classify the traffic) 
and as forwarders (to forward the traffic to the respective VNF). An OVS switch can be Virtual (i .e. as 
a Virtual or Physical). 

• The Virtual Network Functions (VNFs) are responsible to manage the traffic and express the service 
functions as described previously. That may include a firewall, IDS, Load-Balancer, Deep Packet 
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Inspection (DPI) or a honeypot hosted by the VIM and handled both by the SFC manager and the NFV 
orchestrator. 

• The Use case application are responsible to interact with the distributed field layer use case devices. 

The procedure depicted in Figure 3-14 presents the traffic classification either from a use case device or an 
application through a number of different service function (security VNFs) that constitute a chain. The classifier 
is responsible to identify the type of traffic based on specific predefined ACLs including characteristics such 
as IP and port, to forward to the respective chain. 

 

FIGURE 3-14 SEMIOTICS SFC DATA FLOW 
 

There are a number of different methods to use the exposed interfaces and to insert the required SFC 
configurations in the SFC Manager. Each of these methods is related to application that uses these interfaces. 
The exposed REST APIs interface is used with a Python function to PUT configurations ( i.e., classifiers, 
forwarders etc.) from the command line enabling semi-dynamic configurations in the SFC Manager as 
presented in Figure 3-15. 

 
FIGURE 3-15 REST CALLS SFC CONFIGURATION IN PYTHON  

 
On the other hand, JAVA is required to GET or PUT configurations (i.e. chains, functions, ACLs etc.) as 
required or provided by the pattern rules enabling dynamic configurations in the SFC Manager via REST APIs 
as expressed in Figure 3-16 and Figure 3-17. 
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FIGURE 3-16 GET REST CALL FOR SFC CONFIGURATION IN JAVA  

 
FIGURE 3-17 PUT REST CALL FOR SFC CONFIGURATION IN JAVA  

 
The instantiation of the service functions to configure the data flow in the SFC Manager can be given by the 
insertion of a JSON file such as the one depicted in Figure 3-18. The file is inserted by the use of either the 
deployed PYTHON function or the JAVA supporting either the semi-dynamic or the dynamic one in relation 
also with the enabled pattern rule. In the list of the service functions, the firewall, the DPI, the IDS and the 
Load balance have been defined as the most crucial ones to enable the SPDI properties required by each 
chain to guarantee. Each VNF has a unique IP address which is required for the configuration an d integration 
with the other functions interacting also with the use case devices and apps. The insertion of the service 
functions in the SFC manager can be given as follows: 
 

put(controller, port, /restconf/config/service-function:service-functions/, service-functions, True) 
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FIGURE 3-18 SERVICE FUNCTION JSON DATA SFC CONFIGURATION 
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The instantiation of a sequence of functions can constitute a service chain as can be seen in Figure 3-19. 
Similar to the insertion of service functions in the SFC manager through the exposed service function REST 
interface, service chains can be inserted by the use of the PYTHON or JAVA functions : 
 
put(controller, port, “/restconf/config/service-function-chain:service-function-chains/”, service-function-chain, 

True) 

 

 
FIGURE 3-19 SERVICE CHAIN JSON DATA SFC CONFIGURATION 

 
Finally, the last step of the software integration for function chaining is based on the instantiation of the SFC 
when a VNF does not exist or is failed in the VIM (OpenStack). In this case, the pattern engine uses the 
exposed by the NFV orchestrator (OSM) interface to instantiate a VNF based on the VNF catalog of all usable 
VNFDs (VNF Descriptors) as described in the D3.2. The role of the pattern engine in this case is to react as 
the OSS/BSS (Operations Support System and Business Support System) to support service chaining 
requirements either at design or at runtime. 
 

3.1.6. INTEGRATION OF SEMANTIC BACKEND VALIDATOR WITH OTHER COMPONENTS 
The main purpose of the Backend Semantic Validator (BSV) component is to tackle the semantic 
interoperability issues that arise in the SEMIoTICS framework (see Deliverable D4.4), at the application 
orchestration layer. In fact, the component is responsible for the mapping between data  types to ensure that 
data flow is possible between smart objects (Things, i.e. Sensor, Actuator). Moreover, semantic transformation 
methods (Adaptor Nodes) have been developed with the purpose of resolving, if possible, conflicts among the 
semantic annotations.  
The components of the SEMIoTICS architecture that are involved in this process are the BSV which is 
responsible for semantic validation mechanisms; the Thing Directory component that are the repository of 
knowledge containing the necessary Thing models; the Recipe Cooker component, which is responsible for 
cooking (creating) recipes reflecting user requirements on different layers (cloud, edge, network) as well as 
transforming recipes into understandable rules for each layer and includes the Adaptor Nodes to re solve 
semantic conflicts. It uses the Thing Directory with all the models required to create these rules. At the field 
layer, the GW Semantic Mediator (GWSM) component for the semantic mapping between different data 
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models; the Semantic API Protocol Binding (SAPB) component for binding different protocol and exposing a 
common semantic API located at the Generic IoT Gateway layer (see Table 4). 
 

TABLE 4 LIST OF COMPONENTS THAT INTERACT WITH THE BSV COMPONENT 
Component Components 

that will be 
used/consumed 

by this 
component 

Layer of 
component 
that will be 
consumed 

Description of interactions 

Backend Semantic 
Validator  

Thing Directory Backend  Searching for the necessary Thing 
models in Thing Directory component, 
in order to detect any potential 
semantic conflicts between the 
interacting domains 

Recipe Cooker Backend Connecting with Recipe Cooker to 
resolve these semantic conflicts using 
the Adaptor Nodes that configure an 
Interaction Pattern in accordance with 
the application's requirements. 

Semantic API & 
Protocol Binding 

Field Transferring the translated request to 
the Semantic API & Protocol Binding 
component which is responsible to 
trigger the GW Semantic Mediator in 
the filed layer, in order to send the 
request in an appropriate format to the 
target Thing (actuator). 

 
The functionality of this component consists of three basic steps: 

1. Searching for the necessary Thing models in the Thing Directory component to detect any potential 
semantic conflicts between the interacting domains. 

2. Connecting with Recipe Cooker and Semantic Edge Platform (in the field) to resolve these semantic 
conflicts using the Adaptor Nodes that configure an Interaction Pattern in accordance with the 
application's requirements. 

3. Transferring the translated request to the Semantic API & Protocol Binding component which is 
responsible to trigger the GW Semantic Mediator in the filed layer to send the request in an appropriate 
format to the target Thing (actuator). 

 
The procedure of the semantic interoperability mechanisms between the backend and the field layer is 
highlighted by a sequence diagram in Figure 3-20. 
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FIGURE 3-20 SEQUENCE DIAGRAM FOR SEMANTIC INTEROPERABILITY MECHANISMS 

 
In Cycle 1, the first and the second step of the functionality of this component have been developed. This 
implementation includes the interaction of BSV with the Recipe Cooker and Thing Directory at the application 
orchestration layer. Particularly, based on the component requirements, two main POST service requests have 
already been developed; the validateData and the validateRecipeFlow POST request service for the first and 
the second step of the above functionality respectively. 

