
 
                     780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017   

   

 
 
 
 
 

SEMIoTICS 
 
 

Deliverable D5.9: 
Demonstration and Validation of  

IWPC - Energy Use Case (Cycle 2) 
 
 
 

Deliverable release date 29.12.2020 

Authors 1. Darko Anicic, Arne Bröring, Ermin Sakic (SAG) 
2. Ulrich Hansen (BWC) 
3. Manolis Michalodimitrakis, Konstantinos Georgopoulos, Georgios 

Tsirantontakis (FORTH) 
4. Kostas Ramantas (IQU) 

Responsible person Ermin Sakic (SAG) 

Reviewed by Ermin Sakic, Vivek Kulkarni (SAG), Nikolaos Petroulakis (FORTH), 
Konstantinos Fysarakis (STS), Mirko Falchetto (ST-I) 

Approved by PTC Members (Vivek Kulkarni, Nikolaos Petroulakis, Ermin Sakic, 
Mirko Falchetto, Domenico Presenza, Christos Verikoukis) 
PCC Members (Vivek Kulkarni, Nikolaos Petroulakis, Christos 
Verikoukis, Georgios Spanoudakis, Domenico Presenza, Danilo Pau, 
Joachim Posegga, Darek Dober, Kostas Ramantas, Ulrich Hansen) 

Status of the Document Final 

Version 1.0 

Dissemination level Public 

 
  

Ref. Ares(2020)7994133 - 29/12/2020



780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017 
Deliverable D5.9 Demonstration and validation of IWPC - Energy (Cycle 2)  
Dissemination level: Public  

 

 
 

2 

Table of Contents 

1 Introduction ................................................................................................................................. 5 
1.1 Overview ............................................................................................................................. 5 
1.2 D5.9 Content updates compared to D5.4 ............................................................................... 6 

2 Use Case Description................................................................................................................... 7 
2.1 Overview of the Use Case .................................................................................................... 7 
2.2 Main Objectives of Use Case 1 ........................................................................................... 11 
2.3 UC1 Sub Use Cases .......................................................................................................... 12 

3 Realization of The SDN-Based Connectivity ................................................................................ 14 
3.1 SDN Bootstrapping ............................................................................................................. 16 
3.2 Flow Establishment ............................................................................................................ 17 

4 Sub Use Case 1: Audio Processing Demo – Detection of Loose Objects ....................................... 20 
4.1 Scope and Objectives ......................................................................................................... 20 
4.2 Interaction with SEMIoTICS Framework and Components .................................................... 21 
4.3 Setup Testbed and Integration ............................................................................................ 24 

5 Sub Use Case 2: Video Processing demo – Oil/Grease leakage detection ..................................... 25 
5.1 Scope and Objectives ......................................................................................................... 25 
5.2 Interaction with SEMIoTICS Framework and Components .................................................... 26 
5.3 Setup Testbed and Integration ............................................................................................ 27 

6 Sub Use Case 3: Inclination measurement of tower ..................................................................... 29 
6.1 Scope and Objectives ......................................................................................................... 29 
6.2 Interaction with SEMIoTICS Framework and Components .................................................... 31 
6.3 Setup Testbed and Integration ............................................................................................ 33 

7 Sub Use Case 4: Field Devices Availability monitoring ................................................................. 38 
7.1 Scope and Objectives ......................................................................................................... 38 
7.2 Interaction with SEMIoTICS Framework and Components .................................................... 39 
7.3 Setup Testbed and Integration ............................................................................................ 41 
7.4 Validation .......................................................................................................................... 42 

8 Overall KPIs and Requirements Validation .................................................................................. 50 
8.1 KPI-1.1: Number of SPDI Patterns ...................................................................................... 55 
8.2 KPI-2.1 Semantic descriptions for 6 types of smart objects ................................................... 57 
8.3 KPI-2.2: Data type mapping and ontology alignment ............................................................. 58 
8.4 KPI-2.3: Semantic interoperability with 3 IoT platforms ......................................................... 61 
8.5 KPI-3.1.1: Generating monitoring strategies ......................................................................... 62 
8.6 KPI-3.1.3: Performing predictive monitoring with an average accuracy of 80% ....................... 66 
8.7 KPI-4.1: Delivery of lightweight ML algorithms...................................................................... 67 
8.8 KPI-4.2: Delivery of mechanisms with adaptation time of 15ms ............................................. 69 
8.9 KPI-4.6: Development of new security Mechanisms/Controls ................................................ 70 
8.10 KPI-6.1: Reduce manual interventions required for bootstrapping of smart object in each use case 
domain by at least 80% ................................................................................................................. 71 



780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017 
Deliverable D5.9 Demonstration and validation of IWPC - Energy (Cycle 2)  
Dissemination level: Public  

 

 
 

3 

8.11 KPI-6.3: Delivery of 3 prototypes of IIoT/IoT applications ...................................................... 72 
8.12 KPI-7.1 Provision the SEMIoTICS building blocks ................................................................ 72 

9 Conclusion ................................................................................................................................ 73 
9.1 Observed obstacles ............................................................................................................ 73 
9.2 Concluding Remarks .......................................................................................................... 73 

10 Appendix ................................................................................................................................... 74 
10.1 Thing Description for Brownfield Device............................................................................... 74 
10.2 Thing Description for Greenfield Device ............................................................................... 74 
10.3 MindSphere Asset Model .................................................................................................... 76 
10.4 Mapping Rule of GW Semantic Mediator ............................................................................. 76 

 
  



780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017 
Deliverable D5.9 Demonstration and validation of IWPC - Energy (Cycle 2)  
Dissemination level: Public  

 

 
 

4 
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SSC SEMIoTICS SDN Controller 

UC1 Use Case 1 

VM Virtual Machine 

W3C World Wide Web Consortium 

WoT Web of Things 
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1 INTRODUCTION 
 

1.1 Overview 
 
Use Case 1 (UC1 hereafter) focuses on the demonstration of the SEMIoTICS framework in a power 
generation environment. UC1 demonstration features four Sub Use Cases, focused on local edge analytics 
for processing unstructured data, interoperability with private and public cloud environment for use case of 
classic analytics of structured data and field layer monitoring, as well as the interoperability within the field 
layer in the utility network itself. The orchestration processes and industrial operation occur over an SDN 
capable of providing the necessary Quality of Service (QoS) guarantees to deployed network flows. 
Summarized, UC1 highlights the following benefits of using the SEMIoTICS framework: 
 

▪ Usage of SEMIoTICS for simplified definition of the business logic, distribution, and instantiation of 
applications in an edge device in the field layer; 

 
▪ Usage of SEMIoTICS to achieve semantic interoperability between a greenfield device executing 

the business logic and a legacy brownfield environment connected to a model wind turbine utilizing 
a common semantic abstraction layer; 

 
▪ Usage of SEMIoTICS to achieve efficient “plug and play” on-boarding of a new field layer IIoT 

devices; 
 

▪ Usage of SEMIoTICS to integrate field layer devices in interoperable manner with private and public 
clouds;  

 
▪ Usage of integrated SEMIoTICS orchestration to deploy network services with deterministic QoS 

properties and; 
 

▪ Usage of SEMIOTICS to guarantee Security (Data Integrity and Confidentiality), and Connectivity 
properties in the system, using the pattern-based framework. 

