B Ref. Ares(2020)4506691 - 31/08/2020

~N
780315 — SEMIOTICS — H2020-I0T-2016-2017/H2020-10T-2017 SEM[%%I'CS

SEMIoTICS

Deliverable D5.8
lloT Infrastructure set-up and testing

(Cycle 2)

Deliverable release date 31/08/2020

Authors 1. Ermin Sakic, Darko Anicic (SAG),

2. Nikolaos Petroulakis, Eftychia Lakka, Emmanouil Michalodimitrakis (FORTH),
3. Luis Sanabria-Russo, Jordi Serra, David Pubill, Angelos Antonopoulos and
Christos Verikoukis (CTTC),
4. Felix Klement, Korbinian Spielvogel, Henrich C. Péhls (UP)
5. Prodromos-Vasileios Mekikis, Kostas Ramantas (IQU)
6. Konstantinos Fysarakis (STS), Manolis Chatzimpyrros, Michalis Smyrlis (STS)
7. Piotr Kowalski, Michat Rubaj, Lukasz Ciechomski, Jakub Rola (BLS)

Responsible person Konstantinos Ramantas (IQU)
. 1. Mirko Falchetto (ST)
Reviewed by 2. Barttomiej Lipa (BLS)

3. Jordi Serra (CTTC)

4. Emmanouil Michalodimitrakis (FORTH)

A db PTC Members (Vivek Kulkarni, Nikolaos Petroulakis, Ermin Sakic, Mirko
pproved by Falchetto, Domenico Presenza, Christos Verikoukis)

PCC Members (Vivek Kulkarni, Nikolaos Petroulakis, Christos Verikoukis,
Domenico Presenza, Danilo Pau, Joachim Posegga, Darek Dober, Kostas
Ramantas, Ulrich Hansen)

Status of the Document Final

Version 1.0

Dissemination level Public

780315 — SEMIoTICS — H2020-10T-2016-2017/H2020-10T-2017

~
Deliverable D5.8: lloT Infrastructure set-up and testing (Cycle 2) SEMl llCS
Dissemination level: [public] %%

Table of Contents

1

2

3

4

gL e Yo 0T 1o o 4
1.1 What has changed in the second cycle deliverable..............coooiiiiiii i 5
1.2 PERT chart of SEMIOTICS taSKSuuiiiiiiii e e e e e e e e e e e e e eeena e e eeees 6

SEMIOTICS Overarching TESTBEDoiiiiiiii et e e e e e e e e e e e 7
2.1 SEMIOTICS overarching testbed designoiiiiiiiiiii e 7
2.2 SEMIOTICS components integration...........coouuiiiiiiiii e 7

2.2.1 SDN/NFV Orchestration LaYer......cooouuuiiiiiiiiieeieeie e e e et e e e eeaans 8

2.2.2 FHeld LAY Er ettt ettt e e 8

SEMIOTICS Testbed COmMPONENTS......cc.i e e e e e e e e e e e e e e e e ea e aeennns 11
3.1 SEMIoTICS Software Defined Networking Controller (SSC)coviviiiiiiiiiiiiii e, 14

3.1.1 Component arChite@ClUIe ... e 14

3.1.2 Testing MethodOIOgY ... et e s 15

3.1.3 Performance Test and KP1 Validationooo e 20

3.1.4 Relation to Networking reqUIr€mMENtSouiiiiiiii e 21
3.2 Network Function Virtualization (NFV) ... 21

3.2.1 Component arChit@CIUIE e e e e aanas 21

3.2.2 Testing MethodOIOgY ... e e 26

3.2.3 FUNCTIONAL TESTS, Performance Tests and KPI Validationc.coooiiiiiiiiiiiiieeen 28
3.3 SEMIOTICS Field layer and Gat@WaYccoiuuiiiiiiieiiiie e e e e e et e e e e e e eaes 41

3.3.1 Component @rChit@CIUIooiii e e e et e e e eea e eeees 41

3.3.2 Testing MethOOIOGYccuuuiiiiiiii e ettt e e et e e e e e eees 51

3.3.3 Performance Test and KP1 Validationooiiiiiiiiiii e 53

3.3.4 Relation to Networking requIremMentsoouiiiiiiiii e 59

3.3.5 Semantic INteroperabilityoo i 59
3.4 (2= T3 1= (o [oo 1 4] o Yo T =T a1 - 0P 70

3.4.1 SECUNY @NA PIIVACY ...cceiiiiiiiiiiti ettt e et e et e e e e e 70

3.4.2 SEMIOTICS Pattern Orchestrator and ENGINei oo 80

3.4.3 Backend orChestration e 97

3.4.4 Data VISUAIIZAtIONi e e e e e aaan 109
3.5 Service FUNCHON ChaiNiNgoou.iiiiiiiii et e e e et e e et e e e e e e ean e e aean s 135

3.5.1 COMPONENt ArChitECIUIE .. e e et e e e e e e e eeees 135

B T2 LN = £ PP 136

3.5.3 Testing MethOdOIOgYccuuuiiiiiiiiii et 138

3.5.4 Performance Testing & KPIl validation ..o 139

Use-Case SpecCific DEMONSIIAtOrS........couuiiii e e e e e e e ea s 141
4.1 O OF= 11T 0 =Y 4T 1] £ = L (o) P 141
4.2 Use Case 2 demMONSITATOroouui ettt et 144

780315 — SEMIoTICS — H2020-10T-2016-2017/H2020-10T-2017
Deliverable D5.8: lloT Infrastructure set-up and testing (Cycle 2)

Dissemination level: [public] SEMT%%CS

Use Case 3 demonstrator

5 Validation

.. 148
5.1 Related Project Objectives and Key Performance Indicators (KPIs)

... 148
5.2 SEMIOTICS implementation reqUIr€mMENtScoovuiiiiii i e ea s 149
(SR 70T (o1 U] o] o[- S PP PPPRPPRN 152

780315 — SEMIoTICS — H2020-10T-2016-2017/H2020-10T-2017 ~d
Deliverable D5.8: IloT Infrastructure set-up and testing (Cycle 2) SEMl llCS
Dissemination level: [public] %%

1 INTRODUCTION

The Internet of Things (loT) aims to connect everything and everyone, everywhere to everything and everyone
else. It enables innovative applications for daily life activities, such as healthcare, industrial automation, smart
city administration, etc. Due to the fact that the IoT paradigm is on the way to dominate in the aforementioned
use cases, many issues need to be addressed to act in advance of the rapid developments. As an example,
automating the networking and backend, improve interoperability among the devices and increase the security
and privacy of the applications.

Regarding the networking and backend automation, SEMIoTICS adopts the SDN/NFV technologies that enable
network abstraction. SDN seeks to separate network control functions from network forwarding functions, while
NFV seeks to abstract network forwarding and other networking functions from the hardware on which it runs.
Thus, both depend heavily on virtualization to enable network design and infrastructure to be abstracted in
software and then implemented by underlying software across hardware platforms and devices. When SDN
executes on an NFV infrastructure, SDN forwards data packets from one network device to another. At the
same time, SDN's networking control functions for routing, policy definition and applications run in a virtual
machine somewhere on the network. Thus, NFV provides basic networking functions, while SDN controls and
orchestrates them for specific uses. The deployment of SDN and NFV under the SEMIoTICS framework
together with the performance testing and KPI validation are described in Sections 3.1 and 3.2 of this
deliverable, respectively.

Furthermore, interoperability is necessary to bridge the diverse technologies of sensors, actuators and
communication hardware at the field layer through a gateway. Novel management frameworks for supporting
the entire lifecycle of 10T applications in an automated manner are essential towards resource description and
discovery, reservation and bootstrapping, interfacing, experimental control and monitoring. loT orchestration
and management can leverage already mature technologies, such as cloud computing and federated
heterogeneous testbed facilities.

An important challenge that arises in this context is the exchange of information about the provided resources
with their types and characteristics. Existing works rest upon certain interfaces and syntactic data models with
arbitrary extensions and identifiers, which aggravate the management of heterogeneous resources across
autonomous testbeds. To tackle this issue, it is proposed that management of the resources be based on their
semantics, i.e. their underlying meaning and relations, while specific descriptions, data models and necessary
interactions are abstracted. In other words, heterogeneous resources are described in a formalized manner
to build a basis for their management. The deployment of semantic bootstrapping, interfacing, and
interoperability under the SEMIoTICS framework together with the performance testing and KPI validation are
described in Section 3.3 of this deliverable.

Although with the aforementioned technologies it is possible to provide a functional and high-performing loT
platform capable of delivering an outstanding performance in any critical use case, there is still an imperative
issue that needs to be thoroughly investigated. As the digital transformation extends into business operations
both online and in a world full of physical devices, securing the loT cannot be an afterthought. 0T growth is
helping to drive established digitization trends in mobile, cloud, and data with the ability to get better visibility
and control over the physical world — for consumers as well as industrial applications. However, given the loT-
led exposure to the real world, many industries can become vulnerable to security threats creating a massive
barrier to digital transformation. Recent analyses of security attacks show:

e >300% increase in malware loaded onto IoT devices (Source: Kaspersky Labs, New Trends in the

World of loT Threats 2018.)
e 600% Increase in loT device attacks (Source: Symantec Internet Security Threat Report 2018.)

Without proper security in loT, organizations risk lasting damage to brand reputation, as well as serious
business consequences from data breaches and violations of governmental regulations and privacy policies.
Thus, SEMIoTICS has proposed an advanced toolset that tackles security and privacy. Moreover, SPDI
properties monitoring, in the context of the SEMIoTICS Pattern-driven SPDI monitoring and adaptation, as well
as Service Function Chaining, aims to offer SPDI guarantees for the 10T deployments operation.

4

780315 — SEMIoTICS — H2020-10T-2016-2017/H2020-10T-2017

~
Deliverable D5.8: lloT Infrastructure set-up and testing (Cycle 2) SEMl llCS
Dissemination level: [public] %%

In this Cycle 2 deliverable we detail the functionality of the aforementioned SEMIoTICS components (already
deployed during Cycle 1, as detailed in the first cycle deliverable D5.3), as well as their integration in an
overarching testbed (see Section 2). This will be the first step of Task 5.3, with the second being the validation
testing of the fully integrated components into a final testbed that delivers the promised advantages under the
scope of SEMIoTICS.

1.1 Updates in the second cycle deliverable

Section 2.2.3 was added, detailing the integration of testbed components across partner locations
through VPN access

VPN access is showcased in Section 4.2 (UC2).

Section 3.5 was added, with the Service Function Chaining (SFC) component, its architecture, testing
and validation

While in cycle 1 the pattern orchestrator is tested with a virtual network topology created using Mininet,
in cycle 2, we focused on the interaction with the Field Pattern Engine and a physical layer testbed for
distributed anomaly vibration monitoring.

The SEMIoTICS GUI was updated, with new Screens included in section 3.4.4

Validation Testing results were added throughout the deliverable, including end-to-end tests (see
section 3.4.2.3), Service Instantiation results (3.2.3.1), tests related to the Kubernetes application
orchestrator (Section 3.4.3.3) and the advanced Attribute Based Encryption (Section 3.4.1.3)

Further details on the Use case specific SEMIoTICS infrastructure set-up and testing can be found in the
following documents:

D5.4 and D5.9 Demonstration and validation of IWPC-Energy (Cycle 1 & 2)
D5.5 and D5.10 Demonstration and validation of SARA-Health (Cycle 1 & 2)
D5.6 and D5.11 Demonstration and validation of IHES-Generic IoT (Cycle 1 & 2)

780315 — SEMIoTICS — H2020-10T-2016-2017/H2020-10T-2017

R
Deliverable D5.8: IloT Infrastructure set-up and testing (Cycle 2) SEMl l CS
Dissemination level: [public] %

1.2 PERT chart of SEMIoTICS tasks

TL2: Project technical and innovation
management
01012018 31122020
WP1: Project Management T1.1: Project coordination e R
oouaos | aaaaoo oouzs | sz
e | oo e | oo .
01012018 31122020
36 months Leader: SAG
[WP2: Requirements and Architecture for| 2.3 Analysis of emerging business and T2.2: Speciication of Use case scenarios
ing and i hnical 0T value drivers i ir equirements
23 months Leader: ST 3months Leader: STS 4months ‘ Leader: SAG
T2.3: Specication of frastructure
reqirements
01032018 30062018
4 months Leader: ST
T2.4: SEMICTICS architecture design
- 18 months ‘ Leader: BS 4
'
1
! Ta.1:Architectural SPDI pattems
|
: 1 o620 0002020 o]
- !
T3.1: Software defned Agzregation, |
Orchestration and cloud networks ! E=ED (=288
> 01052018 2902200 |—— |
|
| T4.2: Montoring, prediction and
22 months. Leader: SAG : diagnoss
|
| 01.07.2018 3004200 |
I73.2:loT Network Function Vituaization | 22 months Leader: ENG
1
|
{+ oLos0s 020 !
- 3.5 Implementation of Fleld-level Ta.6: Implementation of SEMIOTICS |a- a3 Tocal
WP3: Smart objects and networks 22 months ‘ Leader: CTTC Ll ‘tmolbox ackend API s WPd: Pattern-driven smart behavior of
Tl s L e || o | omen o oo | o e feremmde i
- - 01.06.2018 30.06.2020
Tl e T mmn | e el
= all 25 months Leader: FORTH
{> oLos2018 29022020
a4 End-to-End Semantic
22 months Leader: SAG
01.07.2018 30042020 4|
T34 Networklevel semantic
P 22 months Leader: FORTH
Lol orosos 20022000 [—
22 months Leader:STS 4.5: End-to-End Security and Privacy
. A
5.1: KPls and Evaluation Methodology 75.2: Software system integration
L»{ 01062019 31102019 01.06.2019 31.08.2020
5 months ‘ Leader: UP 15 months Leader: B
WPs: System Integration and Evaluation
TS 35 IoT Infrastructure set-up and
P ‘ T 01.01.2019 31.08.2020
20 months Leader: Iu
5 4: Demonstration and validation of T55: T dvaidation of
- Energy scenario s IHES Generic IoT scenario
01122019 31122020 01122019 31122020 01122019 31122020
13 months Leader: SAG 13 months Leader: ENG 13 months Leader: ST
762 results
W e e P T6.1: Impact Creation and Dissemination p— ‘ Leader:ENG
36 months ‘ Leader: CTTC 36 months ‘ Leader: CTTC =
oo | e

Please note that the PERT chart is kept on task level for better readability.

780315 — SEMIoTICS — H2020-10T-2016-2017/H2020-10T-2017

~
Deliverable D5.8: lloT Infrastructure set-up and testing (Cycle 2) SEMl llCS
Dissemination level: [public] %%

2 SEMIOTICS OVERARCHING TESTBED
2.1 SEMIoTICS overarching testbed design

In this section, we present the overarching design of the SEMIoTICS testbed, being composed of a Backend
layer, an SDN/NFV Orchestration layer, and a Field layer. Frameworks and APIls designed within WP3 and
WP4, which include the NFV, SDN, Semantic Interoperability and Pattern Engine frameworks, are first
deployed and evaluated in the SEMIOTICS testbed environment. Afterwards they can be leveraged by use-
cases on extended versions of the testbed, to showcase more advanced scenarios. SEMIoTICS’ use case
applications are built in the form of lloT services, or VNFs, related to smart monitoring and actuation that are
managed autonomically by the SEMIoTICS infraOstructure. Thus, functionalities such as establishing
connectivity to a service, negotiating transport protocols and networking paths, as well as service scale-out
and load balancing functions will be totally transparent for 0T applications. Moreover, they are handled by the
respective frameworks of the SEMIoTICS infrastructure under the control of the Pattern Orchestrator (e.g., the
networking policies are implemented by the SDN framework, Service policies by the NFV framework, etc.). In
what follows, this deliverable contributes the testing methodology and preliminary test results for the main
SEMIoTICS components of the overarching SEMIoTICS testbed. Furthermore, the IloT infrastructures setup
at partners’ premises, that are involved in these tests, are also detailed as part of this deliverable.

Backend (Section 3.4)

Semantic Pattern
Validator Orchestrator

Security Manager

Recipe Cooker GUI Thing directory

U
NFV/SDN layer =

Use Case 1

NFV
(Section 3.2)

Pattern Engine
(Section 3.4)

Use Case 2

Semantic
Interoperability Use Case 3

(Section 3.3) ())

SDN
(Section 3.1)

GW (Section 3.3)

SEMIoTICS &
Legacy lloT Field

FIGURE 1: SEMIOTICS TESTBED OVERARCHING DESIGN

2.2 SEMIoTICS components integration

Alongside the lloT infrastructures at partners’ premises, a SEMIoTICS integration testbed is also under
development, to integrate individual components after their successful validation and verification. The physical
infrastructure of the SEMIoTICS integration testbed currently includes the following hardware components
and is constantly upgraded:
e One 6-core 64-bit server with 32 GB RAM hosts the OpenStack Controller and Network services,
related to Management, Orchestration and SDN control.
e One 4-core 64-bit server with 32 GB RAM hosts the ETSI OSM NFVO management services.

7

780315 — SEMIoTICS — H2020-10T-2016-2017/H2020-10T-2017

~
Deliverable D5.8: lloT Infrastructure set-up and testing (Cycle 2) SEMl lICS
Dissemination level: [public] %%

e Two 6-core 64-bit servers with 32 GB RAM act as the Compute Nodes, or Cloud hypervisors, that host
all lloT services and VNFs in dedicated Virtual Machines (VMs).

e One 4-core 64-bit server with 8 GB RAM acts as a resource constrained MEC node that hosts Edge
VNFs.

e One Odroid C2 Single-Board Computer (SBCs) acts as the Field layer Virtualized loT gateway. An
802.15.4 radio module is employed to interconnect Field devices (smart sensors) with the gateway.

o Field layer smart sensors that transmit temperature, humidity, light intensity and vibration values
wirelessly over 802.15.4 and BLE. Smart Light actuators are also used for demonstration purposes.

e SDN access switches are employed at the Network layer, to implement the SDN Data plane.

-m — SDN Data plane .
Custom Ethey e : p——n :
z Nete 3 . 3
scripts R 3 HP LCVNF N | o
- : P | E
Do ® e

Core Tier / Backend Edge Tier Field

: m SR lloT Gateway
OSM & . ~ | CAETD | / - @
Custom scripts s / G, i e 1 i 2 ! i)
— R - s ;3 ; o,v,,\‘ HOT | o vovvene lloT,
Mo] H&\\\c“\ ' §v /_'_’_’_Ax Fleld Devices
8 — MEC Hypervisor
Openstack Controller || - /f'—'—‘% i
Services 3 e—— A LQLCVNEL LTVNF]
Openstsead(_ Network "LQLCVNE) LTVNF ;) ()
L e ————
= e AP : High Priorit
Openstack Contraller —— [heis ks
LCVNF : Latency Critical VNF | :
Teesem—— | | TVNF ; Latenc :
= : : y Tolerant VNF| :
Cloud Hypervisor #2 : - Virtual Machines i
Cloud Hypervisor #1 [T Containers

FIGURE 2: SEMIOTICS TESTBED PHYSICAL INFRASTRUCTURE

2.2.1 SDN/NFV ORCHESTRATION LAYER

The SEMIoTICS integration testbed leverages an OpenStack VIM, an OpenDaylight SDN controller, and an
ETSI MANO stack. In this testbed, dedicated controller nodes host the VIM, SDN and MANO services in
Containers. Containers is an emerging virtualization solution which allows services to run almost to the "bare
metal” with minimal performance penalties, but with the requirement that they share the same kernel with the
host (in this case the Controller node). lloT services are implemented in the form of VNFs, that are managed
by an ETSI compliant MANO stack, which handles the automatic deployment and lifecycle management of
services, based on performance KPIs from a Telemetry system. Moreover, VNFs can be individually scaled,
i.e., multiple instances can be deployed to meet user demand and migrated to a different hypervisor for
optimization purposes. For example, to meet service KPIs, a VNF may have to be moved to a hypervisor with
a lower CPU load, or to an Edge hypervisor to reduce latency. lloT services are generally assigned dedicated
Virtual Tenant Networks (i.e., VTNs) that are managed by the SDN Controller.

2.2.2 FIELD LAYER

Our testbed Field layer includes a virtualized lloT gateway that interconnects a set of sensors and actuators
with the backend cloud. Our loT gateway supports KVM virtualization, enabling us to push VNFs down to the
gateway tier. This allows services with ultra-low latency requirements to be pushed in very close proximity to
the lloT devices, hence minimizing latency. For the field-layer smart sensors, we employ battery operated
802.15.4 and BLE devices that perform periodic measurement of CO2, Temperature, Vibration and Light (Lux)
values. Sensor values are encapsulated in IPv6 packets and transmitted to the lloT gateway via MQTT. The
actuators are commercial Philips Hue Smart Lights that are connected to the IloT gateway via a Hue bridge.

8

780315 — SEMIoTICS — H2020-10T-2016-2017/H2020-10T-2017 ~d
Deliverable D5.8: IloT Infrastructure set-up and testing (Cycle 2) SEMl llCS
Dissemination level: [public] %%

The Sensors and Actuators are communicating with the respective VNFs that are hosted at the Cloud or lloT
gateway hypervisors. Furthermore, the integration testbed leverages Semantic models, presented in Section
3.3, to annotate data that is exchanged between Things, as well as to describe capabilities of Things in a
machine interpretable format. Our gateway serves as a semantic mediator in the task of integrating semantics
of brownfield industrial devices and IoT things. More specifically, at the input, the gateway accepts data from
diverse field devices. At the output, it provides an API to access semantically-annotated data along with
descriptions of capabilities of connected devices. The APl is based on the W3C WoT upcoming standard, and
Things are specified in the WoT TD format. TD is semantically annotated with iot.schema.org, as it has been
thoroughly described in Deliverable 3.3 and Section 3.3.

{
"@context": ["http://www.w3.org/ns/td",

{"iot": "http://iotschema.org/"} 1,

ll@typell : [
"Thing", "iot:LightControl", "iot:BinarySwitchControl”
1,

"id": "urn:dev:wot:lamp",
"name": "WirelessLamp",
"description” : "WirelessLamp uses JSON-LD 1.1 serialization",
"securityDefinitions": {
"basic_sc": {"scheme": "basic", "in":"header"}
T
"security": ["basic_sc"],
"properties”: {
"status" : {
"@type" : "iot:SwitchStatus",
"type": "string",
"forms": [{
"href": mqtt://192.168.1.11:1883/house/lamp/status,
"mediaType": "application/json"}]
}
s
"actions": {
"toggle" : {
"@type" : "iot:ToggleAction",
"forms": [{
"href": mqtt://192.168.1.11:1883/house/lamp/toggle,
"mediaType": "application/json"}]
}
s

"events":{
"overheating":{
"@type" : "iot:TemperatureAlarm",
"data": {"type": "string"},
"forms": [{
"href": "mqtt://192.168.1.11:1883/house/lamp/oh",
"subprotocol”: "longpoll"
}]
}
}

FIGURE 3: THING DESCRIPTION ANNOTATED WITH IOT.SCHEMA.ORG

780315 — SEMIoTICS — H2020-10T-2016-2017/H2020-10T-2017
Deliverable D5.8: lloT Infrastructure set-up and testing (Cycle 2)

Dissemination level: [public] SEMT%%CS

For verification purposes, in our testbed, we deployed the Smart Light as a Thing that is automatically
registered in the database with the reception of an MQTT availability message, as soon as it connects to the
network. In detail, a listener at the lloT gateway receives the availability MQTT message “ON” and retrieves
the Thing Description from the local database, as seen in FIGURE 3. The result of the discovery is shown in
the Thingweb Directory immediately, as seen in FIGURE 4. Thus, the TD is registered at the Thing Directory
that allows searching for a Thing based on its metadata, properties, actions or events. In FIGURE 5, we show
the JSON format of the TD and the address that it has been given to the Thing by the Thingweb directory.

Through this platform it is also possible to update the TD and even generate a servient based on a discovered
Thing.

D localhost

Thingweb Directory

Register (/td)

Format: | TD (JSON) v

oo

shuttle@shuttlePC: ~/things

shuttle@shuttlePC:~/things$./script
Thing detected!

OK

Discover (/td-1lookup/sem)

OK

urn:thing:MylLamp

FIGURE 4: THING DISCOVERY

10

780315 — SEMIoTICS — H2020-10T-2016-2017/H2020-10T-2017

R
Deliverable D5.8: lloT Infrastructure set-up and testing (Cycle 2) SEMl llCS
Dissemination level: [public] %%

&« C @ localhost

JSON RawData Headers

Save Copy Collapse All ExpandAll %/ Filter JSON

id: "urn:thing:MyLamp"
@type: "Thing"
name: "My Lamp"

¥ properties:

v .on:

type: "boolean"
description: "on"
v forms:
v 0:
href: "/things/lamp/prop/on"

observable: true

writable: true

@context: "http://www.w3.0rg/ns/td"

FIGURE 5: TD OF THE WIRELESS SMART LIGHT

2.2.3 INTEGRATION WITH EXTERNAL COMPONENTS THROUGH VPN
ACCESS

The integration of the integration testbed with external SEMIoTICS components (e.g., field layer components
that are specific to use-cases), requires that the testbed grants access to its functionalities to external users,
services or components. To this end, a VPN service has been enabled. Thereby, in this subsection we will
perform the tests to show that external users’ can access the NFV testbed along with the NFV functionalities.
This is of paramount importance in e.g. SEMIoTICS’ SARA Health use case, as the Pattern Orchestrator
interacts remotely with the NFV component. Also, in this regard, the loT GW forwards traffic to the VNFs in the
testbed through the VPN that we explain next.

An OpenVPN server (referred to as Router/Firewall in FIGURE 6) was setup, and credentials were generated

and shared with the SEMIoTICS integrator partner. The topology allowing such workflow is shown in FIGURE
6.

11

780315 — SEMIoTICS — H2020-10T-2016-2017/H2020-10T-2017
Deliverable D5.8: lloT Infrastructure set-up and testing (Cycle 2)
Dissemination level: [public]

SEMitelics

Internet

+<— VPN-VLAN

Router/
Firewall

+ Allow VPN-VLAN to SEMIoTICS-VLAN
+ Allow VPN-VLAN to VIM node
+ Deny all

Firewall rules:

Virtualization

Trunk

VM

AN NN NN EENEEEEEEEEEE

VM

CTTC Networks
= Trunk for internal VLANs
ssnnnnnnnnnnn SEMIOTICS VLAN

FIGURE 6 OPENVPN TUNNEL TO ALLOW INTEGRATION WITH EXTERNAL COMPONENTS

As can be seen from FIGURE 7, partners may either use their own NFVO and register the local VIM, or SSH
through the VPN-VLAN towards OSM VM to use the local NFVO and therefore the whole local SEMIoTICS’
NFV Component. IP connectivity to the orchestrated VNFs is also guaranteed.

Next, we provide the tests that show that the external users can access the NFV platform and its services by
connecting through the VPN, i.e. via the VPN and SSH they will use the whole NFV components located at the
CTTC premises. Thereby, first in FIGURE 8FIGURE 7 we show that the execution of the VPN connection
instruction, based on a configuration file that sets the VPN restriction rules, is successful.

12

780315 — SEMIoTICS — H2020-10T-2016-2017/H2020-10T-2017

~
Deliverable D5.8: lloT Infrastructure set-up and testing (Cycle 2) SEMl llCS
Dissemination level: [public] é%

jserra@jserra-Latitude-5480:~$ sudo openvpn --config semiotics_vpn.ovpn
16:50:11 2020 OpenVPN 2.4.4 x86_64-pc-linux-gnu [SSL (OpenSSL)] [LZO] [LZ4]
16:50:11 2020 library versions: OpenSSL 1.1.1 11 Sep 2018, LZ0 2.608
16:50:11 2020 Outgoing Control Channel Authentication: Using 256 bit message
16:50:11 2020 Incoming Control Channel Authentication: Using 256 bit message
16:50:11 2020 TCP/UDP: Preserving recently used remote address: [AF_INET]84.
16:50:11 2020 Socket Buffers: R=[212992->212992] S=[212992->212992]
16:50:11 2020 UDP link local: (not bound)
16:50:11 2020 UDP link remote: [AF_INET]84.88.61.201:3000
16:50:11 2020 NOTE: UID/GID downgrade will be delayed because of --client, -
16:50:11 2020 TLS: Initial packet from [AF_INET]84.88.61.201:3000, sid=0ce72]
16:50:11 2020 VERIFY OK: depth=1, CN=SMARTECH CA
16:50:11 2020 VERIFY KU OK
16:50:11 2020 Validating certificate extended key usage
16:50:11 2020 ++ Certificate has EKU (str) TLS Web Server Authentication, eX
16:50:11 2020 VERIFY EKU OK
16:50:11 2020 VERIFY OK: depth=0, CN=openvpn-server
16:50:11 2020 Control Channel: TLSv1.3, cipher TLSv1.3 TLS_AES_256_GCM_SHA3§
16:50:11 2020 [openvpn-server] Peer Connection Initiated with [AF_INET]84.8§
16:50:12 2020 SENT CONTROL [openvpn-server]: 'PUSH_REQUEST' (status=1)
16:50:12 2020 PUSH: Received control message: 'PUSH_REPLY,route 10.1.14.2 29
,peer-id 4,cipher AES-256-GCM'
16:50:12 2020 OPTIONS IMPORT: timers and/or timeouts modified
16:50:12 2020 OPTIONS IMPORT: --ifconfig/up options modified
16:50:12 2020 OPTIONS IMPORT: route options modified
16:50:12 2020 OPTIONS IMPORT: peer-id set
16:50:12 2020 OPTIONS IMPORT: adjusting link_mtu to 1624
16:50:12 2020 OPTIONS IMPORT: data channel crypto options modified
16:50:12 2020 Data Channel: using negotiated cipher 'AES-256-GCM'
16:50:12 2020 Outgoing Data Channel: Cipher 'AES-256-GCM' initialized with 2
16:50:12 2020 Incoming Data Channel: Cipher 'AES-256-GCM' initialized with 2]
16:50:12 2020 ROUTE_GATEWAY 192.168.0.1/255.255.255.0 IFACE=wlp2s® HWADDR=6§
16:50:12 2020 TUN/TAP device tun® opened
16:50:12 2020 TUN/TAP TX queue length set to 100
16:50:12 2020 do_ifconfig, tt->did_ifconfig_ipvé_setup=0
16:50:13 2020 /sbin/ip link set dev tun® up mtu 1500
16:50:13 2020 /sbin/ip addr add dev tun® local 10.8.0.22 peer 10.8.60.21
16:50:13 2020 /sbin/ip route add 10.1.14.2/32 via 10.8.0.21
16:50:13 2020 /sbin/ip route add 172.113.0.0/16 via 10.8.0.21
16:50:13 2020 /sbin/ip route add 10.8.0.1/32 via 10.8.60.21
16:50:13 2020 GID set to nogroup
16:50:13 2020 UID set to nobody
16:50:13 2020 WARNING: this configuration may cache passwords in memory --
16:50:13 2020 Initialization Sequence Completed

FIGURE 7 OPENVPN TUNNEL TO ALLOW INTEGRATION WITH THE NFV COMPONENT

To this end, we use the OSM command line interface (cli). Thereby, first it is shown in that the external users
can enter via ssh to the VM that hosts OSM (see FIGURE 8).

13

780315 — SEMIoTICS — H2020-10T-2016-2017/H2020-10T-2017

~
Deliverable D5.8: lloT Infrastructure set-up and testing (Cycle 2) SEMl llCS
Dissemination level: [public] é%

jserra@jserra-Latitude-5480:~$ ssh iotworld@172.113.10.4
iotworld@172.113.10.4's password:
Welcome to Ubuntu 18.04.4 LTS (GNU/Linux 4.15.0-106-generic x86_64)

* Documentation: https://help.ubuntu.com
* Management: https://landscape.canonical.com
* Support: https://ubuntu.com/advantage

System information as of Thu Jun 25 14:54:54 UTC 2020

System load: 0.68 Users logged 1in: (0]

Usage of /: 27.0% of 90.09GB IP address for enp5s0: 172.113.10.4
Memory usage: 35% IP address for 1xdbro: 10.181.16.1
Swap usage: 0% IP address for docker0: 172.17.0.1
Processes: 302 IP address for docker_gwbridge: 172.18.0.1

=> There is 1 zombie process.

* "If you've been waiting for the perfect Kubernetes dev solution for
mac0S, the wait is over. Learn how to install Microk8s on macO0S."

https://www.techrepublic.com/article/how-to-install-microk8s-on-macos/
* Canonical Livepatch is available for installation.

- Reduce system reboots and improve kernel security. Activate at:
https://ubuntu.com/livepatch

13 packages can be updated.
0 updates are security updates.

%* System restart required *
Last login: Thu Jun 25 11:26:01 2020 from 172.113.10.1
iotworld@semiotics-osm-big:~$ ||

FIGURE 8 SSH THROUGH THE VPN TO THE VM THAT CONTAINS THE OSM.

3 SEMIOTICS TESTBED COMPONENTS

This is the section of the deliverable that describes the SEMIoTICS components employed at the overarching
testbed. After a short description of the component architecture (more details can be found in the respective
deliverables of WP3 and WP4), we provide the testing methodology to introduce the reader to the methods
that will be employed to undertake the performance evaluation and KPI validation.

3.1 SEMIoTICS Software Defined Networking Controller (SSC)

3.1.1 COMPONENT ARCHITECTURE

SEMIoTICS SDN Controller comprises the architectural components contained as depicted in FIGURE 9. Each
of the depicted components was implemented by the time of writing the deliverable, with the majority of
components to be used / showcased in SEMIoTICS Use Cases 1 and Use Case 2 (excluding Clustering
Manager only, which is to be showcased in a lab environment).

14

780315 — SEMIoTICS — H2020-10T-2016-2017/H2020-10T-2017

~
Deliverable D5.8: lloT Infrastructure set-up and testing (Cycle 2) SEMl llCS
Dissemination level: [public] %%

Unchanged
OpenDaylight/
VirtuWind Modules

Adapted for
SEMIOTICS |
Administrator Pattern Pattern-aware NFV MANO
(Manual Intervention) | Orchestrator End Devices +VIM
scratch for SEMIoTIC S

SEMIOTICS SDN Security Clustering
CONTROLLER (SSC) Manager O~ Manager+
>} Pattem
Engine

Bootstraping Path
Manager —C Manager | O~/ vIN Manager —O)

\%/ SFC Manager

Resource NFVNIM
Manager D—‘ ul Connector

|
Southbound Interface
)

Physical/Virtual Infrastructure
‘| OpenFlow | | YANG/NE TCONF H ssH | [ovspB| | P4 | ’

FIGURE 9: SSC ARCHITECTURE AS PER TASK 3.1 (D3.1)

To test the basic function and evaluate the general performance of functions relevant for the two Use Cases,
we focus here on the realization of an exemplary scenario resembling the final Use Case 1 prototype - an
integration of the loT Gateway with corresponding end-points and an exemplary field layer application. We
specifically evaluate the Bootstrapping Manager, Pattern Engine, VTN Manager, Path Manager and Resource
Manager’s operation. Using the interaction between these components, infrastructural services and QoS-
enabled end-to-end path configurations are installed with minimal user intervention — apart from the request
specification in Pattern Engine.

Note: In the integration tests discussed below, we do not rely on the external Pattern Orchestration instance
to feed the SSC with QoS connectivity requests. Instead we rely on requests defined in a few exemplary scripts.
To support the complete Use Case 1 workflow, Pattern Orchestrator will be integrated in the final UC1
demonstrator with the related measurement to be documented in D5.9.

3.1.2 TESTING METHODOLOGY

3.1.2.1 INTEGRATION METHODOLOGY

To validate the correctness of implemented modules during implementation, we have deployed an emulated
testbed comprising of an arbitrary number of Docker containers hosting individual Open vSwitch instances with
OpenFlow 1.3.1 support. Thus, basic functionality such as VTN addition and removal, as well as addition and
removal of individual connectivity pattern instances is achieved using unit tests without interaction with the
physical setup.

However, the Use Case 1 will rely on deployment of physically attached end-devices and should depict the
correct SSC operation when deployed against physical network switching equipment. To this end, we have
deployed a 6-switch physical network comprised of 6x OpenFlow 1.3.1 switch instances, deployed using the
kernel-space forwarding daemon of Open vSwitch and the corresponding OpenFlow agent. The switch
instances are executed on 1 Gbps Banana Pl R1 hardware devices. Each switch is equipped with 4 physical
RJ45 interfaces, as shown on devices (encircled by green box) in FIGURE 10.

15

780315 — SEMIoTICS — H2020-10T-2016-2017/H2020-10T-2017

~
Deliverable D5.8: lloT Infrastructure set-up and testing (Cycle 2) SEMl llCS
Dissemination level: [public] %%

Additionally, we deployed an LTE router attached to switch OF:104, acting as the gateway to backend layer
services. The SSC is deployed on the SIMATIC IPC427E industrial PC running Linux, equipped with a recent
Intel i7 Processor and 16 GB of DDR4 RAM.

== Control Plane
== Data Plane

&\
” V)

™ e

5|

[, . OF:103

. OF:102
. OF:101

FIGURE 10: INITIAL NETWORKING DEPLOYMENT TOWARDS USE CASE 1 REALIZATION

To evaluate an initial implementation of the SSC, we have compiled and installed its components based on
code check-out from December, 2019, with the loT Gateway solution developed in D3.3 and evaluate the loT
Gateway application providing semantic mediation for inter-connected sensor (camera) and actuator devices
(streamer device). An extension of the application demonstrated here is intended for the Use Case 1
deployment in its final form, i.e., interconnecting greenfield sensory devices and a brownfield programmable
logic controller (PLC). Nevertheless, discovery of grease leakage based on camera-taken photos, processed
in a remote unit, will be shown in the Use Case 1 as well.

To evaluate intermediate integration of current subset of loT Gateway components (i.e., the Semantic Edge
Platform and Semantic API & Protocol binding) we deployed: a) an IP-enabled camera as envisioned end-point
sensor; b) the combination of Semantic Edge Platform based on RED-Node and semantic API bindings to
expose data using the WoT Thing description interface; and c) the internet gateway used in bootstrapping of
the RED-Node framework. Additional details on the tested applications are discussed in Section 3.3.

3.1.2.2 SYSTEM BOOTSTRAPPING

After initial bootup of the devices, the switches must first discover the SSC. We assume the switches are
configured with IP address of the SSC and the port which SSC is listening on for new OpenFlow connections.
Indeed, the controller/port configurations in the Open vSwitch implementation persists after reboots, hence a
single-time configuration was necessary to achieve this functionality. Bootstrapping Manager can alternatively
deploy the DHCP server and provide the switches with automatically derived IPv4 addresses but we assume
manual IPv4 configuration of management interfaces of the switches for lowered complexity of the
demonstration.

Both switches and the SSC’s management interfaces are thus configured in the same IP subnet to omit the
routing. After the switches have initiated an OpenFlow session to the controller, the Bootstrapping Manager
initiates the bootstrapping procedure in the newly switches, i.e., provisioning them with default flow rules used
for in-band control channel communication. FIGURE 11 showcases the SSC’s Ul containing resulting
discovered topology (including deployed endpoints). Access to the Ul and all other REST-enabled functions of
the SSC require HTTPS digest authentication.

16

780315 — SEMIoTICS — H2020-10T-2016-2017/H2020-10T-2017

~
Deliverable D5.8: 1loT Infrastructure set-up and testing (Cycle 2) SEMl lICS
Dissemination level: [public] %%

OpenDaylight Dlux - Mozilla Firefox

OpenDaylight Dlux x

&« cC w i) localhost & fex & o v @ o n 0 &

i =N S Topology

% Topology
Controls

FIGURE 11: The discovered topology and end-devices in SSC after connecting three end-points,
booting up the switches and their successful establishment of OpenFlow 1.3.1 sessions with the
SSC.

The performance tests related to the total bootstrapping time are presented in Section below.

3.1.2.3 VIRTUAL TENANT NETWORK INSTANTIATION

To interconnect the end-points, we require a Virtual Tenant Network enabling the connectivity of all admitted
components of the application: a) an IP-enabled camera; b) the RED-Node based service capability discovery
framework and c) the internet gateway used in bootstrapping of the RED-Node framework.