• validateData POST service request (see Figure 3-21): it receives a request from the IoT application, 
in JSON-LD/JSON format. The JSON-LD/JSON Parser is implemented as part of the BSV component, 
in order to analyze the received input and extract the meaningful information from these set of data. 
After that, the BSV interacts with the Thing Directory component; this stage consists of two 
procedures, the TD discovery of the specific Thing and the TD registration for the case that this Thing 
is not included in the Thing Directory. In the first case, the send GET function is developed that uses 
HttpURLConnection to send an HTTP GET request to Thing Directory in order to get the search result. 
For this discovery, SPARQL query can be used to retrieve TDs based on their IDs and should be 
percent-encoded. Depending on the above result, if the TD of the Thing is not in the Thing Directory, 
a POST request in Thing Directory was implemented for the registration of the new TD. 
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FIGURE 3-21 SEQUENCE DIAGRAM - FIRST POST SERVICE REQUEST BSV 

 
• validateRecipeFlow POST service request (see Figure 3-22): it receives a request from Recipe Cooker 

in JSON format (the recipe flow). This request aims to trigger BSV to check for any interoperability 
conflicts between the two Things of the specific recipe. Next, the BSV component connects with the 
Thing Directory component to ensure that these specific Things have already been registered in order 
to receive information on their TDs. This is a required step, otherwise, the BSV cannot resolve 
semantic differences and ensure that data flow is possible between them. The BSV parses the TDs 
to discover for the semantic interoperability between the connected Things. In this phase, there are 
two possible cases, the interacting Things used the same data transformation techniques and the 
interacting Things used the different data transformation techniques. In the second case, the BSV 
searches in Recipe Cooker for the corresponding Adaptor Node. If the Adaptor Node does not exist, 
the BSV should develop and add it in the Recipe Cooker. Finally, the BSV sends the response back 
to Recipe Cooker, using JSON format, with the updated flow, which has a new “wire” with the Adaptor 
Node between two initial Things (ingredients) of the recipe. The updated flow can be imported and 
saved by the Recipe Cooker. The advantage of this process is that after resolving the semantic ally 
interoperable conflicts between these two specific Things, in any future interaction that will be required 
for these, the Adapter Node will be added to the corresponding recipe to ensure semantic 
interoperability. 
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FIGURE 3-22 SEQUENCE DIAGRAM - SECOND POST SERVICE REQUEST BSV 
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 Integration flows delivered in cycle 2 
3.2.1. GUI INTEGRATION WITH SECURITY MANAGER 
Every application which deals with sensitive and confidential data should be secured. This can be 
accomplished in many ways - one way to provide security to web applications is to use OAuth27. It is an 
authorization framework that enables applications to obtain limited access to user accounts on an HTTP 
service. It works by delegating user authentication to the service that hosts the user account and authorizing 
third-party applications to access the user account. OAuth2 provides authorization flows for web and desktop 
applications, and mobile devices. During the second cycle of the development, it was decided to have both 
GUI’s API and web application secured and since Security Manager can be served as OAuth2 provider it was 
agreed to use it as one. 
 
 

 
FIGURE 3-23 OAUTH CODE GRANT FLOW 

 
1. Access Application: The user accesses GUI and triggers authentication and authorization. 
2. Authentication and Request Authorization: The GUI redirects the user to the Security Manager login 

page where it prompts the user for their username and password.  

 
 
7 https://oauth.net/2/ 
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FIGURE 3-24 REDIRECT TO SECURITY MANAGER'S LOGIN FORM 

 
 

          
FIGURE 3-25 SECURITY MANAGER’S LOGIN FORM 

 
3. Authentication and Grant Authorization: Security Manager receives the authentication and 

authorization will be checked: If user’s credentials are invalid, the request’s response is 302 Found 
and the user is redirected back to the login page. As soon as credentials are valid, the user is redirected 
further and the workflow will continue. 
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FIGURE 3-26 REDIRECT AFTER SUCCESSFUL LOGIN 
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FIGURE 3-27 REDIRECT BACK TO THE LOGIN FORM AFTER UNSUCCESFUL LOGIN 

 
4. Send Authorization Code: After the user authorizes the app, the Security Manager generates an 

authorization code and sends it back to the GUI as URL parameter. 
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FIGURE 3-28 GENERATING AUTHORIZATION CODE 

 
5. Request Code Exchange for Token: The GUI uses the authorization code to request an access token 

from Security Manager.  
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FIGURE 3-29 HTTP REQUEST TO GET AUTHORIZATION TOKEN 
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6. Issue Access Token: Security Manager validates the authorization code and if valid issues an access 
token. 

 

 
FIGURE 3-30 THE AUTHORIZATION TOKEN 

 
 

7. Request Resource w/ Access Token: The GUI attempts to access the resource from the resource ’s 
server by adding the access token to every HTTP request. 

 

 
FIGURE 3-31 AN EXAMPLE OF HTTP REQUEST WITH AUTHORIZATION TOKEN 

 
8. Return Resource: To have API secured, an authentication filter was implemented. The filter intercepts 

every HTTP request destinated for GUI:Backend and checks whether the token is present in the 
request header; if it is then the token is sent back to Security Manager. By doing so we are able to 
validate the token and get the information about the resource owner. If the token is valid and hasn’t 
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expired, the response code is 200 and the response body is a JSON which contains all the essential 
information about the resource owner and token’s expiration date  (Figure 3-32). On the other hand, if 
the token had been forged or it had expired by the time request is sent, the response code is 400 
meaning that the original request should be denied access to the resource (Figure 3-33). This enforces 
strict access control for all applications within the GUI with the help of the Security Manager.  

 

 
FIGURE 3-32 USER DETAILS RESPONSE 

 
 
 

 
FIGURE 3-33 API RESPONSE DUE TO THE INVALID TOKEN 

 
 

3.2.2. GUI INTEGRATION WITH MONITORING COMPONENT 
 

In the second cycle, the integration with Monitoring Component has been developed. The Monitoring API is 
described according to OpenAPI specification and is shown in Figure 3-34 
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FIGURE 3-34 MONITORING API 

 
There are described three endpoints, and the structure of the request body. The reach description of the 
Monitoring functionalities is provided in deliverable D4.9 on Monitoring, prediction and diagnosis 
mechanisms. 
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During this cycle, the graphic user interface for registering query, list of active queries, and list of high -level 
events have been added to GUI. The next sections contain the description of the above mention 
integrations.  
 

3.2.2.1. Monitoring query registration with GUI 

To GUI frontend has been added functionality of adding the monitoring query. In  Figure 3-35 QUERY 
REGISTRATION VIEWis shown the view for adding a new monitoring query. 
 

 
FIGURE 3-35 QUERY REGISTRATION VIEW 

 
The query is sent to the Monitoring Component and if  is valid, then is store in GUI Backend DataBase. The 
sequence diagram (Figure 3-36) shows the registration of a new query. User put the body of a query into 
from, click the register button, GUI sends the query to the Monitoring if the query is valid GUI save it in its 
database and display success notification otherwise unsuccessful message.  
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FIGURE 3-36 NEW QUERY REGISTRATION 

 
On Figure 3-37 is shown the body of registration a new query Http request, the id is automatically added by 
the GUIBackend, the rest of the body is rewritten from the user input form presented in  Figure 3-35. 
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FIGURE 3-37 SIMPLE QUERY HTTP REQUEST BODY 

  
3.2.2.2. View of active monitoring queries 

During Cycle 2 the view of high-level events has been added. A new view is shown in Figure 3-38. The table 
contains six columns which four of them can sort by clicking on the double arrow icon. Also, the search box 
allows to find the high-level event pattern by its name which is Figure 3-37 on line 4. The green button “Add 
new Pattern” leads to the registration new query view which is shown in Figure 3-35. 
 

 
FIGURE 3-38 VIEW OF ACTIVE QUERIES 

 
3.2.2.3. View of high-level events  

The new view of the list of high-level events has been added and is shown in Figure 3-39. The table contains 
five columns in which four of them can be sorted by clicking on the double arrow icon. The search boxes above 
columns allows to search the high-level event by source, id, or event pattern name. The blue eye icon provides 
access to the details of base events. 
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FIGURE 3-39 VIEW OF HIGH-LEVEL EVENTS 

 
In the GUI Backend has been also added the endpoint for receiving the high-level events from Monitoring 
Component. In Figure 3-40 is shown the sequence diagram of high-level propagation. 
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FIGURE 3-40 SEQUENCE DIAGRAM OF HIGH-LEVEL PROPAGATION 

 
The low-level event is also called the base event, the structure of it and high-level event are shown in Figure 
3-41. In each high-level event is also a list of base events that triggered it. 
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FIGURE 3-41 SEMIOTICS EVENT OBJECT MODEL 

 
3.2.3. BACKEND PATTERN ENGINE INTEGRATION WITH SECURITY MANAGER  
Regarding the integration of Backend Pattern Engine (BPE) with Security Manager (SM), it has been focused 
on BPE to be able to get information from the SM associated with the location of the patient. To that end, the 
communication between the two components has been established without having to house the two 
components in the same premises. Case in point, the SΜ is located in the premises of University of Passau 
and the BPE is located in FORTH’s premises.  