 
Considering the above and being the final output of Task 5.4 (“Demonstration and validation of IWPC- 
Energy scenario”), this deliverable detail the business motivation behind the final set of Sub Use cases, as 
well as their final implementation state.  
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1.2 D5.9 Content updates compared to D5.4 
 
Compared to D5.4, the previous deliverable of T5.4, which provided the initial description of the conceptual 
goals of UC1, and the intermediate implementation of the SEMIoTICS components supporting the use 
case, D5.9 is updated and contain the most recent and final status of the testbed integration. In more detail: 
 

▪ Section 2 was updated with the latest information, content, and photos of the integrated Use Case 
1 demonstrator. Additional visual presentation and execution is presented in the accompanying 
demonstrator video 

 
▪ Section 3 now provides a separate and up-to-date description of the networking approach adopted 

throughout each of the four sub Use-Cases 
 

▪ Sections 4 to 7 were updated to contain the latest and final description of their implementations.  
i.e. they are the four Sub Use Case Sections defining the UC1 

 
▪ Section 8 now includes the description of requirements and KPIs addressed by the Sub Use Cases, 

comprising their achievement status and the methodology of evaluation 
 

▪ Section 9 now succinctly describes obstacles observed during the UC1 development and 
integration 
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2 USE CASE DESCRIPTION 
 

2.1 Overview of the Use Case 
 
The overall success criteria of UC1 is to demonstrate the coexistence of a highly integrated control system 
and an agile IIoT ecosystem based on the SEMIoTICS framework; which in return allows service providers 
to deploy new value-added services faster and provide effective access to data from both an existing 
‘brownfield’ control system and a newly deployed ‘greenfield’ sensor network. The demonstrator of UC1 in 
the lab trial addresses some of the common challenges in extending the capabilities of an existing control 
system in a brownfield environment in the Wind Energy domain.  
 
Control systems for industrial processes are in general terms heavily embedded in nature. Extending the 
capabilities of such a system typically involves engagement with component manufacturer or service 
integrator to fuse-in the new functionality that must be tested to validate the new component does not void 
the integrity and the intended behaviour of the control system. Most of these control systems expose certain 
high-level machine-readable interfaces for seamless integration with other systems, which is not enough 
to take full advantage of the value that can be generated. 
 
The SEMIoTICS approach in UC1 provides an end-to-end ecosystem allowing service integrators and 
service operators to build and deploy new value-added services, interfacing directly with the existing 
assets. 
 
Overall, SEMIoTICS UC1 demonstrates four concrete Sub Use cases in a lab trial showing the IIoT field 
devices and applications: 
 

▪ Sub Use Case 1: Audio Processing Demo – Detection of loose objects 
▪ Sub Use Case 2: Video Processing Demo – Oil/Grease leakage detection 
▪ Sub Use Case 3: Inclination Measurement of wind turbine tower 
▪ Sub Use Case 4: Availability Monitoring of Field Orchestration Layer devices 

 
The physical components involved in the developed demonstrator are visualized in Figure 1, and comprise:  

a) A wind turbine model with a rotating piece 
b) a SIMATIC S7 programmable logic controller (PLC) used to control the wind turbine rotor 
c) the greenfield sensory devices (microphone, camera, inclinometer), attached either directly to a 

Nanobox device (see h)) or to a Raspberry Pi field layer device 
d) six OpenFlow 1.3 SDN switches 
e) the SEMIoTICS SDN Controller (SSC) hosted on a Siemens Microbox Industrial PC (IPC) 
f) the backend components of the SEMIoTICS platform hosted on a Siemens NanoBox Industrial PC 
g) the video and audio analytics software processes hosted on the two IPCs 
h) the integrated SEMIoTICS Gateway solution hosted on another IPC 
i) the LTE Gateway for enabling internet access and connectivity to remote clouds 
j) a management switch for enabling out-of-band control channel over SDN switches and visualization 

on an external device 
k) external software application counterparts in the MindSphere cloud and a private cloud at IQU’s 

premises 
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The components of the SEMIoTICS platform deployed in UC1 are portrayed on the left in Figure 1 and 
include the: 

▪ Recipe Cooker for orchestration of business logic 
▪ Pattern Orchestrator for translation of recipe descriptions into Security and Connectivity 

patterns 
▪ The Pattern Engine in the Application Orchestration Layer for ensuring Security constraints in 

the private cloud for the purpose of enabling the Sub Use Case 4 
▪ The Pattern Engine in the SDN/NFV Orchestration Layer for ensuring Connectivity constraints 

in the local network for the purpose of enabling the Sub Use Cases 1 and 2 
▪ Global and Local Thing Directory components in Application Orchestration Layer and Field 

Orchestration Layer, respectively. Thing Directory instances are used for local and global 
registration of field layer devices, their capabilities, and exposure of these to the backend 
Recipe Cooker 

▪ The backend GUI in the Application Orchestration Layer for visualization of the state of Pattern 
requirements and Thing Directories 

▪ The majority of sub-components of the SEMIoTICS SDN Controller for enabling end-to-end 
connectivity with delay, bandwidth, and redundancy constraints for point-to-point network 
connections 

▪ The majority of IoT Gateway components for enabling local embedded intelligence, semantic 
mediation between brownfield and greenfield field components and exposure of their 
capabilities and actions to external entities using Semantic API and Protocol bindings 

 
The exact deployment mapping of SEMIoTICS platform components to the underlying hardware resources 
and layers of SEMIoTICS architecture is depicted in Figure 2. 
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FIGURE 2: OVERVIEW OF KEY COMPONENTS IN USE CASE 1 

 
Finally, Figure 3 shows the final deployment of the hardware components and the separation of SEMIoTICS 
layers in the transportable demo case that was created for this purpose. 
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FIGURE 3: FINAL DEPLOYMENT OF THE DEMONSTRATOR IN THE TRANSPORTABLE 

DEMONSTRATOR CASE 
 

2.2 Main Objectives of Use Case 1 
 
Current wind turbine controllers in a wind park control network are typically highly integrated operating systems, 
which follow a long process of thorough development, testing, pre-qualification, and finally deployment in the 
real world. As a result of this long process, introduction of new features, addition of new sensors, actuators and 
related advancements require several months or even years to be fully matured and become operational in the 
field. To improve this situation and shorten this development cycle, the UC1 achieves the following objectives: 
 
1) Local predictive analytics for structured data, smart behavior and monitoring: We deploy a localized 

edge to achieve semi-autonomous IIoT behavior where a minimal amount of data is transferred between 
the wind turbine and the remote control center, while the majority of pre-processing, analytics and triggering 
of the actuation steps happen at the ‘edge’ of the system, close to the actual turbine. In Sub Use Case 1 
and 2 we demonstrate the sensing of unstructured data (i.e., audio and video respectively), processing the 
data in real-time, and taking an immediate action to prevent any damage to the parts of the turbine. 
Additionally, a federation, based on a semantic data model and capabilities, is formed between the IIoT 
Gateway and the legacy control system in Sub Use Cases 1, 2 and 3, to enable the use of data exposed 
by the sensors connected to the legacy control system. This allows the operators to leverage the existing 
computing resources to make use of data exposed by sensors connected to an existing brownfield 
infrastructure, in an automated manner. 

 
2) Multi-tenant capable network service establishment: A wind park network typically comprises multiple 

stakeholders requiring access to a common network infrastructure. Nevertheless, providing reliable and 
Quality of Service (QoS)-constrained packet transmission for critical IoT services, in conjunction with non-
real-time and bandwidth-heavy services, necessitates service differentiation. The SSC support this case. In 
Sub Use Cases 1 and 2, the users of the system (i.e., the operators) communicate their network 
requirements to the SSC by means of a simple service specification interface (Recipe Cooker) that is 
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eventually propagated to the SSC for embedding. Thus, all accepted stakeholders in the system are isolated 
with regards to the network resource utilization and are guaranteed their requested service invariants. 

 
3) Semantic-based engineering: In a motivating scenario, an engineer wants to add a new IIoT device (e.g., 

a sensor, actuator) or replace an existing one with minimal effort. To achieve this, the device should be 
bootstrapped in a semi-automated fashion. Further, it should expose its functionality over an IIoT Gateway 
via a machine-interpretable interface so that the engineer can develop a new service or application with that 
device. UC1 demonstrates that, leveraging SEMIoTICS, the integration and configuration of a new IIoT 
device in an automation system of a wind park requires very low effort. For this purpose, the greenfield IIoT 
devices are equipped with an associated semantic description, which support the process of device 
discovery, as well as commissioning, engineering and re-engineering of automation functions, within an 
ecosystem of heterogeneous devices and services. The SEMIoTICS semantic models, which enable these 
device descriptions, are based on standardized semantics such W3C Web of Things1 (Thing Description), 
as well as on the IoT domain semantics created by iot.schema.org2. SEMIoTICS, thus, supports creation of 
IIoT applications in a cost-effective manner. The brownfield devices, on the other hand, are similarly 
supported with their semantics models and exposed by means of a combination of an intermediate semantic 
API and the semantic binding.  