The formulation of the VTN script used in the integration scenario accordingly comprises three according

interface definitions, a definition of a shared virtual bridge and the tenant definition. The exemplary VTN
establishment script used in the test scenario is as follows (comments contained inline):

17

780315 — SEMIoTICS — H2020-10T-2016-2017/H2020-10T-2017

~
Deliverable D5.8: 1loT Infrastructure set-up and testing (Cycle 2) SEMl lICS
Dissemination level: [public] %%

Creating a VTN tenant.

curl --user "admin":"admin" -H "Content-type: application/json" -X POST \
http://localhost:8181/restconf/operations/vtn:update-vtn -d \
i

"input":{
"tenant-name":"'$tenant_name

Creating a VTN bridge.
curl --user "admin":"admin" -H "Content-type: application/json" -X POST \
http://localhost:8181/restconf/operations/vtn-vbridge:update-vbridge -d \

"input":{
"tenant-name":"'$tenant_name'",
"bridge-name":"'$bridge_name""

= Repeat for each interface

Mapping a vinterface to a port.

curl --user "admin":"admin" -H "Content-type: application/json" -X POST \
http://localhost:8181/restconf/operations/vtn-port-map:set-port-map -d \
B

"input":{
"tenant-name":"'$tenant_name"",
"bridge-name":"'$bridge_name'"",
"interface-name":"'$interface1",
"node":"'$node_1",
"port-id":"'$nodeport_1"

)
sleep 0.2

780315 — SEMIoTICS — H2020-10T-2016-2017/H2020-10T-2017 ~d
Deliverable D5.8: IloT Infrastructure set-up and testing (Cycle 2) SEMl llCS
Dissemination level: [public] é%

The addition of the above VTN is expected to occur once per system deployment, hence the related manual
effort is minimal. The establishment of the VTN results in creation of default point to point flows. Using these,
the camera and Semantic Edge Platform are capable of exchanging data, i.e., exposing camera’s data via the
protocol binding API to the external apps.

3.1.2.4 QOS-ENABLED E2E FLOW INSTANTIATION

To establish the QoS-enabled connectivity between declared end-points of the evaluated test scenario, we
rely on instantiation of the according pattern instances using the SSC’s Pattern Engine. The Pattern Engine
interacts with the VTN Manager to evaluate the mapping of end-points to the specified VTN, and if satisfied,
notifies the Path Manager module of the path request. The Path Manager then computes the corresponding
path fulfilling the QoS constraints and notifies the Resource Manager of the flow rules, as well as the associated
queue mapping for each hop on the computed path. Thus, an end-to-end path can be established with
deterministic queueing defined individually for each hop on the path. Resource Manager finally installs the flow
rules and the end-point connectivity is enabled.

The corresponding QoS pattern instantiation script used in integration testing of a QoS-enabled service path
interconnecting the IP camera and loT Gateway comprises the following content:

curl --user "admin":"admin" -H "Content-type: application/json" -X POST \
http://127.0.0.1:8181/restconf/operations/patternengine:addFact -d \

"input": {
"recipe_id": "recipe1",
"fact_id": "factid17",
"fact_from": "orchestrator",
"fact_message": "17 True 100 10 1542 44:4e:6d:f9:1f:fa f0:79:59:27:4d:a1 10.50.50.254 10.50.50.2 0",
"fact_type": "qospathrequest"”
}
y
echo "'
sleep 0.2

The request properties are contained in the following line "17 True 100 10 1542 44:4e:6d:f9:1f:fa

f0:79:59:27:4d:a1 10.50.50.254 10.50.50.2 0" and comprise (in order of appearance):
= The request identifier

The requirement for bi-directionality of installed paths

The required bandwidth share in Kbps

The requested end-to-end delay requirement in milliseconds

The input traffic burst in max. Kbps

The source MAC address

The destination MAC Address

The source IP address

The destination IP address

The requirement for resilient path establishment

After establishment of the above flow, the referenced end-points with given MAC addresses as identifiers in
the flow rules in network are guaranteed the requested QoS requirements (bandwidth and delay). Given that
the input traffic arrivals are shaped as per promised maximal traffic burst and sending rate and do not exceed
the requested rate.

19

780315 — SEMIoTICS — H2020-10T-2016-2017/H2020-10T-2017

~
Deliverable D5.8: lloT Infrastructure set-up and testing (Cycle 2) SEMl llCS
Dissemination level: [public] %%

3.1.3 PERFORMANCE TEST AND KPI VALIDATION

We briefly summarize the initial results taken to bootstrap depicted network (which i.e., is also to be used in
the final Use Case 1 demonstrator), as well as the time taken to establish the end-to-end path installations
with provided QoS guarantees.

Time taken to request, schedule

Lo and embed paths in an SDN Network

0.8

0.6

0.4 4

Probability of Occurrence

0.2 1

;

300 400 500 600 700 800 900 1000
Time [ms]

FIGURE 12: OBSERVED PATH COMPUTATION AND INSTALLATION TIME

The ECDF in FIGURE 12 depicts the elapsed time taken by the SDN controller to schedule and/or embed a
point - to-point communication service with QoS guarantees. Such a service can be used to serve any generic
point-to-point communication relationship in Use Cases 1 and 2. It comprises the time to accept and parse the
request, compute the QoS - constrained path inside the Path Manager component, as well as to implement
and validate the installation flow rules using the Resource Manager.

The ECDF depicts the probability of embedding the flow rules under a given time -constraint. The portrayed
embedding is based on a relatively limited sample size of 20 flow embeddings but should serve as a good
representative of the expected controller performance.

1o Time required to bootstrap an SDN Network

0.8 1

0.6

0.4 4

Probability of Occurrence

0.2 1

0.0 T T T T T T
70 80 90 100 110 120 130 140

Time taken to complete the bootstrapping procedure [s]

FIGURE 13: OBSERVED NETWORK BOOTSTRAPPING TIME
20

780315 — SEMIoTICS — H2020-10T-2016-2017/H2020-10T-2017 ~d
Deliverable D5.8: IloT Infrastructure set-up and testing (Cycle 2) SEMl llCS
Dissemination level: [public] é%

FIGURE 13 depicts the ECDF of experimental measurements of the total time duration taken to bootstrap the
control plane in the Use Case 1 topology in in-band manner. The bootstrapping time comprises the following
phases:

1. OpenFlow session establishment and initial rule installation to support LLDP, OpenFlow, SSH,

ARP packet propagation

2. Procedure of disabling the (R)STP in safe manner on each OpenFlow switch using SSH channel

3. Procedure of re-routing the control flows for purpose of enabling resilience.

While further tuning of timeouts related to, in particular, phase two of bootstrapping, could improve the total
waiting period, the portrayed bootstrapping time is sufficient for industrial networks, that rarely, if ever,
experience a total shutdown or reboot following the initial deployment.

The switches are connected to the SSC, and configured one by-one (i.e. the switch closest to the controller is
configured first, then the neighboring switch and subsequently all other switches as well). Each switch will try
to connect to the SDN controller, independent of the state of connection of its neighbor. In the case of a failure
(connect rejection), the interval between two consecutive attempts will increase exponentially until it reaches
a maximum value.

3.1.4 RELATION TO NETWORKING REQUIREMENTS

With the above shown connectivity and bootstrapping implementation, we demonstrate the implementation of
requirements (mostly revolving around providing the VTN network instantiation, QoS connectivity for
interacting flows and network bootstrapping):

R.GP.1, R.GP.3, R.GP.6, R.S.2, R.S.77, R.NL.8, R.BC.12, R.NL.9, R.BC.13, R.NL.1, R.NL.2, R.NL.3,
R.NL.4, R.NL.7/R.BC.10, R.UC1.1, R.UC1.3, R.UC1.4, R.UC2.3, R.UC2.15, R.UC2.17

In the remainder of project, with implementation of Use Case 1 Cycle 1 and Cycle 2 demonstrators, we
additionally implement, achieve and demonstrate the following requirements:
R.GP.4, R.GP.5, R.GP.7,

Finally, due to missing relation to Use Cases, we do not address the following requirements in Use Cases
due to considerable efforts associated with required system development. Nevertheless, we will showcase
the initial results to handling these requirements in the lab environment:

R.GP.2/R.UC1.7, R.UC1.5 & R.UC1.6 (only in lab environment)

3.2 Network Function Virtualization (NFV)
3.2.1 COMPONENT ARCHITECTURE

The SEMIoTICS NFV Component encompasses the NFV Management and Orchestration (NFV MANO) and
NFV Infrastructure (NFVI), as defined in FIGURE 14. That is, the set of controllers and managers (NFV
MANO), and the set of hardware used for virtualizing network functions (also referred to as compute nodes")
at all layers of the SEMIoTICS architecture, respectively.

Together, SDN and NFV are able to realize customizable isolated network environments, where processing
endpoints (i.e. VNFs) are dynamically instantiated at precise compute nodes in the SEMIoTICS architecture.
Network traffic is then directed towards such VNFs, which may be standalone or part of a custom Service
Function Chain (SFC) to reach a desired endpoint, be processed or consumed. In this section, SEMIoTICS

1 The reference to compute nodes encompasses all hardware capable of providing virtual compute, network
and storage resources to the NFV VIM, and therefore are included in the NFVI.
21

780315 — SEMIoTICS — H2020-10T-2016-2017/H2020-10T-2017

~
Deliverable D5.8: lloT Infrastructure set-up and testing (Cycle 2) SEMl llCS
Dissemination level: [public] %%

NFV Component is described based on its current implementation on the project. Furthermore, sequence
diagrams for common procedures, APls and their relation to other SEMIoTICS components are overviewed.
To conclude, we present:
i) a testing methodology for evaluating the deployment of the component
i) present a methodology for its eventual integration with other SEMIoTICS off-location
components
i) summarizes the evaluation results through implementation.

NFV Management and

Os-Ma-Nfvo O o
rchestration :
sessescssccsccces OSS/BSS }
5 : NEV Orchestrator (NFVO)
" EM Ve-Vnfm-em E
: T | =
" F VNF NS v NFV
; VNF _'I Ve-Vnfm-vnf é Catalog Catalog Rcl:gsr:‘cs Instances :
. I Vn-Nf g -:-_ — g
: NFYV Infrastructure (NFVI) i { or-vnfm,
" 3 -~ "'
. Virtual Virtual Virtual ~ VNF Manager Sc“'i;févNF
. Computing Storage Network - (VNFM)V Infrastructure
. Description :

e Virtualisation Layer ! vi-vném

I Vi-Ha
Virtualised Or-vi

i— Infrastructure } ;
Computing Storage Network i | Manager (VIM)
Hardware Hardware Hardware

e——e Execution reference points
= Main NFV reference points
= = 4 = = Other reference points

FIGURE 14 ETSI NFV REFERENCE ARCHITECTURE

3.21.1 NFV COMPONENT AS HARDWARE

As mentioned in the introduction of this section, here the components defined in FIGURE 14 are mapped to
an example network topology. For exemplifying purposes, the network topology describing SEMIoTICS’ Use
Case 3 (UC 3) will be used, see FIGURE 15. References to the SEMIoTICS architecture and FIGURE 14 will
be made, as well as highlights to common NFV Components’ APls.

22

780315 — SEMIoTICS — H2020-10T-2016-2017/H2020-10T-2017
Deliverable D5.8: lloT Infrastructure set-up and testing (Cycle 2)

Dissemination level: [public]

Backend

Backend Pattern [Patter
Orchestrator | | Orchestrator Engine

Backend ||

Recipe Thing

Usecase Apps

Usecase 3
App

SEMitelics

Semantic
Validator

LAYER

Cooker Directory

Monitoring GUI

| NFV

NFV
Orchestrator
VNF
Manager
ViM ‘

loT Gateway

APPLICATION
ORCHESTRATION

NFV
ORCHESTRATION
LAYER

Mediator

GW Semantic
Directory

Local Thing ‘

Raspberry PI3

Q}
/.i’ J_‘jjz

IHES IHES
Sensing Unit Sensing Unit

Semantic API
& Protocol Binding
Pattem
Engine

FIELD
LAYER

IHES
Local DB

IHES
Supervisor
Service

Field Devices

Usecase 3
IHES Sensing Unit

Device
Monitoring

Local Embedded
Intelligence

FIGURE 15 USE CASE 3 SYSTEM ARCHITECTURE (FROM D2.4)

Going down an abstraction layer that is from FIGURE 14 to hardware, requires a real use case. For that
reason, UC 3 system architecture (shown in FIGURE 15) will serve as a starting point. In it, it is possible to
identify SEMIoTICS Architecture’s three layers, as well as the components involved in the realization of the
ucC.

In FIGURE 15, the Field Layer is composed of two type of devices: Field Devices, and loT Gateway. The
formers are sensors equipped with an embedded intelligence component and not virtualization-capable. The
latter are indeed virtualization-capable nodes, which are able to run all or some of their services as VNFs.
Going up SEMIoTICS System Architecture, the NFV Orchestration Layer summarizes the collection of NFV
MANO elements involved in the UC. Finally, the Application Orchestration Layer hosts the backend VNFs
supporting the UC.

From the aforementioned overview it is easy to highlight the domain of the NFV Component, i.e. virtualization -
capable nodes (NFVI). The following FIGURE 16 maps UC 3 elements and virtualization requirements? to a
preliminary network topology describing the NFVI of such UC as defined in FIGURE 15. FIGURE 16 also
highlights the elements of the SEMIoTICS architecture that would fall within the NFV Component’s domain
(denoted here as NFVI). Starting from the Field layer, the IoT Gateway hosts the VNFs that enable its
functionality in said UCs. Other services at the backend are realized as VNFs at the Application Orchestration
Layer. Notice that this layer also hosts NFV MANO and the SEMIoTICS SDN Controller (SSC). FIGURE 16
serves as a reference network topology, mainly because it considers the Field and Application Orchestration
Layers for VNF instantiation.

2 Network, compute, storage.
23

780315 — SEMIoTICS — H2020-10T-2016-2017/H2020-10T-2017

~
Deliverable D5.8: 1loT Infrastructure set-up and testing (Cycle 2) SEMl llCS
Dissemination level: [public] %%

Backend data center

Application
Orchestration Layer

NFV
Orchestration Layer

loT Gateway
NFVI

Field

Device Monitoring e

IHES Sensing Unit

FIGURE 16 ENVISIONED NFVI SUPPORTING UC3

3.2.1.2 NFV OPERATIONS

NFVIis evidenced in FIGURE 16. Virtualization-capable nodes throughout the SEMIoTICS Architecture permit
the orchestration of VNFs from a centralized location (i.e. NFV MANO). UC owners, or the Global Pattern
Orchestrator may trigger NFV Component’s APIs to: onboard descriptors, orchestration, and retrieve NFV
telemetry.

e Descriptor onboarding: as described in D3.2, for the NFV Orchestrator (NFVO) to orchestrate a
Network Service it requires a blueprint, or descriptor to be loaded (onboarded). Before onboarding,
authorized components such as the Pattern Orchestrator may modify the descriptors in order for the
to-be-orchestrated NS to comply with a specific pattern or constraint®. FIGURE 17 shows a message

sequence diagram of a VNF descriptor onboarding.

Dotted lines-arrows
represent the return path of
the request, or notifications

in specific cases

<<Backend>> <<:g>> <<NFV>>VNF <<NFV>> <<NFV>> <<NFV>>
Sender orch to Manager EM VNF VIM
1
1. On-board VNF package 1
) 2. Validate VNFD

1
J 3. Notify catalogue

t

1

1

. Ack VNF Package on-boardin :
T

1

Onboard VNF
Package

4. Upload i

5. Ack image(s) upload

e

=3

FIGURE 17 VNF DESCRIPTOR ONBOARDING

3 For ways to modify Network Services, refer to Section 4.7 in D3.2.
24

780315 — SEMIoTICS — H2020-10T-2016-2017/H2020-10T-2017

~
Deliverable D5.8: lloT Infrastructure set-up and testing (Cycle 2) SEMl llCS
Dissemination level: [public] %%

e Orchestration: once descriptors are onboarded, NFVO, via its Service and Resource Orchestration
functions gather available resources from the VIM and then schedules the instantiation/creation of the
required services specified in the descriptors. FIGURE 18, from D3.2, shows the message sequence
diagram of a VNF orchestration.

notifications in specific
cases

VNFs run within VMs at the IoT Gateways or
Backend cloud, the EM manage VNFs

f) <<NFV>>NFV <<NFV>>VNF| | <<NFV>> <<NFV>> H <NFVsSVIM
Sender || orchestrator] Pattern Engine Orchestrator Manager : EM VNF i
T T d g

'
Instantiate '
on-boarded VNF__y

T
1
1
1
NEVI state update request

FVI state update repl:

NEVI state update repl

Specification of VNF
KPIs for VNFd

—oooodfdolbloccos

escriptor update 1
nd (re)on-boarding
1

VNFd Validation 1
Descriptor validated |
and onboarded |

1
]
1
]
]
]
1
]
1
]
]
1
]
1
1
]
1
]
]
1
]
] 1
1 Y 1
] 1 1
1 1 1
] 1 1
: : Instantiate VNE !

g 1 1

=)

= 1 1 ‘alidate request

[P ! 1
E .."E'] 1 1

1 1 1

8 1 1

@ 1 1

El o 1 1
] 1 1
1 1 1 Instantiate VNF
1 1 1
1 ' 1 equest validation
i 0 i & processing
U . U Allocate resource
] 1 1
1 1 1 Pre-allocation | Resource (compute,
' ' ' processing | storage, network)
1 1 1 1 allocation and
1 1 1 . ion setup
] 1 1 1]
1 1 1 1 1
1 1 1 1 1 Networl
1 1 1 1 1 overlays
' ' ' f ' via SDN
1 1 1 1 1 (Controller|
f ' ' f f Allocat¢ internal NBIs
1 ' H 0 0 connect twork
] 1 1 1 1
! ! ! K ion of resource 0 0
1 1 1 1 1
] 1 1 1 (T
' 1 1 1 1 Allocatg VMs &
1 f f k completion of resouce allocatiq; 1 Configure VNF 1 attach tg network
]] 1 (deployment specific parampeters) 1
: : : Notify successful : : :

VNF instantiation

0 U L I) s Configure VNE ! '
! ! ! App specific parameterd) !
! ! ! Ack end of VNF instantiation 1 '
1 Ack end of 1 1 1 1 1
| VNF instantiation ,) 0 0 0 0
R ——— P — S —— L 0 0 0 0
1 1 1 1 1 1 1 1
] 1 1 1 1 1] 1

FIGURE 18 VNF ORCHESTRATION

o NFV Telemetry: via well-defined endpoints, authorized components may trigger NFVO’s or VIM’s APls
in order to gather telemetry metrics from running NS4, or the NFVI, respectively. The former can be
gathered via the Os-Ma-Nfvo endpoint at the NFV MANO (see FIGURE 14), while the latter is exposed
as a telemetry endpoint at the VIM manager. FIGURE 19 summarizes the physical location of the
aforementioned API endpoints, as well as the information they provide.

4 Subject to metrics definition at descriptor level.
25

780315 — SEMIoTICS — H2020-10T-2016-2017/H2020-10T-2017 ~F
Deliverable D5.8: lloT Infrastructure set-up and testing (Cycle 2) SEMl lICS
Dissemination level: [public] %%

VIM API NFV API
| J |

7N

A

EEEEEEERN I.
Backend :
VIM PoP :

EEEEEEERERN
Network
VIM PoP

Compute/Storage

SEMIoTICS Architecture

EEEEEEERESR
Field VIM
PoP

Compute/Storage

)

SEMIOTICS leverages NFVO and VIM API endpoints:
. NFVO API endpoint: NFVO/VIM/VNF telemetry, orchestrations, onboarding.
VIM API endpoint: custom telemetry, maintenance and configuration.

FIGURE 19 NFVO AND VIM ENDPOINTS FOR TELEMETRY AND OTHER OPERATIONS

The aforementioned operations are achieved through well specified APl endpoints. The following excerpt from
D2.5 gathers the API enabled in the NFV Component for different operations in SEMIoTICS:

e At NFVO:

o VNF Telemetry relay to OSS/BSS.

o VNF/NS instance termination.

o VNF/NS instantiation.

o VNF/NS descriptor onboarding.
e At VIM:

o Terminate VNFs.
Remove network connection between VNFs.
Configure network connection between VNFs.
Create network connection between VNFs.
Gather NFVI telemetry.
Gather VNF telemetry.
NFVI resource allocation/release/update.

O O O O O O

Designing procedures leveraging such APIs ensures QoS constraints are met, as well as provide dynamicity
and customization to NS (e.g. by other SEMIoTICS components such as the Pattern Orchestrator).

3.2.2 TESTING METHODOLOGY

26

780315 — SEMIoTICS — H2020-10T-2016-2017/H2020-10T-2017

~
Deliverable D5.8: lloT Infrastructure set-up and testing (Cycle 2) SEMl llCS
Dissemination level: [public] %%

Testing the NFV Component implies the description of network topologies in terms of NFV NS descriptors,
which in turn imply the realization of functionalities via VNFs. At this point in the project, two main tests were
performed involving the NFV Component: simple service instantiation, and data processing leveraging tenant
networks and multiple clouds. In this section, these two tests are going to be overviewed (as they appear in
full detail in D3.2 and D3.5, respectively). Additionally, the foreseeable integration methodology and tests are
going to be described outside D3.2 for the first time.

3.2.2.1 SERVICE INSTANTIATION
It is a good practice to describe each NS in terms of a simple drawing. The following FIGURE 20 shows an
example diagram describing “test-cn”, a VNF composed of three Virtualization Deployment Units (VDU), i.e.

Virtual Machines.
? ECP: vdu-1-external

r ‘ vdu-1-eth0 \
Fusmmmsssmsemmss=-- VDU-1

" . :) Image:
- Interfaces:
:.V..N..F.: .t.?.s.?. 9!1.: «vdu-1-eth0 ubuntu18-
+ vdu-1-eth1 server

vdu-1-eth1

ECP: vdu-2-external

ICP: vdu-1-internal
ICP: vdu-3-internal

ICP: vdu-2-internal

O ECP: vdu-3-external

vdu-2-eth0 vdu-3-eth0

J

FIGURE 20 shows three VDUs, each one equipped with two network interfaces. The ones connected from
their respective VDU to the External Connection Point (ECP) are referred to as external interfaces (e.g. for
management purposes, or for exposure to external networks), while the others are connected to Internal
Connection Points (ICP) via virtual links. Internal interfaces enable communication among VDUs within a
VNF. The figure only shows minor (incomplete) details regarding networking and VDU source image, but more
details may be specified, such as: vCPUs, memory, storage, monitoring parameters, scaling parameters and
thresholds, etc. These are relevant parameters that need to be known before a descriptor could be written.

VDU-2 VDU-3

Interfaces: Image: ubuntu18- Interfaces: Image: ubuntu18-
+ vdu-2-eth0 server + vdu-3-ethO server
+ Vdu-2-eth1 + vdu-3-eth1

FIGURE 20 EXAMPLE VNF DESCRIPTION DIAGRAM

Having a descriptor for such VNF requires compliance with SEMIoTICS NFV MANO platform, specifically with
the NFVO. SEMIoTICS NFVO, i.e. OSM, provides an ETSI compliant Information Model (IM)® for the
specification of VNFs and NS via descriptors. An example of VNF and NS descriptor is provided in Section
3.3.1 of D3.2.

3.2.2.2 TENANT NETWORKS AND PLACEMENT

5 https://osm.etsi.org/wikipub/index.php/OSM_Information_Model
27

780315 — SEMIoTICS — H2020-10T-2016-2017/H2020-10T-2017

~
Deliverable D5.8: lloT Infrastructure set-up and testing (Cycle 2) SEMl lICS
Dissemination level: [public] %%

SEMIoTICS NFV Component can be leveraged to place computing agents precisely where they are needed
within the architecture. In D3.5, a testbed emulating the layers of SEMIoTICS was deployed to mimic a smart
monitoring and actuation scenario. In it, two tenant networks were created, each holding the sensing and
actuation VNFs, respectively. Experiments were setup to dynamically modify in real time the attainable
throughput in each tenant network (refer to FIGURE 21). Additionally, leveraging precise placement
instructions an additional test attempted to register the different network delays between a Field device and
a destination VNFs located either at the loT Gateway (Field Layer or Local Cloud), or in the Cloud.

Smart Sensing VTN

° @ Sensing VNF (cloud)

° (@) Actuation VNF (cloud)

7=
9
o)
©
=
[0}
o
(]
O
—
(O]
o+
E
-~
C
(0]
‘s
(0]
(1)
©
c
©
S

@ Actuation VNF (gateway)
FIGURE 21 IIOT SERVICES AND TENANT NETWORKD (FROM D3.5)

3.2.2.3 INTEGRATION METHODOLOGY

As mentioned at the beginning of this section, SEMIoTICS NFV Component is composed of two elements: a
set of manager/controllers (NFV MANO, VIM), and compute nodes (NFVI). Both elements need to have IP
connectivity among them. That is, NFV MANO (NFVO and VIM) must have IP connectivity with the rest of the
NFVI. Integration tests for the NFV Component may also involve the description of a SEMIoTICS Use Case

via NFV descriptors. This way, a centralized NFVO may trigger the destination VIM’s API to orchestrate the
service on top of a NFVI.

An integration test methodology would involve granting IP connectivity to other SEMIoTICS components to
the NFV MANO and NFVI. There are two configurations in which this could be done:

1. Allow an external NFVO to register the local VIM.
2. Allow external access to local NFV MANO.

The first option would allow an external NFVO to orchestrate VNFs in the local NFVI (via the local VIM). This
way, NFVO configuration and management would be carried out by an external partner. The second option
allows access to a partner (via SSH) to the local NFV Component. This way a single NFVO is maintained,
and metrics collection at the NFVO would be gathered more efficiently. In fact this second option is the one
that IS adopted in e.g. SEMIoTICS’ SARA health use case. Moreover, below in subsection 2.2.3, we show
the functional tests that validate the access of external VPN users to the NFV testbed and its services.

3.2.3 FUNCTIONAL TESTS, PERFORMANCE TESTS AND KPI VALIDATION

3.2.3.1 SERVICE INSTANTIATION RESULTS

After NS and VNF descriptor onboarding and effective service orchestration procedures, a working NS is shown
to be running in Section 3.3.1 of D3.2. The reader is referred to the aforementioned section and deliverable in
order to gather more details about descriptors, onboarding, GUI interfaces for OSM including: VIM registered,
descriptor onboarding and NS status follow a set of steps to create, instantiate and terminate the generic VNF

28

780315 — SEMIoTICS — H2020-10T-2016-2017/H2020-10T-2017

~
Deliverable D5.8: lloT Infrastructure set-up and testing (Cycle 2) SEMl llCS
Dissemination level: [public] é%

and the generic NS. Note that, the end user only needs to interact with the OSM, which communicates internally
with the OpenStack. Moreover, the interaction with the OSM is through a set of configuration files that define
the computing, storage and networking features of the VNF and the NS. These configuration files are so-called
VNF descriptor (VNFd) and Network Service descriptor (NSd), respectively. Thereby, the next steps will be
followed below to accomplish the following:

Create generic NSd and VNFd.

Generate VNF/NS packages.

Onboard the VNF/NS packages to OSM library.

Instantiate the NS (and the VNF).

Check that we can access the VM created for the VNF instantiation.

Terminate the NS.

Create VNFd, NSd folder structure

First, OSM needs to create a folder structure for the NSd, VNFd and its related files, such as the cloud init,
which defines the initial configuration of the VM that will hold the VNF. This is accomplished by using a shell

script provided by OSM, it is called “generate_descriptor_pkg”. In FIGURE 22, we show how that folder
structure is created correctly.

iotworld@semiotics-osm-big:~/osm/vnfd$ generate_descriptor_pkg.sh -t vnfd --image ubuntul8-minimal -c generic
iotworld@semiotics-osm-big:~/osm/vnfd$ 1s

generic_vnfd

iotworld@semiotics-osm-big:~/osm/vnfd$ cd generic_vnfd/

iotworld@semiotics-osm-big:~/osm/vnfd/generic_vnfd$ 1s

README charms cloud_init generic_vnfd.yaml 1icons 1images scripts
iotworld@semiotics-osm-big:~/osm/vnfd/generic_vnfds JJ

iotworld@semiotics-osm-big:~/osm/nsd$ 1s

iotworld@semiotics-osm-big:~/osm/nsd$ generate_descriptor_pkg.sh -t nsd -c generic
iotworld@semiotics-osm-big:~/osm/nsd$ 1s

generic_nsd

iotworld@semiotics-osm-big:~/osm/nsd$ cd generic_nsd/
iotworld@semiotics-osm-big:~/osm/nsd/generic_nsd$ 1s

README charms generic_nsd.yaml 1icons ns_config scripts vnf_config
iotworld@semiotics-osm-big:~/osm/nsd/generic_nsds Jj

FIGURE 22 CREATION OF THE FOLDER STRUCTURE NEEDED TO CREATE VNFd and NSd.

Edit VNFd

After creating the folder structrure for the VNFd and NSd, we can edit the VNFd, which is a yaml configuration
file. In FIGURE 23 we present the snapshot of the yaml file that we have used to specify the VNFd. In the
sequel, the important parts of this file are discussed. The tag “id” is the unique identifier for the VNF and it is
important to recall it, as it is used in the NSd. The tag “mgmt-interface” is the interface over which the VNF is
managed. Moreover, the “cp” within it just specifies the type of management endpoint, in our case “cp” means
that we will use a connection point. Another important tag is the “vdu”, which stands for virtual description unit,
and it specifies the features of the VM that will host the VNF. The “vm-flavor” indicates the computing, memory
and storage features of the VM that will host the VNF. Thereby, note that we define a VM with 1 virtual CPU,
1 GB of RAM and no persistent storage, as the “image” that we discuss next defines enough storage for this
test. The tag “image” indicates the image that will be used to create the VM, in our case we will have an Ubuntu
OS. The “cloud-init-file” indicates the cloud init file that will be used by the VM. The snapshot for this cloud init
file is actually described below. The “interface” tag within the “vdu” tag specifies the interfaces for the vdu.

Cloud init file specification

This file is the one that specifies the initial configuration that we aim for the VM that will host the generic VNF.

Note that its name is specified in the vnfd, as commented above. In FIGURE 24, we provide the snapshot of

this cloud init file and describe its functionalities. First, note that we have a field called “users”. This allows to

add users to the system. Note that we have added a user called “generic”. Finally, within this user, there is an
29

780315 — SEMIoTICS — H2020-10T-2016-2017/H2020-10T-2017

~
Deliverable D5.8: lloT Infrastructure set-up and testing (Cycle 2) SEMl llCS
Dissemination level: [public] é%

important field to be added, the “ssh_authorized_keys”. This is important, because here we add the public ssh
keys of the users that will access the VM that hosts the VNF.

Bnfd:vnfd-catalog:
vnfd:
- 1id: generic_vnfd

name: generic_vnfd

short-name: generic_vnfd

description: Generated by OSM package generator

vendor: OSM

version: '1.0'

mgmt-interface:
cp: vnf-cp@

id: generic_vnfd-VM

name: generic_vnfd-VM
description: generic_vnfd-VM
count: 1

vm-flavor:
vcpu-count: 1
memory-mb: 1024
storage-gb: 0

image: 'ubuntul8-minimal'

cloud-init-file: 'generic'

interface:

name: eth@
type: EXTERNAL
virtual-interface:
type: VIRTIO
external-connection-point-ref: vnf-cp@

FIGURE 23 VNFD THAT DESCRIBES A GENERIC VNF.

Edit NSd

Next, in FIGURE 25 we display a snapshot of the yaml file that we edited to specify the NSd. The relevant tags
are described in the sequel. First, note that the tag “id” determines the unique identifier for the NS. The tag
“constituent-vnfd” indicates which VNFs are part of the NS. In our case we have just the generic VNF, whose
identification is “generic_vnfd” and is specified through the tag “vnfd-id-ref’. Note that, in the vnfd the “id” tag
has to correspond with that value. Then, we have the tag “vid”, which is a description of the virtual links used
by the NS for networking connections. In our case, note that the tag “type” is set to “ELAN”. This indicates that
the virtual link is a service to connect VNFs. The tag “mgmt.-network” set to “true” means that this is a VIM
management network. The tag “vim-network-name” describes the name of the network in the VIM account, in
our case “externalNet” is the name that was given such network in the OpenStack framework. Finally, the tag
“vnfd-connection-point-ref’ describes the connection points for the virtual links towards a vnf. We can see that
this is a connection towards our generic VNF as the tag “vnd-id-ref’ is set to “generic_vnfd”.

30

780315 — SEMIoTICS — H2020-10T-2016-2017/H2020-10T-2017 ~d
Deliverable D5.8: IloT Infrastructure set-up and testing (Cycle 2) SEMl lCS
Dissemination level: [public] é%

GNU nano 2.9.3 generic

users:
- default
- name: generic
lock_passwd: false
sudo: ["ALL=(ALL) NOPASSWD:ALL\nDefaults:generic !requiretty"]
passwd: 1SaltSalt$nQWEtCICy/mlLIOpj15fd.
shell: /bin/bash
ssh_authorized_keys:
- ssh-rsa AAAAB3NzaC1lyc2EAAAADAQABAAABAQCUQr8qPujnrFSfpOAmMMhMGpnylD1wsAKn+HUr9mY6RorsQ6
- ssh-rsa AAAAB3NzaC1lyc2EAAAADAQABAAABAQDr1zT12gA8ErEnaRW+zKHjDUDI5Xhk2wrmeFC+S21enq2rdg
- ssh-rsa AAAAB3NzaC1lyc2EAAAADAQABAAACAQC4AcxbsG8P4H4sT5x9AcxnVpxoKB8sxXV3MvHCu+2x1uBGq

runcmd:
- sysctl -w net.ipv4.ip_forward=1

FIGURE 24 CLOUD INIT FILE ASSOCIATED TO THE GENERIC VNF.

GNU nano 2.9.3 generic_nsd.yaml

nsd:nsd-catalog:

nsd:

- 1id: generic_nsd
name: generic_nsd
short-name: generic_nsd
description: Generated by OSM package generator
vendor: OSM
version: '1.0'

constituent-vnfd:

member -vnf-index: 1
vnfd-id-ref: generic_vnfd

id: generic_nsd_v1de

name: management

short-name: management

type: ELAN

mgmt-network: 'true'
vim-network-name: 'externalNet'

vnfd-connection-point-ref:

member-vnf-index-ref: 1
vnfd-id-ref: generic_vnfd

vnfd-connection-point-ref: vnf-cpd

FIGURE 25 NSD ASSOCIATED TO THE GENERIC VNF.

780315 — SEMIoTICS — H2020-10T-2016-2017/H2020-10T-2017

~
Deliverable D5.8: lloT Infrastructure set-up and testing (Cycle 2) SEMl llCS
Dissemination level: [public] é%

Generate VNFd/NSd packages.

At this point, the VNFd and NSd are already edited. Thereby, we can generate the NSd, and VNFd packages,
which are required in the onboarding process of the OSM. This means, the process of having our NS and VNF
packages available in the OSM library. To generate those packages we only need to execute the shell script
“generate_descriptor_pkg” provided by the OSM, which needs the NS and VNF folder structure that we created
above in FIGURE 26.
iotworld@semiotics-osm-big:~/osm/vnfds$ 1s

generic_vnfd

iotworld@semiotics-osm-big:~/osm/vnfd$ generate_descriptor_pkg.sh -t vnfd -N generic_vnfd/
iotworld@semiotics-osm-big:~/osm/vnfd$ 1s

generic_vnfd

iotworld@semiotics-osm-big:~/osm/vnfds |}

iotworld@semiotics-osm-big:~/osm/nsd$ 1s

generic_nsd

iotworld@semiotics-osm-big:~/osm/nsd$ generate_descriptor_pkg.sh -t nsd -N generic_nsd/
iotworld@semiotics-osm-big:~/osm/nsd$ 1s

generic_nsd

iotworld@semiotics-osm-big:~/osm/nsds |

FIGURE 26 GENERATION OF VNFd AND NSd PACKAGES.

Onboard the VNF/NS packages to OSM library.

Next, in FIGURE 27 it is demonstrated that we are able to onboard properly the NSd and VNFd packages into
the library of OSM. Recall that these are a set of configuration files that describe the properties of our VNF and
the requirements in terms of computing and networking that it has. Also, they describe the features of the VM
that will host the VNF and the initial configuration and software packages installations that we need in the VM.
We have called the NSd and VNFd as generic_nsd and generic_vnfd, respectively. It can be observed that
OSM has onboarded properly the NSd and VNFd, as they appear on the list of available packages in the OSM
library. Note that the osm instruction “osm nsd-list” and “osm vnfd-list” were used.

Instantiate the NS.

Then, in FIGURE 28 we trigger the instantiation of the NS that we have onboarded in OSM for our generic
VNF. This means that OSM will communicate with the OpenStack controller, which creates the VM that will
host our VNF on top of the virtual resources exposed by the OpenStack compute node. For that, obviously, the
OSM takes into account the information embedded within the NSd and VNFd. Note that to trigger the NS
instantiation we used the OSM command “osm ns-create —ns_name generic —nsd_name generic_nsd”.
Observe that you must specify for the nsd_name option the name of the NSd that you want to instantiate,
otherwise the NS will not be instantiated.

32

780315 — SEMIoTICS — H2020-10T-2016-2017/H2020-10T-2017

~
Deliverable D5.8: lloT Infrastructure set-up and testing (Cycle 2) SEMl llCS
Dissemination level: [public] %%

iotworld@semiotics-osm-big:~/osm$ osm nsd-list

vnfd-1list

iotworld@semiotics-osm-big:~/osm$ osm vnfd-create ./vnfd/generic_vnfd.tar.gz
bOfe4cO07-0c8f-4b80-a5b8-25920ebd9538
iotworld@semiotics-osm-big:~/osm$ osm nsd-create ./nsd/generic_nsd.tar.gz

3de46d77-78f5-45bd-8242-0597922b7ea7
iotworld@semiotics-osm-big:~/osm$ osm nsd-list

iotworld@semiotics-osm-big:~/osms |
FIGURE 27 ONBOARDING OF THE VNFD AND NSD PACKAGES TO OSM.

iotworld@seniotics-osm-big:~$ osm ns-list
pommeneneeneaaenans dresegecenes LERTTEETEE LD dreseenenaenaaae +
| ns instance name | id | date | ns state | current operation | error details |

To get the history of all operations over a NS, run "osm ns-op-list NS_ID"

For more details on the current operation, run "osm ns-op-show OPERATION_ID"

iotworld@seniotics-osm-big:~$ osm ns-create --ns_name generic --nsd_name generic_nsd

Vim account: semiotics_playground_train_vm_001

8fb2ac7a-53d4-4237-8a78-1d7c6e98324d

iotworld@seniotics-osm-big:~$ osm ns-list

peseeneeenaenaaaa.. S e PP TP PP PP PP P PP PP poseesecenoenaaaaae... feeeeneenan XL CLLLLLIE poseeeeeenaana.. +
| ns instance name | id | ns state | current operation | error details |

To get the history of all operations over a NS, run "osm ns-op-list NS_ID

For more details on the current operation, run "osm ns-op-show OPERATION_ID"

iotworld@seniotics-osm-big:~$ osm ns-list

LSEREEELEEER L T LLTRE R LELREEFELLERITEE fomsemenesneniienaaae droneneenes LR RRTEEELEEE R ELERE [ERRTEELLERE T +
| ns instance name | id | ns state | current operation | error details |

generic | 8fb2ac7a-53d4-4237-8a78-1d7c6e98324d | 2020-06- | IDLE (None) | N/A
foseemeenenaas P PP P PP PP PEEPPEPPEE B EELEELEPPEPPrs FEEEPELPPES fonee s F PR EEETEr +
To get the history of all operations over a NS, run "osm ns-op-list NS_ID"

For more details on the current operation, run "osm ns-op-show OPERATION_ID"
iotworld@semiotics-osn-big:~$ |

FIGURE 28 INSTANTIATION OF THE NS RELATED TO THE GENERIC VNF.

33

780315 — SEMIoTICS — H2020-10T-2016-2017/H2020-10T-2017 ~d
Deliverable D5.8: IloT Infrastructure set-up and testing (Cycle 2) SEMl llCS
Dissemination level: [public] é%

Check that we can access the VM created for the VNF instantiation.