The flow of information is one way, meaning that the BPE requests information from the SM and not the other 
way around. For that reason only the SM had to be publicly available and that was provided under the 
"semiotics-security.sec.uni-passau.de" domain. From the BPE side, the location of the SM is retrieved from the 
Environment Variables of the hosting system. Even if the Environment Variables are not set, a fall back location 
of the SM is embedded in the code of the BPE (Figure 3-42). 
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FIGURE 3-42 SECURITY MANAGER IP, PORT AND TOKEN 

 
The BPE requests periodically the list of users that have access to the location of the patient. Under normal 
circumstances this list is meant to be empty, indicating that no one has access to the location of the patient, 
hence the privacy of the patient is ensured. Upon receiving the response from the SM, a property indicating 
the privacy of the patient, is inserted to the Drools Engine as a fact, and a corresponding verification rule is 
triggered, indicating that the privacy of the patient holds (Figure 3-43). On the contrary when the need arises 
for the location of the patient to be disclosed to other users, e.g. when the patient falls, then the said li st in no 
longer empty but it includes the users who have access to the patient’s location. As soon as the BPE realizes 
that the location list is no longer empty, the corresponding property for the privacy is updated and inserted to 
the Drools Engine which will result in failing to trigger the corresponding rule and consequently indicating that 
the privacy of the patient no longer holds. 

In order for the above interaction to be completed, the BPE initially requests a Bearer token from the SM and 
the said token is used when the BPE requests the list of entities with access to the location of the patient from 
the SM. The token has limited lifetime, therefore when the token expires the SM responds with the error 401 
Unauthorized. Whenever the BPE receives that aforementioned error, it requests a new Bearer token from 
the SM.  
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FIGURE 3-43 PRIVACY RULE IS TRIGGERED PERIODICALLY 

 
3.2.4. MONITORING COMPONENT INTEGRATION WITH PATTERN ENGINE  

As already mentioned in section 5.3 of D4.9 SEMIoTICS Monitoring, Prediction and Diagnosis Mechanisms 
(final) the monitoring component is integrated with the Pattern Engine at the SDN/NFV Layer using listeners 
for nodes and links. The said listeners interact directly with the Pat tern Engine in order to provide notifications 
regarding the topology changes. 

The network topology is composed of nodes and links between those nodes. The said nodes may be any network 
device such as a simple switch, a gateway or a host. Whenever a link failure occurs, the PE at the SDN layer 
must be informed of this, in the form of Drools Fact in order to reason whether any active SPDI or QoS property 
has been violated. 

The data in SDN controller is tree-based represented and there are interfaces that can monitor/listen changes in 
the tree. Two data-tree change listeners are implemented for monitoring the node and link changes as identified 
in the SDN network topology. The interface methods are invoked every time when there is a data change event 
in the specific path of the tree. The two modification types that we deal with, are “delete” (Figure 3-44) and “write” 
(Figure 3-45) as defined by the implementation of the said interface in SDN controller. The “delete” represents 
the removal of a link or a node and the “write” represents the addition of a link or a node accordingly. 
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FIGURE 3-44 MODIFICATION TYPE “DELETE” 

Modification type = delete 

Identify deleted link  

remove from Pattern Engine facts 

Reload facts to 
Drools memory 
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FIGURE 3-45 MODIFICATION TYPE “WRITE” 

 
3.2.5. RECIPE COOKER INTEGRATION WITH THING DIRECTORY 
From the Recipe Cooker, the Thing Directory can be called and incorporated in the definition of recipes (or: 
application flows). To integrate these two components, we have developed the TD Search node. It is capable 
of sending search requests to the Thing Directory and receives as a response all Thing Descriptions (TD) that 
match the search request. Figure 3-46 shows a simple example of an application flow that uses the TD Search 
node to discover suitable devices. The search is triggered by the ‘inject’ node (in blue) and the received TD is 
printed out using the ‘debug’ node (in green). Similar to printing the TD out using the ‘debug’ node, it can also 
be handed over to other kinds of nodes for further processing. E.g., it can be handed over to a UI node that 
would represent the contents of the TD to a user. 

Modification type = write 

Identify new link  

Add to Pattern Engine facts 

Reload facts to 
Drools memory 
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FIGURE 3-46 EXAMPLE APPLICATION FLOW USING THE TD SEARCH NODE. 

 
In order to execute the search queries on the Thing Directory, the TD Search node needs to be configured 
correctly. This can be done by double clicking the node after which the configuration panel (Figure 3-47) is 
shown. In the configuration panel, the URL and port of the Thing Directory needs to be specified, the search 
context needs to be defined (this is the namespace of the TD context to be searched for), and the search type 
needs to be given, which is mapped to the ‘type’ field of the properties of all TDs registered in the Thing 
Directory. 
 

 
FIGURE 3-47 CONFIGURATION OF THE TD SEARCH NODE. 

 
The search / discovery request sent out to the Thing Directory formulated based on the configuration of the 
TD Search node is a JSON message. An exemplary request, formulated out of the configuration shown in 
Figure 3-47 is presented below:  
 
{ 
    "@context": ["http://www.w3.org/ns/td", 
                {"iot": "http://iotschema.org/"}], 
                 
    "@type": "iot:microphone" 
} 
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3.2.6. BACKEND SEMANTIC VALIDATOR INTEGRATION 
As was mentioned in sub-section 3.1.6 and in D4.11 “Semantic interoperability mechanisms for IoT (Final)”, 
BSV provides validation mechanisms to ensure semantic interoperability in SEMIoTICS, interoperability 
between targeted external IoT platforms and SEMIoTICS (see sub-section 4.1) and semantic adaptation 
through both the interacting with the Pattern Engine (Backend layer) and using the Adaptor Nodes in Recipe 
Cooker. The last, was finalized during the cycle 2. Specifically, to enable the interoperability between the flow’s 
Things, a number of different steps are required, following the corresponding sequence diagram in Figure 3-49. 
In fact, the Recipe Cooker component, which is responsible for cooking (creating) recipes reflecting user 
requirements, sends the recipe in Pattern Orchestrator component, which is in charge of the automated 
configuration, coordination, and management of different patterns and their deployment to express  
requirements of the flows to guarantee interoperability based on architectural patterns; this step includes the 
insertion of the interoperability requirement from the Orchestrator to the Pattern Engine to enforce the 
respective pattern rules (see Figure 3-48). The pattern is expressed in a machine-processable Drool rule 
format of the said semantic interoperability for any inserted flow. The when part identify the reques ted 
placeholders placed in sequence, required to satisfy the semantic interoperability property. If the conditions 
are met, the rule in then can guarantee that the requested property is satisfied.  
 

 
FIGURE 3-48 SEMANTIC INTEROPERABILITY VERIFICATION DROOL RULE 

 
Therefore, this rule used by Pattern Engine to trigger the BSV, which resolves semantic interoperability issues, 
between any link of Things in the flow recipe. Particularly, the BSV receives a request with the flow id from 
and the Things’ id for each link. Based on this information, the component begins the procedure to tackle the 
semantic interoperability issues between these two things from the said flow. For that reason, it sends SPARQL 
query to Thing Directory to receive the Thing Description of the Things. In the sequel, the final phase of the 
interoperability adaptation is the following. It involves the harmonization of the semantic model capabilities 
with the registration of extra Adaptor Nodes in the Recipe Cooker if required.  
Namely, there are three possible results, which are highlighted in Figure 3-49. Firstly, the link source and 
destination are interoperable, so the BSV updates the Pattern Engine with the TRUE response. Secondly, the 
link source and destination are not interoperable and the BSV can add Adaptor Nodes in order to guarantee 
the interoperability. In this case, the BSV not only sends the TRUE response to pattern engine, but it also 
updates the flow in the Recipe Cooker. Lastly, when the link source and destination are not interoperable and 
the BSV does not have the required information to develop the Adaptor Nodes, it sends FALSE response to 
the Pattern Engine. 
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FIGURE 3-49 SEQUENCE DIAGRAM FOR SEMANTIC INTEROPERABILITY ADAPTATION 

MECHANISMS 
 
The actual evaluation of said integration, the workflow status before and after the semantic validation, is 
illustrated in Figure 3-50. The Adaptor Nodes are introduced at runtime with the corresponding functionality. 
In a large-scale scenario, the semantic interoperability is examined for any link/wire between the components  
of the flow and a combination of different Adaptor Nodes can be used parallel to ensure the interoperability 
of the system. 
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FIGURE 3-50 SEMANTIC VALIDATION/ADAPTATION MECHANISMS 

 
Based on the above, the previous list of the components that interact with BSV component, from cycle 1 (see 
Table 4), can be updated as following: 
 

TABLE 5 UPDATED LIST OF COMPONENTS THAT INTERACT WITH THE BSV COMPONENT (CYCLE 2) 
Component Components 

that will be 
used/consumed 

by this 
component 

Layer of 
component 
that will be 
consumed 

Description of interactions 

Backend Semantic 
Validator 

Thing Directory Backend  Searching for the necessary Thing 
models in Thing Directory component, 
in order to detect any potential 
semantic conflicts between the 
interacting domains 

Recipe Cooker Backend Connecting with Recipe Cooker to 
resolve these semantic conflicts using 
the Adaptor Nodes that configure an 
Interaction Pattern in accordance with 
the application's requirements. 