 
4) Semantics-based application creation – Going beyond integration and configuration supported by the 

“semantic-based engineering” (described above), an application developer needs to be supported in 
connecting and composing services and devices to Edge-level or Cloud-level applications. To this end, the 
following aspects are considered: 
 

a. In order to facilitate quicker development of applications, the Recipe Cooker allows for compositions 
by the developer as templates (or “recipes”) that describe how logical links are established and 
what kind of devices are required in these compositions.  

 
b. As part of these definitions of compositions, the developer needs to be able to define Security, 

Integrity, Connectivity, Privacy or Dependability criteria on the connections for the logical links of 
the distributed application. These criteria are semantically described and are interpretable by the 
Pattern Engine instances prior to the deployment of the application to evaluate whether the 
infrastructure can meet the requirements of the application. Thus, with the seamless integration of 
specification of pattern requirements with the application workflow design, the developer is capable 
of both orchestrating the available resources to deploy and execute the application, but also 
automatically enabling, validating and monitoring additional security and connectivity invariants 
from a single interface.  

 

2.3 UC1 Sub Use Cases 
 
Prior to addressing the details of the individual Sub Use cases within UC1, a summary of each is provided 
below.  
 
Sub Use Case 1 - Audio Processing Demo – Detection of Loose Objects: Sub Use Case 1 
demonstrates the integration of a distributed audio processing function with the remainder of the 
SEMIoTICS framework. The analytics function detects a loose object in the wind turbine by processing a 
continuous stream of unstructured audio data, issuing an emergency stop command to the wind turbine if 
an anomaly is detected while the wind turbine is in operation. Numerous greenfield and brownfield field 
layer devices are involved in the operation. Furthermore, the analytics function is realized by deploying an 
application to an edge device using orchestration introduced by SEMIoTICS and involves other 
components of the framework, namely the SSC and the IIoT Gateway, to guarantee the network invariants 
and expose audio state to external applications, respectively. 

 
1 https://www.w3.org/WoT/WG/  
2 Currently available from: http://iotschema.org/  
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Sub Use Case 2 - Video Processing Demo – Oil/grease leakage detection: This sub use case focuses 
on demonstrating video processing capabilities deployed at the field layer, to detect a grease leakage from 
a main bearing in a wind turbine. This is achieved by processing a stream of unstructured video data and, 
as above, issuing an emergency stop command to the wind turbine if a severe grease leakage is detected. 
The capability is realized by deploying an application to multiple edge devices installed at the field layer, 
by mean of several components of the SEMIoTICS framework to provide the needed supporting 
capabilities. 
 
Sub Use Case 3 – Inclination Measurement of the Tower: An application deployed in an external IoT 
platform, i.e., MindSphere, interfaces with a SEMIoTICS-enabled wind park and consumes the inclination 
data measured by an inclinometer in the field layer, along with other operational data from the simulated 
wind turbine environment, for visualization and manual decision making. The cloud application furthermore 
periodically evaluates the reported inclination values and triggers an alarm if a set threshold is exceeded, 
enabling the operator to act. Only raw data from the inclinometer is being transferred to the cloud and all 
business logic for decision making is being defined in the cloud application. 
 
Sub Use Case 4 – Field Devices Availability Monitoring: The final business application is being 
deployed in a private cloud environment with the purpose of monitoring the deployed inclinometer and other 
greenfield sensors in the system for availability purposes. As the inclinometer sensor is not natively 
integrated with the existing control and instrumentation system of the wind turbine, it is not being monitored 
by the native turbine monitoring system. Instead, a small agent deployed at the field layer continuously 
monitors the availability of the deployed inclinometer sensor and forwards a heartbeat signal to the private 
cloud for monitoring purposes. In this Sub Use Case only availability information of the sensor is being 
transmitted to the private cloud, whereas all operational data recorded is being transmitted to the public 
cloud application as in the Sub Use Case 3. Finally, the Confidentiality and Integrity (and thus Security) of 
data transmitted to the private cloud is guaranteed with the use of pattern framework. 
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3 REALIZATION OF THE SDN-BASED CONNECTIVITY  
 
The components of the SEMIoTICS SDN Controller (SSC) designed and developed in Work Package 3 
are, for reader’s reference, depicted in Figure 4. While most of the presented components were deployed 
in the SEMIoTICS demonstrators, the SEMIoTICS Use Cases 1 and Use Case 2 focus on the functionalities 
of only a subset of these. 
In the final Use Case 1 prototype we deploy the SSC for two purposes: 
 

▪ To allow for simplified deployment of the infrastructural services, using the SDN controller as a flow 
rule installation proxy (internet access, connectivity among the industrial devices); 

▪ To allow for establishment of QoS-enabled end-to-end path configurations requiring minimal user 
intervention – network requests are specified as part of application description using a Recipe 
template in the Recipe Cooker. 

 
To establish the QoS constrained network flows, the UC1 relies on interaction between Recipe Cooker, the 
Pattern Orchestrator, and the Pattern Engine of the SSC to provide for the facts (i.e., the knowledge base) 
used in the instantiation of QoS connectivity services.  

 

 
FIGURE 4: COMPONENTS OF THE SEMIOTICS SDN CONTROLLER (SSC) 

 
Use Case 1 deploys a number of industrial end-devices interconnected by a Layer-2 network comprising 6 
OpenFlow switches. The network stack is based on OpenFlow 1.3.1 switch instances, deployed using the 
kernel-space forwarding daemon of Open vSwitch and the corresponding OpenFlow agent. The physical 
switches are 1 Gbps Banana PI R1 hardware devices. Each switch is equipped with 4xRJ45 interfaces. 
Figure 5 and Figure 6 showcase the networking deployment in the UC1 transportable testbed, and the 
close-up of the deployed data plane, respectively. In addition to the SSC and switches, we also deploy an 
LTE router attached to switch OF:104, acting as the gateway to enable reachability of backend layer 
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services. The SSC, including the Pattern Engine (SDN PE), is deployed on the SIMATIC IPC427E industrial 
PC running Linux, equipped with a recent Intel i7 Processor and 16 GB of DDR4 RAM. 
 

 
FIGURE 5: NETWORKING COMPONENTS IN THE UC1 TRANSPORTABLE TESTBED 

 

 
FIGURE 6: CLOSE-UP OF THE SDN SWITCHES INTERCONNECTED IN THE UC1 TOPOLOGY 

The SDN was used to route a subset of flows that required only the Best -Effort connectivity. These 
connections are thus considered ‘infrastructural’ services, as they necessitate only partial bandwidth 
without time-slot allocations and guarantees to transfer the data. The examples of these are: 
 

▪ Interconnection of all SEMIoTICS components: Recipe Cooker Ù Pattern Orchestrator, Pattern 
Orchestrator Ù SSC, IIoT Gateway Ù LTE Ù InfluxDB / MindSphere, Recipe Cooker Ù 
Distributed Node-RED workers etc. 
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▪ Interconnection of networking services: DNS resolve, SSC Ù SDN Switches control channel; 
 
Additionally, the networking infrastructure hosts the QoS-constrained network flows used to interconnect 
the sensory and actuation devices of Sub Use Case 1 and Sub Use Case 2. The aim is to provide for per-
packet delay guarantees in transmission of the mission-critical camera and audio information that are used 
to infer the decision about the need to stop the turbine at the receiver. 
 

3.1 SDN Bootstrapping 
 
After the initial bootup of network devices, the switches first discover the SSC. The switches are configured 
with the IP address of the SSC and the port on which the SSC is listening for new OpenFlow connections. 
Indeed, the controller/port configurations in the Open vSwitch implementation persists after reboots, hence 
a single-time configuration was necessary to achieve this functionality.  Bootstrapping Manager can 
alternatively deploy the DHCP server and provide the switches with automatically derived IPv4 addresses 
but we opted for manual IPv4 configuration of management interfaces of the switches for lowered 
complexity of the UC1 demonstration.   
 