The NS instantiation creates the VM that holds the VNF, on top of the NFVI. Thereby, it is important to check
if we have access to such VM. In order to obtain the IP of the VM we can just execute the OpenStack command
"openstack server list”. OSM also provides this IP in the information of the NS instance. In FIGURE 29 we
show that an external VPN user can effectively access the VM that holds the generic VNF.

jserra@jserra-Latitude-5480:~% ssh generic@172.113.40.28

The authenticity of host '172.113.40.28 (172.113.40.28)' can't be established.
ECDSA key fingerprint is SHA256:pKnp+EqPs+dWKAgQqsOvxnsQHwwCFvg8+EVD8Jonqgoc.
Are you sure you want to continue connecting (yes/no)? yes

Warning: Permanently added '172.113.40.28' (ECDSA) to the list of known hosts.
Welcome to Ubuntu 18.04.4 LTS (GNU/Linux 4.15.0-1053-kvm x86_64)

* Documentation: https://help.ubuntu.com

* Management: https://landscape.canonical.com

* Support: https://ubuntu.com/advantage

This system has been minimized by removing packages and content that are
not required on a system that users do not log into.

To restore this content, you can run the 'unminimize' command.
0 packages can be updated.

0 updates are security updates.

The programs included with the Ubuntu system are free software;
the exact distribution terms for each program are described in the
individual files in /usr/share/doc/*/copyright.

Ubuntu comes with ABSOLUTELY NO WARRANTY, to the extent permitted by
applicable law.

generic@generic-1-generic-vnfd-vm-1:~$ pwd
/home/generic
generic@generic-1-generic-vnfd-vm-1:~$ JJ

FIGURE 29 CHECK THE ACCESS TO THE VM CREATED TO HOLD THE GENERIC VNF.

Terminate the NS.

Finally, we show that we can terminate the NS, which shows the overall lifecycle of a NS and its associated
VNFs. To this end, we use the OSM command “osm ns-delete” and its argument must specify the id of the NS
instance that we want to terminate. In FIGURE 30 we show that we can terminate the NS instance associated
to the generic VNF.

34

780315 — SEMIoTICS — H2020-10T-2016-2017/H2020-10T-2017

~
Deliverable D5.8: lloT Infrastructure set-up and testing (Cycle 2) SEMl llCS
Dissemination level: [public] é%

To get the history of all operations over a NS, run "osm ns-op-list NS_ID"

For more details on the current operation, run "osm ns-op-show OPERATION_ID"

iotworld@semiotics-osm-big:~$ osm ns-delete 8fb2ac7a-53d4-4237-8a78-1d7c6e98324d

Deletion in progress

iotworld@semiotics-osm-big:~$ osm ns-list

R R L LT B e T e L LT L L L B T e LR R LT +
| ns instance name | id | ns state | current operation | error details |

17 | TERMINATING | TERMINATING (f252f714-eae9-4554-b37c-db5043c5ff10) | N/A
L e e R L LT] +
To get the history of all operations over a NS, run "osm ns-op-list NS_I

For more details on the current operation, run "osm ns-op-show OPERATION_ID"
iotworld@semiotics-osm-big:~$ osm ns-list

| error details |
B L LT +

-
To get the history of all operations over a NS, run "osm ns-op-list NS_ID"
For more details on the current operation, run "osm ns-op-show OPERATION_ID"
iotworld@semiotics-osm-big:~$ [l

FIGURE 30 TERMINATE THE NS RELATED TO THE GENERIC VNF.

3.2.3.2 TENANTS NETWORKS AND PLACEMENT RESULTS
As described in the previous section, two tests were to be carried out:

1. Live Network throughput modification.
2. Measurement of delays between local and global cloud.

800
706 YNF1 (Sensing) N .\Vm LN
=== \/NF2 (Actuation) Vv \'J V
—_ 600
w
by
s 560—
5 400
=
H 300 | A
£ AUV
= 200 o
160
~0 T T T T T]
-2 3 8 13 18 23 28
Time (s)

FIGURE 31 THROUGHPUT MEASUREMENT VS. TIME FOR VNF1 AND VNF2

FIGURE 31, extracted from D3.5, shows the results of a network throughput modification at time t=11s. That
is, at the beginning of the experiment both VNFs were able to achieve the same throughput towards a cloud
destination (1 Gbps external link, therefore 500 Mbps is achieved by each VNF). Nevertheless, at the specified
time the VIM’s SDN Controller (Neutron) is instructed to modify the distribution of available bandwid th via the
corresponding API, effectively lowering VNF1’s throughput to around 300 Mbps. As the experiment was
performed under saturated traffic, the rest of the available bandwidth is consumed by VNF2.

Regarding VNF placement as a way of lowering delay, measurements of Round-Trip Time (RTT) were
performed between a Field device and the local cloud, as well as from the Field device to a cloud instance.
Details about the experiment can be found in Section 5.2.2 of D3.5; FIGURE 32 shows RTT in milliseconds
for a growing link load. Notice that each curve specifies the location of the destination VNF. Results show that
as links get congested, placing the service VNF further away from the Field device results in higher RTT.

35

780315 — SEMIoTICS — H2020-10T-2016-2017/H2020-10T-2017

~
Deliverable D5.8: lloT Infrastructure set-up and testing (Cycle 2) SEMl llCS
Dissemination level: [public] %%

=== ocal cloud

80 -+=M=Remote Cloud)

T
loT Gateway /

~
o
1

\

Packet Delay (ms)
w b U1 O
o O O

\

o

|

0,3 0,4 0,5 0,6 0,7 0,8
Link Load

FIGURE 32 PACKET DELAY VS. LOAD FOR DIFFERENT VNF PLACEMENT OPTIONS

3.2.3.3 INTERACTION WITH THE NFV MANO BASED ON RESTFUL NORTH-BOUND INTERFACE (NBI).

In SEMIoTICS, the Pattern Orchestrator needs to interact with the NFV platform to enforce patterns in the
underlying VNFs and NS. From the NFV MANO viewpoint, the Pattern Orchestrator can be regarded as
Operation Support Systems (OSS) entities. Thereby, the interface between the NFV MANO and the Pattern
Orchestrator is well defined through the Os-Ma-NFVO reference point, which is specified by the ETSI
standards® 7. In practice, the Os-Ma-NFVO interface can be implemented through RESTful protocols, as
suggested by ETSI in the ETSI NFV-SOL specification8. Thereby, by means of these RESTful protocols the
pattern orchestrator can perform remotely the NFV management operations that control the NS and the VNFs
packages or its lifecycle. For instance, onboard a new VNF package, retrieve the information of the available
VNF packages or instantiate a new NS. To this end, the RESTful protocol defines:

e The URI resource structure. For instance, the structure that identifies a NSD.

e The HTTP methods that can be applied to the URI resources. For instance, a GET method to consult
the information of a given NSD.

e The data structure that we need to specify for a given HTTP method. For instance, a POST method to
instantiate a NS requires to specify the identification of the NSD to be instantiated. And this corresponds
to a data structure field called “nsdld”, which is specified in the body of the HTTP request.

Next, we provide two tests that allow an external OSS to onboard to the OSM a new VNF package through the
Os-Ma-NFVO reference point, i.e. by means of the RESTful protocols mentioned above. It is worth mentioning
that a complete sequence of tests is provided in SEMIoTICS’ deliverable D3.8°. Thereby, for the sake of brevity,
we refer the reader to D3.8 to view all the tests that implement the NS and VNF management control through
the RESTful NBI mentioned above.

The tests provided next allow to onboard a VNF package. Namely, the first one allows to create a VNF package
resource, whereas the second one uploads the content of a VNF package. First, it is important to note, each
management operation done through the Os-Ma-NFVO interface has a Uniform Resource ldentifier (URI)
structure®. Thereby, the URI structure to create a new VNF package resource, has the URI structure

6 ETSI, "ETSlorg: Network Functions Virtualisation (NFV); Architectural Framework," 10 2013. [Online]. Available:
https://www.etsi.org/deliver/etsi gs/nfv/001 099/002/01.01.01 60/gs nfv002v010101p.pdf. [Accessed August 2020].

TETSI, "ETSI.org: Network Functions Virtualisation (NFV); Management and Orchestration (ETSI GSNFV-MAN 001)," December 2014.
[Online]. Available: https://www.etsi.org/deliver/etsi_gs/NFV-MAN/001_099/001/01.01.01_60/gs_NFV-MANO001v010101p.pdf.
[Accessed August 2020].

8 ETSI, "ETSI GS NFV-SOL 005. Network Functions Virtualisation (NFV) Release 2.," ETSI, 2018.
9 J. Serra et al. “Deliverable D3.8 Network Functions Virtualization for loT (final)’, SEMIoTICS deliverable D3.8.
36

780315 — SEMIoTICS — H2020-10T-2016-2017/H2020-10T-2017

Deliverable D5.8: lloT Infrastructure set-up and testing (Cycle 2) SEMl l CS
Dissemination level: [public] %

“{ApiRoot}/vnfpkgm/v1/vnf_packages”. The placeholder {ApiRoot} indicates the scheme ("http" or "https"), the
host name and optional port, and an optional prefix path. For instance, in the CTTC testbed, the OSM that
implements the NFV MANO has the IP 10.1.14.248, which is accessible through the port 9999. Thereby, the
in our case the URI resource structure to create a new VNF package resource has the following expression:

o “https://10.1.14.248:9999/0osm/vnfpkgm/v1/vnf_packages”

Moreover, to create a new VNF package resource at the NFV MANO, i.e. the OSM, we need to apply a POST
method on the URI resource structure just mentioned above. We used postman software tool'® to emulate the
OSS and to send the RESTful request to the OSM. In FIGURE 33, we display the postman interface that shows
the POST query. Observe that it returns an “id” parameter, which corresponds to the identification for the VNF
package resource that the OSM has created. FIGURE 33 also shows the web interface of the OSM, where we
can observe that effectively a VNF package resource has been created with the id mentioned above. Observe
that the VNF package resource is void, as we need to upload the VNF package content. This operation is
presented next.

POST v https://10.1.14.248:9999/0sm/vnfpkgm/v1/vnf_packages m

Body (6 Status: 201 Creat

Pretty BETA Text v =

1 -
2 id: 618b6f75-b679-45b3-941e-7434fcdcaba3

© iano

VNF Packages @ Home

A Home

Show 10 ~| entries Searcl
Short Name 12 Identifier Type "] Description Vendor Version Actions
618b6f75- Z = @& % & @O
VNF Packages b679-45b3-941e-
7434fcdca0a3
NetSlice Templates
generic-vnf_vnfd 7433aafd-b695-4aaa- vnfd Generated by OSM OsMm 1.0 Z = @ X @
FEEnEE 9d41-b623ef1883bf package generator il
sfc_generic_endpoint_vnfd b802c6f8-db7f-4e89- vnfd Generated by OSM OSM 1.0 Z = @ =& |
b9a2-2824ded33453 package generator o
sfc_mpls_vnfd 618b1f84-8946-4a0f- vnfd Generated by OSM OSM 1.0 Z = @ & 3 0]
bf55-92964f8966ba package generator il

Showing 1 to 4 of 4 entries

FIGURE 33 VNF package resource creation through the RESTful NBI.

In order to upload the content related to a VNF package, i.e. its VNF descriptor, we need to perform a PUT
request on the next URI structure:

o https://10.1.14.248:9999/osm/vnfpkgm/v1/vnf_packages/{ vnfPkgld }/package_content.
Where the {vnfPkgld} placeholder in the URI resource must be substituted by the identification obtained by the

POST operation described above. Observe that according to FIGURE 33 this identification reads “618b6f75-
b679-45b3-941e-7434fcdcala3d”. Therefore, the complete URI resource for the CTTC testbed reads:

10 www.postman.com
37

780315 — SEMIoTICS — H2020-10T-2016-2017/H2020-10T-2017 ~d
Deliverable D5.8: lloT Infrastructure set-up and testing (Cycle 2) SEMl llCS
Dissemination level: [public] %%

e https://10.1.14.248:9999/osm/vnfpkgm/v1/vnf packages/618b6f75-b679-45b3-941e-
7434fcdcala3/package content.

Also, it is important to note that in the body of the RESTful command we attach the .yaml file that represents
the VNF package descriptor, i.e. the content of the VNF package, which will be used by OSM. And another
important detail is that in the headers of the RESTful command we must specify that we are sending a .yami
file. We do by setting the “Content-Type” and the “Accept” keys to the “application/x-yaml” value. Thereby,
bearing in mind all these considerations, we present in FIGURE 34 the complete RESTful command that we
need to run to upload a VNF package content to OSM. As in the previous case, we did the implementation
using postman. In FIGURE 35 we show the effect that this PUT REST API has on the OSM. Comparing this
figure to FIGURE 33 we can see that now we have content for the VNF package.

PUT v https://10.1.14.248:9999/0sm/vnfpkgm/v1/vnf_packages/618b6f75-b679-45b3-941e-7434fcdca0a3/package_content m

[] Headers (11) °

v Headers (2)

KEY VALUE DESCRIPTION
Content-Type application/x-yaml
Accept application/x-yaml

» Temporary Headers (9) @

Body ((4 Status: 204 No Content Time: 124m
PUT v https://10.1.14.248:9999/0sm/vnfpkgm/v1/vnf_packages/618b6f75-b679-45b3-941e-7434fcdca0a3/package_content m
] (M Body ®
none form-data x-www-form-urlencoded raw @ binary GraphQL BETA

generic-vnf_vnfd2.yaml X

Body ((4 Stat 204 No Content Time: 124m Size: 272 B

Pretty BETA HTML v

1

FIGURE 34 TRIGGERING OF THE VNF PACKAGE CONTENT UPLOAD THROUGH THE RESTful NBI

38

780315 — SEMIoTICS — H2020-10T-2016-2017/H2020-10T-2017

~
Deliverable D5.8: lloT Infrastructure set-up and testing (Cycle 2) SEMl llCS
Dissemination level: [public] %%

VNF Packages & Home
Show 10 ~| entries Searc

Short Name 1% Identifier Type | Description Vendor Version Actions

generic-vnf_vnfd 7433aafd-b695-4aaa- vnfd Generated by OSM OSM 1.0 Z = ® =& 3 0]
9d41-b623ef1883bf package generator kel s

generic-vnf_vnfd2 618b6f75- vnfd Generated by OSM OSM 1.0 Z = @ & & @
b679-45b3-941e- package generator
7434fcdca0a3

sfc_generic_endpoint_vnfd b802c6f8-db7f-4e89- vnfd Generated by OSM OSM 1.0 Z = ® &% & 0O
b9a2-2824ded33453 package generator

sfc_mpls_vnfd 618b1f84-8946-4a0f- vnfd Generated by OSM OSM 1.0 Z = ® =& 3 0]
bf55-92964f8966ba package generator =

FIGURE 35 VNF PACKAGE CONTENT UPLOADED, THROUGH THE RESTful NBI, TO OSM

3.2.3.4 DYNAMIC SCALING AND TELEMETRY SERVICES

Telemetry services, in an OpenStack based VIM, allow to obtain metrics on the state of the NFVI resources,
e.g. CPU or memory usage. Thereby, given those metrics, the NFV MANO can trigger scaling out or scaling in
operations of the VNF instances. Note that, after the scaling out operation, new VNF instance replicas are
created and the converse in scale in operations.

For the implementation of telemetry services OpenStack ceilometer is leveraged. It is the de facto telemetry
service in OpenStack. It deploys agents at compute nodes that periodically poll components for different
metrics. Such metrics are then gathered by a central Ceilometer agent which later transmits them to a telemetry
storage service for processing and exposure. For this storage and exposure purposes we use Gnocchi. It
provides RESTful APIs for metrics monitoring. Thereby, the NFVO can use these RESTful APIs to leverage
the metrics in its dynamic scaling operations.

Next, we show a test that we did in the NFV testbed to gather cpu usage metrics and to trigger scaling out
operations based on this cpu usage. FIGURE 36 shows the definition of the OpenStack Ansible (OSA) user
variables enabling the monitoring of Compute nodes’ performance, as well as a pointer for Ceilometer to the
Gnocchi endpoint.

Nova conf Overrides
nova_ceilometer_enabled: True
nova_nova_conf overrides:
DEFAULT:
compute monitors: cpu.virt driver
force config drive: true
resume_guests_state_on_ host_boot: true

Ceilometer user variables
ceilometer_ samp le interval: 10
ceilometer_gnocchi_enabled: True

ceilometer ceilometer conf overrides:
dispatcher gnocchi :
archive policy: high
url: http://172.114.10.10:8041

FIGURE 36 OPEANSTACK ANSIBLE USER VARIABLES TO CONFIGURE TELEMETRY WITH
CEILOMETER AND GNOCCHI

The scale out operations are orchestrated by the NFVO, which is instructed before-hand via the VNF
descriptors. That is, the VNF descriptors indicate which are the available metrics to look at from the VIM
telemetry services and what are the corresponding thresholds that would unleash a scale out, or a scale in.

39

780315 — SEMIoTICS — H2020-10T-2016-2017/H2020-10T-2017 ~d
Deliverable D5.8: IloT Infrastructure set-up and testing (Cycle 2) SEMl llCS
Dissemination level: [public] %%

FIGURE 37 shows a section of a VNF descriptor that specifies the scaling out criteria, as well as the monitoring
parameter that is being watched by the NFVO to comply with such criteria. In summary, the scaling out
operation is triggered when the metric_wvim vnfl cpu util is greater than (GT) scale-out-
threshold (70%) during threshold-time (10) seconds. Conversely, a scale in operation is performed on
a replica VNF when the aforementioned metric is detected to be lower than (LT) scale-in-threshold
(20%) for cooldown-time (20) seconds.

scaling-group -descriptor:
- name: "scale vdu autoscale"
min-instance-count: 0
max -instance-count: 2
scaling-policy:
- name: "scale cpu util above threshold"
scaling-type: "automatic"

threshold-time: 10

cooldown-time: 20

scaling-criteria:

- name: "scale cpu util above threshold"
scale-in-threshold: 20
scale-in-relational-operation: "LT"
scale-out-threshold: 70
scale-out-relational-operation: "GT"
vnf-monitoring-param-ref: "metric vim vnfl cpu util"

vdu:

- vdu-id-ref: fast-scale-out-cpu_vnfd-vM
count: 1

monitoring-param:

- id: "metric vim vnfl memory"
name: "metric vim vnfl memory"
aggregation-type: AVERAGE
vdu-monitoring-param:

vdu-ref: "fast-scale-out-cpu vnfd-vM"

vdu-monitoring-param-ref: "metric vdul memory"

- id: "metric vim vnfl cpu util" - -
name: "metric_vim vnfl cpu util”
aggregation-type: AVERAGE
vdu-monitoring-param:

vdu-ref: "fast-scale-out-cpu vnfd-vM"

vdu-monitoring-param-ref: "metric vdul cpu util"

FIGURE 37 VNF descriptor for scaling out.

FIGURE 38 shows a sample OSM metrics dashboard containing panels measuring VNF’s CPU and Memory
usage (as defined in FIGURE 37). It can be seen in the figure how the semiotics_scale_out_1_ fast-
scale-out-cpu_vnfd-VM-1 CPU utilization metric is maxed out for a period of time, which according to
the scaling out rules should trigger the creation of a replica VNF. VM-2 and VM-3 are then created automatically
and their respective metrics also appear in the figure'.

1 Even though VM-2 and VM-3 metrics appear in the dashboard at the same time, this does not mean the VMs were in fact created
simultaneously.

40

780315 — SEMIoTICS — H2020-10T-2016-2017/H2020-10T-2017

~
Deliverable D5.8: lloT Infrastructure set-up and testing (Cycle 2) SEMl llCS
Dissemination level: [public] %%

28 0SM Sample Dashboard -

VDU CPU Metric (VIM) ~

2020-02-18 13:48:30

~ NS af97eea-6291-4512-a35¢-6d684695927d - VNF 1 -VDU semotics_scale_out-1-fastscaleoutcpuvnfdvm-1: 1 134836
= NS af97ea2-6291-4512-235¢-64684695927d - VNF 1 - VDU semiotics_scale_out1-fastscale-outcpuvnfd-VM-1 = NS af97eea2-6291-4512-235c-6d684695927d -VNF 1 - VDU semiotis_scale. = NS af97eea2-6291-4512:a35c-6d684695927d - INF 1 -VDU semiotics_scale_out-1-fast scale-outcpuvnfd-VM2: 97

= NS f97eea2-6291-4512:a350-64684695927d - YNF 1 - VDU semiotis_scale_out--fastscale-outcpu vnfc-VM-3 = NS af97eea26291-451a-a35c 6684695927 - VNF 1 -VDU semiotics_scale_out1-fast-scale-out cpuvnfd-VM3: 106

13:47:38 13:47.40 13:47.42 13:47:44 13:47.46 13:47:48 1347:50 13:47:52 1347:54 13:47:56 1347:58 13:48:00 1348:02 13:48:04 13:48:06 13:48:08 13:48:10 13:

VDU Memory Metric (VIM)

13:47:38 13:47:40 13:47.42 134744 1347.46 134748 1347:50 1347:52 1347:54 1347:56 1347:58 13:48:00 13:48:02 13:48:04 13:48:06 13:48:08 13:48:10 134812 13:48:14 134816 13:48:18 1348:20 13:48:22 1348:24 1348:26 13:48:28 13:48:30 13:48:32 13:48:34 13:48:36

== NS af97eea2-6291-4512-a35¢-6d684695927d - NF 1 - VDU semiotics_scale_out-1-fast-scale-out-cpu_vnfd-VM-1 == NS af97eea2-6291-4512-a35¢-6d684695927d - NF 1 - VDU semiotics_scale_out-1-fast-scale-out-cpu_vnfd-VM-2
== NS af97eea2-6291-4512-a35¢-6d684695927d - VNF 1 - VDU semiotics_scale_out-1-fast-scale-out-cpu_vnfd-VM-3

FIGURE 38 Scaling out of VNF instances

3.3 SEMIoTICS Field layer and Gateway
3.3.1 COMPONENT ARCHITECTURE

Field layer is, in general, responsible for hosting different types of devices (greenfield- and brownfield-
devices). Semantic-based bootstrapping & interfacing is a set of components at the field layer that enable
bootstrapping and hosting of these different types of devices. This goal is to be achieved over an interface,
which is unified (applies to all types of devices) and is semantically described (eases the use of devices’ data
in applications).

Components related to the semantic-based bootstrapping & interfacing are marked in FIGURE 39. These
components are agreed with other SEMIoTICS project partners in the work on SEMIoTICS architecture, see
FIGURE 1 and Section 2.3 in SEMIoTICS deliverable D2.4.

loT Gateway Field devices
Semantic API . Local Embedded
& Protocol Binding Securty Modkile Intelligence Usecase 1
of GW Semantic
- ">'_‘ 8 Pattern Engine Monitoring Usecase 2
w Mediator
w J
Local Thing Semantic Edge Supervisor
Directory Platform and LocalDB o

FIGURE 39: MARKED COMPONENTS RELATED TO THE SEMANTICS-BASED BOOTSTRAPPING &
INTERFACING

FIGURE 40 shows the sequence diagram for semantic-bootstrapping and interfacing of field devices in
SEMIoTICS. In the bootstrapping process we distinguish two different classes of device. The first class consists
of devices that already have a Web-based RESTful interface and are described by W3C Thing Description.

41

780315 — SEMIoTICS — H2020-10T-2016-2017/H2020-10T-2017

~
Deliverable D5.8: lloT Infrastructure set-up and testing (Cycle 2) SEMl llCS
Dissemination level: [public] %%

The second class comprise of all other devices that yet need to be made accessible over a Web-based RESTful
interface. These devices do not have a semantic description, or it exists, but needs to be mapped to
standardized semantic loT models. This is a case, for example, with brownfield devices. In order to realize loT
applications, it is convenient to map these brownfield descriptions into description based on standardized loT
semantic models.

Let us consider now a sequence diagram of activities that occur during the bootstrapping of WoT device, see
FIGURE 40. The user performs the first step during the initialization of a new device. This assumes provision
of information such as an IP address, device capability, domain of use, location etc. Since the device already
has a Thing Description (TD), this information is directly put in its TD. The device can then be registered with
SEMIoTICS lloT Gateway (with GW Semantic Mediator, which is an internal component of the Gateway). The
Mediator will create a Device Node for each interaction pattern of the device. Device Node is a programmable
component that enables interaction with the device. The Mediator automatically generates Device Nodes,
based solely on information from devices’ TDs. Generated Device Nodes can then be installed in Semantic
Edge Platform. From that moment on, the device can be used in Edge and Cloud-based applications via
interactions provided by its Device Nodes. Thus, Device Nodes represent a means for an application to
programmatically access device’s functionality via Semantic Edge Platform. The Mediator automatically
generates Device Nodes, based solely on information from devices’ TDs. Generated Device Nodes can then
be installed in Semantic Edge Platform. From that moment on, the device can be used in Edge and Cloud-
based applications via interactions provided by its Device Nodes.

In comparison to the sequence diagram for bootstrapping and interfacing of field devices in deliverable D3.3,
here we have added a component called Semantic Edge Platform (SME), see Section 3.5.8 in deliverable
D2.5. SME eases the interaction with SEMIoTICS loT Gateway (graphic user interface for network scanning
and user input, e.g., IP address range etc.), including the interaction with Local Thing Directory too.

Device GW Semantic Semantic Edge Local Thing Semantic API & ThingDirectory
Mediator Platform Directory Protocol Binding (Cloud)

Prerequisite for both type of devices: '
configure discovery IP range m

If WoT d'evu:%
L discover & register

plug a device a WoT device

If Drov.vn_field
devige

E download mapping knowledge for brownfield device

discover & register
Optional
H a brownfield
map & harmonize
initialize a brownfield device H device P

semantic models

provide Thing Description

Optional: semantically annotate & configure TD L

(provide Thing capabilites, location etc.) register Thing Description

register i
Thing Description H expose thing via its
r| Thing Description

AN
Occurs over SDN
thing accessible

via Semantic API retum (OK)

accesses Thing Description

v

FIGURE 40: SEQUENCE DIAGRAM FbR SEMANTIC-BOOTSTRAPPING AND INTERFACING OF FIELD
DEVICES IN SEMIOTICS

42

780315 — SEMIoTICS — H2020-10T-2016-2017/H2020-10T-2017

~
Deliverable D5.8: lloT Infrastructure set-up and testing (Cycle 2) SEMl llCS
Dissemination level: [public] %%

If a brownfield device needs to be initialized, then a user in addition to previously mentioned information needs
to specify metadata related to the communication protocol and the encoding format. This information will be
important part of a Thing Description and is used by SEMIoTICS loT Gateway to realize the protocol binding.
At this point in time brownfield integration has not been provided yet.

It is worth of noting that certain activities in the sequence diagram are accomplished over Software Defined
Network (SDN), see FIGURE 40. Thus, we tested the integration of SEMIoTICS loT Gateway with SEMIoTICS
Software Defined Networking Controller, see Section 3.1.

In the following we will detail each component in regard to its currently available and deployable functionality.
3.3.1.1 SEMANTIC API & PROTOCOL BINDING

Semantic APl & Protocol Binding is a component responsible for binding different protocol and exposing
common semantic API located at the Generic loT Gateway layer. This functionality is needed in order to
integrate brownfield devices into a common |oT access layer. Technology-wise, the functionality is based on
W3C Web of Things (WoT) API2,

In the following we give API that is implemented and tested in SEMIoTICS loT Gateway (GW). The current
implementation is focused only on greenfield devices, i.e., no protocol binding is required yet.

SEMIoOTICS greenfield device (e.g., Raspberry Pi with attached an IP camera) implements the following
interface for starting the camera in a WoT servient, see TABLE 1. Note that a method for starting a camera is
semantically annotated with iotschema.org mark-up for a camera?®s.

TABLE 1: WOT SERVIENT — GREENFIELD DEVICE INTERFACE

1. let thing = WoT.produce({

2. title: "SEMIOTICS Thing",

3. description: "Camera",

4. "@context": ["https://www.w3.0rg/2019/wot/td/v1", {"iot": "http://iotschema.org/" }1,
5. "@type": "iot:StartRecording",

6. "iot:capability": "iot:Camera",

7. actions: {

8. startCamera: {

9. description: "Start recording the video.)"

1e. }

11. }

12. });

13. thing.setActionHandler(

14. "startCamera",

15. (params, options) => {

16. // Code that implements an Action, e.g., "startCamera".
17. // Removed for the sake of simplicity.

18. 1)

The greenfield device does not require the protocol binding. In the next version of this deliverable we will
extend the servient to support a protocol binding for a brownfield device.

12 https://www.w3.org/TR/wot-scripting-api/
13 http://iotschema.org/Camera

43

780315 — SEMIoTICS — H2020-10T-2016-2017/H2020-10T-2017

Deliverable D5.8: IloT Infrastructure set-up and testing (Cycle 2) SEMl l CS
Dissemination level: [public] %

A client, which needs to access a newly plugged (greenfield) device, can access Thing Description (TD) of the
plugged device in order to discover its functionality. This can be achieved by providing the IP address of the
device in the method fetch, see TABLE 2.

TABLE 2: FETCHING A THING DESCRIPTION
19. WoTHelpers.fetch("http://semiotics.things.org:8080/ipcamera™).then(async (td) => {

20. let thing = await WoT.consume(td);
21. }).catch((err) => { console.error("Fetch error:", err); });
22.

By examining the fetched TD a client, for example finds an action called startCamera. The client can then use
the API to invoke the action, see TABLE 3.

TABLE 3: INTERACTING WITH THING (CAMERA)

1. // start the camera
2. await thing.invokeAction("startCamera");

3.3.1.2 LOCAL THING DIRECTORY

The purpose of Local Thing Directory is to store semantic description of Things locally in the Generic loT
Gateway. In Section 3.3.1.1 we have seen how the gateway (or any other client) can retrieve a Thing
Description (TD). During the device registration process, the gateway stores a TD in the Local Thing Directory.
For the implementation of this component we use the open source implementation from W3 C". FIGURE 41
shows the API available from our local deployment of Thing Directory in the GW.

14 https://github.com/thingweb/thingweb-directory

44

780315 — SEMIoTICS — H2020-10T-2016-2017/H2020-10T-2017

~
Deliverable D5.8: 1loT Infrastructure set-up and testing (Cycle 2) SEMl llCS
Dissemination level: [public] %g

: : D
thingweb-directory

[Base URL: localhost:8080]

hitps:/fraw.githubusercontent com/thingweb/thingweb-directory/master/directory-servlet/src/main/webapp/api.json

Web of Things (WoT) Thing Directory. Also available over COAP.

Contact the developer
MIT
Github

Schemes

Th|ng Description WoT Thing Description management interface.

‘ /td Lists all registered TDs.

‘ /td Registers (adds) a TD.

‘ /td/{id} Returns a TD based on its id.
m /td/{id} Updates an existing TD
[/td/{id} Deletes an existing TD.

‘ /td-lookup/ep Discovers a TD based on a lookup by endpoint.

‘ /td-lookup/sem Discovers a TD based on SPARQL or full text search (same as /td).

FIGURE 41: OVERVIEW OF THING DIRECTORY API

FIGURE 42 details the API related to the Thing Description registration. After fetching a TD (see TABLE 2),
the GW uses this method to store a TD in Local Thing Directory.

45

780315 — SEMIoTICS — H2020-10T-2016-2017/H2020-10T-2017
Deliverable D5.8: lloT Infrastructure set-up and testing (Cycle 2)
Dissemination level: [public]

SEMitelics

/td Registers (adds) a TD.

Parameters
Name Description
P DET Lifetime of the registration in seconds. If not specified, a default value of 86400 (24 hours) is assumed.
(query)
It - Lifetime of the registration in seconds. If n

Responses
Code Description
201

Created
400

500

Bad Request

Internal Server Error

|

D content type i j [v]]

FIGURE 42: API FOR REGISTRATION OF THING DESCRIPTION

An existing TD can be discovered from Local Thing Directory, e.g., via a SPARQL query, see FIGURE 43.

/td-1lookup/sem Discovers a TD based on SPARQL or full text search (same as /td)

Parameters

Name
rdf

string
(query)

query
string
(query)

text
string
(query)

Responses

Code

200

400

500

Description

RDF property (URI). If this parameter is used, the unit values of a given RDF property is returned

rdf - RDF property (URI). If this parameter is

SPARQL query encoded as URI

query - SPARQL query encoded as URI

Boolean text search query.

text - Boolean text search query.

Description

OK

Bad Request

Internal Server Error

Response content type [application/json v

FIGURE 43: API FOR DISCOVERY OF THING DESCRIPTION

3.3.1.3 GW SEMANTIC MEDIATOR

The goal of semantic integration (see SEMIoTICS deliverable D3.3) is to enable realization of new loT
applications that have not been envisioned at the time of engineering of an existing automation system. In the
current implementation (for greenfield devices) the mediator does need to integrate device’s semantics as the

46

780315 — SEMIoTICS — H2020-10T-2016-2017/H2020-10T-2017

~
Deliverable D5.8: lloT Infrastructure set-up and testing (Cycle 2) SEMl llCS
Dissemination level: [public] %%

device already has (semantically annotated) Thing Description. Thus, its function is just to make a device
programmatically accessible in accordance with the meta-data from Thing Description. It means that for each
interaction pattern from the TD, GW Semantic Mediator will create a Device Node of the device. Device Node
is a programmable component that enables interaction with the device. For example, if a TD of a device
contains inclinometer property and an action for IP camera, then the mediator may generate two nodes: one
for reading the current inclination data, and another one for streaming the video from the camera. So generated
Device Nodes can be installed in Semantic Edge Platform and used in Edge and Cloud-based applications.
TABLE 4 shows our script that generates and installs Device Nodes.

TABLE 4: CREATING DEVICE NODES

npm install
rm -rf ~/.node-red/package-lock.json
rm -rf GeneratedNodes/*
for file in IPshapes/* ; do
node NodeGen.js --file=$file
sleep 2
done
mkdir -p ~/.node-red/SchemaNodes
9. for d in GeneratedNodes ; do
10. cp -R $d ~/.node-red/SchemaNodes/
11. done
12. npm install --prefix ~/.node-red ~/.node-red/SchemaNodes/GeneratedNodes/*
13. npm install
14. rm -rf ~/.node-red/package-lock.json
15. rm -rf GeneratedNodes/*
16. for file in IPshapes/* ; do

coONOUVT A WNER

17. node NodeGen.js --file=$file
18. sleep 2
19. done

20. mkdir -p ~/.node-red/SchemaNodes

21. for d in GeneratedNodes ; do

22. cp -R $d ~/.node-red/SchemaNodes/

23. done

24. npm install --prefix ~/.node-red ~/.node-red/SchemaNodes/GeneratedNodes/*

In order to integrate brownfield devices, in the next version of the mediator we will integrate semantics from
existing brownfield devices into loT semantic model (our model is iotschema.org '®). If a brownfield device does
not have any semantic description, then we will need to make sure that iotschema.org covers necessary
semantics to create semantic description for that device. The mediator will provide Semantic Nodes (in addition
to Device Nodes). Semantic Nodes will be graphic components that are available in Semantic Edge P latform
for the purpose of creating semantically annotated Thing Description for a brownfield device. They will be
automatically generated from the loT semantic model (iotschema.org), and will enable a user (without expertise
in semantic technologies) to configure a device, i.e., to choose offered values from the semantic model via a
graphic component. Once a user has semantically configured a brownfield device over the Semantic Nodes,
the mediator will automatically generate a Thing Description. From that moment on, it will be possible to
discover a device over its TD and Local Thing Directory. Further on, it will be possible to access the device
over API & Protocol Binding. To this goal, we work on a common semantic access layer between brownfield
devices and new loT devices.

3.3.1.4 SEMANTIC EDGE PLATFORM
Semantic Edge Platform (SME) provides a convenient user interface for different components of loT Gateway,

which are accessible over API but not necessarily have a user interface. Thus, for example SME enables a
user to configure SEMIoTICS loT Gateway, choose a network interface, define an IP address range when

15 http://iotschema.org/docs/full.html

47

780315 — SEMIoTICS — H2020-I0T-2016-2017/H2020-10T-2017 ~
Deliverable D5.8: lloT Infrastructure set-up and testing (Cycle 2) SEMl lICS
Dissemination level: [public] %%

scanning a network for new devices, and initiate the device bootstrapping process. FIGURE 44 shows API of

loT Gateway, which is accessible over Semantic Edge Platform.

Api Documentation®

Api Documentation

basic-error-controller Basic&rror Controller
web-controller web controller
/registerDevice process
/startScan IPListAPI

/stopScan stopScan
FIGURE 44: APl OF IOT GATEWAY EXPOSED OVER SEMANTIC EDGE PLATFORM

FIGURE 45 presents the method that is used for scanning a network, where new devices are to be
bootstrapped.

48

780315 — SEMIoTICS — H2020-10T-2016-2017/H2020-10T-2017

D
Deliverable D5.8: IloT Infrastructure set-up and testing (Cycle 2) SEMl%%'lCS

Dissemination level: [public]

Scan an IP address range for WoT devices.

‘ Parameters

Name

endIPRange
string

startiPRange

string

Responses

Code

200

401
403

404

Try itout

Description

endIPRange

startIPRange

Response content type - v

Description

Example Value Mode!

"string"

Unauthorized

Forbidden

Not Found

FIGURE 45: API OF IOT GATEWAY TO START BOOTSTRAPPING

FIGURE 46 shows the API, which enables a user to terminate the network scanning. For large networks this
process may take a long time. On the other hand, sometimes a user knows, which devices are supposed to
appear during the scan. Thus, as soon as new devices appear, the process may be halted.

49

780315 — SEMIoTICS — H2020-10T-2016-2017/H2020-10T-2017 ~d
Deliverable D5.8: lloT Infrastructure set-up and testing (Cycle 2) SEMl llCS
Dissemination level: [public] %%

GET ‘ /stopScan stopScan

Stop the scanning procedure for WoT devices

‘ Parameters Tryitout

No parameters

‘ Responses Response content type o ad v

Code Description

200

il Unauthorized

g0 Forbidden

b Not Found

FIGURE 46: API OF IOT GATEWAY TO STOP SCANNING THE NETWORK

FIGURE 47 depicts the API for registering each new device. The method interacts with other gateway’s
component, i.e., it fetches device’s Thing Description, stores it in TD Directory, invokes the GW Semantic
Mediator to create a Device Node for the device, and finally installs the node in SME, thereby making it
programmatically accessible in SME over WoT API.

50

780315 — SEMIoTICS — H2020-10T-2016-2017/H2020-10T-2017

~D
Deliverable D5.8: lloT Infrastructure set-up and testing (Cycle 2) SEMl%%'lCS

Dissemination level: [public]

/registerDevice process

Register a WoT device, i.e., fetch TD and store it in TD Directory, generate and install Node-RED node for the device.

‘ Parameters

payload * ===

Responses

Code

200

201

401

404

Tryitout ‘ ‘

Description

payload
Example Value = Mode!

"string"

Parameter content type

[application/json v]

Response content type o v

Description

Created

Unauthorized

Forbidden

Not Found

FIGURE 47: APl OF IOT GATEWAY TO REGISTER A NEW WOT DEVICE

3.3.2 TESTING METHODOLOGY

In order to test the loT Gateway with all its components we have deployed it on Siemens SIMATIC IPC227E
(Nanobox), which is an industrial PC with Intel(R) Celeron(R) CPU N2930 @ 1.83GHz x 4, 8 GB RAM, and
Ubuntu Linux 18.04. Power Supply makes sure that the Nanobox is powered with enough electricity supply.
Further on, a WoT Device, which is to be bootstrapped was implemented on Raspberry Pi 3 B+ with
BCM28370B SoC: 1,4 GHz, quad-core ARM-Cortex A53 CPU, 1 GB RAM, and 5 GHz WLAN 802.11 ac, 2,4
GHz WLAN 802.11 b/g/n. WoT Device has an IP 8 Megapixel camera with video 1920 x 1080 Pixel @ 30 fps.
Both Nanobox and WoT Device are connected over the same SDN network (see Section 3.1). FIGURE 48

shows this deployment set up.

51

780315 — SEMIoTICS — H2020-10T-2016-2017/H2020-10T-2017

~
Deliverable D5.8: 1loT Infrastructure set-up and testing (Cycle 2) SEMl lICS
Dissemination level: [public] %%

P

\ 2

FIGURE 48: INITIAL BOOTSTRAPPING DEPLOYMENT TOWARDS USE CASE 1 REALIZATION

Once the WoT Device is powered up it will connect itself (over WLAN) to the network. Nanobox is also running
in the same network and is ready to bootstrap newly plugged devices. In order to test the process, we have
developed a set of API tests, see TABLE 5.