Semantic API & 
Protocol 
Binding 

Field This interaction was not implemented, 
because it was out of the requirements 
of the final implementation of the 
SEMIoTICS UCs scenarios (see 
D4.11) 

FIWARE Broker 
& GEs 

Backend Searching for the necessary Thing 
models in external IoT platforms that 
use other semantic schemas different 
from iot.schema (e.g. 
schema.lab.fiware.org) 

 Pattern Engine  Backend Pattern Engine runs the pattern rule 
regards interoperability property and 
triggers the BSV 
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 INTEROPERABILITY WITH EXTERNAL IOT PLATFORMS 
No new integrations with external IoT platforms have been delivered as part of Cycle 2 of task T5.2. 
Nevertheless the general approach and the existing integrations are presented in the subsections that follow.  

 General Approach  
This section presents the general approach and the interaction of SEMIoTICS components in order to enable 
the interoperability between targeted external IoT platforms (i.e., FIWARE, AREAS, and MindSphere) with 
SEMIoTICS framework. The following motivating example with FIWARE is used for the description and analysis 
of the development of the proposed approach. 
The components of the SEMIoTICS architecture (see Figure 4-1 ) that are involved in this process are: 

• Recipe Cooker which is responsible for cooking (creating) recipes reflecting user requir ements, 
• Pattern Orchestrator which is in charge of the automated configuration, coordination, and 

management of different patterns (in this case Interoperability patterns) and their deployment,  
• Pattern Engine (Backend) which allows the insertion, modification, execution, and retraction of 

patterns through the Pattern Orchestrator,  
• Backend Semantic Validator (BSV) which resolves semantic interoperability issues and  
• Thing Directory (Backend) which is the repository of knowledge containing the necessary Thing 

models.  
 

 
FIGURE 4-1 SEMIOTICS ARCHITECTURE – INTEROPERABILITY WITH EXTERNAL IOT PLATFORMS 

COMPONENTS 



780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017 
Deliverable D5.7 Software system integration (Cycle 2) 
Dissemination level: [Public]  

 

 

57 
 
 

 
During runtime, a recipe/flow can be designed by the user in Recipe Cooker; this flow represents an interaction 
between two Things i.e. FIWARE Sensor, SEMIoTICS Thermostat (Figure 4-2). The main aim is to check the 
semantic interoperability between the specific nodes, to ensure the aforementioned communication. For that 
reason, Recipe Cooker sends the “cooked” recipe to the Pattern Orchestrator in order to transform it into 
interoperability patterns. The Pattern Engine (Backend) receives the interoperability requirement from Pattern 
Orchestrator, as it is responsible to enable the capability  to insert, modify, execute and retract patterns. The 
next step of Pattern Engine (Backend) is to examine the semantic interoperability for any links in the recipe/flow 
(in this example there is only one link/wire, the connection between FIWARE Sensor and SEMIoTICS 
Thermostat). Thus, for every link, Pattern Engine (Backend) triggers the BSV. 
 

 
FIGURE 4-2 RECIPE INTERACTION EXAMPLE FIWARE – SEMIOTICS BEFORE SEMANTIC 

VALIDATION 
 

Following this, the BSV begins the procedure to tackle the semantic interoperability issues between these two 
Things. Firstly, the semantic description for each Thing is required, for that reason , it sends two requests: 

• getThings request to Thing Directory in order to receive the Thing Description of SEMIoTICS 
Thermostat and 

• getElements request to the FIWARE platform to receive the Element Description of FIWARE Sensor.  
 

Based on this information, the BSV is able to decide for the interoperability between the Things and harmonize 
the semantic model capabilities with the registration of extra Adaptor Nodes in the recipe. Particularly, there 
are three possible results. First: the link source and destination are interoperable, so the BSV replies to the 
Pattern Engine (Backend) with the TRUE response. Second: the link source and destination are not 
interoperable and the BSV can add Adaptor Nodes in order to guarantee interoperability. In this case, BSV not 
only sends the TRUE response in Pattern Engine (Backend) but also updates the recipe in Recipe Cooker 
using the corresponding Adaptor Nodes (Figure 4-3). Third: the link source and destination are not 
interoperable and BSV does not have the required information to develop the Adaptor Nodes; hence, the 
Pattern Engine (Backend) receives the FALSE response by the BSV.  
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FIGURE 4-3 RECIPE INTERACTION EXAMPLE FIWARE – SEMIOTICS AFTER SEMANTIC VALIDATION 

 
The above approach of the semantic interoperability mechanisms between SEMIoTICS external IoT platforms 
is highlighted by a sequence diagram, in Figure 4-4. It should be clarified that the term Link does not 
correspond to a network physical link but to a path between its source and its destination, which may include 
more than one physical link and other network components among them. 
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FIGURE 4-4 SEQUENCE DIAGRAM OF INTEROPERABILITY WITH EXTERNAL IOT PLATFORMS 

 Integration with FIWARE 
4.2.1. METHODOLOGY OF FIWARE COMPONENT VERIFICATION 
The verification process has been divided into three steps. As a first step, the GEs which are not related to 
SEMIoTICS framework were eliminated as not useful. Moreover, since SEMIoTICS project’s ambition is to 
deliver the solution with high impact and possibilities of further exploitation, it was decided that FIWARE 
components that are deprecated or no longer supported, will not be used in the project. Finally, components 
which would not compile properly, without errors would not be used either. As a result, the final choice of 9 
General Enablers was deeply investigated for possible use in SEMIoTICS framework:  

o PEP Proxy – Wilma 
o Authorization PDP – Authzforce 
o Identity Management – Keyrock 
o Publish/Subscribe Context Broker – Orion Context Broker 
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o IoT Agent 
o IoT Discovery 
o NetIC 
o Data Visualization – Knowage 
o Object Storage 

 
The analysis was taking into consideration technology used for development, what interface is offered by GE, 
what are specific implementation requirements and how such GE may potentially affect other components of 
SEMIoTICS framework. 
 

4.2.2. EVALUATION PROCESS WITH SELECTED GENERAL ENABLERS 
In this section, the results of the investigation are presented. According to functionalities or used technology, 
GEs were grouped into four categories. The first group consists of security-related components (PEP Proxy 
Wilma, Identity Management – Keyrock, and Policy Manager AuthzForce). In the second group, there are 
components using NGSI data format (IoT Agent, IoT Discovery, Context Broker). The third group contains only 
one FIWARE component which is related to SDN and NFV – NetIC. In the fourth category, General Enablers 
which are related to Database (Data Visualization – Knowage and Data management system Object Storage) 
have been included. 
 
4.2.3. GROUP 1: SECURITY-RELATED GES 
In this group are PEP Proxy Wilma, Identity Management – Keyrock and Policy Manager AuthzForce. 

4.2.3.1. Functionality summary 

PEP Proxy WILMA 

Privacy in FIWARE can be assured through the usage of the PEP Proxy WILMA. In order to provide fully 
functional security and privacy component, it needs to be combined with other security components such as 
Keyrock and AuthzForce. WILMA ensures that only permitted users will be able to access the Generic Enablers 
or REST services. As WILMA is a backend component with no frontend interface, one must use the Identity 
Management GE web interface for user and application management and roles or permissions configurations. 
For a request validation, PEP Proxy interacts with the Identity Management and Authorization PDP GE by 
verifying appropriate parameters depending on the defined security level8. 