Both the switches’ and the SSC’s management interfaces are thus configured in the same IP subnet. After 
the switches have initiated an OpenFlow session to the controller, the Bootstrapping Manager initiates the 
bootstrapping procedure in the newly instantiated switches, i.e., by provisioning them with default flow rules 
used for control channel communication. Figure 7 showcases the SSC’s UI containing resulting discovered 
topology (including deployed endpoints). Access to the UI and all other REST-enabled functions of the SSC 
requires HTTPS digest authentication. 
 

 
FIGURE 7: THE DISCOVERED TOPOLOGY AND END-DEVICES IN SSC AFTER CONNECTING 

THREE END-POINTS, BOOTING UP THE SWITCHES AND THEIR SUCCESSFUL ESTABLISHMENT 
OF OPENFLOW SESSIONS WITH THE SSC  

  



780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017 
Deliverable D5.9 Demonstration and validation of IWPC - Energy (Cycle 2)  
Dissemination level: Public  

 

 
 

17 

3.2 Flow Establishment 
 
To establish default infrastructure communication flows, SDN switches propagate any unmatched packets 
(including the ARP requests) to the SSC for further handling. The SSC compares the source and destination 
nodes with the contents of the discovered topology in the Bootstrapping Manager, and accordingly 
computes a route between the two endpoints in the Path Manager. Prior to notifying the Path Manager of 
the route request, the Bootstrapping Manager interacts with the VTN Manager to evaluate the mapping of 
endpoints to the default VTN (pre-provisioned). Namely, in at least one of the provisioned VTNs, the egress 
ports of the switches on which the source/destination end-nodes are connected must have been pre-
registered. Thus, isolation of critical from best-effort services can be guaranteed on all communication 
layers. If the end-devices can be found registered in a VTN, the Path Manager handles the route requests 
and notifies the Resource Manager of the identified path and the flow rules to be installed in the switches. 
The Resource Manager enforces the installation of the best-effort flows. Best-effort flows in UC1 are always 
mapped to Queue 0, i.e., the lowest priority queue used by the Strict Priority scheduler implemented by the 
SDN switches. 
 
To establish the QoS-enabled connectivity between declared endpoints of the evaluated test scenario, we 
rely on instantiation of the relevant Dependability pattern instances using the SSC’s Pattern Engine. The 
Pattern Engine interacts with the VTN Manager to evaluate the mapping of endpoints to the default VTN 
(pre-provisioned) and, if satisfied, notifies the Path Manager module of the path request. The Path Manager 
then computes the corresponding path fulfilling the QoS constraints and notifies the Resource Manager of 
the flow rules, as well as the associated queue mapping for each hop on the computed path. Thus, an end-
to-end path is established in the Sub Use Cases 1 & 2 with deterministic queueing decided individually for 
each hop on the path. Resource Manager finally installs the flow rules, and the end-point connectivity is 
enabled. 
 
The corresponding QoS pattern used in implementation of the QoS-enabled service path interconnecting 
the sensors and actuators is described in Drools syntax in Figure 8, per the pattern rule specification 
approach detailed in deliverable D4.8. 
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FIGURE 8: DEFINITION OF THE DEPENDABILITY PATTERN USED IN NETWORK SERVICE 

INSTANTIATION 
  
Referring to the Drool definition provided in Figure 8, the request properties considered in the instantiation 
of the network service are: 

▪ Line 32: The request identifier; 
▪ Line 20: The required bandwidth share in Kilobits per Second (Kbps); 
▪ Line 21: The requested end-to-end delay requirement in milliseconds; 
▪ Line 22: The input traffic burst in max. Kbps; 
▪ Line 14: The source MAC address; 
▪ Line 15: The destination MAC Address; 
▪ Line 23: The requirement for resilient path establishment. 

 
After establishment of the above flow, the referenced endpoints (with given MAC addresses as identifiers 
in the flow rules) are guaranteed the requested QoS requirements (bandwidth and delay). This is assuming 
that that the input traffic arrivals are shaped as per promised maximal traffic burst and sending rate and do 
not exceed the requested rate. 
The full sequence of steps taken starting from specification of individual fields of the request in the Recipe 
Cooker to embedding of flow rules and automated per-flow / per-hop queue mapping by the SSC are 
visualized and explained further in our demonstration video (ref. Figure 9). 
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4 SUB USE CASE 1: AUDIO PROCESSING DEMO – DETECTION 
OF LOOSE OBJECTS 

 
4.1 Scope and Objectives 
 
The first sub use case focuses on demonstrating analytical capabilities deployed at the field layer to detect 
a loose object in the wind turbine by processing a stream of unstructured audio data and issuing an 
emergency stop command to the wind turbine if an anomaly is detected while the wind turbine is in 
operation. The capability is realized by deploying an application to an edge device installed at the field 
layer utilizing various components of the SEMIoTICS framework, as will be detailed below. The analytical 
capability is implemented, using an approach based on machine learning techniques to detect an abnormal 
change in the audio stream.  
 
The system, when deployed in real life, is expected to be in proximity of the wind turbine’s hub as shown 
in Figure 3. The hub is the casted mechanical structure at the very front of the wind turbine, where the 
three blades are fastened to. 
 
The business objective is to detect a foreign object in hub during operation and stop the wind turbine before 
any severe damage occurs to the internal parts of the hub.  
The hub contains several critical hydraulic and electrical systems responsible for controlling the individual 
blades’ angle in the wind. This system is known as the pitch control system and is in constant rotation while 
the wind turbine is in operation. If parts of this critical system are damaged, causing the embedded wind 
turbine controller to detect an error in the pitch control system, the wind turbine will stop automatically with 
an error and will be unable to produce electricity until it has been manually inspected and repaired.  
Said foreign objects can be loose internal mechanical parts to the hub or the three blades, that have been 
shook loose during operation or seldom forgotten hand tools by wind turbine technicians. Examples of such 
objects are broken and/or loose bolts in the interface between the hub and the blade bearings, or even 
plastic covers or access covers to the blades. 
 
Depending on the severity of the damage caused to the internal system by such a loose object, the cost of 
bringing the turbine back into operation can be very costly in terms of direct expenditure related to the 
repair work, but also lost revenue, as the wind turbine is unable to produce until repaired. The latter is likely 
to account for the largest part of the cost.  
 
The scope of the demonstrator focuses on showcasing the following SEMIoTICS advancements: 
 

• The use of select SEMIoTICS components to define the business logic, distribute and to instantiate 
the application in an edge device at the field layer  
 

• To demonstrate the semantic interoperability between a greenfield device executing the business 
logic and a simulated legacy brownfield environment connected to a model wind turbine utilizing a 
common semantic abstraction layer 
 

• The implementation of the business logic focusing on the use of unsupervised machine learning to 
detect an anomaly in the stream of audio. The demonstrator does not focus on extending the 
capabilities of the business application required for adoption by industry.  
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4.2 Interaction with SEMIoTICS Framework and Components 
 
Successful deployment of the business application, for detecting a loose object in the wind turbine’s hub 
relies on several components provided by the SEMIoTICS framework along with components specifically 
implemented for enabling the demonstration of the use case. An overview of the components and their use 
is provided in Table 1. 
 

TABLE 1: INVOLVED SEMIOTICS COMPONENTS IN SUB USE CASE 

Component SEMIoTICS 
component 

Architecture 
reference 

Description of use 

Semantic Edge Platform ✓ Field Layer • Provides capabilities for initial device 
bootstrapping and discovery  

• Hosts Local Thing Directory service 
• Provides API for interaction with other 

devices enrolled in the SEMIoTICS 
framework deployment 

Semantic API and 
Protocol Binding 

✓ Field Layer • Processing capabilities for interacting 
with brownfield environments, e.g. the 
legacy control system 

Edge device  Field Layer • Raspberry Pi device with an embedded 
microphone for capturing the audio 

• Anomaly detection process, based on 
unsupervised machine learning  

• Execution of the business logic 
Legacy Control System  Field Layer • Simulation of Wind Turbine Control 

System based on Power Logic 
Controllers and an operational and 
controllable wind turbine model  

Recipe Cooker  ✓ Backend 
Layer 

• Recipe Cooker framework based on 
Node Red is used to define and deploy 
the business logic to the field device in 
a recipe style format 

Pattern Orchestrator ✓ Backend 
Layer 

• Used to translate the recipe (business 
logic request) into a set of patterns 
comprising Connectivity requirements. 