TABLE 5: IOT GATEWAY API TESTS

Semantic API & Protocol Binding

fetch

v should reject with 404 error when Thing Description is not available on WoT device at default
location (IP_Address/td);

v should fetch Thing Description from WoT device with 200 OK.

invokeAction

v should reject with 404 error if the action does not exist;
v should reject with 400 error if the action was not called correctly (e.g., wrong parameters);
v should invoke an action on a WoT Device, e.g., start a camera, with 200 OK status.

Local Thing Directory

td

v should reject with 400 when attempting to register a device with incorrect Thing Description;

v should reject with 500 when attempting to register a device and an Internal Server Error occurs in
Local Thing Directory;

v should create an entity by id, which points to registered Thing Description (with 201 OK status).

td-lookup/sem

v should reject with 400 when attempting to query Local Thing Directory with an incorrect semantic
query;

v should reject with 500 when attempting to query Local Thing Directory and an Internal Server Error
occurs;

v should return results in response to a semantic query (with 200 OK status).

GW Semantic Mediator

install

v should reject with error FALSE when a new Device Node cannot be created and installed in SME;
v should create a Device Node and install it in SME (with status TRUE).

Semantic Edge Platform

startScan

v should reject with 401 error if the network scanning is unauthorized;

52

780315 — SEMIoTICS — H2020-10T-2016-2017/H2020-10T-2017

~
Deliverable D5.8: lloT Infrastructure set-up and testing (Cycle 2) SEMl llCS
Dissemination level: [public] %%

v should reject with 403 error if the network scanning is forbidden (e.g., a request is temporally
rejected by the gateway);
v should reject with 400 error if the request is badly formed;
v should start scanning the network for new devices with the status 200 OK.
stopScan
v should reject with 401 error if the network scanning is unauthorized;
v should reject with 403 error if the network scanning is forbidden (e.g., a request is temporally
rejected by the gateway);
v should reject with 400 error if the request is badly formed;
v should stop scanning the network for new devices with the status 200 OK.
registerDevice
v should reject with 401 error if the access to the device is unauthorized;
v should reject with 403 error if the device is not accessible (e.g., temporally not available);
v should reject with 400 error if the request is badly formed;
v should register a new device with the status 200 OK.

3.3.3 PERFORMANCE TEST AND KPI VALIDATION

In this section we present results of a typical testing workflow, i.e., what happens when a user plugs a new
WoT device. These results are not really performance test. As the bootstrapping occurs prior to the run time
of an application, the performance of the process (in a sense of run time) is not important. Rather we are
interested in in a bootstrapping process that gets completed with minimal user intervention. Thus, in this section
we will present a testing procedure we have completed to validate the implementation of 1oT Gateway.

A user starts the interaction with the gateway over Semantic Edge Platform. Methods startScan and stopScan,
see TABLE 5 and FIGURE 49, are first to be tested. After defining the network range to be scanned, the user
hits the “Start scan” button (FIGURE 49) and gets a list of new devices to be registered by the gateway. This
occurs if the test goes well. Otherwise the test produces errors as specified in TABLE 5.

53

780315 — SEMIoTICS — H2020-10T-2016-2017/H2020-10T-2017 ~d
Deliverable D5.8: lloT Infrastructure set-up and testing (Cycle 2) SEMl%%'ICS

Dissemination level: [public]
Fox 1y B = ow) 608

Node-

of IPs and press Start Scan to

n
x
)
C..) startScan
stopScan

CEELELL I LY

FIGURE 49: TESTING IOT GATEWAY FROM SEMANTIC EDGE PLATFORM

FIGURE 50 shows the results from the network scanning. The user may now choose a device and press the
“Use selected devices” button. The method to be executed and tested is now registerDevice, see TABLE 5
and FIGURE 49. The method will try to fetch a Thing Description (TD) from the device, pass it to GW Semantic
Mediator, and store it in Local Thing Directory. If the process goes well, the status 200 OK will be returned.

Otherwise an error will be thrown, see TABLE 5.

54

780315 — SEMIoTICS — H2020-10T-2016-2017/H2020-10T-2017

~
Deliverable D5.8: lloT Infrastructure set-up and testing (Cycle 2) SEMl llCS
Dissemination level: [public] %%

Node-

i response -
registerDevice se selected device:
websocket

qqqqqqqqq

,,,,,,,,

FIGURE 50: RESULT FROM NETWORK SCANNING

Once GW Semantic Mediator receives a TD, it will try to generate one or more Device Nodes and install them
in Semantic Edge Platform. This process is automated as all semantic meta-data needed for Device Nodes
generation are contained in the TD. After installation of nodes, a user may start interacting with the device,
i.e., to start using it in an application.

The method to be tested during this process is “install”’, see TABLE 5. Since this component does not have a
RESTful interface, the result is shown in command line (see FIGURE 51 after installing a camera and
microphone from Use Case 1).

Terminal

File Edit view Search Terminal Help
COPY Release/binding.node
make: Leaving directory '/home/lelek/.node-red/node_modules/speaker/build’
created a lockfile as package-lock.json. You should commit this file.

+ Microphone@1.0.0
+ UndeFINed@1.0.0
added 26 packages from 24 contributors, removed 94 packages and audited 594 pack

ages in 330.685s
FIGURE 51: RESULT FROM GW SEMANTIC MEDIATOR

FIGURE 52 shows a Device Node for device that has a camera. After bootstrapping the device, a node called
“startcamera” is available and can be tested in an application flow as shown in FIGURE 52. Of course, the
node “stopcamera” has been generated and installed as well.

FIGURE 52 also shows test messages after starting the camera, see the debug console. This is a standard
way to test a node in Node-RED. Alternately we have tested the camera using the Node-RED Dashboard, see
FIGURE 53.

55

780315 — SEMIoTICS — H2020-10T-2016-2017/H2020-10T-2017

R~
Deliverable D5.8: lloT Infrastructure set-up and testing (Cycle 2) SEMl l CS
Dissemination level: [public] %

Node-RED - Mozilla Firefox
R X Sl & NodeReD
c @ D 127.00.1 @ wWoe =

«

© hitp://192.168.1.100/td_ @ NodeRED (Thingweb Directory-... > Node-RED Dashboard

e
Successhuly injeced: St
| © + = @ debug i allallm -
é « input = -
) 793 PACEARDICO3 1CADL CgR000OPEXBUERE
[e TR ENIF DRV INANPOROROOEATING
/AABETACAFAANBTOACEQEDEQH

=] (= Test flow e wsaioo

735+QEAAWEBAQEBAQEBAQAMMAAAECAWOFB
JT19vI4+11/2gAMAWEAAREDEOA

status.
JRNF1vCp1eDUSDSQkfhC faoEYW2ZIPYTKHO
nk « aso4n 2ucs
L St /9}/24CERABICQ3 ICAOLCGSO0DQOPEXBUEXE
/REQNUFFQMDXYXIhOXKhPUEOBDQAOEXATIRD
mp O /AMBETAUAF AAMBIGACEQEDEQH
suncamers ~— SISO /XAG1ARABBOEBAQEBAGAAAARAAAAAAQTDEAU
735+GEAWEBAQEBAQEBADAAAAAAAECAWOFB
JT19vf4+fr/ 2gAMANEAANEDEQA
e /AN eHFSHoaZHy 1Pk40n2qAMO4BA0S96 oc
©p /VGPGaTOHKC rQDywC4FXEDAGS9az i COVFaVa
GA y setmsg.stop
, s —— oo [£ B
wp)
/93/ 2WCEAR)CQ5 ICAOLCg50D0OPEXBUEXE
~ output /REPNUFF QHDXYX1hOXKhPUEOBDO4OEXATIRQ
JARBETALAF ARMBTGACEQEDEQH
=N /XAG1AMABBQEBAQEBAGAMMARAAAARAQTOBAY
715+GEMNEBAQEBAQEBAAMAMAAAECAWOFS
JT19vH4+fr/ 29AMAVEANEDEQA
ik NI fVCpHSE+ 1RpIAU+Q4U
/SOEYCTbp3PVUYS:
mat /031pMESBYF XHLSLEFXLAAQHINZSBF aVaMQ
Cntp response ok

Test mesages
~/9/24CEARBICQS JCABLCGSO0D0OPEXBUEXE
< = /REPNUF FQMDxXYX1hOXkhPUEOBDO4OEXATIRQ
JARBEIAtAFAAMBIGACEQEDEQH
/XAG1 AAABBOEBAQEBAGAAAAAAAARAGTOBAU

tp
I 5 AMEEAESACEBAAAAAAARECAOFS
= JT19vf4+r/2gAMAVEAAREDEQA
/ANF20qZu | RRBSKKKOEIQQRRXDZNC+OMHND
/127CgCbFLik9KCKBBRR3PCUCEOXZSOtANMY
~ function 7.426M noce: b0 5
g function /93/2wCEARBICQS ICABLCGSODQOPEXBUEXE
aras JREPNUFFQMDXYX1hOXKhPUEOBDQ4OEXATIR
] empiate /ARBETATAF AAMBIGACEQEDEQH

all /XAGIAAABBOEBAQEBAQAAAAAAMAAAAQTDBAU
735+GEAAWEBAQEBAQEBAQAAMAMAAAECAWQFB
= JT19vF4+r/2gAMANEAAREDEQA
ANFeSKANRIMUKKK4QIDEYU7Znt 3NMHAUOCY
XFOXQAUAHNL inTSmD

20hS AmpahUoH TEFFGKWGQLF

Q tngger O /M18aMDaL

/34/Cptoq:

comment

FIGURE 52: TEST FLOW FOR CAMERA

»< Node RED Dashboard

127.0.01
i‘ © http://192.168.1.100/td @ Node-RED (Thingweb Directory-... & Node-RED Dashboard

Stream

.
B
B
a
%
i

FIGURE 53: CAMERA TESTED IN THE NODE-RED DASHBOARD

56

780315 — SEMIoTICS — H2020-10T-2016-2017/H2020-10T-2017

~
Deliverable D5.8: lloT Infrastructure set-up and testing (Cycle 2) SEMl llCS
Dissemination level: [public] %%

The bootstrapping process of a new greenfield device, e.g., a camera, with our approach takes no more than
3 minutes. This includes, the network scanning, discovery, the procedure for creating a programmable interface
with the new device, and finally the procedure to make the device discoverable in Local and Global Thing
Directory. This process is significantly shorter in comparison to procedures done with traditional engineering
tools, where it takes an hour or more to complete the same task. We will provide evaluation results in the final
version of this deliverable (once we implement the bootstrapping process for brownfield devices too). But we
can already now claim that we meet the KPI 6.1 (Reduce manual interventions required for bootstrapping of
smart object in each use case domain by at least 80%).

Finally, let us see tests result from Local Thing Directory. FIGURE 54 shows the command line excerpt after
registration of a TD (execution of the “td” method from TABLE 5). The directory creates a new resource for the
registered TD with 201 OK status.

HTTP/1.1 201 Created

Date: Tue, 03 Sep 2019 14:13:33 GMT
Access-Control-Allow-0Origin: *
Access-Control-Allow-Methods: GET, OPTIONS, HEAD, PUT,
Access-Control-Allow-Headers: Content-Type

Location: urn:uuid:S5ed8edcb-8dc9-45ff-b2fc-a3c600ded2c?

Content-Length: 0
Server: Jetty(9.4.12.v20180830)

TD stored
reloading node-red...

FIGURE 54: TD REGISTRATION

FIGURE 55 shows a user interface of Local Thing Directory. First, it shows an interface for manual registration
of a TD (a user may copy/paste a TD and test the “td” method. Second, it shows an interface for semantic
lookup, see the method “td-lookup/sem”. FIGURE 55 also shows an example query for discovering all TDs that
are annotated with Capability Camera16. Finally, FIGURE 55 shows a TD resource, which was retrieved as a
query result from Local Thing Directory. If a user clicks on the resource, then it will be displayed in a Web
browser (as shown in FIGURE 56). We have created Thing Descriptions for all required field devices in
SEMIoTICS. They are semantically annotated with iotschema.org. Thus, we completed KPI 2.1 (Delivery of
semantic descriptions for all the 6 types of smart objects which are necessary for the usage scenarios).

16 http://iotschema.org/Camera

57

780315 — SEMIoTICS — H2020-10T-2016-2017/H2020-10T-2017

~
Deliverable D5.8: 1loT Infrastructure set-up and testing (Cycle 2) SEMl llCS
Dissemination level: [public] %%
ENo: K 8

Thingweb Directory - Reglster and discover W3C Thing Descriptions - Mozilla Firefox

192.168.1.101/td x | 192.168.1.101:8003/ X | <2 Node-RED @ Thingweb Directory-Re: x [

OENK localhost - &

© http://192.168.1.100/td @ Node-RED Thingweb Directory-... < Node-RED Dashboard

Thing Directory

Test TD Register (/td)
registration v

Format: | TDUSON) v

 EEELLLI I I

Discover (/td-lookup/{sen, frame})
Test TD lookup
Type: SPARQL v

7x <http://wee.3.0rg/1999/62/22-rdf -syntax-ns#type> <iot:IpCamera>

TD resource urn:uuid:SedBe0ch-8dc9-45fr-b2fc-a3¢600de02c3
after lookup

Register (/vocab)

FIGURE 55: TD LOOKUP

Mozllla Firefox

S ocalhost:8080/vocabjurr: x S

e localhost BEcR nee =
© http://192.168.1.100/td @NodeRED Thingweb Directory- ... *< Node-RED Dashboard

L. FEELITIEFLE

4571 b21c. 436084

FIGURE 56: TD RETRIEVED AFTER LOOKUP

The presented work constitutes the contribution towards fulfilling the project’s requirements regarding
SEMIOTIC’s objective 2 (development of semantic interoperability mechanisms for smart objects, networks

58

780315 — SEMIoTICS — H2020-10T-2016-2017/H2020-10T-2017

~
Deliverable D5.8: lloT Infrastructure set-up and testing (Cycle 2) SEMl llCS
Dissemination level: [public] é%

and loT platforms). The work also contributes to objective 6 (development of a reference prototype of the
SEMIOTICS open architecture, demonstrated and evaluated in all use cases, and delivery of the respective
open API.). But this work will be continued in D3.9 where the brownfield (domain-specific) integration will be
addressed. Additionally, the relevant KPI 2.1 (Delivery of semantic descriptions for all the 6 types of smart
objects which are necessary for the usage scenarios) and KPI 6.1 (Reduce manual interventions required for
bootstrapping of smart object in each use case domain by at least 80%) are examined. The final validation of
objectives and corresponding KPIs will be presented in D3.9 (Bootstrapping and interfacing SEMIoTICS field
level devices (final)) and D3.11 (the final version of this deliverable).

3.3.4 RELATION TO NETWORKING REQUIREMENTS

With the above shown functionality of loT Gateway, we demonstrate the implementation of requirements
(mostly revolving around the bootstrapping and interfacing of SEMIoTICS field level devices for greenfield
devices):

R.FD.5, R.FD.6, R.FD.7, R.FD.8, R.FD.12, R.UC1.8, R.UC1.10, R.UC1.12

With the presented implementation we also contribute to tasks that are use case-specific:
R.GP.1, R.UC1.1, R.UC1.11, R.UC2.5, R.UC2.6, R.UC3.2, R.UC3.9, R.UC3.12, R.UC3.13, R.UC3.14,
R.UC3.15, R.UC3.16, R.UC3.17.

Finally, requirements that are yet to be addressed in D3.9 (mostly revolving around the bootstrapping and
interfacing of SEMIoTICS field level devices for brownfield devices) are:
R.FD.13, R.UC1.9, R.UC1.13.

3.3.5 SEMANTIC INTEROPERABILITY

The interoperability between the SEMIoTICS framework and other loT platforms, such as FIWARE,
MindSphere and CloE 10T, works in two directions. The first direction is originating from other loT platforms,
moving towards the SEMIoTICS framework. In that way, SEMIoTICS is able to use the exposed interfaces of
the said loT platforms, in order to take advantage of IoT devices whose descriptions are available in
repositories outside SEMIoTICS framework.

On the other hand, the second direction is originating from the SEMIoTICS framework, moving towards other
loT platforms. In a similar way, the said platforms utilize the SEMIoTICS’ exposed interfaces of selected
components in order to employ loT smart objects and services.

One of the selected components that has exposed interfaces, is the Thing Directory, which is a global version
of the Local Thing Directory described in section 3.3.1.2, above. The said loT smart objects are called Things
and their description resides in the Thing Directory. The interface of Thing Directory, can be used to retrieve
the already stored semantic description of Things. The Thing Description of the corresponding Thing that is
returned, complies with the iotschema and can be used for consumption from other loT platforms.

Another component that has exposed interfaces, is the Pattern Orchestrator which along with the Pattern
Engines, offers the verification of SPDI/QoS properties as a service to be used from the other IoT platforms.
In that way an external IoT platform may utilize the said service, in order to verify the SPDI/QoS properties in
an existing workflow that is comprised of loT smart objects (loT service workflow). The loT service workflow in
question is described in a dedicated language that the Pattern Orchestrator understands and is given as input.
Pattern Orchestrator exchanges information with the Pattern Engines in order to check if a specific property
holds throughout the whole workflow and corresponds accordingly.

Finally, SDN controller, another component of SEMIoTICS, is also exposed in the scope of offering a service
which provides means of managing available OpenFlow devices in the other IoT platforms.

59

780315 — SEMIoTICS — H2020-10T-2016-2017/H2020-10T-2017

Deliverable D5.8: lloT Infrastructure set-up and testing (Cycle 2) ", T
Dissemination level: [public] SEMl%% lCS
3.3.5.1 COMPONENT ARCHITECTURE
Regarding the first direction, the key components of the SEMIoTICS architecture related to interoperability
with external loT platforms (see FIGURE 57) that are involved in this process are:
e Recipe Cooker which is responsible for cooking (creating) recipes reflecting user requirements,
e Pattern Orchestrator which is in charge of the automated configuration, coordination, and
management of different patterns (in this case Interoperability patterns) and their deployment,
o Pattern Engine (Backend) which allows the insertion, modification, execution, and retraction of
patterns through the Pattern Orchestrator,
e Backend Semantic Validator (BSV) which resolves semantic interoperability issues and
o Thing Directory (Backend) which is the repository of knowledge containing the necessary Thing

models
Backend Mindsphere Usecase Apps
Backend - Mindsphere
b4 5 Semantic Security Backend Apps Usecase 1
OF . Manager Orchestrator
b4 Validator Fiware
EEE
S ."-’ z Recipe Pattern Monitorin Fiware Usecase 2
& % < Cooker Orchestrator 9 Broker & GEs
& &:’ openHAB
(o] Thing Pattern
Directory Engine GUI V(i)spfa:igzl:tin Usecase 3

FIGURE 57 KEY COMPONENTS OF THE SEMIOTICS ARCHITECTURE RELATED TO
INTEROPERABILITY WITH EXTERNAL IOT PLATFORMS

The below motivating example with FIWARE is used for the description and analysis of the development of the
proposed approach. The main concept begins from Recipe Cooker (Backend). During runtime, a recipe/flow
can be designed by the user in Recipe Cooker; this flow represents an interaction between two Things i.e.
FIWARE Sensor, SEMIoTICS Thermostat. The aim is to check the semantic interoperability between the
specific nodes to ensure the aforementioned communication. For that reason, Recipe Cooker sends the
“cooked” recipe to the Pattern Orchestrator in order to transform it into architectural patterns (in this case
interoperability patterns). The Pattern Engine (Backend) receives the interoperability requirement from Pattern
Orchestrator, as it is responsible to enable the capability to insert, modify, execute and retract patterns. The
next step of Pattern Engine (Backend) is to examine the semantic interoperability for any links in the recipe/flow
(in this example there is only one link/wire, the connection between FIWARE Sensor and SEMIoTICS
Thermostat). Thus, for any link, Pattern Engine (Backend) triggers the BSV.

The above approach of the semantic interoperability mechanisms between SEMIOTICS and external loT
platforms is highlighted by sequence diagram, in FIGURE 58.

60

780315 — SEMIoTICS — H2020-10T-2016-2017/H2020-10T-2017

~
Deliverable D5.8: 1loT Infrastructure set-up and testing (Cycle 2) SEMl llCS
Dissemination level: [public] %%

i< <Backend>>|
k <Backend>> << B:actlt(eerr? = < <Backend>> Backend << B?.f"i(: 3 s B <()Btar‘cel;elr\:T> 7
Recipe Cooker Orchestrator Patten Engine 32::;2’;2: Directory Platform

Stepl | Step2 Step3§ Step4§

Recipe N
o interoperability R
requirement

loop)

[for each Link] : Link]

opt)

get Things
>
Thing Description
<._.'..g.4...f'9.'

..

get Elements

v

Element Description
(_._____.__...__.____.__P _________________

alt) [Link source and , interoperability
destination are JRUE .
interoperable]

..

[Link source and interoperability
destination became;

interoperable] ! update Recipe
P ! H with Adaptor Nodes

) : i i
[Link source and } '"‘e"‘:’:f’saé" ity
destination cannot be [€eeme Tt

interoperable] | i

FIGURE 58 SEQUENCE DIAGRAM OF INTEROPERABILITY WITH EXTERNAL IOT PLATFORMS

The following is a detailed description of each component and API for the interaction between them based on
the above sequence diagram.

- Recipe Cooker (Backend) — Pattern Orchestrator (Backend) Step 1:
The Recipe Cooker which is responsible for cooking (creating) recipes reflecting user requirements, send the
recipe in Pattern Orchestrator using a POST method request. Particularly, this POST parameters includes the

recipe/flow (JSON format), as body and the header is application/json. The structure is presented in FIGURE
59.

61

780315 — SEMIoTICS — H2020-10T-2016-2017/H2020-10T-2017

~
Deliverable D5.8: 1loT Infrastructure set-up and testing (Cycle 2) SEMl llCS
Dissemination level: [public] %%

T

°58 /insertRecipe

Response Class (Status 200)
string

Response Content Type | application/json v

Parameters

Parameter Value Descriptior Lo Ll Data Type
Type
recipe equired recipe body Example Value
«
L tring".
cipelD": “string®

Parameter content type: application/json v

Response Messages

HTTP Status Code Reasor Response Model Headers
201 Created
401 Unauthorized
403 Forbidden
404 Not Found
Try it out!

m finsertRecipe

BEI3E /removeChain removeChain

/removeChain removeChain
/removeChain

IremoveChain removechain

FIGURE 59 API INTERACTION BETWEEN RECIPE COOKER (BACKEND) - PATTERN ORCHESTRATOR
(BACKEND)

- Pattern Orchestrator (Backend) — Pattern Engine (Backend) Step 2:
The next step is the request from Pattern Orchestrator to Pattern Engine (Backend) in order to send the
Interoperability requirement using a POST method with the following parameters (see FIGURE 60).

62

780315 — SEMIoTICS — H2020-10T-2016-2017/H2020-10T-2017
Deliverable D5.8: lloT Infrastructure set-up and testing (Cycle 2)

Dissemination level: [public]

) swagger

Api

default (/v2/api-docs) v

Documentation

Api Documentation

Apache 2.0

greeting-controller : Greeting Controller Show/Hide

POST

List Operations
/addFact

Response Class (Status 200)

string

Response Content Type application/json v

Parameters

Parameter

factstring

Value Description Data Type

factstring string

Parameter content type: application/json v

Response Messages

HTTP S

201

401

403

404

tatus Code Reasor Response Model Headers
Created
Unauthorized
Forbidden

Not Found

Try it out!

DELETE

/factRemove

/factRemove

Expand Oper

factRer

SEMitelics

Explore

ations

nove

FIGURE 60 API INTERACTION BETWEEN PATTERN ORCHESTRATOR (BACKEND) — PATTERN

ENGINE (BACKEND)

- Pattern Engine (Backend) Backend Semantic Validator (Backend) Step 3:
The BSV component receives a request from the Pattern Engine (Backend) to check the semantic
interoperability between two Things (link) in JSON-LD/JSON format. The JSON-LD/JSON Parser is
implemented as part of the BSV, to analyze the received input and extract the meaningful information from
these set of data. The communication between the said components is achieved using the POST method
(FIGURE 61). This step is not yet fully implemented. Currently the BSV is tested using Postman. The requests
made by Postman will later be replaced by requests made by the Pattern Engine.

63

780315 — SEMIoTICS — H2020-10T-2016-2017/H2020-10T-2017

~
Deliverable D5.8: 1loT Infrastructure set-up and testing (Cycle 2) SEMl llCS
Dissemination level: [public] %%

1 swagger default (/v2/api-docs) v Explore

Api Documentation

Api Documentation

Apache 2.0

greeting-controller : Greeting Controller Show/Hide | List Operations = Expand Operations
JvalidateData) validateData

Response Class (Status 200)
string
Response Content Type | application/json v

Parameters

Parameter Value Description . Data Type
pe

things equire things body Example Value
t
ing*
Parameter content type: application/json v
h t 9"
}
}
Response Messages
HTTP Status Code Reasor Response Model Headers
201 Created
401 Unauthorized
403 Forbidden

404 Not Found

Try it out!

FIGURE 61 API INTERACTION BETWEEN PATTERN ENGINE (BACKEND) —- BACKEND SEMANTIC
VALIDATOR (BACKEND)

- Backend Semantic Validator (Backend) — Thing Directory or Other loT Platform Step4:
After that, the BSV begins the procedure to tackle the semantic interoperability issues between these two
Things from the said recipe/flow. In order to give this answer, the semantic description for any Thing is
required (for FIWARE Sensor and SEMIoTICS Thermostat). For that reason, it sends two requests:
1. SPARQL query to Thing Directory in order to receive the Thing Description of SEMIoTICS Thermostat
(see FIGURE 43 in Section 3.3) and
2. GET method to the Orion Context Broker FIWARE platform to receive the context data Description of
FIWARE Sensor. The query parameters are highlighted in FIGURE 62. The response consists of
JSON with the FIWARE Sensor attributes (type, metadata elements).

e ﬂ

KEY VALUE DESCRIPTION

FIGURE 62 POSTMAN GET REQUEST TO THE ORION CONTEXT BROKER FIWARE PLATFORM
64

780315 — SEMIoTICS — H2020-10T-2016-2017/H2020-10T-2017 ~d
Deliverable D5.8: IloT Infrastructure set-up and testing (Cycle 2) SEMl llCS
Dissemination level: [public] é%

Based on this information, the BSV could decide for the interoperability between the Things and harmonize
the semantic model capabilities with the registration of extra Adaptor Nodes in the recipe. Particularly, there
are three possible results. Firstly, the link source and destination are interoperable, so the BSV updates the
Pattern Engine (Backend) with the TRUE response. Secondly, the link source and destination are not
interoperable and the BSV can add Adaptor Nodes in order to guarantee the interoperability. In this case,
BSV not only sends the TRUE response in Pattern Engine (Backend), but also updates the recipe in Recipe
Cooker using the corresponding Adaptor Nodes. Lastly, the link source and destination are not interoperable
and BSV does not have the required information to develop the Adaptor Nodes; hence, the Pattern Engine
(Backend) receives the FALSE response by the BSV.

3.3.5.2 TESTING METHODOLOGY

In order to test the functionalities of all the said components of SEMIoTICS, as they are described in previous
subsection, we use the Proxmox Virtual environment to create Virtual Machines (VMs). The created VMs have
some hardware and software requirements, which are shown in TABLE 6 below.

TABLE 6 VM REQUIREMENTS

Component Software CPU Memory Disk
Recipe Cooker Ubuntu 16.04 LTS 2 cores 4 GB 5GB
Pattern Orchestrator Ubuntu 16.04 LTS 2 cores 4 GB 5GB
Pattern Engine (Backend) Ubuntu 16.04 LTS 2 cores 4 GB 10 GB
BSV Ubuntu 16.04 LTS 2 cores 4 GB 10 GB
Thing Directory Ubuntu 16.04 LTS 2 cores 4 GB 5 GB
Orion Context Broker Ubuntu 16.04 LTS 2 cores 4 GB 5GB
FIWARE

Thus, every component that is included in the interaction between SEMIoTICS and other loT platforms, could
be run on a modest Ubuntu VM and exchange data using the APIs that have already described in the previous
section. The overall deployment is scalable and sufficient for real-time operation. A preliminary version of the
proposed setting is implemented, thus FIGURE 63, FIGURE 64, FIGURE 65 and FIGURE 66 present
screenshots of running VMs.

65

780315 — SEMIoTICS — H2020-10T-2016-2017/H2020-10T-2017

D
Deliverable D5.8: lloT Infrastructure set-up and testing (Cycle 2) SEMl l C
Dissemination level: [public] %

Activities ®) Firefox Web Browser v fap 09:54 @

S)

o -

Node-RED - Mozilla Firefox

& Node-RED Thingweb Directory X @ Swagger Ul x | @ swagger Ul
0| ® 127.001

Jan se 1 home /eftychia/.nod s

23 Jan i ‘default' [modul S Fiow i Info
23 Jan 16:02 [info] User directory : Jeftychia/.node
23 Jan 16 - [warn] Projects disabled 0 e.projec e
23 Jan [info] FL
a-virtualBox

n 16:02 - [info]

[warn]

e25¢39af . 109b08

~ Description
Your flow credentials file is encrypted using a systen-generated key.

If the en-generated key is lost for any reason, your credentials
File will e ou will have to delete it and re-enter
{your ¢

You should set your own key using the 'credentialSecret' option in
your tings file. Node-RED will then re-encrypt your credentials
your chosen key the next time you deploy 2

[info] Starting flo

[info] Started flow

[info] [coap-s ver] Co started
[info] [coap-server:Hel AP Server] CoAP Server Started
[info] [coap server] CoAP started
[info] [coap-serve! Server] CoAP Server Started

Bo@raE@ 0@ retcr

FIGURE 63 VM RECIPE COOKER

Activities) Terminal ~ fap 09:56 @
@ swagger Ul X Node-RED Pl Thingweb Directory X [R@ESUEEIN] X
c @ © | @ localhost:

tor6_ThingDirectory16/thingweb-directory-6.16. Thingweb Directory

or6_Thingdirectory10/thingweb-directory-

ectory10/thingweb-directory- N
JUtb/lucene-nt Register (/td)
+- file:/home/eftychia/mediator6_ThingDirectory10/thingweb-directory-
/lib/commons-lang j
file: /home/eftychia/mediator6_ThingDirectory18/thingweb-directory-6.
/lib/rdf4j-queryrender-2.2.4.jar
/ hia/mediator6_ThingDirectory10/ gweb-directory-

Format: | 7D (JSON) v

directory
-annotations-2.9.0. jar

/eftychia/mediator6_ThingDirectory16/thingweb-directory
ib/httpnime-4.5.5. jar
file:/ho iator6_ThingDirectory10/t directory

J1ib/htt
+ {ator6_ThingDirectory10/thingweb-directory-
/\ib/fluent-hc

hia/mediator6_ThingDirectory10/thingweb-directory-

+- file /eftychia/mediator6_ThingDirectory16/thingweb-directory
J1ib/httpcli 4.5.5.3ar i
+- file:/hol ft mediator6_ThingDirectory18/thingweb-directory-0.16. Discover (/td-lookup/sem)
ib/httpcore-4. a
+- sun.nisc.launcher$ExtClassLoader@sbdib6a

FIGURE 64 VM THING DIRECTORY

66

780315 — SEMIoTICS — H2020-10T-2016-2017/H2020-10T-2017 ~d
Deliverable D5.8: lloT Infrastructure set-up and testing (Cycle 2) SEMl l CS
Dissemination level: [public] %

Activities [/ IntelllJ IDEA Community Edition ¥ Map 10:01 8

validator._rest [~/Validator._rest] - .../src/main/java/eu/semiotics/validator/Application.java [validator_rest] - IntelliJ IDEA
e Edit View Navigate Code Analyze Refactor Build Run Tools VCS Window Help
% Validator_rest src m Java eu semiotics validator & Application -~ JApplication(1) v & & G ® = O Q
Project ~ € & — @ Applicationjova | © GreetingController.java ~ | © ServerPortCustomizerjava - | w README.md validator_rest - | © Flowjava |
'g % Validator_rest inport org. springfranework.boot.autoconfigure. SpringBootApplication;
- .idea
-

pIng Y

src import org. springfranework. context.annotatio
— import Springfox-documentation,buiidors. RequestHandlerselectors;

% import springfox.documentation.spi.DocumentationType;

java isport springfox.docunentat ion. spring.web. pLugins .docket
eu:semiotics.validator import springfox.documentation.swagger2.annotations.

@ Application
€ Flow

© GreetingController
& Package java public static void main(string[] args) { SpringApplication.run(Application.class, args); }

vanew 3

public class Application {

@ ServerPortCustomizer
@ Thingjava pnhhz Docket) {
return new Dcckel[l)c(umentalmﬂType SWAGGER_2) . se\!(t(l
target iot Lidator”)) .build();
pom.xml
i README.md
‘avalidator_rest.iml
11 External Libraries
@ Scratches and Consoles

. Application (1) & -

2020-61-23 17:1! eu.semiotics.validator.Application : Starting Application on eftychia-VirtualBox with PID 5197 l/no-ve/enycma/vaudamr rest/t
2317 044 eu.semiotics.validator. Application i Nlo active profile set, falling back to default profiles: defau
17:15:.] h.w.eshedded tomcat : Tomcat initialized with port(s): 8886 (htty
2317 g 0.apache. catalina. core.StandardService : Starting service (Toncat
i org.apache. catalina. core.StandardEngine : Starting Servlet engine: [Apache Toncat/9.9.21]
7 g o.a.c.c.C. [Toncat]. [Locathost]. [/] : Initialazing Spring embedded WebApplicationContext
17 4 0.5.web. context. ContextLoader : Root WebApplicationContext: initialization completed in 4867 m
7 i - pertySourcedmequestappingandlertopping . Hepped UKL path {/v2/opi-docs] onto methad [public org.springframevorkihtt
17 5 - 0.5.5.concurrent. ThreadPool : Executorservice 'appli
17 g - 4.5.w.p.DocunentationPluginsBootstrapper : Context refreshed
17 1966 I -- d.2.u.p.Documentationeluginsootstrapoer | Found 1 custon docmentation plugin(s)
17 § -] 5.d.5.w.5.ApiListingReferenceScanner Scanning for api listing references
1 - 5.b..embedded. toncat. ToncatwebServer : Toncat started on port(s): 8086 (http) with context path '*
20200123 17 g - main] eu,seaiotics.vatidator.Application Started Application in 9.49 seconds (JVM running for 12.097)
2020-01-23 17 : - nm-ms-exec-n .a.c.c.C. [Toncat]. [locathost]. [/] Initializing Spring DispatcherServlet ‘dispatcherserviet’
2020-01-23 17 3 INFO : 8 -1] b.serviet Serviet : Initializing Servlet 'dispatcherServlet'
2020-01-23 17 o INFO - -1] b.serviet : Completed initialization in 18 ms

% Z: Structure

* 2: Favorites

F&Rn | =6 QEventLog
£ Allfiles are up-to-date (yvesterday 5:15 yp) 30:1 LF: UTF-8 : 4spaces : W O

FIGURE 65 VM BSV

Activities [Terminal v MNap 10:13 @

eftychla@eftychia-VirtualBox: ~

File Edit View Search Terminal Help
/irtualBox:~$ sudo doc ker run -d --name fiware-orion -h orion
iware_default -p 1026:1 fiware/orion -dbhost mongo-dbl]

@ Postman

File Edit View Help

My Workspace ¥ & Invite

No Environment

Untitled Request

POST

Boorcamp FH

FIGURE 66 VM ORION CONTEXT BROKER FIWARE

67

780315 — SEMIoTICS — H2020-10T-2016-2017/H2020-10T-2017

~
Deliverable D5.8: lloT Infrastructure set-up and testing (Cycle 2) SEMl llCS
Dissemination level: [public] %%

3.3.5.3 PERFORMANCE TEST AND KPI VALIDATION

In this section, we present results of a typical testing workflow, based on the methodology that was described
in the previous subsections. More specifically, the user designs a recipe/flow in Recipe Cooker; this flow
represents an interaction between two Things i.e. FIWARE Sensor, SEMIoTICS Thermostat. The overall
functionality is to check the semantic interoperability between these specific nodes to ensure the
aforementioned communication between them. For that reason,

- Recipe Cooker sends the “cooked” recipe to the Pattern Orchestrator in order to transform it into
architectural patterns (in this case interoperability patterns)

- Pattern Engine (Backend) receives the interoperability requirement from Pattern Orchestrator, as it is
responsible to enable the capability to insert, modify, execute and retract patterns. This component
should examine the semantic interoperability for the link/wire between FIWARE Sensor and
SEMIoTICS Thermostat in the recipe/flow; for that reason, it triggers the BSV

- BSV takes the sematic metadata of two Things using the Thing Directory and Orion Context Broker
FIWARE. Based on this information, the BSV could decide for the interoperability between the Things
and harmonize the semantic model capabilities with the registration of extra Adaptor Nodes in the
recipe and send back to Pattern Engine the corresponding response. Except that, if the link/wire
source and destination are not interoperable and the BSV can add Adaptor Nodes in order to
guarantee the interoperability, BSV should update the initial recipe in Recipe Cooker.

The following figures demonstrate the initial status of the recipe and the final structure taking to advantage
the BSV procedure in which tackles the semantic interoperability issues between these two Things.

Q Flow 6 + || = i info i

v adaptorUnits v Information

Flow "bb39f207.b6c1b8"

_ Name Flow ¢

Status Enabled

v adaptors
v Description
Encoder
FIWARE
Te tureU
e Sensors - Nodes
DataTypeCom
v FIWARE
. FIWARE Sensor Th
Fiware
N
v devicenodes
(" e)
TemperatureD
SEMIoTICS
hermostat Sensors - Nodes
o J

v adaptorUnitsTherm

- +

FIGURE 67 RECIPE INTERACTION EXAMPLE FIWARE - SEMIOTICS BEFORE SEMANTIC VALIDATION

68

780315 — SEMIoTICS — H2020-10T-2016-2017/H2020-10T-2017

~
Deliverable D5.8: lloT Infrastructure set-up and testing (Cycle 2) SEMl llCS
Dissemination level: [public] %%

-’: Deploy ~ =

Q Flow 6 + || = i info i

Adaptor- Nodes

v adaptorUnits v Information

v adaptors

Flow "bb39f207.b6c1b8"
Name Flow

Status Enabled

v Description
Encoder

TemperatureU

DataTypeCom

v FIWARE

FIWARE Sensor Thermostat

Fiware

TemperatureD

Thermostat

v adaptorUnitsTherm

- B

FIGURE 68 RECIPE INTERACTION EXAMPLE FIWARE - SEMIOTICS AFTER SEMANTIC VALIDATION

With the above shown functionality of the interoperability between SEMIOTICS and other loT platforms, we
focus on address some of the related project objectives corresponding the interoperability, such as
o the definition of SEMIoTICS semantic mediator mechanisms, with the purpose of resolving, if possible,
conflicts among the semantic models used in the semantic annotations of the patterns,
e the development of data transformation techniques and validation mechanisms to ensure semantic
interoperability,
e the definition of the mappings between datatypes used in SEMIoTICS, to ensure that data flow is
possible between smart objects that are linked in the composition structure defined by the pattern

The overall procedure constitutes the initial contribution towards fulfilling the project’s requirements regarding
SEMIOTIC’s objective 2 (development of semantic interoperability mechanisms for smart objects, networks
and loT platforms). Additionally, the relevant KPI 2.2 (Delivery of data type mapping and ontology alignment
and transformation techniques that realize semantic interoperability) and KPI 2.3 (Validated semantic
interoperability between the SEMIoTICS framework and 3 loT platforms, including FIWARE) are examined.
The final validation of objectives and corresponding KPIs will be presented in the D4.11 “Semantic
interoperability mechanisms for IoT (final)”.