Identity manager Keyrock 

Using Keyrock in a conjunction with other security components such as PEP Proxy and Authzforce allows 
adding OAuth2-based authentication and authorization security to services and applications.  
One of the main functionalities of this Generic Enabler is to enable developers to add identity management 
(authentication and authorization) to their applications based on FIWARE identity. This is enabled by use of 
the OAuth2 protocol9. The FIWARE Keyrock Generic Enabler set up all common features of an identity 
management system so that other components are able to use standard authentication mechanisms to accept 
or reject requests based on industry-standard protocols10. 

AuthzForce 

The Generic Enabler AuthzForce provides a multi-tenant RESTful API for policy administration points as well 
as for policy decision points. The API follows the REST architecture style and complies with XACML v3.0. This 
GE plays the role of a Policy Decision Point (PDP)11. AuthzForce helps to externalize the authorization logic 
and take advantage of flexible and standard-compliant Attribute-Based Access Control features. The main 

 
 
8 https://fiware-pep-proxy.readthedocs.io/en/latest/ 
9 https://fiware-idm.readthedocs.io/en/latest/ 
10 https://documenter.getpostman.com/view/513743/RWMLLRui?version=latest  
11 https://fimac.m-iti.org/6d.php 
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feature is the authorization policy decision evaluation. It evaluates authorization decisions based on XACML 
policies and attributes related to a given access request. The configuration of the XACML policies to be 
evaluated by the GE happens at the authorization policy administration point (PAP). The GE also provides 
some extensibility points e.g. for attribute providers aka PIPs (Policy Information Points). Th is makes it possible 
to plug custom attribute provides into the PDP engine to allow it to retrieve attributes from other attribute 
sources (e.g. remote service) than the input XACML Request during evaluation12. 

4.2.3.2. Feasibility study 

PEP Proxy WILMA 

WILMA is capable of providing access to GEs or REST services only for FIWARE users what is a significant 
limitation in the context of the SEMoTICS project where numerous types of users will  need to be granted 
access.  

Identity manager Keyrock 

Keyrock GE is limited to the smooth cooperation only with the FIWARE GEs environment while Security 
Manager incorporated into SEMIoTICS architecture can handle all the functionalities offered by the Keyrock 
generic enabler and more. Security Manager brings OAuth2-based authentication directly out of the box. 
Another aspect that speaks for the Security Manager is that the Security Manager is also compatible with IoT 
devices which clearly fits better to the SEMIoTICS IoT concept. The entity storage module of the Security 
Manager currently supports LevelDB and MongoDB as storage providers for storing the entities. Due to the 
way it was designed, it is also very easy to extend it to other storage concepts.  

AuthzForce 

The PDP and PAP in the Security Manager of the SEMIoTICS architecture support also the same structure as 
introduced by AuthzForce. With the REST Entity API there is also a simple module to enforce proper policies. 
Moreover, the attribute-based encryption for the Security manager is currently under development within the 
project that will further increase the security aspect compared to the capabilities of AuthzForce. 

4.2.3.3. Feasibility study outcomes  

A combination of all of the abovementioned analysis outcomes brought the consortium to the decision that 
integration with GE from security group does not bring any value-added as the components involved in the 
architecture, namely Security Manager is a more flexible solution, is not limited to support only FIWARE 
components, provides wider capabilities and guarantees a higher level of security in the platform. 
 
4.2.4. GROUP 2: NGSI-BASED COMPONENTS  
IoT Agent, IoT Discovery and Orion Context Broker belong to this group because they require the NGSI -LD 
data model. They are responsible for communication, and information acquisition of IoT devices in FIWARE.  

4.2.4.1. Functionality summary 

Orion Context Broker 

As it is mentioned in the official website13 the Orion Context Broker is an implementation of the 
Publish/Subscribe Context Broker GE, providing the NGSI9 and NGSI10 interfaces. Using these interfaces, 
clients can perform several operations: 

• register context producer applications, e.g. a temperature sensor within a room 

• update context information, e.g. send updates of temperature 

 
 
12 https://authzforce-ce-fiware.readthedocs.io/en/latest/ 
13 https://catalogue-server.fiware.org/enablers/publishsubscribe-context-broker-orion-context-broker 
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• get a notification when context information changes take place (e.g. the temperature has changed) or 
receive the value with a given frequency (e.g. to get the temperature value every minute) 

• query context information. The Orion Context Broker stores context information updated from applications, 
so queries are resolved based on that information. 

To work properly and store basic data, the Context Broker requires persistent storage, such as MongoDB, 
which is recommended for this solution. 

IoT Discovery 

Within IoT Discovery14 Generic Enabler, two software components are offered: the NGSI-9 server, as well as 
the Sense2Web platform. The NGSI-9 server provides a repository for the storage of NGSI data and allows 
conformant clients to register context information about sensors and things and discover context information 
using ID, attribute, attribute domain, and entity type. Such clients may include the other FIWARE GEs as well, 
in particular, the Data Handling GE, the Device Management GE for registration, and the IoT Broker for 
discovery.  
The Sense2Web software component is a platform which offers a semantic repository for IoT providers to 
register and manage semantic descriptions (in RDF/OWL) about their "things", whether they will be 
sensor/actuator devices, virtual computational elements (e.g. data aggregators) or virtual repre sentations of 
any physical entity. On the other hand, it enables clients to discover these registered IoT elements by retrieving 
descriptions in RDF. It supports a probabilistic search mechanism that provides recommended and ranked 
search results for queries that don’t provide exact matching property values. Further, it supports semantic 
querying via SPARQL and an association mechanism that associates things and sensors based on their shared 
attribute (e.g. temperature) and spatial proximity, which can then be queried via SPARQL. 

IoT Agent 

IoT Agent is a Generic Enabler (GE) in FIWARE Reference Architecture15. It is a component that allows a 
group of devices to send their data to and be managed from a Context Broker using their own native protocols. 
The Context Broker management of the entire lifecycle of context information including updates, queries, 
registrations, and subscriptions. IoT Agents are not only responsible for the communication aspect but are also 
concerned with the security issues of the FIWARE platform (authentication and authorization) and provide 
other common services to the device programmer. 
Each IoT Agent provides a north-bound interface, which is used for Context Broker interactions and all 
interactions beneath this port occur using the native protocol of the attached devices. Essentially, this concept 
enables a standard interface to all IoT interactions north from an IoT Agent (no matter which (proprietary) 
protocol is used by the attached device. The standard interface used for this purpose is NGSI-LD16.  

4.2.4.2. Feasibility study 

Context Broker 

Many of the Orion Context Broker functionalities could be potentially used in SEMIoTICS project, hence this 
component has been investigated in detail. The first attempt at testing took place in December 2018 with 
negative results17. Basic functionalities did not work according to the documentation provided by the authors 
and moreover support from FIWARE was not able to solve the issue18. After nine months there a second 
attempt to examine the component has taken place. The new version of the software has solved the issue and 

 
 
14 https://fiware-iot-discovery-ngsi9.readthedocs.io 
15 https://fiware-tutorials.readthedocs.io/en/latest/iot-agent/index.html 
16 https://www.etsi.org/deliver/etsi_gs/CIM/001_099/009/01.01.01_60/gs_CIM009v010101p.pdf  
17 https://github.com/telefonicaid/fiware-orion/issues/3374 
18 https://stackoverflow.com/questions/53710837/conflict-error-when-obtaining-attributes-in-fiware-orion- 
context-broker 
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the component was working properly. Thus, the Context Broker may have been subjected to further analysis 
of its use in the project. 
One of the difficulties in using this component is another format of thing description. Context Broker uses 
simple JSON and in SEMIoTICS project, JSON-LD is used. FIWARE is recently switching to NSGI-LD 
specification to enhance relationships between entities, but currently, it is up to the logic of the application (in 
this case SEMIoTICS platform) to navigate between entity relationships. It means that an additional component 
for mappings between these two formats is required. The main differences are shown in the diagrams below.  