Network Pattern Engine  ✓ SDN/NFV 
Layer 

• Used to trigger embedding of 
networking services in the SDN via 
associated SDN Controller 
components, under consideration of 
delay and bandwidth constraints 
stemming from Connectivity pattern 
properties. 

SDN Controller ✓ SDN/NFV 
Layer 

• SDN Controller sub-modules, such as 
Path Finding, Registry Handler, and 
Resource Manager are used to 
compute the network paths necessary 
to fulfil the Connectivity pattern 
constraints, refer to and keep track of 
reserved network resources, as well as 
to embed the service via external 
configuration of SDN switches. 
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Global Thing Directory ✓ Backend 
Layer 

• Orchestration of devices and 
capabilities registered with the Local 
Thing Directory 

• Information made available to the 
Recipe Cooker through an API 

 
 
Figure 10 shows the sequence diagram of the detection of loose objects. As a prerequisite, the field device 
(Raspberry Pi with the microphone attached) must be successfully bootstrapped, connected to the 
communication network and on boarded in the SEMIoTICS eco-system. The application is defined in the 
Recipe Cooker and the business logic is deployed to the field device. 
 
Audio processing: captures and processes sound recorded by the microphone. The audio process 
bridges between the physical and digital world: capturing raw sound, amplifies the signal in hardware and 
converts the analog signal to a digital format. The digitized raw audio signal is then used by the detection 
process.  
 
Detection process: relying on Fast Fourier Transformation (utilizing Python library Librosa3) of the 
unstructured audio signal source, the detection process creates a structured pattern from the audio signal 
and compares it with those known to the neural network. The machine learning model has been pre-trained 
with a finite number of audio samples from a normal operational environment. If an anomaly in the audio 
signal is detected – indicating a detection of a loose object in the wind turbine – the process will forward 
an event notification to the action process. 
 
Action process: this process is being triggered whenever the detection process detects an anomaly. The 
process will first determine the running state of the wind turbine. If the turbine is not in an operational mode 
(e.g., it is in service mode or not operational for other reasons), it will simply ignore the anomaly detected. 
If, however, the wind turbine is in operational mode and producing electricity when the anomaly is detected, 
the process assumes the anomaly to be a legitimate reason for concern and will immediately issue a stop 
command to the wind turbine.  
 
Semantic Edge Platform: it provides an API that enables the action process to interact with another device 
enrolled to the SEMIoTICS deployment. The API exposes enrolled devices as Device Nodes, along with 
their associated capabilities, as sourced from the devices’ Thing Descriptions. It ultimately enables the 
application to interact with the legacy control system. 
 
Semantic API and protocol binding: this component is responsible for the translation between Web of 
Things protocol and the last mile connection to the simulated brownfield control system, that is using a 
legacy industrial protocol. It provides a uniform semantic API for all connected devices. This service is the 
primary enabler to bridge greenfield edge technology with existing brownfield installations. When the stop 
command has been received by the action process, the service will forward the stop command to the wind 
turbine via the industrial communication protocol that is supported by the (simulated, in this case) wind 
turbine control system. 
 
Wind turbine control system: the autonomous simulation of a wind turbine control system. It will take the 
action to stop the turbine when the command is received. The simulated control system exposes the 
operational state of the wind turbine, which is used by the action process to determine the authenticity of 
the anomaly detected. 
 

 
3 https://pypi.org/project/librosa/ 
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4.3 Setup Testbed and Integration 
 
A prerequisite for this sub use case to work is that all systems are operational and connected to the 
SEMIoTICS framework deployment, also including the Smart Audio Processing device that must be 
connected and registered with the Thing Directory.  
 
Furthermore, the capabilities of the legacy control system are loaded to the Thing Directory and the protocol 
binding service is operational. These Thing capabilities are replicated to the Global Thing Directory so that 
services can find them. The Backend GUI can visualize the set of capabilities of involved field layer devices 
based on the content of the global Thing Directory. The IoT Gateway is operational with excess capacity 
to execute the application. Finally, the Recipe Cooker framework is operational and the application flow for 
the audio fault detection is already setup. 
 
Figure 11 shows the deployment setup of Sub Use Case 1 broken down to actual machines and installed 
software components on the right.  
 

 
FIGURE 11: SUB UC1 DEPLOYMENT SETUP 
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5 SUB USE CASE 2: VIDEO PROCESSING DEMO – 
OIL/GREASE LEAKAGE DETECTION 

 
5.1 Scope and Objectives  
 
The second sub use case focuses on demonstrating analytical capabilities deployed at the field layer to 
detect grease leakage from the main bearing in a wind turbine, by processing a stream of unstructured 
video data and issuing an emergency stop command to the wind turbine if a severe grease leakage is 
confidently detected. The capability is realized by deploying an application to multiple edge device installed 
at the field layer, also leveraging various components of the SEMIoTICS framework. 
 
The analytical capability is implemented is using an approach based on Machine Learning techniques to 
detect grease leakages in the video feed images. A large set of training images has been created using a 
small-scale bearing mock-up that was created for this purpose. This set was used to train the model before 
deploying the business logic to the field.  
 
The business objective is to prevent an uncontrolled grease leakage from the main bearing by monitoring 
and eventually stopping the wind turbine as a preventive maintenance act ion.  
 
Main bearings on large, modern wind turbines are designed to consume and lose some grease during 
normal operation. Thus, they are fitted with automating greasing systems that ensure the bearing is re-
greased with a regular interval. Dependent on the implementation by the wind turbine manufacturer, the 
bearings are re-greased either at fixed time intervals or ad-hoc by use of more advanced monitoring 
techniques involving continuously monitoring the pressure inside the bearings (if a lower limit threshold is 
exceeded the system will re-grease the bearing). 
 
In this context, while grease leakage is expected, larger grease leakages could indicate an issue with the 
seal of the bearing that needs repair or replacement. An early detection of the issue enables the operator 
to monitor the development of the leakage and plan appropriate measures to address the issue before 
stopping the turbine becomes as necessity. A stopped turbine means loss of revenue for the operator.  
Since some industrial implementations do not have an automated re-greasing and monitoring system put 
in place, early detection is critical to avoid mechanical failure.  
 
The scope of the demonstrator focuses on showcasing the following SEMIoTICS advancements: 
 

• The use of select SEMIoTICS components to define the business logic, distribute, and to instantiate 
the application in an edge device at the field layer  
 

• To demonstrate the semantic interoperability between a greenfield device executing the business 
logic and a simulated legacy brownfield environment connected to a model wind turbine utilizing a 
common semantic abstraction layer 
 

• The implementation of the business logic focusing on the use of supervised machine learning to 
detect a leak in a mock-up of a bearing. The demonstrator does not focus on extending the 
capabilities of the business application required for adoption by industry.  
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5.2 Interaction with SEMIoTICS Framework and Components 
 
Successful deployment of the business application, for detecting a loose object in the wind turbines’ hub, 
relies on several components provided by the SEMIoTICS framework along with components implemented 
for enabling the demonstrating of the use case specifically. An overview of the components and their use 
is provided in Table 2. 
 

TABLE 2: INVOLVED SEMIOTICS COMPONENTS IN SUB USE CASE 2 

Component SEMIoTICS 
component 

Architecture 
reference 

Description of use 

Semantic Edge Platform ✓ Field Layer • Provides capabilities for initial device 
bootstrapping and discovery  

• Hosts Local Thing Directory service 
• Provides API for interaction with other 

devices enrolled in the SEMIoTICS 
framework deployment 

Semantic API and 
Protocol Binding 

✓ Field Layer • Processing capabilities for interacting 
with brownfield environments; e.g., the 
legacy control system 

Edge device  Field Layer • Raspberry Pi device with an external 
camera connected for capturing the 
video stream 

• Anomaly detection process, based on 
machine learning  

• Execution of the business logic 
Legacy Control System  Field Layer • Simulation of Wind Turbine Control 

System based on Power Logic 
Controllers and an operational and 
controllable wind turbine model  

Recipe Cooker  ✓ Backend 
Layer 

• Recipe Cooker framework based on 
Node Red is used to define and deploy 
the business logic to the field device in 
a recipe style format 

Global Thing Directory ✓ Backend 
Layer 

• Orchestration of devices and 
capabilities registered with the Local 
Thing Directory 

• Information made available to the 
Recipe Cooker through an API 

Pattern Orchestrator ✓ Backend 
Layer 

• Used to translate the recipe (business 
logic request) into a set of patterns 
comprising Connectivity requirements. 