69

780315 — SEMIoTICS — H2020-10T-2016-2017/H2020-10T-2017 ~d

Deliverable D5.8: IloT Infrastructure set-up and testing (Cycle 2) SEMl llCS
Dissemination level: [public] é%

3.4 Backend components

3.4.1 SECURITY AND PRIVACY

3.4.1.1 COMPONENT ARCHITECTURE
The Backend Security Manager was deployed for ensuring security and safety along all other components.
The Backend Security Manager helps SEMIoTICS to tackle the security and privacy problems that arise from
the multi-tenant scenarios in a variety of levels, i.e., from the networking layer to the application layer. The
components of the Security Manager (at the level of the backend and additionally at the network- and field-
level) are controlled by the Backend Security Manager component. The components allow SEMIoTICS to
achieve the required functionality in order to:
e provide mechanisms to authenticate users and manage their identities,
e provide mechanisms to manage identities of other entities, e.g., sensors,
e support use case applications to enforce access to privacy-sensitive information within the application,
e support use case applications to enforce access to privacy-sensitive information when the data is
stored in a cloud server, e.g., by using attribute-based encryption and lightweight encryption algorithms
and finally,
e provide mechanisms to configure and manage SEMIoTICS end-to-end secure networking capabilities.

All those requirements are covered and managed by one or more of the different software modules of the
Backend Security Manager.

As we have dockerized the complete Backend Security Manager, as described in Deliverable 4.7, it was easily
deployed to the Kubernetes cluster.

= ENTITY (INCL. USER) AUTHENTICATION

In order to take access control decision, the security manager needs to know which entity is requesting which
access. In order to become assured of the entity mechanisms for entity authentication need to be provided by
the Security Manager. To handle the authentication requests of users and other entities alike, the Security
Manager is additionally an OAuth2 provider. OAuth in Version 2.0 is a standardized (specification and
associated RFCs developed by the IETF OAuth WG can be found on
https://datatracker.ietf.org/wg/oauth/documents/) framework for user authentication and was published in
October 2012. It is considered an industry standard and is state of practice.

The project wide integration was easily manageable, as the other components of SEMIoTICS can use existing
client implementations to use SEMIoTICS identity management and authentication services offered by the
security manager in the backend. In essence, applications requiring authentication services need to register
as an OAuth2 client with the security manager and then can defer users to the SEMIoTICS authentication
endpoint. The former approach also helps when users have only access to a browser (or a mobile device),
because the OAuth protocol was developed with this in mind. Additionally, applications without explicit user
interaction, e.g., batch or cron-jobs, can authenticate towards the security manager by providing the client
credentials they have, or by user a username and password tuple for a valid user. The general architecture of
the OAuth-related component of the SEMIoTICS Security Manager in the backend is depicted in FIGURE 52.

70

780315 — SEMIoTICS — H2020-10T-2016-2017/H2020-10T-2017

~
Deliverable D5.8: 1loT Infrastructure set-up and testing (Cycle 2) SEMl llCS
Dissemination level: [public] %%

’ REST Entity API ‘ ’ Oauth2 server API
I A
:" 5 v
H IDM-Core !
! Oauth2-orize module
Schema validation : >
Token
Policy Enforcement & L
Declasification Storage Authen.tg;anon
| R providers
[— I o a _ a
[s) > « Ire!
IR 3
. o] 5] a = =
IDM-entity-storage ——————

Oauth2 server

FIGURE 69: SECURITY MANAGER IDM ARCHITECTURE

71

780315 — SEMIoTICS — H2020-10T-2016-2017/H2020-10T-2017 ~d
Deliverable D5.8: IloT Infrastructure set-up and testing (Cycle 2) SEMl llCS
Dissemination level: [public] %%

2> WORKFLOWS AND INTERACTIONS WITH OTHER SEMIOTICS COMPONENTS

This is the This the Security-wise security-wise split; needs
human user UI/Cloud PEP PDP & PAP synchronisation
i @ :Sidecar Proxy

Doctor :SARA
' GUI

:Security Manager
(GW/field level)

:Security Manager
(backend)

:Pattern Engine
Backend

request

patient's location get request for M M

patient's location

P

ask for permission_ "equGStd g
> sync if neede

A 4

dispatch :
evaluate E !
current policy to Ibop J g
et decision i L
9 [every 5 sec]
D get Authorized List
return
access control
N decision retur Authorized List__] |
: get SPDI status : i: reasoning
| e] return SPDI status __ |

FIGURE 70 WORKFLOW FOR UNAUTHORIZED LOCATION RETRIEVAL

FIGURE 70 depicts in the highlighted area the interaction of the Backend Security Manager with the Pattern
engine. The goal is that the Pattern Engine is able to check that the current policy used to make the decisions
inside the Backend Security Manager, is conforming to the SPDI Patterns as specified by the application. This
is done by the Pattern Engine based on the information about the required SPDI patterns the system should
conform to. Pattern Engine periodically makes requests to the Security Manager (like get Authorized
List) to obtain certain information about the currently enforced policy. Based on the response, it uses rules
Drools Engine) specific to the SPDI patterns to reason on the answers received from the Security Manager.
The reasoning allows the Pattern Engine to identify if the Policy being enforced in SEMIoTICS is compliant;
it is able to reflect this to the outside via an API call that will allow other components to retrieve the spDI
status.

What you can see in the non-highlighted area of FIGURE 70 is that the doctor’s initial request to a service
(not depicted in FIGURE 70) is intercepted by the Sidecar Proxy acting as a policy enforcement point (PEP).
This shows that the Sidecar Proxy gets the permission details for the incoming request from the Security
Manager. Asking the local Security Manager is only needed if the service would be exposed by the field level
and after the synchronization and evaluation of the Security Manager. Based on this information the PE P will
then decide what to do with the request or response.

72

780315 — SEMIoTICS — H2020-10T-2016-2017/H2020-10T-2017 ~d
Deliverable D5.8: lloT Infrastructure set-up and testing (Cycle 2) SEMl lICS
Dissemination level: [public] %%

— Part of the
split; needs BodyAreaNet
synchronisation

This is the This the Security-wise| security-wise running in This is the
human user UI/Cloud PEP PDP & PAP (BAN) BAN human patient

. i . i :Pattern Engine :Locati .
.gj :Security Manager :Security Manager - +Location :Local
i @ [.Sldecar Proxv] { (GW/field level)] [(backend) Backend Service (field) Embedded

. SARA Intelligence Patient
Bogtor GuI : : (field)
request | |

patient's location

get request for M M loop)

patient's location : H
ask for permission_| request H ' [every x sec]

sync if needed H get event
<return synced data
= <-.-Teturnevents
dispatch

evaluate

current policy to

get decision

return
access control
,,,,,, decision _____
alt
normal]
request policy ypdate
i dqtop
ocation jmonitoring
[critical event]
alt
if decision is request policy update
[unauthorized] not granted' r request request
return empty sync if needed catiof monitoring

return ferror Jeturn synced data

.|.nolocation]

if decision is
[authorized] \ ‘granted

proxy original
request and
corresponding get request for

transparently
response patient’s locatjon

return

H O | — current!location) R
return return
~___current location

current location

FIGURE 71 WORKFLOW FOR ADJUSTING POLICY DYNAMICALLY TO ALLOW LOCATION RETRIEVAL
IN HEALTH CRITICAL EVENTS

FIGURE 71 shows how the local embedded intelligence running in the field level monitors the patient and
depending on the status the policy will get updated accordingly to dynamically adapt to current events. In the
case of no health critical events being detected and everything is normal, the policy is being kept very strict
and compliant to the SPDI patterns (area highlighted in green in FIGURE 71). In case of a critical event the
policy is adjusted and certain additional monitoring is triggered regarding the patient’s location. The policy
update in the case of use case 2 would allow more access, e.g. access to location, by weakening the policy,
even to a point where it might not conform to the normal SPDI patterns. The flow depicted in FIGURE 71 in
the yellow area then shows that a doctor can be authorized in the alternate case; this shows how SEMIoTICS
can dynamically adjust security and privacy policies, e.g. grant access to a previously unauthorized service
during a limited time that a critical event is ongoing. In the case the policy will deny access the PDP (the
Sidecar proxy) will block the access as depicted in the bluely highlighted area.

73

780315 — SEMIoTICS — H2020-10T-2016-2017/H2020-10T-2017

~
Deliverable D5.8: lloT Infrastructure set-up and testing (Cycle 2) SEMl llCS
Dissemination level: [public] %%

= IMPLEMENTATION OF AND INTERACTION WITH THE AUTHENTICATION COMPONENT

In the following we quickly provide some overview of how to interact with the SEMIoTICS Backend Security
Manager to obtain a token if you are authorized to obtain such a token.

TABLE 7: EXAMPLE OF AUTHENTICATING USING JAVASCRIPT CLIENT AND RECEIVE THE TOKEN

1. function authenticateClient(protocol,host,port,client,secret) {

2

3. var auth = "Basic " + new Buffer(client + ":" + secret).toString("base64");
4. request({

5. method : "POST",

6. url : protocol+"://"+host+":"+port+"/oauth2/token",
7. form: {

8. grant_type:'client_credentials’

9. 3

10. headers : {

11. "Authorization" : auth

12. }

13, },

14. function (error, response, body) {

15. if(error)

16. throw new Error(error);

17. var result = JSON.parse(body);

18. var token = result.access_token;

19. var type = result.token_type;

20. console.log("kind of token obtained: "+type);
21. console.log("token obtained: "+token);

22. getInfo(protocol,host,port,token, "client");
23. getInfo(protocol,host,port,token, "user");

24 1);

25. }

To authenticate a client e.g. in Javascript the developer of the other components of SEMIoTICS that want
to interact with the Security Manager’s IDM-related component simply defines a function that calls the
/oauth2/token endpoint with a POST request. To do so they define the protocol, the host and corresponding
port of the Security Manager. The authorization variable defined in the header of the request is the based64-
encoded client’s secret. If the authentication was successful, the Security Manager returns a token for the
authenticated client and the token type.

This complete request can also be sent as a simple curl request as shown in TABLE 8 at line 1. The
obtained return values - in case the user with the name MySemioticsClient2 with the password
Ultrasecretstuff is authenticated successfully - can be seen in the lines 2 — 5: the answer contains the
access_token as well as the token_ type.

TABLE 8: EXAMPLE OF AUTHENTICATION USING CURL AND RECEIVE THE TOKEN

1. curl -X POST -u MySemioticsClient2:Ultrasecretstuff -
d grant_type=client_credentials http://localhost:3000/0auth2/token
2
3. "access_token":"1A9HeY99gSYTA200MxIhi8pMOUVG ... rWXvrc9nqSdljlvsEQE3INQyRObRODEL",
4. "token_type":"Bearer"
5. }

74

780315 — SEMIoTICS — H2020-10T-2016-2017/H2020-10T-2017 ~d
Deliverable D5.8: IloT Infrastructure set-up and testing (Cycle 2) SEMl llCS
Dissemination level: [public] é%

TABLE 9: UPDATING A POLICY

23. tokens.find(username + '!@!' + auth_type, function (_error, token) {

24. sm= require('security-manager-sdk"')({

25. api: conf.api_url,

26. idm: conf.idm_url,

27. token: token

28. 3

29. sm.policies.pap.set({

30. entityId: username + '!@!"' + auth_type,

31. entityType: ‘'user',

32. field: 'location',

33. policy: conf.policies['fallen']

34. }) .then(function (r) {

35. return res.status(200).send({

36. text: 'Sucessfully set status to fallen'
37. 1)

38. }) .catch(function (err) {

39. return res.status(err.response.status).send({
40. text: err.response.data.error

41. 19)

42. s

43. 1);

TABLE 9 shows how dynamic policy update using an SDK we have internally developed to be used to
implement the policy-related functions inside of the SEMIoTICS Security Manager. First the Security Manager
reads the provided token and checks if it is valid. Then we use the policy set function to update the policy to
the given policy in the conf.policies[*fallen’] variable, this activates that a policy decision can take this status
into account and thus react to the dynamic situation that the patient has fallen. While updating the policy we
also must provide the corresponding entityId andthe entityType as well as the field (location) for which
we intend to update the policy. As the setter function returns a Javascript promise we can use the .then and
.catch clauses to further process our call.

= API OF THE BACKEND SECURITY MANAGER IN SWAGGER

We have distributed within SEMIoTICS the complete Interface description (AP) described in swagger using
YAML-language. Swagger allows us to define the function names, the variables but also the structure of
variables (e.g. lists or arrays) and would allow the software developers to automatically generate code for their
clients.

Of course, also the responses and the response codes are fully specified via YAML. In the following Figure we
have shown just how some of the information can rendered from the YAML. There are tools like online tool
http://editor.swagger.io, which can also automatically render a clickable client in the web browser when
supplying the swagger file.

75

780315 — SEMIoTICS — H2020-10T-2016-2017/H2020-10T-2017

~
Deliverable D5.8: lloT Infrastructure set-up and testing (Cycle 2) SEMl lICS
Dissemination level: [public] %%

User User Management AP v
User User Management API v
/user/ -
/user/ -
Retum a given user by authentication type and usemame.
/user/]
Parameters Try it out
Name Description
Group Group Management API v auth_type * Autbentcaton type, L. loca, b, gocgle
......
fffff "
E /user/{owner}/group/{groupName} Y
user_name
username
... 9
[m /user/{owner}/group/{groupName} a8 | | @
/group/]
s e —
e /user/{owner}/group/{groupName}/entities a
o /{entityType}/{entityId} oy —m
@ /user/{owner}/group/{groupName}/entities 2 200 Uses read cone
/{entityType}/{entityId} Example Valse Vodel
Entity Entity Management API v
/entity/{entityType}/{entityId}]
401
28 | /entity/{entityType}/{entityId} a®
403
Forbidden
‘m /entity/{entityType}/{entityId} ™
04 Nou
/entity/{entityType}/{entityId}/attribute a 500
/{attributeName}
ST /entity/search "]

FIGURE 72: SECURITY MANAGER IDM ARCHITECTURE

= ATTRIBUTE BASED ENCRYPTION

Attribute-Based Encryption (ABE) determines the authorization of a user to decrypt encrypted data based on the
user attributes. That means that the decryption of a ciphertext is only possible if the user can present that the user
possesses a set of attributes; these attributes are enclosed in the user’s decryption key. Cryptographically the
encryption fails unless the decryption keys attributes match the attributes of the ciphertext. This means that the
attributes required are encoded during the encryption of the data. UP started implementing a REST API
endpoint (as seen in FIGURE 73) to make available the needed ABE functionality; the cryptographic
functionality is based upon the open source library OpenABE library that provides a variety of attribute -based
encryption algorithms. With this APl SEMIoTICS is enabled to seamlessly incorporate ABE technology into the
Security Manager. This can then be used where appropriate to secure information. This ensures that the
information can only be accessed by a certain entity or by a group of entities with the requested set of attributes,
e.g. only entities with the attribute "doctor" are able to access encrypted medical data. At the current state of
development cycle, UP focused on integrating the calls to the APl endpoint in order to adopt ABE in the SEMIoTICS
Security Manager.

76

780315 — SEMIoTICS — H2020-10T-2016-2017/H2020-10T-2017

~
Deliverable D5.8: lloT Infrastructure set-up and testing (Cycle 2) SEMl llCS
Dissemination level: [public] %%

Attribute Based Encryption RestAPI

100

[Base URL: 127.0.0.1:12345/]

An Attribute Based Encryption Rest API developed by University of Passau for the SEMIOTICS project

Schemes
HTTP v

Key Generation v

POST /gen_attribute_key{attribute} Generates a decryption key for the user based on his/her entity attribute(s)

Encryption v

LISl /encrypt{key}{plaintext} Encrypts a given plaintext with a specified attribute or attributes

Decryption v
/decrypt{key}{ciphertext} Decrypts a given ciphertext with a given user key

FIGURE 73 OVERVIEW OF THE ABE REST-API

3.4.1.2 TESTING METHODOLOGY

To provide an overall tested functionality of the APl we wrote software-based tests to evaluate the correct
behavior. We therefore differentiate between 11 categories which are Entities APl (with policies), Entities API,
Groups API, List APls, API for setting policies, Group Actions, Group APl with policies, PEP read & write tests

and overall API validation tests. Furthermore, the tests also verify the functionality of the Attribute Based
Encryption RestAPI.

3.4.1.3 PERFORMANCE TEST AND KPI VALIDATION
Entities API (with policies)
#createEntity and readEntity()
v should reject with 404 error when data is not there

v should create an entity by id and return the same afterwards
#set attribute and read Entity()

v should reject with 404 error when attempting to update data that is not there

v should update an entity by id and return the proper values afterwards
#delete and readEntity()

v should reject with 404 error when attempting to delete data is not there
v should delete an entity by id
#search entity by attribute value
v should reject with 404 error when there is no entity with attribute value and type
v should get an entity based on attribute value and type

v should not resolve with an entity when attribute values and type match but entity _type does not
#set and read Policies

v set policy for entity
v delete policy for entity (46ms)

Entities API
#createEntity and readEntity()

v should reject with 404 error when data is not there
v should create an entity by id and return the same afterwards
77

780315 — SEMIoTICS — H2020-10T-2016-2017/H2020-10T-2017

~
Deliverable D5.8: lloT Infrastructure set-up and testing (Cycle 2) SEMl llCS
Dissemination level: [public] é%

v should reject with 400 when attempting create an entity with an undefined attribute type in strict
mode
#set attribute and read Entity()
v should reject with 404 error when attempting to update data that is not there
v should reject with 400 an update when the new attribute is forbidden by the schema in strict mode
v should reject with 409 an update when the new attribute is forbidden by the schema
v should update an entity by id and return the proper values afterwards
v should remove an attribute that is allowed by the schema and return relevant information
v should reject with 400 when attempting to remove an attribute that is required by the schema
#delete and readEntity()
v should reject with 404 error when attempting to delete data is not there
v an entity by id
#search entity by attribute value
v should reject with 404 error when there is no entity with attribute value and type
v should get an entity based on attribute value and type
v should get an entity based on attribute value and type and entity_type
v should not resolve with an entity when attribute values and type match but entity_type does not
Groups API
#createGroup and readGroup()
v should reject with 404 error when group is not there
v should create a group by id and return the same afterwards
#delete and read Group()
v should reject with 404 error when attempting to delete data is not there
v should delete a group by id
#add entity to group
v should reject with 404 error when attempting to add a non existing entity to a group
v should reject with 404 error when attempting to add an existing entity to a non existing group
v should resolve with a modified entity after adding it to a group
#remove entity from a group
v should reject with 409 error when attempting to remove a non existing entity from a group
v should reject with 404 error when attempting to remove an existing entity from a non existing group
v should resolve with a modified entity without the group after removing the entity from a group
where it was
v should resolve with two modified entities with one having no group and the other is still in the
group, while adding both and removing one of them form the group
List APIs
#list entities by entity type
v should reject with 404 error when there is no entity in the database
v should get an entity based on its type
#ListGroups()
v should reject with 404 error when group is not there
v should return a group after its creation
v should return all groups
API (set Policies in PAP)
#CreateEntity()
v should enable any non-set subfield of actions field in the policy structure to be read and written
according to the default policy in actions
v should set the highest level for the policy hierarchy to read only (not admin and not owner check)
v should enforce meta policies in the configuration of attributes (policies.role) as meta policies
UsedLessThan lock

78

780315 — SEMIoTICS — H2020-10T-2016-2017/H2020-10T-2017

~
Deliverable D5.8: lloT Infrastructure set-up and testing (Cycle 2) SEMl llCS
Dissemination level: [public] é%

#readEntity()

v should stop resolving with the password, after five actions on the password field
GROUP ACTIONS
v should return user entity "elisa" with password attribute for owner elisa
v should return user entity "elisa" without password attribute for user admin
v should return user entity "elisa" with password attribute for group member bob
Groups API with policies
#createGroup and readGroup()
v should reject with 404 error when group is not there
v should create a group by id and return the same afterwards
#delete and read Group()
v should reject with 404 error when attempting to delete data is not there
v should delete a group by id
#add entity to group
v should reject with 404 error when attempting to add a non existing entity to a group
v should reject with 404 error when attempting to add an existing entity to a non existing group
v should resolve with a modified entity after adding it to a group
#remove entity from a group
v should reject with 409 error when attempting to remove a non existing entity from a group
v should reject with 404 error when attempting to remove an existing entity from a non existing group
v should resolve with a modified entity without the group after removing the entity from a group where
it was
API (PEP Read test)
#readEntity()
v should resolve with a declassified entity for different users (password not there)
v should resolve with a declassified entity for different users for nested properties
(credentials.dropbox not there)
v should resolve with the complete entity when the owner reads it including inner properties
(credentials.dropbox)
v should resolve with the complete entity when the owner reads it
v should resolve with the entity when attempting to create an entity with the proper role
#findEntitiesByAttribute()
v should resolve with an array without entities for which the attributes used in the query are not
allowed to be read by the policy
API (PEP Write Test)
#createEntity()
v should reject with 403 and conflicts array in the object when attempting to create an entity without
the proper role
v should resolve with the entity when attempting to create an entity with the proper role
#setAttribute()
v should reject with 403 and conflicts array when attempting to update an entity's attribute without
the proper role and not owner
v should reject with 403 and conflicts array when an owner (non-admin) attempts to update his own
role
v should resolve when attempting to update an entity attribute with the proper role
#deleteEntityAttribute()
v should resolve when attempting to update an entity attribute with the proper role
API (Validation test)
v should reject with 400 an entity when with an existing type but with an attribute missing
v should reject with 409 when attempting to create an entity with a forbidden attribute name
#createEntity()

79

780315 — SEMIoTICS — H2020-10T-2016-2017/H2020-10T-2017

~
Deliverable D5.8: IloT Infrastructure set-up and testing (Cycle 2) SEMl llCS
Dissemination level: [public] %%
Attribute Based Encryption (ABE) API
Testing Key-Policy ABE (KP-ABE)

v Test: Key generation
v Test: Encryption
v Test: Successful Decryption

v Test: Decryption with wrong attributes should fail

Testing Ciphertext-Policy ABE (CP-ABE)
v Test: Key generation
v Test: Encryption
v Test: Successful Decryption

v Test: Decryption with wrong attributes should fail

3.4.2 SEMIOTICS PATTERN ORCHESTRATOR AND ENGINE
3.4.21 COMPONENT ARCHITECTURE

FIGURE 74 below depicts the Pattern Engine related components distributed among the three layers of the
SEMIoTICS architecture. Pattern Orchestrator and one of the three Pattern Engines are lying at the Application
Orchestration Layer, at the Backend. A second Pattern Engine is located at the SDN/NFV orchestration layer
in the SDN controller. The last Pattern Engine can be found at the Field layer, at the loT Gateway.

Pattern Orchestrator is a module that features a semantic reasoner able to understand instantiated Recipes,
received from the Recipe Cooker and transform them into composition structures (orchestrations). Backend
Pattern Engine enables the capability to insert, modify, execute and retract patterns at design or at runtime.
Moreover, it may receive fact updates from the individual Pattern Engines present at the lower layers (Network
& Field), allowing it to have an up-to-date view of the SPDI state of said layers and the corresponding
components. Pattern Engine at the SDN controller offers the same functionality allowing entities that interact
with the controller to be managed based on SPDI patterns at design and at runtime. Pattern Engine at the Field
layer, since it is deployed on the IoT/lloT gateway that has limited capabilities, is a lightweight version of the
Backend Pattern Engine.

80

780315 — SEMIoTICS — H2020-10T-2016-2017/H2020-10T-2017

~
Deliverable D5.8: lloT Infrastructure set-up and testing (Cycle 2) SEMl llCS
Dissemination level: [public] %%

Backend Mindsphere Usecase Apps

Fiware

Pattern
Orchestrator

openHAB

Pattern
Engine

APPLICATION
ORCHESTRATION
LAYER

SDN Controller NFV

Pattern
Engine

SDN/NFV
ORCHESTRATION
LAYER

loT Gateway Field devices

Pattern
Engine

FIELD
LAYER

FIGURE 74: PATTERN RELATED COMPONENTS IN SEMIOTICS ARCHITECTURE

3.4.2.2 APIS

FIGURE 75 shows the interactions that take place among the pattern related components. As we can see,
Pattern Orchestrator interacts with all the Pattern Engines of the three SEMIoTICS layers. The purpose of this
interaction is to dispatch the created Drools facts and can take place via the common API exposed by the

Pattern Engines.

81

780315 — SEMIoTICS — H2020-10T-2016-2017/H2020-10T-2017 ~d
Deliverable D5.8: IloT Infrastructure set-up and testing (Cycle 2) SEMl llCS
Dissemination level: [public] %%

> Pattern Engine <

(@Backend)
Pattern 3 Pattern Engine
Orchestrator (@SDN/NFV)

3 Pattern Engine
(@Field)

FIGURE 75: INTERACTIONS AMONG PATTERN RELATED COMPONENTS

Moreover, the said APl is used by the SDN controller and Field Pattern Engine that send at runtime fact updates
to the Backend Pattern Engine, allowing the latter to have an up-to-date view of the SPDI state of SDN layer
and the corresponding components. The main web services exposed from the Backend Pattern Engine API
are:

addFact

factRemove

factUpdate

factStatus

insertRule

The above correspond to the creation, retrieval, deletion of facts and creation of rules. In more detail, the
addFact REST service is used by the Pattern Orchestrator for the communication of new Drools facts of a new
loT Service orchestration. It can also be used by the Pattern Engines of the Network and Field layers in the
case of new fact discovery. In any case the JSON that is sent, is based on the Fact Java class that can be
seen in the code snippet below, in FIGURE 76.

eu.semiotics;

Id;

] recipe id,String fact id, String fact from, Str) fact message, Str fact type) {

act id;
fact from;
e = fact message;
fact type;
.recipeld=recipe id;

FIGURE 76: FACT JAVA CLASS ATTRIBUTES USED IN REST SERVICES JSON

Moreover, the factRemove is used in order for a fact to be deleted from the Drools Memory of the Backend

Pattern Engine. The factUpdate is used again by the Pattern Orchestrator in case some changes need to be

applied to a Drools Fact. The factStatus REST service returns the current status of a special type of Drools

facts, the instances of Property class. These instances are used to describe SPDI and QoS properties for the

components of an loT Service orchestrator. This REST service could also be used for the visualization of the
82

780315 — SEMIoTICS — H2020-10T-2016-2017/H2020-10T-2017

~
Deliverable D5.8: lloT Infrastructure set-up and testing (Cycle 2) SEMl llCS
Dissemination level: [public] %%

SPDI properties of an orchestrator in the SEMIoTICS GUI. Finally, the insertRule REST service is used only
by the Pattern Orchestrator to communicate Drools Rules to the Pattern Engines for the reasoning of the SPDI
and QoS properties.

The interaction among the pattern related and other components (NFV orchestrator, monitoring) can also be
seen in the sequence diagram of FIGURE 77.

<<Field>>
Pattern Engine:
Pattern Repository

<<Field>>
Monitoring

<<NFV>>
Pattern Engine:
Pattern Repository

<<NFV>> <<Backend>> <<Field>>
NFV Orchestrator Monitoring Pattern Engine

1

<<Backend>>
<<Backend>> <<Backend>> Pattern Engine: <<NFV>>
Pattern Orchestrator Patten Engine Pattern Global Pattern Engine
Repository

add requirement !
»

i add requirement >

| get current statusp- L ~ et current status —
- S 8 >
current status _ «
rule Retrieval rule Retrieval current status .
— | & rule Retrieval |
Rules
DS A Rules Rules

H ’ 1<
reasoning reasoning reasoning
get VNFs ; fact Update
opt *‘ >
VNF:
.. VNFs___

. fact Update
requirement status ! : |
RS g t] ! H fact Update

&
<

fact Update

fact Update |

o Tequirementsats 4 b

FIGURE 77: PATTERN RELATED COMPONENTS INTERACTIONS

As we can see, the Pattern Orchestrator chooses to send the SPDI requirement to one or more Pattern Engines
depending on the case. The requirement is in the form of a property on an orchestration component. This
triggers a sequence of events that consists of several steps. Every Pattern Engine uses the available
information from the monitoring components in each layer and in combination with the rules and facts already
stored in Pattern Repository also in the same layer, reasons for the final status of the said requirement. In
addition, the Pattern Engines that exist in the network layer as well as in the field layer, propagate their facts
not only to their local Pattern Repository, but at the Pattern repository as well, at the Backend layer. When the
requirement is related to some VNFs, interaction with the NFV orchestrator also occurs in order for the final
status requirement to be formed.

3.4.2.3 TESTING METHODOLOGY

In order to test the functionalities of all the Pattern related components of SEMIoTICS, as they are described
above, we use the Proxmox Virtual environment (FIGURE 79) to create Virtual Machines (VMs) hosted in an
INTEL NUC (FIGURE 78). The created VMs have some hardware and software requirements, which are shown
in TABLE 10 below.

TABLE 10: VM REQUIREMENTS

Component Software CPU Memory Disk
Pattern Orchestrator Ubuntu 18.04 LTS 4cores 4 GB 10 GB

83

780315 — SEMIoTICS — H2020-10T-2016-2017/H2020-10T-2017

~
Deliverable D5.8: lloT Infrastructure set-up and testing (Cycle 2) SEMl llCS
Dissemination level: [public] %%

Backend Pattern Ubuntu 18.04 LTS 4 cores 4 GB 10 GB
Engine
SDN Pattern Engine Ubuntu 18.04 LTS 4 cores 4 GB 10 GB

=

Power supply

Ethernet connection

Intel Nuc

(=)

FIGURE 78 INTEL NUC

84

780315 — SEMIoTICS — H2020-10T-2016-2017/H2020-10T-2017

~
Deliverable D5.8: lloT Infrastructure set-up and testing (Cycle 2) SEMl llCS
Dissemination level: [public] %%

)x(PRO MO < Virtual Environment 6.0-4 Search & Documentation
F Datacenter © Help
~ Q Search Search:
& Summary Type Description Disk usage Memory us. CPU usage Uptime
d & Cluster qemu 100 (Ubuntu-14.04)
C @ Ceph qemu 101 (Ubuntu-14.04-10GB)
[% Options gemu 102 (function)
L = storage G} gemu 103 (Classifierl) 1.3% 11%o0f4C... 04:01:18
C Backup G} gemu 104 (Classifier2) 1.2% 11%o0f4C... 04:01:14
c) G} gemu 105 (GUI) 8.6% 0.9%of 4C... 04:01:10
13 Replication
G} gemu 106 (Sff1) 11.3% 1.0%o0f4C... 04:01:06
o Permissions
0 G} gemu 107 (Sff2) 13% 1.1%0f4C... 04:01:02
C 0 Uz G} gemu 108 (Sff3) 1.2% 1.1%o0f4C... 04:00:58
¢ & Groups qemu 109 (OdI-SEMI2)
C W Pools gemu 110 (Odl-semiotics) -
C # Roles G} gemu 111 (odl-sfc2) 44% 1.0%of 4C... 04:00:54
C & Authentication G} gemu 112 (Firewall) 81% 1.0%o0f4C... 04:00:50
t O G} gemu 113 (Dpi) 8.0% 1.0%o0f4C... 04:00:46
. G} gemu 114 (Ids) 81% 1.0%o0f4C... 04:00:42
C O Firewall
C G} gemu 115 (Load-Balancer) 8.0% 1.0%o0f4C... 04:00:38
EpSuppet 3 gemu 116 (SDNmanmix) 34% 20%0f2C... 0400:34
G gemu 117 (BackEndPE) 32% 40%o0f1C... 04:00:30
G} gemu 118 (PatternOrchestrator) 44% 1.0%o0f4C... 04:00:26
G} gemu 119 (FieldPE) 32% 2.0%o0f2C... 04:00:22
G} gemu 120 (sm) 6.8% 2.1%0f2C... 04:00:18
,
Logs

FIGURE 79 PROXMOX ENVIRONMENT

Moreover, in cycle 1, a virtual network topology is created using Mininet (FIGURE 80). This network topology
consists of the OpenDaylight SDN Controller (OSC), one openflow switch (s1) and two hosts. The hosts
correspond to two Raspberry Pi boards that are part of the testing orchestration described below.

C

sl

/ N\
-

RaspberryA

RaspberryB

FIGURE 80: MININET NETWORK TOPOLOGY

The first step of our testing methodology is to send a request to Pattern Orchestrator, which is expected to
receive instantiated orchestrations of 10T services (i.e. Recipes). We use Postman as an API client to send
these requests to the exposed REST API of the Pattern Orchestrator and view the returned responses.
Postman allows us to create REST requests with the needed headers and the body we are interested in.
FIGURE 81 below is an example of such a REST request.

85

780315 — SEMIoTICS — H2020-10T-2016-2017/H2020-10T-2017

I
Deliverable D5.8: lloT Infrastructure set-up and testing (Cycle 2) SEMl 'ICS
Dissemination level: [public] %%
POST v http://139.91.68.107:9080/insertRecipe m Save v

Params Authorization Headers (9) Body @ Pre-request Script Tests Settings Cookies Code
D none ® form-data @ x-www-form-urlencoded @ raw @ binary @ GraphqQL %¥™ JSON ~ Beautify
1+ {

2 "recipeID": "WF1",

3 "recipe": "Host(\"piB\", \"©0:00:00:00:02:0b\", \"10.0.1.12\"),Softwarecomponent(\"ImageCapturing\", \"e\", \"piB\"

),Softwarecomponent(\"ImageDecoder\", \"@\", \"piB\"), Property(\"Prop@\", required, gqosbandwidth, \"100000000
.8\", in_processing, Verification(monitoring, interface), \"piB\", true), Link(\"Linke\", \"ImageDecoder\",
\"ImageCapturing\"), Property(\"Prop2\", required, qosbandwidth, \"100000000.0\", in_transit, Verification
(monitoring, interface), \"Linke\", true), Sequence(\"Seg@\", \"ImageDecoder\", \"ImageCapturing\", \"Linke\"),
Host(\"piA\", \"00:00:00:00:01:0a\", \"10.0.1.11\"), Softwarecomponent(\"DisplayImage\", \"9999\", \"piA\"),
Property(\"Propl\", required, qosbandwidth, \"100000000.8\", in_processing, Verification(monitoring, interface),
\"piA\", true), Link(\"Link1\", \"Sege\", \"DisplayImage\"), Sequence(\"Seql\", \"Seq@\", \"DisplayImage\",
\"Link1\"), Property(\"Prop5\", required, qosbandwidth, \"5000000.0\", end_to_end, Verification(monitoring,
interface), \"Seql\", false)"

FIGURE 81: POSTMAN REST INSERTRECIPE REQUEST

As we can see, the REST request for sending an orchestration along with a requirement uses the POST
method. The URL that is used is http://[OrchestratorIP]/insertRecipe. In the body of the request, there is a
Recipe object with two field names, the recipelD and the recipe. The former is used as an identifier for all the
Pattern related components, to distinguish each of the incoming recipes. The latter is the description of the
recipe itself, which includes three element types. The first element type refers to all the involved components
of the orchestration. The second element type refers to the way the said components communicate with each
other and can be either links or orchestrations such as sequences, merges, splits and choices. Finally, the
last element type refers to the SPDI/QoS properties of the components. When these properties are to be
checked whether they hold or not, they are called requirements.

Physical Physical
link 1 link 2

PiA Physical topology

Physical Physical
link 1 link 2

Start Image
Stream Decoder

Display
Image

Orchestration description
Display
Image

Start Link 0 Image
Stream Decoder

FIGURE 82: TEST ORCHESTRATION

86

780315 — SEMIoTICS — H2020-10T-2016-2017/H2020-10T-2017
Deliverable D5.8: lloT Infrastructure set-up and testing (Cycle 2)
Dissemination level: [public]

SEMitelics

In more detail, the recipe that use in the testing methodology includes two Raspberry Pi boards (Hosts), named
PiB and PiA, which are connected through a switch with two physical links (Physical link1 and physical link2).

This is depicted in the first part (Physical topology) of the FIGURE 82, which is our test orchestration.

The intermediate part shows the software components that are installed in the two Raspberry Pi boards. Two
software components are deployed in the first one, an ImageCapturing software and an Image Decoder
software. As far as the second Raspberry Pi board is concerned, a Display Image software is deployed.

The last part of the figure, Orchestration description, shows how the software components communicate and
the QoS properties they own. Those in PiB are connected with an orchestration Link (Link0) and they are in
Sequence (Seq0), meaning that the output of the first becomes the input of the second. LinkO corresponds to
a communication that is achieved due to their deployment at the same host. Regarding their properties, a QoS
property for the maximum bandwidth at which they can send and receive data is assigned to both of them, with
value 11400000 bps (qosbandwidth). This property is also assigned to the Link between the two software
components. The Display Image software has the same QoS property. Additionally, there is an orchestration
Link (Link1) between Seq0 and Display Image. This Link does not correspond to a network physical link but to
a path between its source and its destination, which may include more than one physical links and other
network components among them. SDN Pattern Engine undertakes the assignment to find out the said path to
the orchestration Link and additionally, to validate its property. In the orchestration used in our testing
methodology the Link1 corresponds to two physical links and a switch between them as we can see in FIGURE
82. As a result, Seq0 and Display Image connected with Link1 form Seq1. Finally, the last Property that is
mentioned in the request is the QoS property that refers to the whole orchestration. According to it, we want
to know if the minimum bandwidth throughout the whole test orchestration is 5Mbps.

Patter Orchestrator receives the incoming Recipe and creates instances of the corresponding Java classes
(Host, Softwarecomponent, Link, Sequence, Property), which correspond to Drools facts in the Pattern Engine.
These Java instances are then sent to the SDN Pattern Engine through one of its REST APls, called addFact.
The request for sending a Drools fact uses the POST method and the URL is http://[PatternEnginelP]/
patternengine:addFact. In the body of the request, there is a Fact object with five field names presented in the
TABLE 11 below.

TABLE 11: FIELD NAMES OF FACT OBJECT

Name Description Valid values

recipelD the ID of the recipe the fact belongs to (e.g. “WF1”)

factiD the identifier of the fact object itself (e.g. “WF1-17)

from originated SEMIoTICS component sender (e.g. “Orchestrator”)
factMessage the fact itself (e.g. “Displaylmage”)

type the object type of the fact (e.g. “Softwarecomponent”)

Pattern Engine receives all the Java instances sent by the Pattern Orchestrator. Each of the received instances
are inserted into the working memory of the Drools Rule Engine, as Drools facts. Being there, they can trigger
Drools Rules that are pre-inserted in the Pattern Engine. Based on the orchestration presented in FIGURE 81,
the following Drools facts are created:

TABLE 12: DROOLS FACTS DERIVED FROM THE TESTING ORCHESTRATION

Type Description

1 Softwarecomponent ImageCapturing O piB

2 Softwarecomponent ImageRecorder 0 piB

3 Softwarecomponent Displaylmage 9999 piA

4 Host piB b8:27:eb:4b:0a:7c 10.0.1.12

5 Host piA b8:27:eb:ae:aa:31 10.0.1.11

6 Link LinkO ImageCapturing ImageRecorder

7 Link Link1 Seq0 Displaylmage

8 Sequence Seq0 StartStream ImageRecorder Link0

9 Sequence Seq1 Seq0 Displaylmage Link1

10 Property gosbandwidth 1.0E8 in_processing PiB true
11 Property gosbandwidth 1.0E8 in_processing PiA true
12 Property gosbandwidth 1.0E8 in_processing LinkO true

87

780315 — SEMIoTICS — H2020-10T-2016-2017/H2020-10T-2017

~
Deliverable D5.8: lloT Infrastructure set-up and testing (Cycle 2) SEMl llCS
Dissemination level: [public] é%

13 Property gosbandwidth 5000000.0 end_to_end Seq1 false

Whenever the SDN Controller Pattern Engine receives a Property that refers to a Host, it creates the
corresponding Property for each of the software components that are deployed at that host. In our case, a
qosbandwidth Property is created for the two software components of Host PiB and the software component
of PiA (TABLE 13).

TABLE 13: ADDITIONAL DROOLS FACTS CREATED BY PATTERN ENGINE

Type Description

10 Property gosbandwidth 1.0E8 in_processing ImageCapturing true
11 Property gosbandwidth 1.0E8 in_processing ImageRecorder true
12 Property gosbandwidth 1.0E8 in_processing Displaylmage true

The last Property Drools Fact refers to the whole test orchestration and corresponds to our QoS requirement.
Based on this Property, the Drools Rules will fire and the Pattern Engine will reason on the QoS property of
the orchestration and will respond to Pattern Orchestrator.

We should mention here that there is no need for the Pattern Orchestrator to create an instance of the
corresponding Java class of type Property for Link1, although it is necessary for the Drools Rules we use for
this test. This Fact is created by the SDN Controller Pattern Engine itself and is added to the working memory
of Drools Rule Engine.