 
FIGURE 4-5 NGSI V2 DATA MODEL 

 
FIGURE 4-6 NGSI LD DATA MODEL AFTER MAPPING SIMPLE JSON 

Furthermore, some functionalities of the Context Broker are covered by components already existing in 
SEMIoTICS. Thing Directory component enables a client to register new things to platforms, quickly search 
the repository using SPARQL filter or even delete devices. To update or read context information from 
brownfield devices, the Semantic API&Protocol Binding component can be used while other devices do not 
require any additional components. Moreover, Sematic API&Protocol Binding offers simple handling of all 
actions for the device. 
However, Context Broker component can be used for monitoring the SEMIoTICS platform. Sending 
notifications or context information changes is a functionality that does not exist in a project yet. Users could 
define special queries or expressions to be notified only if selected property or group of properties has 
changed. What is more, the Context Broker provides collecting data from devices w ith a set frequency and 
store in the database, so it can be useful for historic data visualization.  

IoT Discovery 

For the SEMIoTICS system, this software component is not usable as the NGSI-9 format does not play a role 
in the component interactions defined in the architectural setup. In the SEMIoTICS systems, the discovery and 
metadata exchange for things goes beyond the generic RDF/OWL usage. Instead, it is proposed to use the 
W3C Web of Things format of “Thing Descriptions”19, which can be represented in RDF but represents a 
semantically narrow format specifically designed for expressing thing metadata. Similarly, there is a dedicated 

 
 
19 https://w3c.github.io/wot-thing-description/ 
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discovery component, the Thing Directory20, that has been defined and implemented in the context of the W3C 
Web of Things suite of recommendations. This component has been selected for the SEMIoTICS architecture 
to cover the functionality of thing discovery, as its interface finely tuned to best support this specific purpose. 
In comparison, the Sense2Web component offers an all-purpose interface, with functionalities that go beyond 
the project’s needs and hence would bloat the complexity of interactions.  

IoT Agent 

Only a few IoT Agents already exist. For example, for bridging HTTP/MQTT messaging (with a JSON and 
UltraLight2.0 payload) and NGSI, as well as for bridging Lightweight M2M and LoRaWAN with NGSI. IoT 
Agents for other protocols can be developed. Semantic IoT Gateway in SEMIoTICS architecture is responsible 
for the functionality of IoT Agents. The component provides a s tandardized semantic-based interface for the 
integration of brownfield devices, as well as for the integration of any other IoT devices.  

4.2.4.3. Feasibility study outcomes  

In SEMIoTICS - a W3C standard “Web of Things” (WoT) is promoted, according to which the device interface 
is described with, so-called, “Thing Description”21 (TD). An implementation of a WoT API, including protocol 
mappings (binding), also exist for this standard22. The model of TD is based on the concept of Interaction 
Patterns, as constructs that enable interactions with a thing (device). TD distinguishes Properties, Events, and 
Actions. The model further specifies security and other kinds of metadata. There has been a big contribution 
of the Consortium members and SEMIoTICS project itself to the creation of W3C standard. In the proposal to 
SEMIoTICS, it was declared to promote the W3C WoT standard so the project can not incorporate this group 
of general enablers into the SEMIoTICS platform. However, the Context Broker provides notification 
functionalities that could be used by SEMIoTICS. For this purpose, it is considered to develop a bridge towards 
NGSIv2 (which was defined by FIWARE and is provided by the Context Broker). Further verification is currently 
conducted to validate the use of Context Broker notification functionality as a part of SEMIoTICS platform. 
4.2.5. GROUP 3: SDN AND NFV - RELATED COMPONENTS  
In this group, only NetIC General Enabler is put. This is only one component in the FIWARE platform that 
provides functionalities in the network layer.  

4.2.5.1. Feasibility study 

The FIWARE Network Information and Control (NetIC) Generic Enabler is intended to provide abstract access 
to heterogeneous open networking devices. It exposes network status information and it enables a certain 
level of programmability within the network (depending on the type of network and the applicable control 
interface). This programmability may also enable network virtualization, i.e., the abstraction of the physical 
network resources as well as their control by a virtual network provider. Potential users of NetIC interfaces 
include network service providers or other components of FIWARE, such as cloud hosting. Network operators, 
virtual network operators, and service providers may access (within the constraints defined by their contracts 
with the open network infrastructure owners) the open networks to both retrieve information and statistics (e.g. 
about network utilization) and also to set control policies and optimally exploit the network capabilities.  

4.2.5.2. Feasibility study outcomes 

In SEMIoTICS, the functions of NetIC are covered by tools of the SEMIoTICS SDN Controller and the Network 
Function Virtualization component which are the core technologies to be developed within the SEMIoTICS 
project. Hence, using NetIC would fully double the functionalities already covered by SDN/NFV layer of 
SEMIoTCIS architecture.  
 
4.2.6. GROUP 4: DATABASE RELATED COMPONENTS 

 
 
20 https://github.com/thingweb/thingweb-directory 
21 https://w3c.github.io/wot-thing-description/ 
22 https://github.com/eclipse/thingweb.node-wot 
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In this group, two components that are related to the databases KNOWAGE and Object Storage  are included. 
The first one is stand-alone tools for analyzing and visualizing big data sets. Object storage is a tool for 
database management.  

4.2.6.1.  Functionality summary 

Knowage 

Knowage is a powerful and complex tool for data set analysis and visualization. It can run analysis on data 
available from numerous online and offline DB, java classes from application, files or web apps through their 
API. Knowage allows creating various types of visualizations starting from simple tables, through many types 
of graphs ending on interactive maps. It offers many business analytics tools like periodic reporting, business 
predictions, and interactive cockpit. Knowage has many built -in pre-configured functions like sorting, grouping 
and other statistic functions. Using those included functionalities requires only a  few configuration steps from 
the user, like pointing which column in the table is an attribute a which is a measurement.  

Object Storage 

Object Storage is one of the Generic Enablers within FIWARE. It is used for redundant and scalable data 
storage using clusters of standardized servers to store petabytes of accessible data. It is a long -term storage 
system for large amounts of static data that can be retrieved and updated. Object Storage of OpenStack that 
the GE of FIWARE is completely based on, as mentioned in the FIWARE wiki23. 

4.2.6.2. Feasibility study 

Knowage 

Knowage provides a REST API with an endpoint for many functionalities which can be used for faster and 
more robust integration with SEMIoTICS components. This approach covers the expectation for components 
in the SEMIoTICS platform. None of the already developed components provide such wide capabilities. Take 
into consideration the above-mentioned features provided by KNOWAGE we are eager to integrate this open-
source software into SEMIoTICS platform. 

Object Storage 

Object Storage uses a distributed architecture with no central point of control, providing greater scalability, 
redundancy, and permanence. Objects are written to multiple hardware devices and can be files, databases 
or other datasets that need to be archived. Objects are stored in named locations known as containers. 
Containers and objects can have metadata associated with them, providing details of what the data represents. 
Similar to files in a traditional file system - objects in an object store belong to a certain user (account). This 
GE is ideal for cost effective, scale-out storage. It provides a fully distributed, API-accessible storage platform 
that can be integrated directly into applications or used for backup, archiving, and data retent ion. 

4.2.6.3. Feasibility study outcomes 

The use of the Knowage capabilities is planned to be leveraged in GUI component. Delivery of a dashboard 
visualizing the data from IoT devices is planned. Leveraging Knowage allows GUI user to benefit from the wide 
range of widgets available in the Knowage cockpit component. This powerful tool is to be used to present data 
collected from field devices. Object Storage is to be responsible for the management of the database. It 
coordinates the usage of disc space, creating backups, archiving and data retention.  
 
4.2.7. CONCLUSION 
SEMIoTICS platform is to be integrated with two General Enablers offered by FIWARE framework. They are 
advanced and robust components. This integration will improve the capabilities of the SEMIoTICS framework. 
Additional benefits from this integration process are the propagation of open-source FIWARE components 
along with IoT enthusiasts and professionals in the IoT sector  and enhance interest in FIWARE General 

 
 
23 https://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/Object_Storage_Open_RESTful_API_Specification  
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Enablers as components that can be incorporated in many future projects as robust, safe and easy to use 
components.  
Development of bridge between SEMIoTICS Monitoring Component and Context Broker may allow bringing 
some of the features provided in the FIWARE platform to SEMIoTICS users and vice versa.  

4.3  Integration with CloE-IoT  
The CloE - IoT platform aims to simplify the integration of highly distributed, complex and robust IoT solutions 
exploiting computational resources both in the cloud and at the edge. CloE-IoT is developed by ENG to support 
its IoT projects and products. Starting from 2020 the CloE-IoT platform is part of the Digital Enabler 
ecosystem24. 
The CloE - IoT platform offers APIs to access a set of functionalities specifically targeting common IoT 
requirements (connectivity, device management, security, data storage, etc.) allowing developers to focus on 
their domain-specific requirements (Figure 4-7). 