Network Pattern Engine  ✓ SDN/NFV 
Layer 

• Used to trigger embedding of 
networking services in the SDN via 
remaining SDN Controller components, 
under consideration of delay and 
bandwidth constraints stemming from 
Connectivity pattern properties. 

SDN Controller ✓ SDN/NFV 
Layer 

• SDN Controller sub-modules, such as 
Path Finding, Registry Handler, and 
Resource Manager are used to 
compute the network paths necessary 
to fulfil the Connectivity pattern 
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constraints, refer to and keep track of 
reserved network resources, as well as 
to embed the service via external 
configuration of SDN switches. 

 
Figure 12 shows an overview of the business logic view for grease leakage detection. As a prerequisite, 
the field devices (consists of Raspberry Pi with the camera attached and another NanoBox running the 
anomaly detection application) need to have been successfully bootstrapped, connected to the 
communication network and on boarded in the SEMIoTICS eco-system. Following that, the application is 
defined in the Recipe Cooker and the business logic is deployed to the field device. 
 
Transcoder: captures the video feed from the camera and encodes the signal to reduce the size of the 
video when transmitted via the SDN network to the detection process. The latter is hosted and executed 
on a different device (i.e., the Microbox in Figure 1) in this demonstrator.  
 
Detection process: processes the encoded video feed, providing it to the machine learning model with 
the purpose of detecting an anomaly.  The machine learning model has been pre-trained with a finite 
number of image samples from a simulated environment, enabling the model to determine when a grease 
leakage occurs with a high accuracy. If the model determines - with significant confidence - that significant 
leakage occurs, the process forwards an event notification to the action process. 
 
Action process: this process is being triggered whenever the detection process detects an anomaly. The 
process immediately issues a stop command to the wind turbine.  
 
Semantic Edge Platform: this component provides an API that enables the action process to interact with 
another device enrolled to the SEMIoTICS deployment. The API exposes enrolled devices as Device 
Nodes, along with their associated capabilities sourced from Thing Descriptions. It ultimately enables the 
application to interact with the legacy control system. 
 
Semantic API and protocol binding: it is responsible for the translation between Web of Things protocol 
and the last mile connection to the simulated brownfield control system, that is using a legacy industrial 
protocol. It provides a uniform semantic API for all connected devices. This service is the pr imary enabler 
to bridge greenfield edge technology with existing brownfield installations. When the stop command has 
been received by the action process, the service forwards the stop command to the model wind turbine via 
the industrial communication protocol that is supported by the (simulated, in this case) wind turbine control 
system. 
 
Wind turbine control system: the autonomous simulation of a wind turbine control system. It will take the 
action to stop the model turbine when the command is received.  
 

5.3 Setup Testbed and Integration   
 

A prerequisite for this sub use case to work is that all systems are operational and connected to the 
SEMIoTICS framework deployment, also including the video processing unit that must be connected and 
registered with the Thing Directory. The capabilities of the legacy control system are registered at the Thing 
Directory. The protocol binding service is operational, and the thing capabilities are replicated at the Global 
Thing Directory. Furthermore, the IoT Gateway is operational with excess capacity to execute the 
application. Finally, the Recipe Cooker framework is operational, and the application flow is designed and 
ready to be deployed. 
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6 SUB USE CASE 3: INCLINATION MEASUREMENT OF TOWER   
 

6.1 Scope and Objectives 
 
The third sub use case focuses on “plug and play” onboarding capabilities provided by the SEMIoTICS 
framework, demonstrating integration of a third-party inclination sensor for deployment in a wind turbine. 
An inclination sensor is used to measure the orientation angle of an object in relation to the gravitational 
field of the earth.  
 
Furthermore, it focuses on publishing selected data to both the public and private cloud environments, 
demonstrating the use of various SEMIoTICS components for interoperability from field layer to cloud. Two 
business applications deployed in the cloud and making use of said data were created for this purpose.  
One business application, deployed in the public cloud, consumes the measured inclination data along with 
other operational data from the simulated model wind turbine environment, for visualization and decision-
making purposes. The cloud application monitors the inclination values transmitted and enables the 
operator to act if a set threshold is exceeded. Only raw data from the inclinometer is transferred to the 
cloud and all business logic for decision making is defined in the cloud application. 
 
The second business application is deployed in the private cloud environment with the purpose of 
monitoring the health of field devices, i.e., the inclinometer sensor. As the inclinometer sensor is not 
natively integrated with the existing control and instrumentation system of the wind turbine, it is not being 
monitored by it. The part of the application, which is deployed at the field layer, continuously monitors the 
availability of the deployed inclinometer sensor and forwards a heartbeat signal to the private cloud. In this 
example, only availability information of the sensor is transmitted to the private cloud, whereas all 
operational inclination data recorded is transmitted to the public cloud application. 
 
The business objective is to enable continuous monitoring of the structural health of the wind turbine tower, 
by continuously monitoring the X/Y sway of the tower. It is common in the wind industry to assess and offer 
lifetime extending upgrade packages for brownfield installations when they are nearing the end of their 
original design life, e.g., by performing extended service, inspections and upgrades that would extend the 
lifetime of a wind turbine; for example, from 25 to 30 years.  
 
Steel towers lose structural strength over time due to fatigue caused by the cycling loads, when the turbine 
is both in stand-still and in operational mode, therefore it is important to monitor the condition of the tower 
when the structure is nearing the end of its designed life. 
 
The tubular steel tower of the wind turbine is not easy to or economically viable to exchange for such an 
upgrade. Inclination sensors can then be fitted at certain locations inside the tower, to continuously monitor 
the sway of the tower in relation to the current operational and weather conditions, to aid structural 
engineers to determine to health of the structure.  
 
The scope of the demonstrator focuses on showcasing the following SEMIoTICS advancements: 
 

• The use of select SEMIoTICS components to define the business logic, distribute and to instantiate 
the application in an edge device at the field layer 
 

• To demonstrate the efficient “plug and play” onboarding of a new field layer IIoT device utilizing the 
SEMIoTICS framework 
 

• The integration of field layer devices and exposure of data to both private and public cloud.  
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• Sample business applications, deployed at the field layer, in public and private cloud environment, 
to monitor the inclination of the wind turbines tower and the availability of the inclinometer sensor.  
 

An overview of the components and their use is provided in Table 3. 
  