The Rules used for our test were pre-inserted and are shown in the code snippet below.

rule "Sequence Decomposition" salience 100
when
$SEQ: Sequence($rld:=recipelD, $sld:=placeholderid, $pA:=placeholdera, $pB:=placeholderb, $orchLink:=orchlink)
$PR1: Property($rid:=recipelD, $sld:=subject, $prname:=propertyname, $prcategory:=category, $prvaluei:=value, satisfied==false)
then
insert(new Property($rld, $prname+$prcategory+$pA, $pmame, "required", $prcategory, $prvaluet, "datastate”, $pA, "verificationtype”, "means”,);
insert(new Property($rld, $prname+$prcategory+$pB, $pmame, "required”, $prcategory, $prvaluet, "datastate”, $pB, "verificationtype", "means"”,);
insert(new Property($rld, $prname+$prcategory+$orchLink, $prame, "required", $prcategory, $prvaluet, "datastate”, $orchLink, "verificationtype", "means",
End

rule "Sequence Bandwidth Verification" salience 200
when

Placeholder($pA:=placeholderid)
$PR1: Property ($pA:=subject, category=="qosbandwidth", $prvalue1:=value, satisfied==true)
Placeholder($pB:=placeholderid)
$PR2: Property ($pB:=subject, category=="qosbandwidth", $prvalue2:=value, satisfied==true)
Link ($rld:=recipelD, $orchLink:=linkid)
$PR3: Property ($rld:=recipelD, $orchLink:=subject, category=="qosbandwidth", $prvalue3:=value, satisfied==true)

$SEQ: Sequence($rld:=recipelD, $sld:=placeholderid, $pA:=placeholdera, $pB:=placeholderb, $orchLink:=orchlink)
$PR4: Property ($rld:=recipelD,
$sld:=subject, category=="qosbandwidth", $prvalue4:=value, $prvalue4<=$prvalue1, $prvalue4<=$prvalue2, $prvalued<=$prvalue3, satisfied==false)
then
modify($PR4){satisfied=true};
end

TN Network Drools Rules /TN
rule "SDN Bandwidth Verification Atomic" salience 303
when
SDNLink($sdnLinkld:=linkid, $src:=placeholdera, $dst:=placeholderb)
Property($sdnLinkld:=subject, category=="qosbandwidth", $prvalue1:=value, satisfied==true)
Link($rld:=recipelD, $linkld:=linkid, $src:=placeholdera, $dst:=placeholderb)
$PR:Property($rld:=recipelD, $linkld:=subject, category=="qosbandwidth", $prvalue2:=value, $prvalue2<=$prvalue1, satisfied==false)
then
modify($PR){value=$prvalue1, satisfied=true};
end

780315 — SEMIoTICS — H2020-10T-2016-2017/H2020-10T-2017 ~d
Deliverable D5.8: IloT Infrastructure set-up and testing (Cycle 2) SEMl llCS
Dissemination level: [public] é%

rule "SDN Bandwidth Verification" salience 302
when
SDNLink($lld:=linkid, $src:=placeholdera, $node:=placeholderb)
Property($lld:=subject, category=="qosbandwidth", $prvalue1:=value, satisfied==true)
Link($rld:=recipelD, $lld2:=linkid, $node:=src, $dst:=dst)
Property($rld:=recipelD, $lld2:=subject, category=="qosbandwidth", $prvalue2:=value, satisfied==true)
Link($rld:=recipelD, $lld3:=linkid, $src:=src, $dst:=dst, $lld3!=$lld2)
$PR:Property($rld:=recipelD, $lld3:=subject, category=="qosbandwidth", $prvalue3:=value, $prvalue3<=$prvalue2, $prvalue3<=$prvalue1, satisfied==false)
then
modify($PR){value=Math.min($prvalue1, $prvalue2), satisfied=true};
end

rule "SDN Bandwidth Decomposition" salience 301
when
SDNLink($lld:=linkid, $src:=placeholdera, $node:=placeholderb)
Property($lld:=subject, $prame:=propertyname, $prcategory:=category, $prcategory=="qosbandwidth", $prvalue1:=value, satisfied==true)
isPath($node, $dst, $prcategory;)
Link($rld:=recipelD,$sld:=linkid, $src:=src, $dst:=dst)
Property($rld:=recipelD, $sld:=subject, $prcategory:=category, $prvalue2:=value, $prvalue2<=$prvalue1, satisfied==false)
then
Link 11 = new Link($rld, $src+$node, $src+$node, $src, $node, $src, $node);
insert(I1);
Property prA = new Property($rid,
$prname+$prcategory+1.getLinkid(), $pmame, "required", $prcategory, $prvalue1, "datastate”, 11.getLinkid(), "verificationtype", "means", true);
insert(prA);
Link 12 = new Link($rld, $node+$dst, $node+$dst, $node, $dst, $node, $dst);
insert(12);
Property prB = new Property($rid,
$prname+$prcategory+2.getLinkid(), $pmame, "required", $prcategory, $prvalue?, "datastate", 12.getLinkid(), "verificationtype", "means", false);
insert(prB);
end

query isPath(String a, String b,String c)

SDNLink(a, b; checkPropertyName(c))

or

SDNLink(z,b;checkPropertyName(c)) and isPath(a,z,c;)
end

The first rule, Sequence — Decomposition, is fired for every Sequence in our testing orchestration that has a
SPDI/QoS property and creates a property of the same category and the same value for every component of
the Sequence. Every time the second rule, Sequence Bandwidth Verification, is fired, verifies a qosbandwidth
Property of a Sequence. According to the rule, if i) all the components of a Sequence, i.e. two Placeholders
and a Link between them, have a Property of gosbandwidth category ($PR1, $PR2, $PR3); and ii) the value
of the orchestration Property ($prvalue4) is lower than the values of the Properties of the Sequence
components ($prvalue1, $prvalue2, $prvalued), then the corresponding Property of the Sequence in question
is verified.

After the initial insertRecipe request, the status of the Properties Drools Facts is as it is shown in step 1 in
FIGURE 83. The first rule that is triggered is the Sequence Decomposition rule for Seq1. The presence of the
unverified qosbandwidth Property creates Properties of the same category and the same value for the three
components SeqO, Link1, Displaylmage (step 2 in FIGURE 83). Our goal is to verify the qosbandwidth Property
of Seq1, and for this we need the Sequence Bandwidth Verification rules to run. In order the said rule to run
for Seq0, we need an unverified gosbandwidth Property for Seq0 and verified qosbandwidth Properties for all
the three components of SeqO, i.e. ImageCapturing, LinkO and ImageRecorder. The three verified Properties
are provided by the initial insertRecipe request and the run of the previous rule created the unverified
qosbandwidth Property for Seq0. The result of the rule is the verification of qosbandwidth Property for Seq0
(step 3 in FIGURE 83).

89

780315 — SEMIoTICS — H2020-10T-2016-2017/H2020-10T-2017

Deliverable D5.8: IloT Infrastructure set-up and testing (Cycle 2) SEMl l CS
Dissemination level: [public] é

The SDN Controller Pattern Engine verifies the qosbandwidth Property of Link1 (step 4 in FIGURE 83). As we
have already mentioned above, Link1 corresponds to a path from the source of the link to its destlnatlon which
in our test topology consists of two physical links and a switch between them (FIGURE 82). This information
becomes available to SDN Controller Pattern Engine, leveraging the Network Drools Rules. The purpose of
these rules is to discover the path that forms the said orchestration Link and examine if the SPDI/QoS property
of the Link holds for each component of the path. If the above are in effect, the rules verify the SPDI/QoS
property of the aforementioned Link.

After that, the Sequence Bandwidth Verification rule is triggered again for Seq1 this time. All the three
components of Seq1, i.e. Seq0, Link1 and Displaylmage, have a Property of category qosbandwidth that is
already verified. The verified Property of Displaylmage was part of the initial insertRecipe request. As a result,
the qosbandwidth Property of Seq1 is also verified due to the rule triggering (step 5 in FIGURE 83).

At this point, Pattern Engine has reasoned the QoS property of the test orchestration and has produced the
result, which is returned as a response back to Pattern Orchestrator.

90

780315 — SEMIoTICS — H2020-10T-2016-2017/H2020-10T-2017

Deliverable D5.8: lloT Infrastructure set-up and testing (Cycle 2)

Dissemination level: [public]

SEMitelics

Image Capturing

Image Capturing

Image Capturing

Image Capturing

Image Capturing

Seql

Image Decoder

Image Decoder

Seql

Image Decoder

Seql

Image Decoder

Seql

Image Decoder

Display Image

v

Display Image

v

Display Image

v

Display Image

v

Display Image

v

FIGURE 83: SEQUENCE OF DROOLS RULES TRIGGERING

91

780315 — SEMIoTICS — H2020-10T-2016-2017/H2020-10T-2017 ~
Deliverable D5.8: lloT Infrastructure set-up and testing (Cycle 2)

Dissemination level: [public] SEMl%%CS
In cycle 2, we focused on the interaction with the Field Pattern Engine. Figure 84 depicts our testing topology
for evaluating dependability property and more specifically distributed anomaly vibration monitoring for
earthquake detection.

Cloud - VNF
GUI

L Pattern
Orchestrator

Dependability, false

Gateway - .

] Pattern
Engine
~
RN

Field

’,/’ \\\\
Vibration Vibration
Sensor1 Sensor2

Figure 84: Topology for testing Dependability property

We assume that a Gateway is connected to multiple vibration sensors, which are identical. At any time, all of
them are up and running, for redundancy in the monitoring. This redundant topology can be modelled and
monitored as the Dependability property, through the appropriately defined pattern rule. Therefore, the
infrastructure owner will be able to monitor in real-time the dependability status of his/her deployment, potentially
triggering adaptations (e.g., the disabling of one sensor while waiting for a replacement).

In this context, pattern related components are deployed at the field layer, more specifically, a pattern engine
runs on the Gateway, able to reason locally about the dependability properties of the anomaly detection setup.
Said Pattern Engine will be a lightweight version of the engines deployed in other layers, and will feature
appropriate Dependability Pattern Rule to verify that this Dependability property is satisfied and, in case that
a sensor fails, will be able to reason and report the failure of the property to the backend. When the sensor is
restored, reasoning will verify that the dependability property is restored. Based on the MQTT hierarchy of
topics (

Figure 85), Pattern Engine monitors the liveness messages from the sensors (“heartbeats”), via integration
with the MQTT broker, leveraging this information to reason about the redundancy of the monitoring system.
When one of the sensors fails, the redundancy requirement is violated, and when it is restored (e.g., the sensor

comes back online or is restored), the property is satisfied once again.

92

780315 — SEMIoTICS — H2020-10T-2016-2017/H2020-10T-2017

~
Deliverable D5.8: lloT Infrastructure set-up and testing (Cycle 2) SEMl llCS
Dissemination level: [public] %%

in

h 4

all

in

00-80-

e1-00-00-99 \

change

node [—»

out

/ data
™\

events > state

00-80-
e1-00-00-98

ihes

heartbeat

bootstrap

\
-
=
v

supervisor

Figure 85: MQTT TOPICS HIERARCHY

Other than the components themselves, an important part is the specification of the associated pattern rule. In
terms of the pattern rule to be employed, since dependability is the focus, the Redundancy Pattern will be
leveraged, as defined in deliverable D4.8. Adapting said pattern would result in a Drools rule as the one shown
in Figure 86.

rule "Dependability Rule™

when

IoTSensor($sensorl:=id)

Property ($sensorl:=subject, category==“heartbeat”,
satisfied==true)

IoTSensor($sensor2:=id, $sensorl!=$sensor2)

Property ($sensor2:=subject, category==“heartbeat”,
satisfied==true)

$PR: Property ($sensorl:=subject, category==“dependability”,
satisfied==false)

then

modify($PR){satisfied=true};

end

Figure 86: Dependability Drools Rule

The when part of the rule specifies:

hoN=

the placeholders $sensor1, $sensor2;

the extra condition that the sensors are not the same type;

the checks that each sensor transmits a heartbeat in a timely manner;

the orchestration property that can be guaranteed through the application of the pattern, i.e., the
dependability property in this case ($pr).

93

780315 — SEMIoTICS — H2020-10T-2016-2017/H2020-10T-2017

~
Deliverable D5.8: lloT Infrastructure set-up and testing (Cycle 2) SEMl llCS
Dissemination level: [public] %%

The then part verifies that the orchestration property holds since every essential component is included in
the when part (satisfied=true).

3.4.2.4 PERFORMANCE TEST AND KPI VALIDATION

According to the methodology described in subsection 3.4.2.3 in cycle 1, it is expected:
1. the described in the insertRecipe components, communications and properties of the test
orchestration to be communicated to the SDN Controller Pattern Engine
2. the gosbandwidth Property of the test orchestration (minimum bandwidth) to be verified according to
the response that reaches firstly the Pattern Orchestrator and secondly the Postman client
3. the pre-inserted Drools Rules of the SDN Controller Pattern Engine to be triggered

FIGURE 87: PATTERN ORCHESTRATOR RESPONSE TO POSTMAN CLIENT

Regarding the first outcome, all the test orchestration components are successfully communicated to the SDN
Controller Pattern Engine and this is confirmed by the response that reaches the Postman client. As we can
see in FIGURE 87, all hosts, links, softwarecomponents, sequences and properties are “Added” to the working
memory of the SDN Controller Pattern Engine. This response is created by the SDN Controller Pattern Engine
and is sent to the Pattern Orchestrator for each Drools fact. Pattern Orchestrator assembles all of them and
sends them as a response to the Postman client.

Moreover, the same Figure shows the verification of the qosbandwidth Property of the whole test orchestration.
The id of the qosbandwidth Property in the request was Prop5. The “true” that is depicted at the lowest part of
the Figure for the Property with id Prop5, verifies that this Property holds.

Finally, the triggering of the Drools Rules is shown in FIGURE 88. As we can see, the Sequence -
Decomposition rule for Seq1 is the first rule that is triggered. The output of the rule is shown in the red rectangle
labeled with the number 1. After that, the Network Drools Rules run for the verification of the qosbandwidth
Property of Link1. Their output is included in the red rectangle labeled with the number 2. The last rule that is

94

780315 — SEMIoTICS — H2020-10T-2016-2017/H2020-10T-2017

~
Deliverable D5.8: lloT Infrastructure set-up and testing (Cycle 2) SEMl llCS
Dissemination level: [public] é%

triggered is the Sequence Bandwidth Verification rule, which runs twice for Seq0 and Seq7 and verifies their
properties. Once again, the output of this rule is shown in the red rectangle labeled with the number 2.

0 rules fired

Fact count is 23

Contacting Backend

communication with Backend ended

Type is property

0 rules fired

Fact count is 25

Contacting Backend

communication with Backend ended

Type is property

KEEEI I I A A A A A A A I I I Ik dddhhkkkkx
Sequence Decomposition Rule fired for sequence Seql
Created property for Seq®

Created property for DisplayImage

Created property for Link1

EEEEEEEEEEEEEIIIAR AR A A A A A Ik hkhkkdhhdx
hErhkhhhhdhhkhkddddddrddrhhdhdhhhhhhkkkx
SDN Bandwidth Decomposition

Fhdkhddrdhdddddddddkdhdkdhddhddhddhdhdkikx

FKhREkEI I AT I ATk dhhdk

SDN Bandwidth Verification Atomic rule fire for openflow
Fhrkhkhhhr I rrhhhkkhkhkhkhkhhkhkhhkhkhkhhhhhhddxx

Fhrddddddrdddddddhddddhddrhddrhddhdhdkx

SDN Bandwidth Verification rule fire for Link1l

LR b

FHEEIIIII I I AT I I I AT IR ATk d ke dd

Sequence Bandwidth Verification Rule Fired for Seq®

R I I I I dd T dhrddrddrhddddddddh ke hddhddhddkx

FhEI I I I I d T dhrddddddhdddddrddddddrdddrdddrddddddhddhddhdddkx

Sequence Bandwidth Verification Rule Fired for Seqil

FHEEIEIII I AT AT I A AT AT ATk d ke dd

6 rules fired

Fact count is 33

Contacting Backend

communication with Backend ended

FIGURE 88: SCREENSHOT WITH THE OUTPUT OF THE TRIGGERED DROOLS RULES

According to the methodology described in subsection 3.4.2.3 in cycle 2, it is expected that:
1. each of the sensors to communicate successfully their heartbeats to the Pattern Engine through the
MQTT broker.
2. the Dependability Property of the test orchestration to be verified
3. the pre-inserted Drools Rules of the Field Pattern Engine to be triggered

Regarding the first outcome, in Figure 89 heartbeats from sensors are communicated successfully to the Field

Pattern Engine. Based on the Pattern Rule, Figure 90 depicts the triggering of the rule which is the third
outcome that also implies the second outcome.

95

780315 — SEMIoTICS — H2020-10T-2016-2017/H2020-10T-2017 ~

Deliverable D5.8: lloT Infrastructure set-up and testing (Cycle 2) lICS
Dissemination level: [public] . %%
- Broker receives
1594045470 # (QoS 0) Heartbeat f
1594045470: sensors 0 # eartbeat from

1594045470: Sending SUBACK to sensors sensor

1594045470: Received SUBSCRIBE from sensors

1594045470: SYS/# (QosS 0)

1594045470: sensors 0 SSYS/#

1594045470 Sendina SURACK to sensors

1594045478: Received PUBLISH from sensors (do, g0, r@, m0, 'ihes/node/00-80-e1-00-00-00/out/events/h
eartbeat', ... (830 bytes))

ArnAnAcaAavo. ondioo DUIDLTOo +o i ol d Dodbbocn Coodoo /Ao a0 13 b o loodolon 00 o4 oo oo oo lo..
S v ' 4

t/events/heartbeat', ... (830 bytes))
1594045478: Sending PUBLISH to sensors (do, g0, r®, m@, 'ihes/node/00-80-e1-00-00-00/out/events/hear
tbeat', ... (830 bytes))

1594045500: Received PUBLISH from sensors (do, g0, r@, m0, 'ihes/node/00-80-e1-00-00-01/out/events/h
PR O T T 1020 had N\

1594045500: Sending PUBLISH to Field_Pattern_Engine (d0, q6, r®, m@, 'ihes/node/00-80-e1-00-00-01/0u
t/events/heartbeat', ... (830 bytes)

1053V O0UVL T OTIIULIIY TUDLLION LU SCIiSur S \‘\.;u, Yvu, TV, TU, LTS/ NIUUC /UUTOUTTLI T UU VU T ULy uUu Ly CvaaiLsiical
tbeat', ... (830 bytes))

1594045506: Received PINGREQ from mqtt_8dd39dce.d4153
1594045506: Sending PINGRESP to mqtt_8dd39dce.d4153
1594045515: Received PINGREQ from Field_Pattern_Engine
1594045515: Sending PINGRESP to Field_Pattern_Engine

Figure 89: MQTT Brocker relaying heartbeats

Broker sends
Heartbeat to
Pattern Engine

Initializing Spring DispatcherServlet 'dispatcherServlet'
Initializing Servlet 'dispatcherServlet'

Completed initialization in 7 ms
Type is property

Property{type="PROPERTY', propertyName='reql', propertyType='null', category='dependability', value=
null, datastate="'null', subject='00-80-e1-00-00-00', satisfied=false, verificationType='null', means
='null', layer='field', recipelD='1', factID='factid4'}

KieModule was added: MemoryKieModule[releaseld=eu.semiotics.pattern:fetch-external-resource:1.0.0-S
NAPSHOT]

KieModule was added: MemoryKieModule[releaseld=eu.semiotics.pattern:fetch-external-resource:1.0.0-S
NAPSHOT]

Unknown repository update policy , assuming 'never'

Unable to resolve artifact: eu.semiotics.pattern:fetch-external-resource:1.0.0-SNAPSHOT

Dependability rule triggerel

1 rules fired

Fact count is 5

Figure 90: FIELD PATTERN ENGINE (SUBSCRIBED TO BROKER; RECEIVING UPDATES & REASONING
ON DEPENDABILITY PROPERTY)

The described implementation above contributes to the fulfillment of R.GP.4, R.UC1.1, R.UC1.3, R.UC3.7,
R.UC3.16, R.UC3.18 of project requirements as well as KPI-1.1, KPI-1.2, KPI-6.1.

96

780315 — SEMIoTICS — H2020-10T-2016-2017/H2020-10T-2017

~
Deliverable D5.8: 1loT Infrastructure set-up and testing (Cycle 2) SEMl lICS
Dissemination level: [public] %%

3.4.3 BACKEND ORCHESTRATION
3.4.3.1 TEST BED - KUBERNETES

In order to simplify the need for usage of different components in the backend, an integrated testbed for
backend in form of Kubernetes cluster was deployed on BlueSoft’s premises. Currently, backend components
are being deployed one by one and then onboarded on the Jenkins pipelines to ensure that each deployment
is correct and free of human error. Thanks to the set-up partners can access APIs of backend components
without the need for replicating the component infrastructure on their environments. Kubernetes requires
deployment on multiple nodes which can be divided into two categories: master nodes and normal nodes. The
main role of the master is control of the whole cluster, all the management tools are deployed there, the master
should not host any non-essential applications. The rest of the nodes are typical nodes for different application
deployments. Kubernetes handles app to node associations, but the user is still responsible for controlling the
available resources (CPU, memory, and storage). Our cluster holds 3 nodes (1 master and 2 app nodes) and
can be extended in the future if needed. The specification of the nodes can be found in the table below.

Table 14: Kubernetes cluster technical details
Name Master Node 1 Node 2

1000 GB 230 GB 200 GB

CPU Genuine Intel, 4 Genuine Intel, 4 Genuine Intel, 4
cores, 2.5 GHz, ~cores, 2.500 GHz, cores, 2.5 GHz,
Cache 16 MB Cache 16 MB Cache 16 MB
CentOS 7 Linux CentOS 7 Linux CentOS 7 Linux
(Core) (Core) (Core)

Virtual Machine Yes Yes Yes
| RAM_ [EXef] 8 GB 8 GB

Nodes are using virtual machines deployed on a dedicated physical server. Specification of the server can be
found in table below, currently, the not whole server is utilized but it should change in upcoming months.

Table 15: Server technical details

Dell R730

CPU Intel Xeon 2x E5-2680 v3 2.7 GHz, Cache 20MB
'RAM NY¥e:
8 TB

The additional virtual machine was created for Jenkins's deployment. Jenkins takes care of deployment for
backend components running pipelines which executes the following steps (FIGURE 91):
e build an application from Gitlab code
build sidecars for application (if needed)
run automatic tests if the exists
prepare docker image from build
save the image in the registry
deploy image in Kubernetes

780315 — SEMIoTICS — H2020-10T-2016-2017/H2020-10T-2017

~
Deliverable D5.8: lloT Infrastructure set-up and testing (Cycle 2) SEMl llCS
Dissemination level: [public] %%

pipeline code can be found on the screens below.

Example

FIGURE 91: AN EXAMPLE OF JENKINS PIPELINE

Such an approach guarantees less deployment time and higher quality deploys with fewer errors thanks to
automatic testing. Bellow, there are details for Jenkins's virtual machine.

Table 16: Jenkins machine technical details
Name Jenkins
Total space 232 GB
Genuine Intel, 4 cores, 2500 MHz, Cache 16 MB
CentOS 7 Linux (Core)
Virtual Machine Yes
6 GB

98

780315 — SEMIoTICS — H2020-10T-2016-2017/H2020-10T-2017

~
Deliverable D5.8: lloT Infrastructure set-up and testing (Cycle 2) SEMl llCS
Dissemination level: [public] %%

The deployment is shown in the diagram below. Both Kubernetes and Jenkins are in the same internal BlueSoft
network with the firewall in front of it. The firewall opens only required ports and filters incoming traffic. Only
white-listed IP addresses can access the instances.

Bluesoft network
FIREWALL Jenkins
<<=Prptocol==
HTTP N
<<Protocol>>
TCPAP
<<=Prptocol=> SSH
HTTP Kubernetes Cluster
Local Machine v A
Master Node
kubctl Pod
=<Protocol>> Kubernetes internal
TCPIP Aplications Component Component
config SSH
Kubernetes configuration files.
secrets, politics
Node
Pod
5 Kubernetes dashboard
=<=Prptocol=> mponen mponen
Git HITP Component Component
Lab
Docker
API <+
Repository

FIGURE 92: DEPLOYMENT DIAGRAM

3.4.3.1.1 ADMINISTRATION

Multiple tools allow for interaction with the Kubernetes cluster. Here are the 3 most popular not
requiring additional products installations:
e kubectl - CLI client which allows connecting to Kubernetes, components are created above
the API
o Kubernetes API
o Kubernetes dashboard - additional component connecting to Kubernetes API giving a visual
representation of the cluster.

kubectl

The Kubernetes command-line tool, allows you to run commands against Kubernetes clusters. You
can use kubectl to deploy applications, inspect and manage cluster resources, and view logs'’. It
also allows remote access to the cluster, with a personal key.

Kubernetes dashboard

7 https://kubernetes.io/docs/reference/kubectl/overview/
99

780315 — SEMIoTICS — H2020-10T-2016-2017/H2020-10T-2017

~
Deliverable D5.8: 1loT Infrastructure set-up and testing (Cycle 2) SEMl llCS
Dissemination level: [public] %%

The dashboard is a web-based Kubernetes administration console. You can use Dashboard to deploy
containerized applications to a Kubernetes cluster, troubleshoot your containerized application, and
manage the cluster resources'®. The dashboard is used to monitor the state of the cluster e.g. state
of applications, cluster resources, etc. It also provides information about any errors that occurred. In
the figure below the view of the Kubernetes dashboard is presented.

kubernetes Q search +creatE | @
Cluster Workloads

Namespaces

Nodes Workloads Statuses

Persistent Volumes

Roles

Storage Classes

100.00% 100.00% 100.00%

Namespace

semiotics ~ Deployments Pods Replica Sets

Overview
Deployments =
Workloads

Cron Jobs R b g Age

Daemon Sets demo-gui-deployment app: demo-gui 11 3days registry.gitlab.com/semiotics/demo-6/dem.

Deployments
pep-deployment app: pep 11 3days registry.gitlab.com/semiotics/demo-6/dem
Jobs
. thingsimulator-deployment app: thingsimulator 11 3days registry.gitlab.com/jakubrola/thingsimulator.
ods

Replica Sets sm-deployment app: sm 11 6 days registry.gitlab.com/semiotics/demo-6/dem.

Replication Controllers thing-directory app: tdirectory 11 6 days registry.gitlab.com/semiotics/backend/gui/.

Stateful Sets
thing-worker-deployment app: thing-worker 171 6 days registry.gitlab.com/semiotics/backend/gui/.

Q00000

Discovery and Load Balancing
@ front-deployment app: front 11 6 days registry.gitlab.com/semiotics/backend/qui/.
Ingresses

Services @ back-deployment app: back 11 6 days registry.gitlab.com/semiotics/backend/gui/.

Config and Storage @ rostgres-gui app: postgres-gui 1/1 9days postgres:10.4

FIGURE 93 STATE OF DEPLOYED APPLICATIONS PRESENTED WITH KUBERNETES DASHBOARD

3.4.3.1.2 SECURITY

The security of the cluster has been taken into account while creating the testbed. Currently, security is
implemented on multiple layers to protect the testbed. Access is blocked for different users depending on the
layer.

Cluster node access

Nobody from outside of BlueSoft can access cluster node using ssh, and management is currently done by
BlueSoft due to our experience with the technology. Each user uses a personal key to log in to the machine
so every action can be traced.

Cluster management

To ensure proper access to cluster resources the namespace SEMIoOTICS has been created. Cluster
management can be done using API or kubectl tool. The installation uses the RBAC model of privileges limited
only to SEMIoTICS namespace (FIGURE 94). Access to cluster APIs is hidden behind the aforementioned
firewall and granted only to whitelisted IPs or cider blocks of the partner. Additionally, only the required ports
are opened, if the port is not used it is blocked on the firewall.

18 https://kubernetes.io/docs/tasks/access-application-cluster/web-ui-dashboard/
100

780315 — SEMIoTICS — H2020-10T-2016-2017/H2020-10T-2017
Deliverable D5.8: lloT Infrastructure set-up and testing (Cycle 2)
Dissemination level: [public]
: Role
: rbac.authorization.k8s.io/vlbetal

: semiotics
: semiotics-access

: RoleBinding
: rbac.authorization.k8s.io/v1

: jenkins-full-access-binding
: semiotics

: User
: jenkins
: rbac.authorization.k8s.io

: Role
: semiotics-access
: rbac.authorization.k8s.io

SEMitelics

FIGURE 94:SCRIPT FOR ADDING PRIVILEGES IN SEMIOTICS NAMESPACE TO USER JENKINS

Application remote access or inner application to application access

An application that is dedicated to the user containing a graphical user interface or API. In both cases, the
security manager will be used. API access is done using PEP and Security Manager (these components are

extensively described in deliverable 4.5).

e Security Manager — SEMIoTICS component responsible for authentication decisions and necessary
security checks at the backend layer. It stores and decides on security policies across all SEMIoTICS

components.

e PEP - Policy Enforcement Point. The sidecar component is responsible for intercepting HTTP requests.
It is a sidecar application that is deployed as a standalone app next to the primary application and also

as a second container in a pod in Backend Orchestrator.

3.4.3.2 COMPONENT ARCHITECTURE

Backend orchestrator (Jenkins + Kubernetes) in SEMIoOTICS is responsible for orchestration and management
of components in the backend layer. The diagram below shows Backend Orchestrator and all components

currently deployed by it.

101

780315 — SEMIoTICS — H2020-10T-2016-2017/H2020-10T-2017 ~d
Deliverable D5.8: IloT Infrastructure set-up and testing (Cycle 2) SEMl llCS
Dissemination level: [public] %%

Backend

Mindsphere Usecase Apps

" Backend
Security Orchestrator

Manager -
Fivare

APPLICATION
ORCHESTRATION
LAYER

Knowage
openHAB
Thing
Directory s
SDN Controller NFV
=
o
'_
oy
zEu
Z0n
ol S
T
74
o
loT Gateway Field devices

FIELD
LAYER

FIGURE 95 COMPONENTS RELATED TO THE BACKEND ORCHESTRATION

Kubernetes deployments are done using YAML files in the specific format required by Kubernetes. Deployment
specifies application additionally if components need to expose API additional resources are required for inner
API or API which can be accessed outside of Kubernetes. FIGURE 96 and FIGURE 97 depict an example of
Kubernetes Deployment and Service resources YAML files. The deployment file specifies the namespace in
which the application is going to be deployed, as well as, how many replicas of the pod should be running,
which image to use to build container and how much resources allocated to it. The service file specifies the
way of how to expose a pod outside of the cluster.

102

780315 — SEMIoTICS — H2020-10T-2016-2017/H2020-10T-2017 ~d
Deliverable D5.8: IloT Infrastructure set-up and testing (Cycle 2) SEMl llCS
Dissemination level: [public] %%

: apps/vl
: Deployment

: back-dep

. SemlotTilcs

registry.gitlab.com/semiotics/backend/gui/backend: jenkins

FIGURE 96:THE GUI:BACKEND DEPLOYMENT FILE

back

NodePort

FIGURE 97: THE GUI - BACKEND SERVICE FILE
103

780315 — SEMIoTICS — H2020-10T-2016-2017/H2020-10T-2017 ~d
Deliverable D5.8: IloT Infrastructure set-up and testing (Cycle 2) SEMl llCS
Dissemination level: [public] %%

Service resource file specifies the port and the type of service that exposes the pod with the application. In the
example above, the application is expected to run on port 31000. After successful deployment, it can be
checked by performing an HTTP request to the specified address (FIGURE 98). If the deployment of pod fails,
the cause of failure will be shown in pod’s logs (FIGURE 101).

3.4.3.3 TESTS
The functional tests of Backend Orchestrator and Jenkins will be focused entirely on the deployment of

components. All tests presume that the cluster is working correctly. As test scenario deployment will be made,
which will be further verified by API calls. TABLE 17below holds a list of all the test scenarios.

TABLE 17 FUNCTIONAL TESTS SCENARIOS FOR KUBERNETES AND JENKINS

GUI

/deployment/semiotics/back-deployment, /deployment/semiotics/front-deployment

v After a successful deployment, the application is running on the specified address (if it exposes an API) It has
to be checked manually using a tool like POSTMAN or even web browser. If the application doesn’t have an API,
the information about success can be seen in the logs.

v After a successful deployment, the response contains information about the deployed application.

v After a failed deployment, the response of the HTTP request should be ‘Could not get any response’. Because
of the variety of factors that have an impact on the success of the deployment, it's impossible to predict the cause
of the failure.

Security Manager

/deployment/semiotics/security-manager-deployment

v After a successful deployment, the application is running on the specified address (if it exposes an API) It has
to be checked manually using a tool like POSTMAN or even web browser. If the application doesn’t have an API,
the information about success can be seen in the logs.

v After a successful deployment, the response contains information about the deployed application.

v After a failed deployment, the response of the HTTP request should be ‘Could not get any response’. Because
of the variety of factors that have an impact on the success of the deployment, it's impossible to predict the cause
of the failure.

Thing Directory

/deployment/semiotics/thing-directory-deployment

v After a successful deployment, the application is running on the specified address (if it exposes an API) It has
to be checked manually using a tool like POSTMAN or even web browser. If the application doesn’t have an API,
the information about success can be seen in the logs.

v After a successful deployment, the response contains information about the deployed application.

v After a failed deployment, the response of the HTTP request should be ‘Could not get any response’. Because
of the variety of factors that have an impact on the success of the deployment, it's impossible to predict the cause
of the failure.

KNOWAGE

/deployment/semiotics/knowage-deployment

v After a successful deployment, the application is running on the specified address (if it exposes an API) It has
to be checked manually using a tool like POSTMAN or even web browser. If the application doesn’t have an API,
the information about success can be seen in the logs.

v After a successful deployment, the response contains information about the deployed application.

v After a failed deployment, the response of the HTTP request should be ‘Could not get any response’. Because
of the variety of factors that have an impact on the success of the deployment, it's impossible to predict the cause
of the failure.

104

780315 — SEMIoTICS — H2020-10T-2016-2017/H2020-10T-2017

~
Deliverable D5.8: lloT Infrastructure set-up and testing (Cycle 2) SEMl llCS
Dissemination level: [public] %%

Thing Simulator

/deployment/semiotics/thing-simulator-deployment

v After a successful deployment, the application is running on the specified address (if it exposes an API) It has
to be checked manually using a tool like POSTMAN or even web browser. If the application doesn’t have an API,
the information about success can be seen in the logs.

v After a successful deployment, the response contains information about the deployed application.

v After a failed deployment, the response of the HTTP request should be ‘Could not get any response’. Because
of the variety of factors that have an impact on the success of the deployment, it's impossible to predict the cause
of the failure.

Thing Worker

/deployment/semiotics/thing-worker-deployment

v After a successful deployment, the application is running on the specified address (if it exposes an API) It has
to be checked manually using a tool like POSTMAN or even web browser. If the application doesn’'t have an API,
the information about success can be seen in the logs.

v After a successful deployment, the response contains information about the deployed application.

v After a failed deployment, the response of the HTTP request should be ‘Could not get any response’. Because
of the variety of factors that have an impact on the success of the deployment, it's impossible to predict the cause
of the failure.

GET v http://172.22.2.9:31000/td/getAllThings

Params (9 []

Query Params

KEY VALUE
Body
Pretty BETA SON ¥)
1 [
2 {
3 "name": "Nowy Sunblind",
4 "id": "urn:dev:ops:32473-WoTSunblind-12345",
5 "desc": "This is a very smart Sunblind.",
6 "hasProperties": true,
7 "hasActions": true,
8 "hasEvents": true
9 Ig
10 {
11 "name": "Sunblind”,
12 "id": "nowy-123:12345",
13 "desc": "This is a very smart Sunblind.”
14 "hasProperties": true,
15 "hasActions": true,
16 "hasEvents": true
17 }
18]

FIGURE 98 RESPONSE AFTER SUCCESSFUL DEPLOYMENT

105

780315 — SEMIoTICS — H2020-10T-2016-2017/H2020-10T-2017
Deliverable D5.8: lloT Infrastructure set-up and testing (Cycle 2)
Dissemination level: [public]

SEMitelics

X Headers Preview Response Cookies Timing

"objectMeta": {
"name”: "back-deployment”,
“namespace”: "semiotics",
"labels": {
"app": "back"
}'
"annotations": {
"deployment.kubernetes.io/revision”:
10 }.

WSO WU B W
-~

wy=

11 "creationTimestamp": "2020-01-25T19:54:37Z"

12 }.

13 "typeMeta™: {

14 “kind": "deployment”
15 }.

16 "podList": {

17 "listMeta”: {

18 "totalltems": 1

19 }.

20 “cumulativeMetrics": [],

21 "status": {

22 "running": 0O,

23 "pending": 0O,

24 "failed": O,

25 "succeeded”: O

26 }.

27 "pods": [

28 {

29 "objectMeta": {

30 “"name”: "back-deployment-65c6cf8fb7-68fwt",
31 "namespace": "semiotics",

32 “"labels": {

33 "app”: "back”,

34 "pod-template-hash": "65c6cf8fb7"
35 }.

36 “creationTimestamp": "2020-01-25T19:54:37Z"
37 ,

38 "typeMeta®: {

39 “kind": “"pod"

40 }.

41 "podStatus": {

42 “"status”: "Running”,

43 “podPhase": "Running",

44 “containerStates™: [

45 {

46 "running”: {

47 "startedAt”: "2020-01-27T19:51:35Z"
48 }

49 }

50]

51 }.

52 "restartCount": 314,

53 "metrics": null,

54 "warnings®: [],

55 "nodeName”: "vmictkubernetesnodel"

ce .|
FIGURE 99 EXAMPLE OF SUCCESSFUL RESPONSE USING KUBERNETES API

106

780315 — SEMIoTICS — H2020-10T-2016-2017/H2020-10T-2017 ~)
Deliverable D5.8: lloT Infrastructure set-up and testing (Cycle 2) SEMl lICS
Dissemination level: [public] %%

X Headers Preview Response Cookies Timing

"objectMeta": {
“name": "front-deployment"”,

14

2

3

4 “namespace”: "semiotics",

5 "labels": {

6 "app": "front"

7 }.

8 "annotations": {

9 "configmap.reloader.stakater.com/reload”: "api-map",
10 "deployment.kubernetes.io/revision®: "1"
11 }.

12 “creationTimestamp"”: "2020-01-15T10:39:04Z"
13 }.

14 "typeMeta®: {

15 “"kind": "deployment”
16 }.

17 "podList": {

18 “listMeta": {

19 "totalltems": 1

20 }.

21 “cumulativeMetrics": [].

22 “status": {

23 “running”: 0,

24 “pending”: 0O,

25 "failed": O,

26 "succeeded”: O

27 }.

28 “pods": [

29 {

30 "objectMeta”: {

31 "name”: "front-deployment-6c6968bfc8-cvgbc”,
32 "namespace": "semiotics",

33 "labels": {

34 "app”: "front",

35 "pod-template-hash": "6c6968bfc8"
36 }.

37 “creationTimestamp": "2020-01-15T10:39:04Z"
38 }.

39 "typeMeta™: {

40 “kind®": "pod"

41 }.

42 "podStatus": {

43 “status”: "Running”,

44 “podPhase": "Running",

45 “"containerStates™: [

46 {

47 "running”: {

48 "startedAt™: "2020-01-15T16:39:06Z"
49 }

50 }

51]

52 }.

53 "restartCount": O,

54 "metrics": null,

55 "warnings®: [],

ca VR P\ R I VNS S N TN Ty Sppp———p—_

FIGURE 100 EXAMPLE OF A SUCCESSFUL RESPONSE USING KUBERNETES API

107

780315 — SEMIoTICS — H2020-10T-2016-2017/H2020-10T-2017
Deliverable D5.8: lloT Infrastructure set-up and testing (Cycle 2)

Dissemination level: [public]

util.
core.
core
core
core.
core.
jdbc.

: org.postgresql.
org.postgresql.
org.postgresql.
org.postgresql.
org.postgresql.
org.postgresql.
org.postgresql.

postgresql.

postgresql.
com.zaxxer.hikari.
com.zaxxer.hikari.
com.zaxxer.hikari.
com.zaxxer.hikari.
com.zaxxer.hikari.
com.zaxxer.hikari.
com.zaxxer.hikari.

org.
org.

util.
pool.
pool.
pool.
pool.
pool.