 
FIGURE 4-7 CLOE-IOT SOFTWARE LAYERS 

 
The CloE-IoT platform supports applications with time- and safety-critical requirements by allowing application 
logic to be deployed on resource-constrained edge gateways (e.g. smartphones, vehicles, mobile robots): with 
CloE-IoT platform functionalities available locally even in case of failure of communication with CloE-IoT cloud 
nodes(Figure 4-8). 

 
 
24 https://www.eng.it/en/our-platforms-solutions/digital-enabler 
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FIGURE 4-8 CLOE-IOT GATEWAY HOSTING APPLICATION LOGIC 

 
The CloE-IoT platform supports applications that need to manage the trade-off between different requirements 
(e.g. reliability, power consumption, latency, fault-tolerance) by allowing both application logic and platform 
features to be distributed over a cluster of CloE-IoT enabled gateways (Figure 4-8 CloE-IoT gateway hosting 
application logic) 

 
FIGURE 4-9 CLOE-IOT DISTRIBUTED APPLICATION 

 
For what the integration with the SEMIoTICS framework is concerned, the most relevant one is the Client 
API, the Model API, and the Event API: 

• The Client API allows an application to discover the IoT devices registered in an instance of the CloE 
- IoT platform.  IoT devices register itself into a CloE - IoT node using the LwM2M protocol.  

• The Model API allows an application to retrieve the resources exposed by registered devices via their 
object model (i.e. a data structure wherein each element represents a resource, or a group of 
resources, belonging to a device). 
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• The Event API allows applications to be periodically notified about the state of the resources hosted 
by the IoT registered devices. Notifications are pushed towards applications using the WebSocket 
protocol. 

• The integration with the SEMIoTICS framework is achieved by developing a new agent bridging the 
CloE-IoT services exposing the above-mentioned APIs with the corresponding components of the 
SEMIoTICS framework. In particular: 

• the Device Manager (exposing the Client API) is to be extended to connect to the SEMIoTICS Thing 
Directory. 

• the Model Provider (exposing the Model API) is to be extended to be able to retrieve Thing 
Descriptions from the SEMIoTICS Semantic Mediator. 

• The Event Manager (exposing the Event API) is to be extended to support the WoT standard and 
hence to manage events raised by the devices discovered via the SEMIoTICS Thing Directory.  

 
At the same time, the development of a specific signaller (see SEMIoTICS Deliverable D4.2 - “SEMIoTICS 
Monitoring, Prediction and Diagnosis Mechanisms (first draft)”) is to make the CloE-IoT platform observable 
by the SEMIoTICS Monitoring Component. In particular, this signaler will make it possible for the SEMIoTICS 
Monitoring Component to observe events generated by the CloE-IoT Event Manager via the FIWARE NGSI 
v2 interface. 
 

 Integration with MindSphere 
SEMIoTICS IoT Gateway is a component that will be integrated with MindSphere, which is the IoT operating 
system from Siemens25. The gateway, among others, provides a mechanism to semantically annotate 
bootstrapped devices (if a semantic description for them does not exist). The same semantic description of 
devices can be used for creating digital representation in MindSphere. This procedure is supposed to take 
place during the onboarding process of a device or an automation system.  

MindSphere provides its own information model that is called the Asset Data Model26. The model distinguishes 
notions of Asset, Aspect, and Datapoint. An Asset is a digital representation of a machine or an automation 
system with one or multiple automation units (e.g. PLC) connected to MindSphere. Aspects are data modeling 
mechanisms for Assets. Aspects are grouping related data points based on their logical association. Datapoints 
are points that provide certain functionality, thereby providing and/or consuming data. Examples of the 
datapoints are electric "power", "current", "voltage" etc. 

 
 
25 https://siemens.mindsphere.io/en  
26 https://documentation.mindsphere.io/resources/pdf/asset-manager-en.pdf 
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FIGURE 4-10 SEQUENCE DIAGRAM – INTEGRATION OF IOT GATEWAY AND MINDSPERE 

 
Figure 4-10 shows a simplified sequence diagram related to the onboarding process of a device that has 
already been bootstrapped and for which a Thing Description already has been created, see Section  3.1.2. A 
user may initiate the onboarding process via Semantic Edge Platform as soon as a Thing Description (TD) has 
been created for a device. Following the semantics provided in TD, SEMIoTICS IoT Gateway (via Semantic 
Edge Platform) will interact with MindSphere API in order to automatically create an Asset Data Model. In this 
way, it will be ensured that the semantics created at the Edge level (by the gateway) is used  at the Cloud level 
too. This approach, proposed by activities in Tasks 3.3, easies creation maintenance of applications since both 
Cloud- and Edge applications will be based on the same semantic model.   

 Integration with OpenHAB 
Use Case 3 of SEMIoTICS leverages OpenHAB 2 for sensor value visualization via charts. OpenHAB is written 
in Java and uses Apache Karaf to create an Open Services Gateway initiative (OSGi) runtime environment. 
Jetty is used as the HTTP server, which implements the Dashboard and Management GUI and also hosts the 
OpenHAB REST API. OpenHAB is extended through “add-ons” that handle the interaction with external 
sensors, data storage backends and chart libraries for sensor value visualization. Furthermore, OpenHAB 
supports a scripting language to implement automation and “if-this-then-that” scenarios. For example, 
automation scripts will allow us to combine measurements from multiple sensors, and generate alerts if certain 
sensor values exceed the specifications.  
As previously mentioned, in order to interact with sensors and actuators over the network, a RESTful service 
is offered by OpenHAB, that gives access to Things, Channels and Items. 

• Things are entities that can be physically added to a system. They may provide more than one 
function (for example, a Z-Wave multi-sensor may provide a motion detector and also measure room 
temperature). Things do not have to be physical devices; they can also represent a web service or 
any other manageable source of information and functionality. From a user perspective, they are 
relevant for the setup and configuration process, but not for the operation. Things can have 
configuration properties, which can be optional or mandatory. Such properties can be basic 
information like an IP address, an access token for a web service or a device-specific configuration 
that alters its behavior. Things expose their capabilities through Channels.  

• Channels represent the different functions the Thing provides. Where the Thing is the physical entity 
or source of information, the Channel is a concrete function from this Thing. A physical light bulb might 
have a color temperature Channel and a color Channel, both providing functionality of the one light 
bulb Thing to the system. For sources of information, the Thing might  be the local weather with 
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information from a web service with different Channels like temperature, pressure and humidity. 
Channels are linked to Items, where such links are the glue between the virtual and the physical layer. 
Once such a link is established, a Thing reacts to events sent for an item that is linked to one of its 
Channels. Likewise, it actively sends out events for Items linked to its Channels. Whether an 
installation takes advantage of a particular capability reflected by a Channel depends on whether it 
has been configured to do so. When you configure your system, you do not necessarily have to use 
every capability offered by a Thing. You can find out what Channels are available for a Thing by 
looking at the documentation of the Thing's Binding.   

• Bindings can be thought of as software adapters, making Things available to the system. They are 
add-ons that provide a way to link Items to physical devices. They also abstract away the specific 
communications requirements of that device so that it  may be treated more generically by the 
framework. 

• Items represent capabilities that can be used by applications, either in user interfaces or in automation 
logic. Items have a State which may store sensor values and they may receive commands (e.g., for 
actuation purposes). 

After successfully deploying the Data Collection system and correctly configuring the Bindings, Channels, and 
Things, third party clients simply need to send HTTP GET requests to interact with OpenHab, e.g., sending 
sensor values for visualization via its charting system. The developed interface is presented in Figure 4-11. 
 

 
FIGURE 4-11 THE OPENHAB GRAPHICAL USER INTERFACE 
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 VALIDATION 
This section describes the validation features of SEMIoTICS that are related with the implementation of the 
components and the rest topics that are presented in this document.  

 Related Project Objectives and Key Performance Indicators (KPIs) 
Table 6 presents the task objectives and appropriate sections addressing those. 
 