TABLE 3: INVOLVED SEMIOTICS COMPONENTS IN SUB USE CASE 3 

Component SEMIoTICS 
component 

Architecture 
reference 

Description of use 

Semantic Edge Platform ✓ Field Layer • Provides capabilities for initial device 
bootstrapping and discovery  

• Hosts Local Thing Directory service 
• Provides API for interaction between 

SEMIoTICS IoT Gateway and other 
devices enrolled to SEMIoTICS 
architecture 

Semantic API and 
Protocol Binding 

✓ Field Layer • Implements field integration with 
brownfield and greenfield devices 

• Implements protocol bindings for field 
devices  

• Provides a unified semantic interface 
for field devices  

GW Semantic Mediator ✓ Field Layer • Translates one semantic model into 
another one, e.g., an existing metadata 
of brownfield device can be 
transformed into W3C Thing 
Description or a Thing Description can 
be translated into the MindSphere 
Asset model   

Local Thing Directory ✓ Field Layer • Provides API to manage W3C Thing 
Descriptions for field devices, e.g., 
create, read, update, delete, and query 

• Synchronizes the content (TDs) with 
Global Thing Directory 

Edge device  Field Layer • Raspberry Pi device with an external 
inclinometer connected for measuring 
the inclination of a wind turbine tower 

• W3C Web of Thing servient, which 
provides field data and a Thing 
Description for this (greenfield) device 

Legacy Control System  Field Layer • Simulation of Wind Turbine Control 
System based on Power Logic 
Controllers and an operational and 
controllable wind turbine model 
(brownfield device) 

Public Cloud ✓ Application 
Layer 

• Cloud where inclination filed data from 
wind turbine park is gathered and 
processed, implemented with Siemens 
MindSphere  

• A host for Condition Monitoring and 
Predictive Maintenance application 

Private Cloud ✓ Application 
Layer 

• Cloud implemented with InfluxDB 
• A host for Health Monitoring application 
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6.2 Interaction with SEMIoTICS Framework and Components  
 
The primary components used are the Semantic Edge Platform, IoT Gateway API, the network layer and 
the data forward application running on the SEMIoTICS IoT Gateway. Furthermore, the connectivity to the 
cloud is demonstrated. An application to compute and visualize the incoming flow of data from the 
inclination sensor is defined in MindSphere. The Semantic Edge Platform visualizes the set of and 
capabilities of newly detected field layer devices, based on the content of Local / Global Thing Directory. 
 
Figure 13 shows an overview of the inclination measurement Sub Use Case, covering all interactions (from 
the inclinometer bootstrapping process, to the process of use of data in two Clouds). An operator installs 
an inclinometer in the tower and plugs it in the communication network where IIoT Gateway operates. GW 
Semantic Mediator discovers and registers the device, using the Thing Description of the device. It stores 
the description in the Local and Global Thing Directories. Further on, it exposes the device over the 
gateway’s API and generates a Device Node object used to interact with the device (based on information 
from Thing Description).  
 
In order to integrate brownfield devices, the GW Semantic Mediator first generates a Thing Description 
(TD). Brownfield devices are different as they originate from very different domains. For this purpose, in 
this use case we consider a wind turbine and a Siemens controller which controls the turbine. The GW 
Semantic Mediator reuses existing metadata for the controller (which can be exported from Siemens 
engineering tool) to create a TD for that brownfield device (see Deliverable 3.9, Section 4.1.2). The GW 
Semantic Mediator’s role, in general, is to mediate and map one form of semantic information of a field 
device into another form. In this case it maps brownfield metadata of the controller into the W3C Thing 
Description format. The Mediator is also used in the Cloud integration, i.e., to map W3C Thing Description 
into the MindSphere Asset model, which is a data model used by said Siemens cloud application. 
 
Once the bootstrapping process is complete, the device can be used in an application. Concerning this sub 
use-case we have provided two applications, one deployed in MindSphere Cloud and another one in a 
private Cloud (refer to Sub Use Case 4 as well). We have also provided an Edge application that puts the 
inclinometer data in a data format suitable for both of the Cloud applications and, in addition, creates device 
health -related data (e.g., heart-beat data stating that the inclinometer is alive). The Edge application 
publishes this data to both Clouds. The MindSphere Cloud requires that the inclinometer data is sent to the 
Cloud over a special agent (MindSphere Agent). The agent is integrated by using Open Edge Device Kit 
(OEDK)4. Device-health data is sent to Private Cloud directly (with no agent) over MQTT. 
  

 
4 https://support.industry.siemens.com/cs/document/109766079/open-edge-device-kit-
(oedk)?dti=0&lc=en-YE  
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FIGURE 14: APPLICATIONS RELATED TO INCLINATION MEASUREMENT OF TOWER 

 
Figure 14 provide details on the two applications that rely on inclinometer data. The user initializes both 
applications over the Semantic Edge Platform (IIoT Gateway), per the sequence shown in Figure 13. The 
first application continuously monitors the sway of the tower and detects anomal ies (the tower inclination 
exceeds the allowed threshold). This application is deployed in the MindSphere Cloud. The second 
application monitors the health status of the inclinometer and visualizes this data. The application is 
deployed in the private Cloud. 
 

6.3 Setup Testbed and Integration  
 
This subsection describes the testbed setup and integration results of the third sub use case. In this test 
we successfully on-boarded an inclinometer sensor via the SEMIoTICS IIoT Gateway and visualized its 
data in the MindSphere Cloud. The test succeeded via a communication enabled by the SEMIoTICS SDN 
network.  
 
Figure 15 shows the final deployment of the demonstrator with components relevant for Sub Use Case 3 
marked in red. The inclinometer is a greenfield device that is added to brown-field installations with the 
goal of continuously monitoring the condition and health of the wind turbine tower. The inclinometer (the 
blue sensor in Figure 15) is integrated in the overall automation system with minimal effort, i.e., in plug-
and-play manner. Apart from the inclinometer, Figure 15 also shows the other field devices, e.g., a camera 
and a microphone (the latter used in the previous Sub Use Case), as well as the Siemens S7 controller, 
i.e., the brownfield device. 
 
The SEMIoTICS IIoT Gateway on-boards the inclinometer. This process includes discovery of the newly 
plugged device, registration of its semantic meta data (Thing Description) with the Local and Global Thing 
Directory, and the exposure of the sensor’s data over the unified (WoT) API. The IIoT Gateway and the 
newly plugged device are not directly connected. The gateway scans the network and discovers the device. 
Based on Thing Description, the gateway is enabled to perform the onboarding procedure in an automated 
fashion.  
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FIGURE 15: HARDWARE FOR INCLINOMETER SUB USE CASE 

 

 
FIGURE 16: INTEGRATION OF IIOT GATEWAY WITH MINDSPHERE CLOUD 

 
The IIoT Gateway integrates field-level data and eases development of Edge applications. The data of the 
inclinometer sensor in Sub Use Case 3 is processed and visualized in the public MindSphere Cloud 
(MindSphere Cloud App). Therefore, we have extended IIoT Gateway to meet this requirement. Open Edge 
Device Kit (OEDK)5 has been used for this purpose. Figure 16 depicts how a custom device (on the Edge 
level) may communicate with the MindSphere Cloud over OEDK. For example, the inclinometer data can 
be sent to OEDK via MQTT protocol and further from OEDK to MindSphere Cloud over HTTP ( in fact over 
the secure HTTPS protocol). This communication pattern works for any field device that is registered by 
the IIoT Gateway.  

 
5 OEDK: https://developer.mindsphere.io/resources/openedge-devicekit/index.html  
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The data of an on-boarded field device can be forwarded to the MindSphere Cloud via the Semantic Edge 
Platform6. The latter provides a convenient user interface for interacting with field devices, the IIoT 
Gateway, and the Cloud (via OEDK). Figure 17 shows a Node-RED flow for testing Sub Use Case 3, i.e., 
the provision of inclinometer (field-level) data via gateway to the Cloud (MDSP Cloud).     
 

 
FIGURE 17: PROVISION OF INCLINOMETER DATA IN MINDSPHERE CLOUD OVER  

SEMANTIC EDGE PLATFORM 
 
In general, the Cloud has the capability to integrate all kinds of data from the field. Thousands of 
inclinometers can be connected from wind farms to MindSphere (together with other types of sensors, e.g., 
for audio, video etc.). This brings up the question how to interpret all these different kinds of data in the 
Cloud. To this end, MindSphere requires a user to create an information model (meta-data)7 for an asset 
before the data of the asset can be sent to the Cloud.  
IIoT Gateway has the goal to provide the semantic integration of field-level data. Thus, the semantic meta-
data, which the gateway integrates and provides at the Edge level, is used in the Cloud integration too. 
GW Semantic Mediator, which is a component of the IIoT Gateway, automatically creates the MindSphere 
information model based on a Thing Description. Figure 18 shows an automatically created MindSphere 
information model based on Thing Description for inclinometer and a temperature sensor.   
 