PSQLException:

FATAL: database "guidb1l" does not exist
v3.QueryExecutorImpl.receiveErrorResponse(QueryExecutorImpl.java:2440) ~[postgresql-42.2.5.jar!/:42.2.5]
.v3.QueryExecutorImpl.readStartupMessages(QueryExecutorImpl.java:2559) ~[postgresql-42.2.5.jar!/:42.2.5]
.v3.QueryExecutorImpl.<init>(QueryExecutorImpl.java:133) ~[postgresql-42.2.5.jar!/:42.2.5]
v3.ConnectionFactoryImpl.openConnectionImpl(ConnectionFactoryImpl.java:250) ~[postgresql-42.2.5.jar!/:42.2.5]
ConnectionFactory.openConnection(ConnectionFactory.java:49) ~[postgresql-42.2.5.jar!/:42.2.5]
PgConnection.<init>(PgConnection.java:195) ~[postgresql-42.2.5.jar!/:42.2.5]
Driver.makeConnection(Driver.java:454) ~[postgresql-42.2.5.jar!/:42.2.5]
Driver.connect(Driver.java:256) ~[postgresql-42.2.5.jar!/:42.2.5]
DriverDataSource.getConnection(DriverDataSource.java:136) ~[HikariCP-3.2.0.jar!/:na]
PoolBase.newConnection(PoolBase.java:369) ~[HikariCP-3.2.0.jar!/:na]
PoolBase.newPoolEntry(PoolBase. java:198) ~[HikariCP-3.2.0.jar!/:na]
HikariPool.createPoolEntry(HikariPool. java:467) ~[HikariCP-3.2.0.jar!/:na]
HikariPool.checkFailFast(HikariPool. java:541) ~[HikariCP-3.2.0
HikariPool.<init>(HikariPool. java:115) ~[HikaricP-3.2.0.jar!
HikariDataSource.getConnection(HikariDataSource. java:112) ~[HikaricP-3.2.0.jar!/:na]

jar!/:na]

a]

SEMitelics

liquibase.integration.spring.SpringLiquibase.afterPropertiesSet(SpringLiquibase.java:311) ~[liquibase-core-3.7.0.jar!/:na]

. 28 common frames omitted

FIGURE 101 BACKEND ORCHESTRATOR LOGS AFTER DEPLOYMENT FAILURE

After having the certainty that Kubernetes deployment works, the same test scenarios should be performed
using Jenkins pipelines. These scenarios are pretty similar to the scenarios above but use Jenkins instead of

APIs. Jenkins catches all of the errors on each test step
which can be found below.

Pipeline guiHubApp_pipeline

pr—
—#*" Recent Changes
=

Stage View
Clone
code
from
gitLab
4s
#Jan 15

1:34

B

Build
maven
project of
backend

23s

Build
backend
docker
image and
push to
repo

34s

Build Erase
frontend Clone
backend
docker yamls file and
image and from
. frontend
push to gerrit N
image
repo
3min 42s 1s 5s
3min 42s

Deploy
Deplcy backend
Knowage
config map config
map
733ms 617ms

Deploy
backend
image on

Kubernetes

797ms

Deploy
frontend
config map

706ms

. Jenkins can show the result using a graphical interface

#%dodaj opis

FIGURE 102: A SUCCESSFUL PIPELINE IN JENKINS GRAPHICAL INTERFACE

Stage View
Clone code
from gitLab
3s
Jan 25 ,
4s
21:01

Build maven
project of
backend

17s

Build

Build

backend frontend
Clone
docker docker
) X yamls file
image and image and from gerrit
push to push to s
repo repo
26s 3min 15s 708ms
645ms

failed|

Erase
backend Deploy
and backend
frontend config map
image
4s 737Tms

Deploy
backend
image on

Kubernetes

865ms

Deploy
frontend
config map

746ms

Deploy Deploy
frontend network
image on policies for

Kubernetes GuiHubApp
694ms 611ms
Deploy Deploy
frontend network
image on policies for
Kubernetes GuiHubApp
874ms 733ms

FIGURE 103:AN UNSUCCESSFUL PIPELINE IN JENKINS GRAPHICAL INTERFACE

108

780315 — SEMIoTICS — H2020-10T-2016-2017/H2020-10T-2017

~
Deliverable D5.8: lloT Infrastructure set-up and testing (Cycle 2) SEMl llCS
Dissemination level: [public] %%

3.4.4 DATA VISUALIZATION

The main purpose of data visualization in SEMIoTICS is the graphic presentation of the most important
information gathered and generated by the components. More information on how the visualization is done
can be found in Deliverable 4.7. Considering the various content of the presented data, the visualization in the
SEMIOTICS includes the following parts:

Thing directory user interface
Pattern visualization

Sensor data gathering

Data visualizations using FIWARE

The GUI is the main module that provides a graphical interface for individual components to show data in on
loT platform. During this Cycle 2 deliverable the GUI was significantly enhanced and upgraded, and the new
GUI screens are included in what follows. According to the project assumptions, GUI integrates with Thing
Directory, WoT compliant field devices, Pattern Orchestrator and Knowage that is one of the FIWARE Generic
Enablers. All types of integration are shortly presented below.

Integration GUI with Thing Directory

This integration was created to provide a graphical interface for Thing Directory API to visualize all
devices connected to the SEMIoTICS platform. To receive data, GUI through an internal component
sends HTTP request to Thing Directory’s APl and in the response gets JSON with specific information.
To avoid problems with the device description, maintain consistency and uniform format in the
platform, GUI uses the JSON-LD standard in the above-mentioned communication. After that, the
JSON description is translated into a user-friendly form. For this purpose, mapping to a previously
defined object is used. It enables a user to watch all devices in table form with the possibility to filter
by attributes and properties. Moreover, GUI provides support for the SPARQL filter to search devices
directly Thing Directory. This component also allows for adding new things and remove existing ones
directly through the platform.

Integration with Pattern Orchestrator

This integration aimed to support Pattern Orchestrator in monitoring the current state of SPDI patterns
from all recipes and location SPDI patterns in an individual layer. In the Pattern Orchestrator
component, a dedicated endpoint was created for a GUI that provides combined data with SPDI
patterns and recipes. At this stage of a project, GUl uses a mocked response from Pattern
Orchestrator as it is not deployed on Backend Orchestrator yet. GUI translates this data to show it in
two possible ways, as patterns with assigned to layers or as a node graph. To avoid problems with
the incompatible data, a dedicated JSON model was created.

Integration for providing sensor data gathering

A dedicated window was created in GUI to interact with all types of sensors and devices registered in
the Thing Directory. This view enables the user to show current values of things properties, collect
data with set frequency and actuate actions. Because GUI should communicate not only with Green
Field devices but also with Brown Field Devices, so it was integrated with Semantic API & Protocol
Binding. This component allows interacting with things that do not support JSON-LD format. As
Semantic API & Protocol Binding has not been developed yet, so to test integration a special Thing
Simulator component was created. It uses the same methods as Semantic APl & Protocol
Binding,(GET methods to return properties values and POST methods to control actions).

Integration with Knowage

Integration with Knowage, which is one of the FIWARE Generic Enabler, was created to visualize
collected data from SEMIoTICS on powerful and efficient dashboards. On these dashboards, users
can create various types of widgets like charts, tables, images, documents or own HTML elements.
Knowage is embedded in GUI as a frame so does not require redirection to another page. To allow
Knowage to have access to the collected data, the thing details view in GUI has been adapted to allow
the creation of new datasets when data collection is started. GUI creates dataset through API provided
by Knowage and after this operation, datasets are available to use on dashboards. Additionally, GUI

109

780315 — SEMIoTICS — H2020-10T-2016-2017/H2020-10T-2017

~
Deliverable D5.8: 1loT Infrastructure set-up and testing (Cycle 2) SEMl lICS
Dissemination level: [public] %%

enables the user to create and manage more than one dashboard. A new view with a dashboards list
allows the user to create, delete, view, edit and filter dashboards by names or by dynamically created
tags.

3.4.4.1 THING DIRECTORY USER INTERFACE

Thing Directory provides multiple APls to interact with. Below can be found the list of all APIs which are used
by GUI component:
e Getting a list of registered devices with description.
o Filtering things using the SPARAQL filter.
¢ Registering new devices using the description in JSON-LD format.
o Deleting devices.
Figures below (

GuiHub
=Togg|e Sidebar HOME / SMARTTHINGS / THING LIST
@ Cockpit . . §)
Th|ng list First D Ml +Add thing [Q SPARQL filter
£ Smart Things
Active things Inactive things
Thing list
' Id s Name $ Description s Properties
loT Gateway devices
SPDI Patterns Qsearch Qsearch Qsearch
@ Monitoring i)
urn:dev:ops:32473-Microphone-13117 Microphone This is a very smart Microphone. Actions , Events , Properties @
«3 Recipe Cooker
urn:dev:ops:32473-WoTSunblind-12345 Sunblind This is a very smart Sunblind. Actions [Events [Properties nﬂ
CIsFceul
urn:dev:ops:32473-WoTSunblind-12345- Sunblind This is a very smart Sunblind. Actions | Events | Properties n
testowe
Elements perpage: 10 &
o, This project has received funding from the European Union’s Made by BlueSoft sp. z 0.0,
xS Horizon 2020 research and innovation programme under grant SEMlﬂiCS |I|B”]L Uil Cop)fnght ©2019
*ax agreement number 780315 Conditions of Use | Privacy Policy =~ fresmsewmon All Rights Reserved.

FIGURE 104, FIGURE 105, FIGURE 106, FIGURE 107) show the effects of integration between GUI and Thing
Directory components.

110

780315 — SEMIoTICS — H2020-10T-2016-2017/H2020-10T-2017
Deliverable D5.8: lloT Infrastructure set-up and testing (Cycle 2)
Dissemination level: [public]

SEMitelics

GuiHub

HOME / SMARTTHINGS / THING LIST

oggle Sidebar
@ Cockpit . .
Thing list
£ Smart Things
Active things Inactive things
Thing list
Id 3 Name 3 Description 3
loT Gateway devices
@ SPDI Patterns Qsearch Qsearch Q search
@ Monitoring
urn:dev:ops:32473-Mi 13117 i This is a very smart Microphone.
% Recipe Cooker
urn:dev:ops:32473-WoTSunblind-12345 Sunblind This is a very smart Sunblind.

HsFceul

urn:dev:ops:32473-WoTSunblind-12345-
testowe

o This project has received funding from the European Union's

«T 5 o
L Horizon 2020 research and innovation programme under grant SEIVHCS |IH[”[

EFFICIENT SOLUTIONS

bk agreement number 780315 Conditions of Use | Privacy Policy

Sunblind This is a very smart Sunblind.

R . .. s [asoa e

Actions , Events . Properties n .
rhena oog
Actions , Events | Properties n

Elements per page: 10 &

Made by BlueSoft sp. z 0.0.
Copyright © 2019
All Rights Reserved.

FIGURE 104 LIST OF ALL DEVICES REGISTERED IN THING DIRECTORY

GuiHub
= Toggle Sidebar HOME / SMARTTHINGS / THING LIST / THING DETAILS: MICROPHONE
@ Cockpit s o
Thing details
©f Smart Things
€Backtolist
PDI Patterns
@ Monitoring Data Properties
< Recipe Cooker ID: unidevops:32473-Microphone-13117 motorospeed
Dsrceul
Name: Microphone motorstate
Context http://www.w3.0rg/ns/td# Openpercent
Description This is a very smart Microphone
Actions
motorspeed1
Events
openpercent1
overheating https://mylamp.example.com/oh
close
open

This project has received funding from the European Union's

Horizon 2020 research and innovation programme under grant - SEMLSICS |I

agreement number 780315 Conditions of Use | Privacy Policy

FIGURE 105 THING DETAILS

111

http/localhost

http://localhost

http:/localhost

http:/localhost

http:/localhost

http://localhost:8050/set/sunblind/close

http://localhost:8050/set/sunblind/open

Made by BlueSoft sp. z 0.0.

Copyright © 2019
All Rights Reserved.

780315 — SEMIoTICS — H2020-10T-2016-2017/H2020-10T-2017

~
Deliverable D5.8: 1loT Infrastructure set-up and testing (Cycle 2) SEMl lICS
Dissemination level: [public] %%

GuiHub
ETDggleSidebar HOME / SMART THINGS HING REGISTRATION
@ Cockpit o Py . M "
Thing Description registration
€ Smart Things
& SPDI Patterns 1 d
2 “geontext”: [
P 3 “http://wiw.w3.org/ns/td",
@ Monitoring N (45—
s “jot": "http://iotschema.org/"
«$ Recipe Cooker 6
7
HsFeeul 8 “urn:dev:ops: 32473 -WoTsunblind-12345",
° “Sunblind",
10 nblindThing",
1 on”: "This is a very smart Sunblind.”,
12| “securityDefinitions": {
13 “basic_sc": {
1 "scheme”: "basic”,
15 “in": "header”
16 }
17 >
18| “security”: [
19 "basic_sc"
» |,
21 “properties”: {
2 “motorospeed”: {
23 “"type": “number”,
2 “forms”: [
25 {
2% “href": "http://localhost:8050/monitoring/properties/sunblind/motorspeed”
27 }
28]
20)
30 “motorstate”: {
31 “type": “string",
te, Thisproject has received funding from the European Unioris Made by BlueSoft sp. z 0.0.
.o Horizon 2020 research and innovation programme under grant - SEMNICS IH[”[Copyright © 2019
*ae agreement number 780315 Conditions of Use | Privacy Policy FTREROUON p Rights Reserved. .

FIGURE 106 REGISTRATION OF A NEW DEVICE

Search device

SPARQL Search,

FIGURE 107 SEARCHING A DEVICE USING SPARAQL FILTER

3.44.1.1 COMPONENT ARCHITECTURE

Components necessary for providing the Thing Directory user interface are depicted in FIGURE 108. There
are highlighted Thing Directory component in the backend layer that provides APl mentioned in 3.4.4.1 and
GUI component from the backend layer which visualizes this API. A detailed description of the integration

112

780315 — SEMIoTICS — H2020-10T-2016-2017/H2020-10T-2017

~
Deliverable D5.8: lloT Infrastructure set-up and testing (Cycle 2) SEMl llCS
Dissemination level: [public] %%

between these two components as described in section 3.4.4. Data that is received from Thing Directory is not
stored in a GUI database until the user does not start collecting data from things. Only then the simplified
description of the thing is saved in the database to identify collected data with them.

Backend

Mindsphere Usecase Apps

Y

Fiware

openHAB

APPLICATION
ORCHESTRATION
LAYER

Thing

Directory GUl

SDN Controller 7 NFV 7

SDNINFV
ORCHESTRATION
LAYER

loT Gateway Field devices

FIELD
LAYER

FIGURE 108 COMPONENTS TAKING PART IN INTEGRATION WITH THING DIRECTORY

Sequence diagrams showing integration GUI with Thing Directory are presented below.

113

780315 — SEMIoTICS — H2020-10T-2016-2017/H2020-10T-2017

~
Deliverable D5.8: lloT Infrastructure set-up and testing (Cycle 2) SEMl llCS
Dissemination level: [public] %%

«Bagl(_ﬁn:d» <<B?§G|ef;|d>> <<.Back_end>>

GUIFrontend GUIBackend Thing Directory
i display things =N =E
i or SPARQLfilter | ! getAllThings RE getAllThings :
return ‘ return i return f
.<— ------------------- : < __________________________ : (. :
H H

'
——
\

FIGURE 109 SEQUENCE DIAGRAM, DISPLAY ALL DEVICES FROM THING DIRECTORY

<<Baélbeln_d>> <<Baé:5|epd>> <<Backend>>
GUIFrontend GUIBackend Thing Directory
display things | ! getAllThings e getAllThings
return 5 return 5 return i
S R | [mmemmemenemeeeeneaennee. :
delete thing | : deleteByld f deleteByld
——P| » ! >
return E return 5 return
< L] —

FIGURE 110 SEQUENCE DIAGRAM, DELETE THING FROM THING DIRECTORY
34411 TESTS

The functional test focuses on calling APl exposed by GUI Backend. All the tests

Table 18 Functional tests scenarios for Thing Directory
GUI Integration with Thing Directory
/getAllThings, /filterAllThings

v should return results in response when there’s at least one thing description registered in Thing Directory
(with 200 OK status)

v should return an error if there’s none registered in Thing Directory (with 400 Bad request)

v should return an error if there a thing registered in Thing Directory is invalid mapped (with 400 Bad
request)

/addThing
114

780315 — SEMIoTICS — H2020-10T-2016-2017/H2020-10T-2017

R
Deliverable D5.8: IloT Infrastructure set-up and testing (Cycle 2) SEMl llCS
Dissemination level: [public] %%
v should return a success message when request body has got a proper format and its JSON (with 200
OK status)

v should return an error when request body has got an improper format or it is not JSON (with 400 Bad
request status)

/getThing
v should return a result in response if thing description has been registered in Thing Directory (with 200
OK status)

v should return an error when a registered thing description has got an improper format (with 400 Bad
request status)

/deleteThing

v should return a result in response if the thing with given id has been registered in Thing Directory (with
200 OK status)

v should return an error when a given thing id doesn’t match with anything description in Thing Directory
(with 400 Bad request status)

Integration test are currently being implemented. Below there are examples of API calls.

GET v http://localhost:8090/td/getAllThings
Params (9 []
Query Params
KEY VALUE DESCRIPTION
Body
Pretty BETA Text v -

1 Couldn't get list of things. Mapping exception occurred

FIGURE 111: EXAMPLE OF AN UNSUCCESSFUL HTTP REQUEST

115

780315 — SEMIoTICS — H2020-10T-2016-2017/H2020-10T-2017
Deliverable D5.8: lloT Infrastructure set-up and testing (Cycle 2)

Dissemination level: [public]

GET

Params

Query Params

KEY

Body

Pretty

© WO NOWUL & WN

=

GET

Params ®

Query Params
KEY

M

v http://localhost:8090/td/getThing?id=urn:dev:ops:32473-WoTSunblind-12345

v

http://localhost:8090/td/getAllThings

Preview isualize BETA JSON

"name": "Sunblind",

VALUE

=

"id": "urn:dev:ops:32473-WoTSunblind-12345",
"desc": "This is a very smart Sunblind.”,

"hasProperties": true,
"hasActions": true,
"hasEvents": true

SEMitelics

DESCRIPTION

Status: 200 OK Time: 342ms

FIGURE 112:EXAMPLE OF A SUCCESSFUL HTTP REQUEST

eBETA 50N v

"type": "Thing",
"desc": "This is a very smart Sunblind.",

"context":

"http://www.w3.0rg/ns/td",

"name": "Sunblind",
"id": "urn:dev:ops:32473-WoTSunblind-12345",
"events”:

}
1

{

N
{

i

"name": “overheating",
"urilist": [

1

"actions": [

"https://mylamp.example.com/oh"

“name": “motorspeedl”,
"urilist": [

"http://localhost:8050/set/sunblind/motorspeed"

"type": "INPUT",
"response": null

“name": “openpercentl”,
"urilist": [

1

"http://localhost:8050/set/sunblind/openpercent”

"type": "INPUT",

"response”: null

VALUE

urn:dev:ops:32473-WoTSunblind-12345

DESCRIPTION

Status: 200 0K Time: 95ms

FIGURE 113: EXAMPLE OF A SUCCESSFUL HTTP REQUEST

116

780315 — SEMIoTICS — H2020-10T-2016-2017/H2020-10T-2017

R
Deliverable D5.8: lloT Infrastructure set-up and testing (Cycle 2) SEMl%%'lCS

Dissemination level: [public]

POST v http//localhost:8090/td/addThing
He (10) Body ® T L]
none form-data x-www-form-urlencoded @ raw binary GraphQLBE™ jsoN ~

:_"urn:dev:ops:32473-WoTSunblind-10",

FIGURE 115: EXAMPLE OF AN UNSUCCESSFUL HTTP REQUEST

117

Time: 117ms Size: 82

3 »
4 : "MySunblindThing”,
5 “description™: "This is a very smart Sunblind.”,
6+ “securityDefinitions™: {
8 sch “basic”,
9 "in": “header”
10
11)
12+ Tsecurity™: [
13 “basic_sc”
14 N
15~ “properties”: {
16~ “motorospeed”: {
17 “type”: "number”,
18~ “forms™: [
19+ {
20 “href™: "http://localhost:8658/monitoring/properties/sunblind/motorspeed”
21
2]
23 L
24~ “motorstate”™: {
25 “type”: "string”,
Body {eaders (8)
Pretty R Previev 1alize BETA Text v =
1
POST v http:/localhost:8090/td/addThing
ar Hi (10) Body ® [
none form-data x-www-form-urlencoded @ raw binary GraphQLBETA jsoN +
1
2 n:dev:ops:32473-HoTSunblind-100",
3 - nblind”,
4 title": “MySunblindThing",
5 “description”: "This is a very smart Sunblind.”,
6+ “securityDe :
- “basi
8 “scheme™: “basic”,
9 “in": “header™
10
1
12 Csecurity: [
13 “basic_sc”
14 ,
15+ “properties”: {
16~ “motorospeed”: {
17 “type”: “number”,
18~ “forms":
19+
20 “href*: “http://localhost:8056/monitoring/properties/sunblind/motorspeed”
21
22 1
23 ,
2~ “motorstate”: {
25 “type™: “string”,
Body C (10 T Status: 400 Bad Request
Pretty R Pr ializeBETA - j5oN v
1 q
2 "timestamp": "2020-01-26T10:38:33.152+0000",
3 "status”: 460,
4 "error”: "Bad Request”,
5 "message": "JSON parse error: Unexpected close marker '}': expected ']' (for Array starting at [Source: (PushbackInputStream); line: 7@, column: 161); nested exception is
com. fasterxml. jackson.core.JsonParseException: Unexpected close marker '}': expected ']’ (for Array starting at [Source: (PushbackInputStream); line: 70, column: 16])\n at [Source: (Pushb
line: 75, column: 4]",
6 "path": "/td/addThing"
7 A

780315 — SEMIoTICS — H2020-10T-2016-2017/H2020-10T-2017
Deliverable D5.8: lloT Infrastructure set-up and testing (Cycle 2)
Dissemination level: [public]

DELETE v http://localhost:8090/td/deleteThing?id=urn:dev:ops:32473-WoTSunblind-100&deleteData=true
° (10 Body ® L]
none form-data x-www-form-urlencoded @ raw binary GraphqL BETA N v

- {
2 "id":_"urn:dey:ops:32473-oTSunblind-160",
“name”: “Sunblind”,
title®: “MySunblindThing”,
“description”: "This is a very smart Sunblind.”,
“securityDefinitions™:
“basic_sc”:
“scheme™: “basic”,
“in": “header”

“security”: [
“basic_sc”

15+ “properties’: {
“motorospeed”: {
“type”: “number”,
“href”: “http://localhost:8056/monitoring/properties/sunblind/motorspeed”
]

1
“rotorstate™: {
“type™: “string”,

SEMitelics

FIGURE 116:EXAMPLE OF A SUCCESSFUL HTTP REQUEST

Body
Pretty BEA Text v
1
DELETE v http://localhost:8090/td/deleteThing?id=dontexistthing&deleteData=true
[] 10 Body []
none form-data x-www-form-urlencoded @ raw binary GraphqL BETA ON v
1
Body (10;
Pretty EETA v =

1 Couldn't find thing with given id

FIGURE 117:EXAMPLE OF AN UNSUCCESSFUL HTTP REQUEST

3.4.4.2 PATTERN VISUALIZATION

The aim goal of pattern visualization was to present and monitor in GUI SPDI patterns stored by Pattern
Orchestrator. These patterns are presented in two forms, as a view with layer assignment and as graph
representation. To get data, the GUI component communicates with Pattern Orchestrator using one single
API, which at this stage of the project is mocked by the JSON object response. It enables to create the entire

pattern handling mechanism.

118

780315 — SEMIoTICS — H2020-10T-2016-2017/H2020-10T-2017

~
Deliverable D5.8: 1loT Infrastructure set-up and testing (Cycle 2) SEMl 'ICS
Dissemination level: [public] %%

GuiHub

e

SPDI pattern monitoring

©f smart Things

BACKEND

& sPDI Pattems

SPDI platform view

SPDI recipe view
@ Monitoring -

3 Rec ooker

GATEWAY

FIGURE 118 SPDI PATTERN MONITORING VIEW

GuiHub

HOME / SPDIDATTERNS / SPDIPLATFORM VIEW / SPDI PATTERN TABLE

= Toggle Sidebar
@ Cockj
opt SPDI pattern table ¢Backiolist

©f Smart Things

& SPDI Patterns

Pattern name s Type : Layer $ Recipe name $ QoS Value % QoS Verification % QoSDescription

10,041
INTEROPERABILITY NETWORK monitoring 10001

@ Monitoring
3 Recipe Cooker

IsFceul

INTEROPERABILITY 100.7.1
SECURITY nitori 10002
DEPENDABILITY i 10,001

SECURITY 10,0015

Elements perpage: | 10 &

This project has recelved funding from the European Uniori's Made by BlueSoft sp. 2 0.0.
Horizon 2020 research and innovation programme under gvam SEMIliCS ||Hl”[Copyright © 2019
agreement number 780315 Conditions of Use | Privacy Pol eumee Al Rights Reserved

FIGURE 119 SPDI PATTERN TABLE

Graph visualization was done using the open source WebCola library. A converted JSON response
from Pattern Ochestrator is next passed into javascript function and using the aforementioned library
and D3.js, a graph is drawn. The graphs are drawn in real-time and require a 3 second window to
completely initialize. This is to ensure proper readibilty as well as full interactivity meaning a single
element can be clicked in order to open a detailed node view.

119

780315 — SEMIoTICS — H2020-10T-2016-2017/H2020-10T-2017

~
Deliverable D5.8: 1loT Infrastructure set-up and testing (Cycle 2) SEMl llCS
Dissemination level: [public] %%

GuiHub

= Toggle Sidebar HOME / SPDIPATTERNS / SPDIRECIPEVIEW / RECIPE

@ Cockpif o o
SR SPDI recipe view Recper .

& Smart Things

& sPDI Patterns

Sequence3

@ Monitoring
2 Recipe Cooker

sFceul

“This project has received funding from the European Union's

Horizon 2020 research and innovation programme under grant - SEMLSNICS ||Hl
y L

g
agreement number 780315 Conditions of Use | Privacy Poli -

FIGURE 120 SPDI GRAPH VIEW

Made by BlueSoft sp. 2 0.0.
”[Copyright © 2019
TR All Rights Reserved.

3.4.4.2.1 COMPONENT ARCHITECTURE

FIGURE 121 presents components responsible for pattern monitoring. In this case, the communication is
between two components from the backend layer, GUI and Patter Orchestrator. As it was mentioned in se ction
3.4.4 GUI sends a request to single Pattern Orchestrator API to receive extended JSON description to
visualize patterns and recipes in graph form. As this APl provides combined data from Pattern Orchestrator
and Recipe Cooker, GUI sends only one request instead of two to different components. This reduces the risk
of possible errors related to the integration of subsequent components. The data received is immediately
processed by subcomponents of GUI and shown to the user. Information about patterns and recipes are not
stored in the GUI database.

120

780315 — SEMIoTICS — H2020-10T-2016-2017/H2020-10T-2017
Deliverable D5.8: lloT Infrastructure set-up and testing (Cycle 2)
Dissemination level: [public]

SEMitelics

Usecase Apps

Backend
Mindsphere

Fiware

Pattern
Orchestrator

openHAB
GUI)penHAB Usecase 3

APPLICATION
ORCHESTRATION
LAYER

SDN Controller] i NFV)

je Ma e Orchestrato

LAYER

SDN/NFV

ORCHESTRATION

loT Gateway

Field devices

Securit Local E

FIELD
LAYER
m

m

FIGURE 121 COMPONENTS RELATED TO PATTERN VISUALIZATION

Sequence diagram that present communication between GUI and Pattern Orchestrator to visualize patterns
is depicted in FIGURE 122.

121

780315 — SEMIoTICS — H2020-10T-2016-2017/H2020-10T-2017
Deliverable D5.8: lloT Infrastructure set-up and testing (Cycle 2)

Dissemination level: [public]

SEMitelics

<<Backend>> <<Backend>> <<Backend>>
GUI GUI: Pattern
GUIFrontend GUIBackend Orchestrator
show SPDI] —
patterns | ! getSPDIData E getSPDIData ik
return return ! return '
------------------------------------- § [emmmmrmmnenenrenanannaad |
L

L

'
L]
'

' FIGURE 122 SEQUENCE DIAGRAM, SHOW SPDI PATTERNS

3.4.4.2.2 TESTS

Integration between GUI and Pattern Orchestrator is still in progress because the PO is not deployed in Backend
Orchestrator yet. API for getting patterns is prepared in both components as well as a common format for data
exchange. The method to map JSON in the GUI is depicted in FIGURE 101. At this stage, the GUI component
visualizes a mocked response from PO APl and an example of JSON is presented in FIGURE 102.

Table 19 Functional tests scenarios for Pattern Orchestrator

Pattern Orchestrator (integration in progress)

#getSPDIPatterns

v Should reject with 403 error if user attempt to get patterns without proper role

Should reject with 404 error if is not able to return patterns

Should reject with 400 error if request is incorrect

v
v
v Should reject with 500 error if internal error occurs
v

Should return JSON with patterns with 200 status

122

780315 — SEMIoTICS — H2020-10T-2016-2017/H2020-10T-2017

~
Deliverable D5.8: 1loT Infrastructure set-up and testing (Cycle 2) SEMl llC
Dissemination level: [public] %%

1 mapJsonToSpdiPatternModel(String jsonInString SpdiPatternMappingException {

ternMappingException

public static GraphSpdiPatternDto convertToGraphDto (Recipe recipe) {
List<GraphNode> nodes = getGraphNodes(recipe.getValues () .getNodesList());
List<GraphGroup> groups = getGraphGroups(recipe, nodes);
List<GraphLink> links = getGraphLinks(recipe, nodes, groups);

return GraphSpdiPatternDto.builder()
.nodes (nodes)
.links(links)
.groups (groups)
.build();

private static List<GraphNode> getGraphNodes (List<Node> nodesList) {
return emptyIfNull (nodesList) .stream()
.map (node -> GraphNode.buildesr()
.name (node.getName ())
.build())
.collect(Collectors. toList());

123

780315 — SEMIoTICS — H2020-10T-2016-2017/H2020-10T-2017

Deliverable D5.8: lloT Infrastructure set-up and testing (Cycle 2) SEMl l CS
Dissemination level: [public] %

private static List<GraphLink> getGraphLinks (Recipe recipe, List<GraphNode> nodes, List<GraphGroup> groups)

List<GraphLink> links = emptyIfNull(recipe.getValues().getLinksList()).stream()
.map (link -> GraphLink.builder()
.name (link.getId())
.source (getSourceIndexForLink (link.getNodel (), groups, nodes, recipe))
.target (getTargetIndexForLink (link.getNode2 (), groups, nodes, recipe))
.build())
.collect (Collectors.toList());

return links;

}

private static List<GraphGroup> getGraphGroups (Recipe recipe, List<GraphNode> nodelist) {

List<GraphGroup> convertedSequences = convertSeguences(recipe.getValues().getSequenceslist(), nodelist);

List<GraphGroup> convertedMerges = convertMerges(recipe.getValues().getMergesList(), nodelist, convertedSequences);

List<GraphGroup> convertedSplits = convertSplits(recipe.getValues().getSplitsList(), nodelist);

List<GraphGroup> combinedList = new ArrayList<>(convertedSequences);
combinedList.addall (convertedsSplits);
combinedList.addall (convertedMerges) ;

completeSequences (combinedList, convertedMerges, recipe.getValues().getSequenceslist());
fillColors(combinedList) ;

return combinedList;

FIGURE 101 METHODS TO MAP JSON IN GUI

{"recipes":[{"name":"Recipel”, "values":{"LinksList"
:[{"ID":"Link1", "Nodel":"Camera", "Node2"
:"ObjectDetector”,"layer": "network", "properties”
:[{"name": "Bandwidth", "satisfied":"true"

“category":"dependability"}]}], "NodesList": [{"ID"

:"Camera", "Name":"Camera", "layer": "network"

"properties":[{"name":"camera resolution”

"satisfied":"true", "category":"security"}]}]

"SequencesList":[{"ID":"Sequencel", "Name"

:"Sequencel”, "Nodel": "Camera", "Node2"

:"ObjectDetector”, "layer": "backend", "properties"

:[{"name": "Connection stability",6 "satisfied"

:"true", "category":"dependability"}]}]

"MergesList":[{"ID":"Mergel", "Name":"Mergel"

"Nodel": "Sequencel", "Node2":"Sequence2", "Node3"

:"DetectIntruder”, "layer": "network", "properties"

:[1}],"SplitsList”:[],"ChoicesList":[]}}]}

FIGURE 102 EXAMPLE OF JSON OBTAINED FROM PO

3.4.4.3 SENSOR DATA GATHERING

This integration was done to control all types of devices (Brown Field Devices and Green Field Devices)
connected to the SEMIoTICS platform. It allows starting collecting data from a property of a selected device
with the frequency set by the user and with a limit date and viewing the current property values of devices or

124

780315 — SEMIoTICS — H2020-10T-2016-2017/H2020-10T-2017

~
Deliverable D5.8: 1loT Infrastructure set-up and testing (Cycle 2) SEMl llCS
Dissemination level: [public] %%

sensors. It also enables to actuate different types of actions defined for the thing. FIGURE 123 below depicts
the view for the management of data gathering.

GuiHub

= Toggle Sidebar

@ Cockpit o o . N
Thing monitoring: Microphone
€8 Smart Things
=
& sPDI Patterns
@ Monitoring Properties Actions
& Recipe Cooker motorospeed B — motorspeed1 “
SFC GUI

o seniidics ML <o

1 progs 2019
agreement number 780315 Conditions of Use | Privacy Policy All Rights Reserve

FIGURE 123 VIEW TO THE MANAGEMENT OF DATA GATHERING

3.4.4.3.1 COMPONENT ARCHITECTURE

Architecture for sensor data gathering that is presented in FIGURE 124 contains GUI component from backend
layer, Thing Directory from backend layer, Semantic APl & Protocol Binding from field layer and Simulated
Sensor from field layer which simulates physical sensor. This integration enables to fully control devices which
means read real-time data (FIGURE 125) and actuate actions (FIGURE 126). GUI component communicates
with devices in two different ways, depending on the type of device as it was presented in section 3.4.4. For
greenfield devices, GUI sends requests directly to things that provide a single API for each action and property.
For brownfield devices, GUI communicates with Semantic API & Protocol Binding from the field layer which
needs GW Semantic Mediator to translate data from thing. At this stage of project physical devices are mocked
by Java simulator e.g. Simulated Sensor. Data from mocked devices is collected by the GUI subcomponent
(Thing Worker) and stored in the database when the user decides to start gathering information. The sequence
diagram showing collecting data is depicted in FIGURE 127.

125

780315 — SEMIoTICS — H2020-10T-2016-2017/H2020-10T-2017
Deliverable D5.8: lloT Infrastructure set-up and testing (Cycle 2)
Dissemination level: [public]

SEMitelics

Backend
Mindsphere Usecase Apps
= E ‘ indsphere :
g g Apy Usecase 1
= < Fiware
Egx
SEY
4 ﬂ j ‘ ‘ Knowage Usecase 2
& I
<g openHAB
o Thlng GUI ypenHAE Usecase 3
Directory . :
sualisatior
SDN Controller NFV
2 F ource VTN Securit NFV
g Manager Manage lanage Orchestrator
>
24
s Ew Bootstrapin Path Pattern VNF
SnZx Manager Manage Engine Manager
Bg
O Clustering SFC VIM .
o ,) VIM
() Manager Manage onnectc
loT Gateway Field devices
Semantic API Security Local Embedded Usecase 1
& Protocol Binding Manager Intelligence -
nk .) Datt
w GW Semantic Pattern .
- nitor secase 2
w E Mediator Engine ploniiennd ‘ LT
w
Local Thing Semantic Edge Supervisor and Usemree @
Directory Platforn LocalDB e
Simulated
sensor

FIGURE 124 COMPONENTS RELATED TO SENSOR DATA GATHERING

126

780315 — SEMIoTICS — H2020-10T-2016-2017/H2020-10T-2017
Deliverable D5.8: lloT Infrastructure set-up and testing (Cycle 2)

Dissemination level: [public]

SEMitelics

e < T Backend>> Semantic API & oW Semantic < Fleld>>
GUIFrontend GUIBackend ing Lirectory Protocol Binding Mediator evice
i display things | getAllThings ; getAllThings :]
return : return i return i
"""""""""""" N e IR B B R e E bt
read data from
thing getValuesForThing :
L]
loop J :
[for each]
alt) getOneValue getValue getvalue
[brown | return return return
field I Bl B S
device]
[green
field getValue N
device] >
1 < return
return return
| L]
- — H

FIGURE 125 SEQUENCE DIAGRAM, READ REAL-TIME DATA FROM DEVICE

127

780315 — SEMIoTICS — H2020-10T-2016-2017/H2020-10T-2017

~
Deliverable D5.8: 1loT Infrastructure set-up and testing (Cycle 2) SEMl llCS
Dissemination level: [public] %%

<<Backend>> <<Backend>> <<Field>> <<Field>> "
GUI- GUI- i Backend>> Semantic API & GW Semantic < el
GUIFrontend GUIBackend ing Lirectory Protocol Binding Mediator evice
display things | ! getAllThings B getAllThings : : :]
return : return] return : :
S R D g : ‘
read data from | |
thing | getValuesForThing : :
L |
loop J :
[for each]
alt) getOneValue getValue getValue
e I ... : return : return :
field : e S :
device] : H '
[green : :
field : getValue N
device] ' B
: return g
LS T oo !
return : return :
................... ' <.,...4..4..4...,..,...4.. E
H H o

FIGURE 126 SEQUENCE DIAGRAM, ACTUATE ACTION

128

780315 — SEMIoTICS — H2020-10T-2016-2017/H2020-10T-2017

~D
Deliverable D5.8: lloT Infrastructure set-up and testing (Cycle 2) SEMl%%'lCS

Dissemination level: [public]

Thing Worker
SingleThread

Semantic API &
Protocol Binding /
Semantic Thing
Simulator

00p

getData

[every X
seconds]

e

A 4

retum

FIGURE 127 SEQUENCE DIAGRAM, COLLECT DATA FROM DEVICE

3.4.43.2 TEST

Table 19 Functional tests scenarios for Thing Simulator.

GUI Integration with Thing Simulator

/getMonitoredValues

v should return results in response when address is valid (with 200 OK status)
v should return null when address is invalid (with 200 OK status)

/executeAction

Bad request status)

v should return results in response when address is valid (with 200 OK status)
v should return an error message in response when address is invalid or request body is invalid (with 400

Functional tests have been made using Mockito library. The tests check GUI and Thing Simulator API. The
integration with brownfield devices through Semantic API & Protocol Binding will be implemented in the next

scope.

129

780315 — SEMIoTICS — H2020-10T-2016-2017/H2020-10T-2017

~
Deliverable D5.8: lloT Infrastructure set-up and testing (Cycle 2) SEMl llCS
Dissemination level: [public] %%

GetMonitoredValuesUriDoesntExistExceptionThrown() Exception {

) .param(

GetMonitoredValuesUriExistReturnOk() Exception {

) .param(

ExecuteActionInvalidActionIdReturnBadRequest()

RequestParams requestParams = RequestParams.builder().

g lue(
build()

ObjectMapper obj = ObjectMapper()
String json = obj.writeVal sString(requestParams)

.perform(MockMvcRequestBuil
t(

ntentType(Me Type.