TABLE 6 TASK 5.2 OBJECTIVES 
T5.2 Objectives D5.2 Sections 

• Integration, and delivery of the SEMIoTICS framework will all the components 
developed by WP3 and WP4  3 

• Interoperability with targeted external IoT enabling platforms (i.e., FIWARE, CloE-
IoT and MindSphere) 4 

• Continuous integration and delivery processes with deployed development 
supporting tools and tools for automated platform scaling 2 

 
The KPIs and their respective SEMIoTICS objectives that are related to Task T5.2 are described in Table 7. 
 

TABLE 7 KPIS AND OBJECTIVES 
Objective KPI-ID Description Related task 

1 SPDI Patterns KPI-1.1 Number of SPDI 
Patterns T4.1 

1 SPDI Patterns KPI-1.2 Pattern Language T4.1 

2 Semantic Interoperability KPI-2.3 
Semantic 
interoperability with 3 
IoT platforms 

T3.4, T4.4 

3 Monitoring Mechanisms KPI-3.1.1 
Generating monitoring 
strategies in the 3 
targeted IoT platforms 

T4.1, T4.2 

5 IoT-aware Programmable 
Networks KPI-5.1 

Deployment of a multi-
domain SDN 
orchestrator 

T3.1 

5 IoT-aware Programmable 
Networks KPI-5.2 

Service Function 
Chaining (SFC) of a 
minimum 3 VNFs 

T3.2, T4.1 

6 Development of a Reference 
Prototype KPI-6.2 Leveraging upon 

FIWARE assets T5.3 

6 Development of a Reference 
Prototype 

KPI-6.3 Delivery of 3 prototypes 
of IIoT/IoT applications 

T3.5, T4.6, T5.2, 
T5.3 

7 Promote the Adoption of EU 
Technology of EU Technology 
Offerings Internationally 

KPI-7.1 
Provision of the 
SEMIoTICS framework 
and building blocks 

T5.2 

 SEMIoTICS implementation requirements 
The relevant SEMIoTICS requirements that are indirectly covered by the presented software integration of 
SEMIoTICS components are summarized in Table 8. It is important to note that all the mentioned requirements, 
are tracked and described in detail within relevant tasks assigned within the matrix represented in Deliverable 
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SEMIoTICS high level architecture (final). The requirements which are use case specific are in details covered 
within the Tasks T5.4, T5.5 and T5.6, respectively. 
 

TABLE 8 REQUIREMENTS´ CORRELATION 
Requirements 

(D5.3) Description Related task Status 

R.GP.4 Detection of events requiring a QoS change and triggering 
network reconfiguration need by SPDI pattern 

T3.1, T3.4, T3.5, 
T4.1, T4.2, T5.4, 
T5.5 

Delivered 

R.GP.6 Interaction between SDN controller and network nodes (e.g. 
switches, routers or IoT Gateways) through dedicated 

interface (called southbound software interface) 

T3.1, T3.4, T3.5, 
T5.4 

Delivered 

R.BC.18 The backend layer must feature SPDI pattern reasoning 
embedded intelligence capabilities 

T3.5, T4.1 Delivered 

R.NL.10 Interfaces among the MANO and the VIM must ensure 
seamless interoperability among different entities of the 

Backend Cloud 

T3.1, T3.2, T3.5 Delivered 

R .NL.12 The network layer must feature SPDI pattern reasoning 
local embedded intelligence capabilities 

T3.4, T3.5, T4.1 Delivered 

R.FD.9 Field devices MUST be able to communicate with the IIoT 
Gateway / other architectural components. 

T5.5 Delivered 

R.S.2 Authentication and authorization of the stakeholders MUST 
be enforced by the Network controller, e.g. through access 

and role-based lists for different levels of function 
granularities (overlay, customized access to service, QoS 

manipulation, etc.) 

T3.1, T4.1, T5.5 Delivered 

R.S.4 All components from gateway, via SDN Controller, to cloud 
platforms and their users MUST authenticate mutually. 

T3.2, T3.4, T4.1, 
T4.5, T5.5 

Delivered 

R.S.17 There MUST be an interface between the network controller 
and the network administrators for the designation of the 

applications’ permissions. 

T4.1 Delivered 

R.S.18 All network functions SHALL be mapped to application 
permissions 

T4.1 Delivered 

R.UC1.1 Automatic establishment of networking setup MUST be 
performed to establish end-to-end connectivity between 

different stakeholders 

T3.1, T3.3, T3.4, 
T4.1, T5.4 

Delivered 

R.UC1.2 Automatic establishment of computing environment MUST 
be performed in IIoT Gateway for the minimum operation of 

the IIoT devices through 5G network controller based on 
SDN/NFV 

T5.4 Delivered 

R.UC1.8 Semantic and robust bootstrapping/registration of IIoT 
sensors and actuators with IIoT gateway MUST be 

supported. 

T3.3, T4.4, T4.5, 
T5.4 

Delivered 
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 CONCLUSION 
This deliverable detailed the work performed in WP5 related to the first and second cycle of components’ 
integrations. In order to structure and organize the work properly within task 5.2, sequence flow diagrams for 
common functionalities were created as well as diagrams for each of the three use cases. From the diagrams, 
a complete list of interactions between SEMIoTICS components was extracted. Such a list has allowed the 
component owners to identify the necessary interactions, and to verify whether any APIs and component 
functionalities were missing.  
 
The integration work carried within Task 5.2, took place in a number of parallel workstreams.  
 
The first stream focused on one of the core framework capabilities which is enabling SPDI pattern distribution 
to different layers of SEMIoTICS framework as well as their definitions and visualization.  The integrations of 
Pattern Engines and the Pattern Orchestrator components consumed significant effort during cycle 1. 
Integration between Pattern Engine and Pattern Orchestrators itself was obviously a part of the work delivered. 
Moreover, the integration of the Recipe Cooker and Pattern Orchestrator was carried out, in order to g ive a 
possibility for defining SPDI properties within the Recipe Cooker, consequently translated to specific SPDI 
pattern requirements, with a GUI capable of visualising the status of the patterns in different flows modelled in 
the Recipe Cooker. Furthermore, integration of the Pattern Engines and Orchestrator with the SDN/NFV 
toolbox allows for providing security guarantees through the traffic forwarding via different network security 
functions. Field devices bootstrapping was also covered, as one of the core flows required for any other flow 
to take place in the process. Thanks to the GUI component it is currently possible to fully interact with Thing 
Directory, connect and pull data from WoT compliant devices. 
 
A number of integrations were also carried out in the 2nd cycle. The capacity of the GUI was expanded. Key 
integration, GUI - Security Manager will protect against unauthorized access to data. Before using the GUI 
functionality, the user is asked to provide his login and password. On this basis his identity is identified, and 
his rights are verified. In addition, the integration with Monitoring was carried out. This makes it possible to 
define high-level event patterns from the user interface. Integration with Security Manager made also for 
Backend Pattern Engine. It is used in the Use Case 2, which ensures that patient location data is only provided 
to authorized users, and that if it is provided to an authorised entity due to an exceptional case, e.g. medical 
emergency, a rule allows to indicate the loss of privacy during monitoring. Moreover, as part of cycle 2, the 
integrations of Monitoring Component with Pattern Engine, Recipe Cooker with the Thing Directory were made 
and the integration for Backend Semantic Validator was prepared. 
 
The second part of the work was focused on semantic interoperability with the SEMIoTICS framework as well 
as with IoT frameworks external to SEMIoTICS. The integration of the Backend Semantic Validator with other 
components has been done, in order to enable semantic interoperability both internally (within SEMIoTICS) as 
well as with other IoT platforms. All of the platforms used by different use cases were covered: CLOE -IOT, 
MindSphere, and OpenHab. Additionally, a feasibility study around FIWARE GEs was performed. The results 
of the FIWARE feasibility study allowed the consortium to identify specific GEs which can be leveraged by the 
project and ones that need to be discarded (due to different reasons, such as ceased support for the 
component, not supported core standards, etc.). 
 
Deliverable D5.7 is the second output of Task 5.2. This document focussing documenting all missing 
integrations according to the diagrams prepared in previous version. Any changes in sequence flow or 
architecture have been be taken into consideration, if such occur during development.  Next step, the 
framework integration will be deployed and evaluated within the testbed deployment and testing described and 
delivered in Task 5.3. 
 
 