.content(json))

FIGURE 129: EXAMPLE OF API FUNCTIONAL TEST

130

780315 — SEMIoTICS — H2020-10T-2016-2017/H2020-10T-2017

Deliverable D5.8: lloT Infrastructure set-up and testing (Cycle 2)

Dissemination level: [public]

SEMitelics

GET v http://localhost:8050/monitoring/properties/thermostat/temperature

(9) Body Pre-re (Te sttings @
none form-data x-www-form-urlencoded @ raw binary GraphQL BETA JSON ~
1
Body Cook ors (3) Test Re Status: 200 0K Time:
Pretty o BETA Text v =
1 20.0
FIGURE 130:EXAMPLE OF GUI - THING SIMULATOR INTEGRATION
POST v http://localhost:8090/td/thingMonitoring/executeAction
Para Authorizatior Headers (10) Body ® Pre-request Script Test Settings @
none form-data x-www-form-urlencoded @ raw binary GraphQL BETA JSON
~ [f

1

2 "id": "1897,

3 “paramValue”: "1
4]

Body Cookies Headers (9) Test Results Status: 200 OK Time: 34ms

Pretty Raw Preview Visualize BETA Text v =

1 Sun blind motor speed is set to 1

FIGURE 131: EXAMPLE OF GUI - THING SIMULATOR INTEGRATION

131

780315 — SEMIoTICS — H2020-10T-2016-2017/H2020-10T-2017 ~F
Deliverable D5.8: lloT Infrastructure set-up and testing (Cycle 2) SEMl%%'lCS

Dissemination level: [public]

3.4.4.4 DATA VISUALIZATIONS USING FIWARE

Integration GUI component with FIWARE Knowage was created to visualize all data collected from devices
and sensors on extended dashboards. It allows the user to create an unlimited number of dashboards form a
wide selection of ready-made widgets. Data on dashboards are used from datasets created during gathering
data from sensors. Figures below (FIGURE 132, FIGURE 133) show two dashboards, first with random data

to show Knowage capabilities and second based on data from SEMIoTICS.

© Guirubapp x
<« c e 0 & 22229 A] smDEFe =

GuiHub

Products sale

0

-
=
Y

© GuiHubapp x
<« c e 0 & 2229 A o EFe =

GuiHub

Temperature e

T s PENING sToreD

Product analysis Customer analysia | _SEMISTICS analysis

< gran
racy Policy

SHbWING COLL éTED DATA FROM SENSORS

The user can create several dashboards, edit or delete them and list, as shown in the FIGURE 134.

132

780315 — SEMIoTICS — H2020-10T-2016-2017/H2020-10T-2017

Deliverable D5.8: lloT Infrastructure set-up and testing (Cycle 2) SEMl l CS
Dissemination level: [publlc] %

[mws.m 9.2

oron 280 s s v e o senisics WL

 rum «nuu;cmm of Use wmy Policy

FIGURE 134 LIST OF ALL DASHBOARDS

3.4.4.41 COMPONENT DIAGRAM

The architecture of integration with FIWARE (FIGURE 135) includes two components, GUI from the backend layer
and Knowage also from the backend layer which is one of the FIWARE Generic Enablers. The main aim of this
integration was to visualize all collected data on powerful and efficient Knowage dashboards. For this purpose,
Knowage was deployed to the Backend Orchestrator and then embedded in GUI as an HTML frame that was
detailed described in section 3.4.4. After installation, it was also necessary to configure Knowage to use data from
the GUI database. Knowage provides multiple APls to interact with them. List of APIs used by GUI component is
presented below:

e Lista all dashboards
Adds a new dashboard
Update the dashboard
Delete the dashboard
Add a dataset
Login
The first four abovementioned APIs are dedicated to supporting dashboards functionalities and allows them to
manage dashboard by the GUI component. ‘Add a dataset’ APl is used to create a dataset when the user starts
collecting data from a sensor or device. The Last APl enables to authorize the user in Knowage to get data according
to the permission it has.

133

780315 — SEMIoTICS — H2020-10T-2016-2017/H2020-10T-2017
Deliverable D5.8: lloT Infrastructure set-up and testing (Cycle 2)
Dissemination level: [public]

Backend

SEMitelics

Mindsphere Usecase Apps

Fiware

Knowage

openHAB

APPLICATION
ORCHESTRATION
LAYER

GUI

SDN Controller

SDN/NFV
ORCHESTRATION
LAYER

NFV

loT Gateway Field devices

FIELD
LAYER

FIGURE 135 COMPONENTS RELATED TO THE DATA VISUALIZATION USING KNOWAGE

3.4.4.42 TESTS

Users Cockpit feature in SEMIoTICS platform is provided by FIWARE General Enabler named KNOWAGE.
In order to integrate this component to GUI, its capabilities had to be tested. KNOWAGE API' has been

tested with creating HTTP request with Postman.

Table 20 Functional tests scenarios for Knowage

Documents API

#GET /documents

v should reject with 401 error when an authorization credential is invalid
v should return JSON format file with documents(Cockpits) list

#GET /documents/document label

v should reject with 401 error when an authorization credential is invalid
v should reject with 404 error when attempting to document data is not there
v should return JSON format file with cockpit details

#DELETE /documents/document_label

19 https://knowage.docs.apiary.io/#introduction/errors
134

780315 — SEMIoTICS — H2020-10T-2016-2017/H2020-10T-2017

~
Deliverable D5.8: lloT Infrastructure set-up and testing (Cycle 2) SEMl llCS
Dissemination level: [public] é%

v v should reject with 401 error when an authorization credential is invalid
v should reject with 404 error when attempting to document data is not there
v should delete a document by label

#UPDATE /documents/document_label
v should reject with 401 error when an authorization credential is invalid
v should reject with 404 error when attempting to document data is not there
v should update a document by label

Dataset API

#GET /datasets
v should reject with 401 error when an authorization credential is invalid
v should return JSON format file with datasets list

#GET /datasets/dataset_label
v should reject with 401 error when an authorization credential is invalid
v should reject with 404 error when attempting to document data is not there
v should return JSON format file with datasets details

#DELETE /datasets/dataset_label
vV should reject with 401 error when an authorization credential is invalid
v should reject with 404 error when attempting to document data is not there
v should delete a dataset by label

#UPDATE /datasets/dataset label
v should reject with 401 error when an authorization credential is invalid
v should reject with 404 error when attempting to document data is not there
v should update a dataset by label

3.5 Service Function Chaining

3.5.1 COMPONENT ARCHITECTURE

Figure 136 below depicts the SFC related components distributed among the layers of the SEMIoTICS
architecture. Pattern Orchestrator and one of the three Pattern Engines are located at the Application
Orchestration Layer, at the Backend. Also at the SDN/NFV orchestration layer, the NFV orchestrator, VNF
Manager and VIM are located.

As already described in D5.5 section 4.2, Pattern Orchestrator is responsible for automated configuration,
coordination, and management of different patterns and their deployment. Moreover, it is used for processing
a received requirement in order to translate it to Drools facts. The result of the said processing enables the
Pattern Orchestrator to choose which Pattern Engine should receive the corresponding Drools facts in order
to reason with them.

Pattern Engine at the application layer, includes the patterns in the form of Drools rules, responsible for
verifying and instantiating VNFs and SFCs. With the said rules the Pattern Engine is able to reason whether a
new VNF is needed to be instantiated in order to complete a specific SFC. Moreover if an SFC is not instantiated
at all, the rules allow the instantiation of the SFC after having gathered all the necessary VNFs. Due to the fact
that the Pattern Engine at the application layer, has a global view of the pattern facts across all layers, it makes
it appropriate for providing up to date information on a graphical interface designed specifically for SFC
management in a higher level. This interface is called SFC GUI and extracts all the information depicted directly
from the Pattern Engine.

135

780315 — SEMIoTICS — H2020-10T-2016-2017/H2020-10T-2017

~
Deliverable D5.8: lloT Infrastructure set-up and testing (Cycle 2) SEMl llCS
Dissemination level: [public] %%

Backend Mindsphere Usecase Apps
5
=z X
8 ':t o Fiware
SEY
=0 Pattern
t_L' % 5 Orchestrator Ueseateo o
& 8 openHAB
o Pattern
Engine
SDN Controller NFV
=2 NFV
o) Orchestrator
=
g
2 F_: w VNF
SnZX Manager
=2 w <
3%
&:’ VIM
o
loT Gateway Field devices
Usecase 2

FIELD
LAYER

Figure 136 SFC Related Components in SEMIoTICS Architecture

The NVF related components are already described in section 3.2

3.5.2 APIS

Two dedicated REST APIs (and Figure 138) have been developed at the Backend Pattern Engine to facilitate
and automate operations of the SFC. The first endpoint (Figure 137), is used by the SFC GUI in order to create
and sent to the Pattern Engine a new Pattern Requirement which represents a service function chain.

136

780315 — SEMIoTICS — H2020-10T-2016-2017/H2020-10T-2017

R
Deliverable D5.8: lloT Infrastructure set-up and testing (Cycle 2) SEMl llCS
Dissemination level: [public] %%
laddSFCReq2 addSFCReqg2

Response Class (Status 200)
string

Response Content Type | application/json v |

Parameters
Parameter Value Description ?\%aemeter ‘Er)ya;;i-
factstring { factString body string
"sfcReqID":0,
"src":"Doctor”,
AREAS"
:[
{"name":"firewall","type":"firewall", "instantiated":"false"},
{"name":"dpi","type":"dpi","instantiated":"false"}
’
"satisfied":"false"
}
Parameter content type: | application/json v
Response Messages
HTTP Status Code Reason Response Model Headers
201 Created
401 Unauthorized
403 Forbidden
404 Not Found
‘nynom!‘
Curl

curl -X POST --header 'Content-Type: application/json’ --header 'Accept: application/json' -d '{"sfcReqID":@,"src":"Doc

q

Request URL

https://139.91.68.107:9443/addSFCReq2

Request Headers
"Accept": "application/json"
Response Body

no content

Response Code

200

Figure 137 PATTERN ENGINE REST FOR SUBMIT BUTTON OF SFC GUI

The second endpoint (Figure 138), is used by the SFC GUI to enable the visualization of the information
gathered from the Pattern Engine.

137

780315 — SEMIoTICS — H2020-10T-2016-2017/H2020-10T-2017

~
Deliverable D5.8: lloT Infrastructure set-up and testing (Cycle 2) SEMl llCS
Dissemination level: [public] %%
IsfcGUI SfeGUI

Curl

curl -X GET --header 'Accept: application/json’ 'https://139.91.182.125:9443/sfcGUI"

Request URL

https://139.91.182.125:9443/sfcGUI

Request Headers

"Accept™: "application/json"
Response Body

{
"requirementList": [],
"NodeList": [],
"functionDescriptionList™: [],
“chainList": [],

"functionInstancesList™: []

FIGURE 138 PATTERN ENGINE REST FOR SFC GUI

3.5.3 TESTING METHODOLOGY

In order to test the functionalities of all the SFC related components of SEMIoTICS, as they are described
above, we use the Proxmox Virtual environment to create Virtual Machines (VMs) hosted in an INTEL NUC
(Figure 139) with 32GB RAM, 500GB storage and a CPU i7-6770HQ 2.60GHz with 8 cores. Additionally a VPN
connection is established with CCTC’s premises in order to have access to the NFV related components.

The created VMs have some hardware and software requirements, which are shown in the table below.

Table 21
Component Software CPU Memory Disk
Pattern Orchestrator Ubuntu 18.04 LTS 4 cores 4 GB 10 GB
Backend Pattern Ubuntu 18.04 LTS 4 cores 4 GB 10 GB
Engine
SFC GUI Ubuntu 18.04 LTS 4 cores 2GB 20 GB

138

780315 — SEMIoTICS — H2020-10T-2016-2017/H2020-10T-2017

~
Deliverable D5.8: lloT Infrastructure set-up and testing (Cycle 2) SEMl llCS
Dissemination level: [public] %%

Figure 139 Intel NUC

The approach followed by this work, is the dynamic instantiation of SFCs based on the predefined SFC
patterns. When there is a request for an SFC instantiation containing service functions, the depicted in Figure
140 procedure should be followed. If the SFC does not exist, the instantiation of the respective SFC is deployed
through the identification of the requested VNFs. If the VNFs exist in the service nodes, the SFC is updated
including these VNFs. If the VNFs do not exist, the service node with the available resources is requested to
instantiate the respective VNFs. The procedure is ended when all the requested VNFs are included in the SFC.

. Chain Instantiation Pattern
Chain Verification Pattern
Function Verifigation
o P
attern " ,
SFC Request |—><_SFC Exists > » Instantiate SFC | » RequestVNF |} _ g:;‘ &
— S
yes o 5
._ ~Undefined™~_
& ~_ VNF _
Instantiate VNF H—>{ Update SFC b
Y“, . no e
7 Has N Retract Service Node
~Resources o from List
Request VNF { |
trom Bervica Node Find Service Node
Function Instantiation Pattern

FIGURE 140 VNF INSTANTIATION BASED ON SFC REQUEST

3.5.4 PERFORMANCE TESTING & KPI VALIDATION

139

780315 — SEMIoTICS — H2020-10T-2016-2017/H2020-10T-2017
Deliverable D5.8: lloT Infrastructure set-up and testing (Cycle 2)
Dissemination level: [public]

SEMitelics

All information for the testing is depicted in SFC GUI (Figure 141) which visualizes the data from Backend
Pattern Engine with a simple http-GET request (Figure 138). Backend Pattern Engine gathers information from:

— Thing Directory (Nodes)

— OSM (Function Descriptors and Function Instances)
— SFC Requests (Chains)

— Pattern Requirement (user input)

The user requests for specific NFVs to be applied in a flow of a specific source and destination. The NFVs
that the user can choose from, is dynamically populated with information provided by the OSM. Initially we
choose as source the Doctor, destination the AREAS, a NFV of a firewall and an NFV of a dpi. Upon
clicking on the submit button a new Pattern Requirement is created that is sent directly to the Pattern
Engine and is consumed by the addSFCReq endpoint. After the new requirement has been consumed by
the Pattern Engine, the pattern rules are fired causing the verification and instantiation of VNFs and SFCs

(FIGURE 142)
SEMiglics Home FORTH

Topology Pattern Requirements
@ Edit D Source-Dest Chain Satisfied
1 Doctor-AREAS firewall dpi dpi firewall True
2 Doctor-Patient_Mobile firewall load-balancer firewall load-balancer True
Choose a source: Choose a destination: Choose functions: ‘ Submit]
[Doctor v [Doctor v| Cffirewall
& jLuodor ¥
o ot Cldpi
Clids
[Cload-balancer
&
Nodes Function Descriptors
Node Name Type
1 i
2yfeete o Doctor firewall
encna oy AREAS dpi
) AI-SERVICES ids
[—
Patient-Mobile load-balancer
Robot
otherhost
@O®@ ©® Chains Function Instances
Chain Name Service Functions Name Type P
Chainl ’ T] dpi-1-dpi-VM-1 dpi 172.113.40.178
firewall-1-firewall- firewall 172.113.40.141
Chain2 ‘ Sh VM-1
load-balancer-1-load- load- 172.113.40.101
balancer-vM-1 balancer

FIGURE 141 SFC GUI

140

ids-1-ids-VM-1 ids 172.113.40.164

780315 — SEMIoTICS — H2020-10T-2016-2017/H2020-10T-2017 ~d
Deliverable D5.8: lloT Infrastructure set-up and testing (Cycle 2) SEMl llCS
Dissemination level: [public] %%

vagrant@BackEndPE: ~/pattern-module

File Edit View Search Terminal Help
resource:1.0.0-SNAPSHOT
Verification of Function: dpi
Verification of Function: firewall
Instantiation of Chain

Verification of Chain
4 rules fired
Fact count is 30

FIGURE 142 PATTERN ENGINE FIRING SFC RELATED RULES

The requirement is immediately satisfied due to the pattern rules, and that is depicted in the SFC GUI. Similarly
we choose as source the Doctor, destination the Patient_Mobile, an NFV of a firewall and an NFV of a load
balancer.

The described implementation above contributes to the fulfillment of R.GP.3, R.GP.4 R.UC2.3 of project
requirements as well as KPI-1.1, KPI-1.2, KPI-2.1, KPI-3.1, KPI-6.1, KPI-5.2.

4 USE-CASE SPECIFIC DEMONSTRATORS

The following demonstrators, that showcase use-case specific functionalities, were presented as part of the
Mid-Term Review.

4.1 Use Case 1 demonstrator

A demonstration scenario that relies on the SEMIoTICS pattern-driven network interface and its capabilities
was designed and developed around Use Case 1, i.e. industrial loT environments, and more specifically oil
leakage detection in wind turbines through video monitoring. This was also demonstrated during the Mid-
Term Review. The overarching aim of the scenario is to distribute a complex application (composed of multiple
tasks) to a network of loT/Edge device and specify constraints (through patterns) on the network /
orchestration. In this context, the developed scenario also leverages user-friendly design and deployment of
loT orchestrations through a custom-built, distributed version of Node-RED?°. The two key research innovation
of the scenario and associated demonstration relate to: 1) True distribution of application flows over multiple
devices and representing the network perspective in Node-RED, and; 2) Automated enforcement of network
/ orchestration constraints by defining them as SEMIoTICS patterns.

In terms of the actual setup, it involves transmission of video between two Raspberry Pi credit-card sized
embedded devices (from “piA” to “piB”), coordinated by Node-RED running on a Nanobox (industrial PC),
while monitoring of QoS constraints with patterns. This setup is depicted in FIGURE 143.

20 hitps://nodered.org/

141

780315 — SEMIoTICS — H2020-10T-2016-2017/H2020-10T-2017

~
Deliverable D5.8: 1loT Infrastructure set-up and testing (Cycle 2) SEMl llCS
Dissemination level: [public] %%

SIMATIC Nanobox

Network Links

PiB

—=
_
=
I

Video Stream

FIGURE 143: PATTERN-ENABLED IOT ORCHESTRATIONS LEVERAGING THE PATTERN-DRIVEN
NETWORK INTERFACE

In the above, other than the user-friendly, graphical interface and distributed nature of defining the loT
orchestrations involved (including where / on which devices parts of a flow are deployed), we also want to
define SPDI and QOS between these deployments (see FIGURE 144 and FIGURE 145).

[Bandwidth >= 128 kB/s

o —

FIGURE 144. GRAPHICAL IOT ORCHESTRATION DEFINITION

142

780315 — SEMIoTICS — H2020-10T-2016-2017/H2020-10T-2017
Deliverable D5.8: lloT Infrastructure set-up and testing (Cycle 2)
Dissemination level: [public]

SEMitelics

& NodeRrED

€ (¢

-

@® localhost

— o Define on which
= e device (piA or piB)
— 7] Displayimage a node is executed.
= Node represents
= the communication
7] owversims link between.

- output

Network can be
configured here.

FIGURE 145: THE CUSTOMISED NODE-RED GUI AND SCENARIO ORCHESTRATION DEFINITION

Focusing on the network aspects, while maintaining the high-level abstractions needed for user-friendliness,
a “Network Link” node enables direct communication between distributed Node-RED instances. Said “Network
Link” node enables definition of QoS constraints (e.g., minimum bandwidth, latency) and the whole
orchestration specification (a “Recipe”) and the QoS constraints are translated into the SEMIoTICS pattern
language and sent to Pattern Orchestrator. From the latter, the information is relayed to the network (SDN)
Pattern Engine. A high-level view of this process is shown in FIGURE 146.

Thing Directory
IW T P Nod:

Backend Layer Insert Recipe (in pattern grammar)

Pattern Orchestrator

-RED

Add fact (for every|component)
SN Layer A SDN Switch _
Pattern Engine
. Configure switch
Define workflow SDN Controller
... 7 O . R e T
Field Layer xecute workflow

(send video)

FIGURE 146: HIGH LEVEL VIEW OF SCENARIO IMPLEMENTATION SEQUENCE AND INVOLVED
COMPONENTS

143

780315 — SEMIoTICS — H2020-10T-2016-2017/H2020-10T-2017

~
Deliverable D5.8: lloT Infrastructure set-up and testing (Cycle 2) SEMl llCS
Dissemination level: [public] %%

4.2 Use Case 2 demonstrator

E-health monitoring systems situated at homes can facilitate the monitoring of patients’ activities and enable
the remote provision of healthcare services. They improve the quality of elder population well-being in a non-
obtrusive way, allowing greater independence, maintaining good health, preventing social isolation for
individuals and delay their placement in institutions such as nursing homes and hospitals. In this context, the
second use case of SEMIoTICS focuses on an ambient assisted living scenario, whereby a smart home
environment.

Part of the SEMIoTICS testbed was demonstrated during the Mid-Term review. The main focus of this demo
was to provide an extension of the current SARA use case where the SEMIoTICS framework can be applied
in order to support the following service function chaining to guarantee security and dependability based on
the defined Security, Privacy, Dependability and Interoperability (SPDI) patterns instantiating the required i)
Virtual Network Functions (VNFs) and ii) SFC for assuring the SPDI requirements. Traffic classification is
based on the predefined SFC for providing secure chains to forward the different kind of traffic of this use case.
The procedure of instantiation and the identification of the respective SFCs and the VNFs based on the patterns
is depicted in the Figure below:

Forward Request Verify/Instantiate

to Pattern Engine Requested SFC Insert SFC
Insert SFC
Requirement
Get Network Insert Elow
Topology Rules

t /\
Load

} Loa
alancer

DPI
FW .

FIGURE 147 INSTANTIATION OF VNFS AND SFC
This demo demonstrated the use case in the following steps:

Present the legacy use case as the starting point.

Attach this use case to the SEMIoTICS architecture.

Install intermediate switches to forward traffic.

Identify and/or instantiate VNFs (virtually or physically) attached to the respective switches through

the Pattern Engine in the Backend.

) Instantiate SFCs based on the respective VNFs through the Pattern Engine in the SDN Controller

) Active demonstration of the proactive control flow instantiation and data traffic classification in the
developed network emulator.

The setup of the testbed was based in the Proxmox where the different VMs hold the different service

functions. (firewall, ids, dpi, load balancer), the virtual switches (Classifier1, Classifier2, SFF1, SFF2,

SFF3) and the SDN controller as can be seen in Figure 148.

BAON -
—_————

(©2N¢)]

144

780315 — SEMIoTICS — H2020-10T-2016-2017/H2020-10T-2017

~
Deliverable D5.8: lloT Infrastructure set-up and testing (Cycle 2) SEMl llCS
Dissemination level: [public] %%

X PROXMOX vital Envronment 604 PR o vt | © cinsecr | & oo
F | Datacenter © Help
= a seacn Search
& summary
I Chimar qemu 100 (Ubuntu-14.04)
¢ ®can qomu 101 Uounts14.041068)
¢ © Options qemu 102 (function) o
C 8 swonge S qemu n3% 11%of4C... 040118
€ & Bacan G qemu n2% 11%0f4C.. 040114
A S aom so% osotéc.. 080110
DA S qemu n3% 10%of4C... 040106
S qemu 1n3% L1%0t4C... 040102
¢ Gows o
C ' Pools qemu R
C % Roes S qemu 44% 10%0f4C.. 040054
q o e | S v a1% Lo%oldc.. 040050
Jom G qemu a0% L0%ol4C.. 040046
d v S} qemu 81% 10%0f4C... 04:00:42
C (= 80% 1.0%of 4C...__04:00:38
el b gemy 116 (SONmanm0 4% Zo%aizc | 040038
S qemu 117 (BackEndPE) 32% 40%011C... 04:0030
G} qemu 118 (PattemOrchestrator) 44% L0%ot4C... 040026
[= 119 (FieldPE) 32% 2.0% of 2C. 04:00:22
S qemu 120 (sm) 68% 21%012C.. 040018

FIGURE 148 SFC TESTBED IN THE MIDTERM REVIEW

Under this test-bed, the SFC deployment of the SEMIoTICS framework in the use case 2 was presented
(Figure 149).

©) ear H
. Pattern Requirements Forwarders
b= 3 Show| 10 5 entries Search:
10-Call Center (F) S (E) Show| 10 3 entries Search: _— Lo
Name * Source Dest Chain Satisfied Select Pattern
B-A Services (G) Classifier1 192.168.10.50
SFC1 Patient Doctor Firewall True m fire
Classifier2 192.168.10.60
Showing 110 1 of 1 entries Previous | 1 | Next SFF1 192.168.10.70
=) DPI . SFF2 192.168.10.80
200p1 Chains ‘
B - SFF3 192.168.10.90
Wl Show| 10 % entries Search:
/Aa-Switch Showing 110 5 of 5 entries Previous | 1 | Next
‘ A" Chain Name * Service Functions
i T
- : 17-Firewall
18-Load Balancer 16:Sntoh SFC1 F i
12-glassifier S — unctions
Showing 110 1 of 1 entries. Previous 1 Next Show 10 % entries Search:
3-Accegs Point (Name 4 Type P
obile (D) / 5 dpi-1 dpl 192.168.10.20
7
s firewall-1 firewall 192.168.10.10
5-Home Gateway (1)
1-Patient 4-Robot (H) ids-1 ids 192.168.10.30
® . =\ loadbalancer-1 qos 192.168.10.40
U <
= Showing 110 4 of 4 entries Previous | 1 | Next
@0 E S @ 9
@®E¢ & Smahome eO®

FIGURE 149 SERVICE FUNCTION CHAINING IN USE CASE 2 TOPOLOGY

This use case also leverages CTTC’s NFV testbed to host the VNFs that process the traffic stemming from the
SARA’s IoT GW. Moreover, the NFV testbed interacts with the SEMIoTICS pattern orchestrator as well, which
indicates how the incoming traffic is processed by the SFCs according to the inferred patterns. To allow the
external interaction with the NFV tested, and the use of its services, a VPN has been deployed, as detailed in
Section 3.2.3.3. Also, a REST northbound interface (NBI) is enabled by the NFV testbed, which allows the
pattern orchestrator to manage the NFV Orchestrator, i.e. onboarding and lifecycle control of VNF and NS.
The integration tests to validate de VPN connection and the REST NBI are provided above in sections 2.2.3
and 3.2.3.3.

Also, it is worth mentioning that the NFV blocks are implemented in CTTC’s NFV testbed by using the next
software:

145

780315 — SEMIoTICS — H2020-10T-2016-2017/H2020-10T-2017

~
Deliverable D5.8: 1loT Infrastructure set-up and testing (Cycle 2) SEMl llCS
Dissemination level: [public] %%

e OSM (Open Source MANO) 2. It implements the NFVO along with the VNFM blocks.
e OpenStack?2. The OpenStack controller implements the VIM, the OpenStack compute node
implement the NFVI.

The NFV testbed has the topology described in FIGURE 150. The NFV MANO consists of two functional blocks.
On the one hand, the OSM implements the NFVO and VNFM. On the other hand, the NFV MANO contains
another sub block, the OpenStack controller node, which implements the VIM. The NFVI is composed of one
functional block, an OpenStack compute node that exposes its virtualized resources to instantiate the VNFs.
A switch is leveraged for the communications between all the functional blocks mentioned above.

NFVI NFY MANO

FIGURE 150Topology of the CTTC’s NFV testbed.

The OSM and OpenStack are implemented as VM within the CTTC servers.

4.3 Use Case 3 demonstrator

In UC3 scenario we will provide a mapping of the SEMIoOTICS architecture towards an “edge computing”
approach by tailoring specific scenarios in order to demonstrate its feasibility and integrate the capabilities of
the Generic loT System within SEMIoTICS technology stack. The specific UC3 SEMIoTICS infrastructure
adopted in order to bring “Edge computing” approach into reality and the actual mapping of the SEMIoTICS
components vs the HW platform testbed developed in task 5.6 is presented in Figure 151. The system
presented is an intelligent scalable architecture integrated in SEMIoTICS ecosystem, for the detection and
validation of critical events that does not require any prior information the environment to be monitored (IHES,
Intelligent Heterogeneous Embedded Sensors). This system is composed of several capable intelligent nodes
(IHES Sensing Units) that obtain environmental data, analyze them and detect anomalies through the use of
both neural, statistical and autoregressive models (see final deliverable D4.10 for a complete overview of the
algorithms deployed as part of Embedded Analytics Component in SEMIoTICS). These smart nodes are
connected to a supervisor (IHES Supervisor) deployed at loT Gateway level, whose purpose is to coordinate
the connected nodes. In more detail, each IHES sensing unit is composed by an STM32 CortexM4 80Mhz
MCU, an on-board X-NUCLEO-IDW01M1 Wi-Fi adapter and an X-NUCLEO IKS01A2 environmental + inertial
sensors expansion board, all stacked together on a single miniaturized PCB board named “CLOUD-JAM”.
Each MCU is programmed with a dedicated FW stack implementing the UC3 designed analytics algorithms

21 https://osm.etsi.org
22 pttps://www.openstack.org

146

780315 — SEMIoTICS — H2020-10T-2016-2017/H2020-10T-2017

~
Deliverable D5.8: lloT Infrastructure set-up and testing (Cycle 2) SEMl llCS
Dissemination level: [public] %%

discussed in D4.3 and D4.10 together with the communication stack (Wi-Fi + MQTT client) based on legacy
STM32 SW middleware.

= Backend OpenHab Usecase 3
= g ~App
o Thi Vibrations
=< ing Pattern St S B g — !

E E % Directory || Orchestrator Monitoring Visualization Alerting
g ﬁ E Environmental
oaT Backend Pattern Trends
a0 Semantic Engine GUI Warning
< nO: Validator 9
NFV
Orchestrator
14
> lsl_l VNF
"i S Manager
VIM
loT Gateway
Local Thing Pattern
Directory Engine
S ﬁ Raspberry PI3 /
Wz ;
W Semantic Edge Supervisor
] Platform and Local DB

/ Field Devices

IHES Sensing Unit

Local Embedded
Intelligence

IHES IHES
Sensing Unit Sensing Unit

Figure 151. UC3 System vs Components Mapping

The UC3 demonstrator will leverage on this specific technology and is currently under integration within the
SEMIoTICS architecture as part of T5.6 activities by following an incremental approach from bottom to top,
with associated self-contained storylines and sub-use cases to showcase the incremental functionalities
available, as presented in D5.6. Sub use case 1 is devoted to show specific local analytics deployed at device
level to enable smart autonomous learning devices following the “Edge Computing” approach. Sub use case
2 will be focused on how to bring the results of the data analytics on the upper level of the infrastructure, and
the scalable infrastructure needed for it in order to scale / open-up/scale to backend services. Finally sub use

147

780315 — SEMIoTICS — H2020-10T-2016-2017/H2020-10T-2017

~
Deliverable D5.8: lloT Infrastructure set-up and testing (Cycle 2) SEMl llCS
Dissemination level: [public] %%

case 3 will deploy end-to-end specific UC3 SPDI patterns exploiting SEMIoTICS ecosystem, to allow a full
integration into SEMIoOTICS architecture. Currently milestone related to the Sub use case 1 (deployment of
Local Embedded Analytics in SEMIoTICS at field device level) has been successfully achieved, and now all
the efforts are related to a scale-up of the UC3 infrastructure mapping at Gateway Lavel, and finally on last
cycle activities to the cloud level with the interaction of the demo with the loT platform for the visualization
and relevant UC3 patterns mapping.

Please refer to D5.6 for any detailed evidence of the work done so far on UC3 and the current status of the
demonstrator.

5 VALIDATION

This section describes the validation features of SEMIoTICS that are related with the implementation of the
components and the rest topics that are presented in this document.

5.1 Related Project Objectives and Key Performance Indicators (KPlIs)

The following table presents the task objectives and appropriate sections addressing those while Table
presents the KPIs and objectives that are relevant for Task 5.3.
TABLE 22: TASK 5.3 OBJECTIVES

T5.3 Objectives D5.8 Sections

e Implementation of an overarching SEMIoTICS testbed that integrates 0
technologies and components implemented during Cycle 2

e Provide the SEMIoTICS SDN controller architecture along with the testing 3.1
methodology and the KPI validation and evaluation for Cycle 2. '

e Provide the SEMIoTICS NFV architecture along with the testing methodology and 32
the KPI validation and evaluation for Cycle 2. '

e Present the SEMIOTICS advances at the field and gateway layer including
semantic bootstrapping, interfacing and interoperability. Showcase the 33
components architecture, provide the testing methodology, and evaluate the '
performance through KPI validation.

e Ensure security and safety along all other components through a backend
security manager and a pattern orchestrator. Evaluate the performance and | 3.4.1, 3.4.2
validate the KPIs.

The KPIs and their respective SEMIoTICS objectives that are related to T5.3 are described in the following
TABLE 23.

TABLE 23: KPIS AND OBJECTIVES

Objective KPI-ID Description Related task
Semantic descriptions
2 Semantic Interoperability KPI-2.1 for 6 types of smart T3.3
objects

Semantic
2 Semantic Interoperability KPI-2.3 interoperability with 3 T3.4,T4.4
loT platforms

148

780315 — SEMIoTICS — H2020-10T-2016-2017/H2020-10T-2017
Deliverable D5.8: lloT Infrastructure set-up and testing (Cycle 2)

Dissemination level: [public]

SEMitelics

Generating monitoring
3 Monitoring Mechanisms KPI-3.1.1 strategies in the 3 T4.1, T4.2
targeted loT platforms
. Development of new
4 | Multi-layered Embedded KPI-4.6 | security T4.5
Intelligence .
mechanisms/controls
Deployment of a multi-
5 | loT-aware Programmable KPI-5.1 | domain SDN T3.1
Networks
orchestrator
loT-aware Programmable Service Function
5 9 KPI-5.2 Chaining (SFC) of a T3.2, T4.1
Networks L
minimum 3 VNFs
6 Development of a Reference KPI-6.3 Delivery of 3 prototypes T3.5, T4.6, T5.2,
Prototype of lloT/loT applications T5.3

5.2 SEMIoTICS implementation requirements

The relevant SEMIoTICS requirements that are covered by the presented implementation of SEMIoTICS
components are summarized in the next table. The full scope of requirements mapping is available in D2.5.

TABLE 24: REQUIREMENTS 'STATUS

Requirements
(D5.8)

Description

Related task

Status

R.GP.1

End-to-end connectivity between the

heterogeneous loT devices (at the field level)
and the heterogeneous loT Platforms (at the
backend cloud level)

T5.4-6

Delivered

R.GP.3

Scalable infrastructure due to the fast-paced
growth of loT devices

T5.4-5

Delivered

R.GP.4

Detection of events requiring a QoS change
and triggering network reconfiguration need
by SPDI pattern

T5.4-5

Delivered

R.GP.5

Interaction between SDN controller and loT
backend cloud through a dedicated interface
(called northbound software interface)

T5.4

Delivered

R.GP.6

Interaction between SDN controller and
network nodes (e.g. switches, routers or loT
Gateways) through dedicated interface (called
southbound software interface)

T5.4

Delivered

R.FD.1
(sensors).

Field devices SHOULD be able to get data
from the environment through sensors

T5.6

Delivered

R.FD.2

Field devices SHOULD be able to process
data in near real time (process units).

T5.6

Delivered

R.FD.3

Field devices SHOULD be able to control (at
least) a mechanism / system (actuators).

T5.4

Delivered

R.FD.4

Field devices SHOULD use a global clock for
time synchronization.

T5.6

Delivered

R.FD.5

Field devices SHOULD be able to interact
with SEMIoTICS lloT/loT gateway dedicated
components

T5.4-6

Delivered

149

780315 — SEMIoTICS — H2020-10T-2016-2017/H2020-10T-2017

~
Deliverable D5.8: lloT Infrastructure set-up and testing (Cycle 2) SEMl llCS
Dissemination level: [public] é%

Field devices MUST interoperate using a
R.FD.6 standard communication protocol like Rest T5.4-6 Delivered
APls, COAP, MQTT.

Field devices MUST use standardize
R.FD.7 interoperable message format (e.g. JSON, T5.4-6 Delivered
etc.).

Field devices MUST support secure

R.FD.8 bootstrapping / registration protocol.

T5.5 Delivered

Field devices MUST be able to communicate
R.FD.9 with the lloT Gateway / other architectural T5.5 Delivered
components.

R.FD.10 Field devices SHOULD minimize data traffic. T5.5-6 Delivered

RED.11 Field dewpes SHOULD minimize energy T5.5-6 Delivered
consumption.

Greenfield device is expected to expose its
capability over a W3C Thing Description,
which semantically describes field resources,
and to be computationally powerful enough to
run a node-wot servient (that exposes the
TD).

R.FD.12 T5.5 Delivered

Brownfield device is assumed to consist of a
sensor/actuator and a controller (PLC). The
controller is expected to expose capability of
its sensor/actuator over a native brownfield
protocol (without the need for lloT Gateway to
interact directly with them).

R.FD.13 T5.5 Delivered

The field layer must feature SPDI pattern
R.FD.14 reasoning local embedded intelligence T5.5-6 Delivered
capabilities

The confidentiality of all network
R.S.1 communication MUST be protected using T5.5 Delivered
state-of-the-art mechanisms.

Authentication and authorization of the
stakeholders MUST be enforced by the
Network controller, e.g. through access and
role-based lists for different levels of function
granularities (overlay, customized access to
service, QoS manipulation, etc.)

R.S.2 T5.5 Delivered

Sensors SHALL be identifiable (e.g. by a TPM
R.S.3 module/smartcard) and authenticated by the T5.5 Delivered
gateway.

All components from gateway, via SDN
R.S.4 Controller, to cloud platforms and their users T5.5 Delivered
MUST authenticate mutually.

Before sensitive data is being transmitted, the
respective components SHALL be
authenticated as defined by requirements R.S.3
and R.S.4

R.S.5 T5.5 Delivered

Sensors SHALL be able to encrypt the data
they generate, i.e. their CPU and memory
SHALL be sufficient to perform these
cryptographic operations.

R.S.6 T5.5 Delivered

Cloud platforms MUST be protected by a

R.S.20 firewall against network-based attacks.

T5.5 Delivered

150

780315 — SEMIoTICS — H2020-10T-2016-2017/H2020-10T-2017
Deliverable D5.8: lloT Infrastructure set-up and testing (Cycle 2)
Dissemination level: [public]

SEMitelics

R.P.1

The collection of raw data MUST be
minimized.

T5.5-6

Delivered

R.P.2

The data volume that is collected or
requested by an loT application MUST be
minimized (e.g. minimize sampling rate,
amount of data, recording duration, different
parameters).

T5.5-6

Delivered

R.P.3

Storage of data MUST be minimized.

T5.5-6

Ongoing

R.P.4

A short data retention period MUST be
enforced and maintaining data for longer than
necessary avoided.

T5.5-6

Ongoing

R.P.5

As much data as possible MUST be
processed at the edge in order to hide data
sources and not reveal user related
information to adversaries (e.g. user’s
location).

T5.5-6

Ongoing

R.P.6

Data MUST be anonymized wherever
possible by removing the personally
identifiable information in order to decrease
the risk of unintended disclosure.

T5.5-6

Delivered

R.P.7

Data granularity MUST be reduced wherever
possible, e.g. disseminate a location-related
information (i.e. area) and not the exact
address.

T5.5

In progress

R.P.8

Data MUST be stored in encrypted form.

T5.5

Delivered

R.P.9

Repeated querying for specific data by
applications, services, or users that are not
intended to act in this manner SHALL be
blocked.

T5.5

Delivered

R.P.10

Wherever possible, information over groups
of attributes or groups of individuals SHALL
be aggregated (e.g. ‘the majority of people
that visited the examined area in this time
interval were young students’ this is sufficient
information for an advertising application of a
nearby shop, without requiring to process raw
data from the personal loT devices).

T5.5

Delivered

R.P.11

The data principal SHALL be sufficiently
informed regarding which data are collected,
processed, and disseminated, and for what
purposes

T5.5

Delivered

R.P.12

During all communication and processing
phases logging MUST be performed to enable
the examination that the system is operating
as promised

T5.4

Delivered

R.P.13

The user SHALL be able to control the
privacy mechanisms (i.e. redemption period,
data granularity and dissemination, and
anonymization technique)

T5.4

Delivered

151

780315 — SEMIoTICS — H2020-10T-2016-2017/H2020-10T-2017

~
Deliverable D5.8: lloT Infrastructure set-up and testing (Cycle 2) SEMl llCS
Dissemination level: [public] %%

6 CONCLUSIONS

This deliverable provides the status at the end of Cycle 2 of the infrastructure setup and testing of the
SEMIOTICS solution. In the beginning, we discussed about the overarching testbed that includes various
components, being composed of a Backend layer, an SDN/NFV Orchestration layer, and a Field layer, as well
as a VPN solution for integrating external components. Then, we provided the architecture of each component
by giving focus on the main advancements occurred during the implementation and providing specific details
for the characteristics that will be leveraged by each of the three use cases. Moreover, in order to provide an
accurate and detailed performance evaluation for each component, we demonstrated the testing methodology
and, then, we presented the results of the tests along with the KPI validation for each component, where
applicable. The components were validated at the SEMIoTICS testbed environment, leveraging a VPN solution
to interconnect partners’ facilities. This setup will support the SEMIoTICS use cases.

1562