 
6 Semantic Edge Platform is a SEMIoTICS extension of Node-RED, see deliverables D3.3 and D3.9. 
7 https://documentation.mindsphere.io/resources/html/asset-manager/en-US/113537583883.html 
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FIGURE 18: IIOT GATEWAY AUTOMATICALLY CREATES MINDSPHERE INFORMATION  

MODEL BASED ON W3C THING DESCRIPTION 
 
Figure 19 shows a successful test, i.e., field data of the inclinometer is available in Cloud. The test 
demonstrates the integration of a field device, the IIoT Gateway, the SEMIoTICS SDN network, and the 
MindSphere Cloud. With this infrastructure in place, a SEMIoTICS user can, through simple interaction via 
the Semantic Edge Platform, onboard a field device and access its data in MindSphere. 
 

 
FIGURE 19: DATA OF INCLINOMETER AVAILABLE IN MINDSPHERE CLOUD 

 
Finally, Figure 20 shows the Cloud app (MDSP App), which consumes the inclinometer data and triggers 
an alert when the data exceed a predefined threshold. The left-hand side of Figure 20 shows a list of on-
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boarded assets in the MindSphere Cloud. In the context of this demonstration, each of them represents a 
wind park. For the selected asset in Munich (Perlach 31) we see locations of four wind turbines (Figure 
20). Furthermore, we see a time series data from our inclinometer. In the right-bottom part of Figure 20 we 
see the inclinometer sensor and the sensed movement around its axes. The application monitors the 
stream of inclinometer data and, for a user-defined threshold, triggers an alert. An engineer first gets a 
warning. If the problem does not get solved and the condition of the tower gets worse, then the user gets 
an alert. The stop signal is sent to SEMIoTICS IIoT Gateway, which in turn issues a command to stop the 
turbine. 
 

 
FIGURE 20: CONDITION MONITORING AND PREDICTIVE MAINTENANCE APPLICATION IN 

MINDSPHERE 
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7 SUB USE CASE 4: FIELD DEVICES AVAILABILITY 
MONITORING 

 
7.1 Scope and Objectives 
 
Continuous availability of field devices, such as sensors and actuators, enrolled to the SEMIoTICS eco-
system, is a prerequisite for critical applications – whether instantiated in the cloud or at the edge level.  
In this scenario, it’s foreseen that the integrator or operator of the wind farm is responsible for ensuring the 
availability and security of the field devices enrolled, whereas the applications deployed that rely on said 
devices to generate value, is defined by other actors, e.g., business intelligence experts, data scientists, 
or external applications that are instantiated on license from an application marketplace.  
In this context, the fourth Sub Use Case focuses on demonstrating interoperability and seamless integration 
with an ‘availability monitoring application’, defined and instantiated in the private cloud space, simulating 
a third-party integrator responsible for the availability monitoring of field devices enrolled to the SEMIoTICS 
eco-system.  
All field devices used throughout the UC1 demonstrator are being monitored and the availability status is 
displayed in a global user interface hosted in the private cloud. Additionally, in order to guarantee that data 
in-transit is not accessible nor modifiable by unauthorized parties, i.e., to guarantee confidentiality and 
integrity of said data, the involved components are forced to use encryption when it is detected that 
encryption is not used. As the field devices are registered to an MQTT Broker, as per Figure 21, enforcing 
encryption is possible by interacting with the Broker. 
 

 
FIGURE 21: INTERACTION OF FIELD DEVICES IN SUB USE CASE 3 
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7.2 Interaction with SEMIoTICS Framework and Components 
 
The components of the SEMIoTICS framework that are used in this sub use case are highlighted in Table 
4. The backend components include the Recipe Cooker, the Pattern Orchestrator, and the Pattern Engine, 
with the SEMIoTICS GUI at the application layer. While initially a Pattern Engine was also deployed at the 
field layer, it was finally considered not crucial for the execution of the specific scenario and its role was 
adopted by the Pattern Engine deployed at the backend. The deployment  of a lightweight Pattern Engine 
at the field layer is showcased in the context of UC3. 
The Recipe Cooker is used to relay to the Pattern Orchestrator a specific recipe which contains the sensors, 
the MQTT Broker and the requirement for encrypted communication between them.  
The Pattern Orchestrator, in turn, is responsible for automated configuration, coordination, and 
management of the different patterns needed to implement the Recipe, as well as their deployment to the 
various Pattern Engines. To achieve this, the Pattern Orchestrator processes received recipes; the result 
of the said processing enables the Pattern Orchestrator to choose which Pattern Engine should receive 
the corresponding Drools facts. Additionally this processing includes the generation of the REST endpoint 
required by the SEMIoTICS GUI to visualize the status of the relevant SPDI properties. 
 

TABLE 4: SEMIOTICS COMPONENTS USED IN SUB USE CASE 4 

Component SEMIoTICS 
component 

Architecture 
reference 

Description of use 

Recipe Cooker  ✓ Application 
Layer 

• Recipe Cooker framework based on 
Node Red is used to define and deploy 
the business logic to the Gateway and 
Backend Pattern Engines using Pattern 
Orchestrator as a proxy. 

Pattern Orchestrator ✓ Backend 
Layer 

• Pattern Orchestrator is used to 
translate the recipe (business logic 
request) into a set of patterns 
comprising Security requirements. 

Backend Pattern Engine  ✓ Backend 
Layer 

• Pattern Engine at the backend layer is 
used to toggle encryption on the MQTT 
broker in the public cloud based on 
triggered Security pattern by the 
Pattern Orchestrator.  

Backend GUI ✓ Backend 
Layer 

• Used to visualize the SPDI properties’ 
status, as received by the Pattern 
Orchestrator, including the adaptation 
of patterns applied to health monitoring 
connection. 

 
The Pattern Engine at the backend layer is used for gathering all the facts from the Pattern Orchestrator 
regardless which layer are referred to. This enables the Pattern Engine at the SEMIoTICS Backend to have 
a complete view of the current status of the SPDI properties across layers. All the application-related 
pattern rules are also hosted at this engine; specifically in this Sub Use Case, this includes the encryption 
rules that must be enforced to protect all interactions with the MQTT Broker. Finally, the GUI is used for 
visualizing the status of the SPDI properties through the Pattern Orchestrator’s corresponding REST 
endpoint.  
Figure 22 shows the sequence of interactions involved in the current scenario and the messages 
exchanged between components in order to carry out the functionality comprising the Sub Use Case. 
 
The Recipe Cooker initiates the flow by sending the recipe to the Pattern Orchestrator. As already 
described, the recipe contains the field devices, the MQTT Broker and the requirement for encryption 
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between the communication of the sensors and the MQTT Broker. The Pattern Orchestrator, after 
processing the recipe, translates the recipe “ingredients” to Drools facts and sends them to the Backend 
Pattern Engine. For every fact the Pattern Engine receives, it tries to match it to a rule, triggering the 
associated reasoning process. 
 

 
FIGURE 22: SEQUENCE DIAGRAM OF THE SECURITY ASPECT (UC1 - SUB UC4) 

 
As soon as all the necessary facts are received, the encryption rule is triggered as per Figure 23. 
 

 
FIGURE 23: MQTT ENCRYPTION RULE 

 
The when part of the rule specifies:  

1. An IoT sensor. 
2. A software component that represents the MQTT Broker. 
3. A sequence of the sensor and the MQTT Broker indicating their interaction. 
4. The orchestration property that can be guaranteed through the application of the pattern, i.e., the 

encryption property in this case ($PR). 
The then part triggers adaptation actions by contacting the Broker and forcing him to use encryption. 
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For more details on the pattern specification and reasoning approach followed in SEMIoTICS, we refer the 
reader to deliverable D4.8. 
 

7.3 Setup Testbed and Integration 
 
A testbed was set up to integrate and test the security aspects of the sub use case detailed above and to 
implement the sequence diagram shown in Figure 22. The technologies used to implement this include 
Java, Maven and Spring Boot for the development and creation of the Pattern Engine. Moreover, as 
detailed in deliverable D4.8, the Pattern Engine integrates the Drools Business Rules Management System 
(BRMS) solution to implement its reasoning capabilities. Finally, the Eclipse Mosquitto was extended with 
a restful service based also in Java, Maven and Spring Boot. 
 
Initially in FORTH’s premises the Pattern Orchestrator, Backend Pattern Engine and MQTT Broker are 
deployed in VMs. An Intel NUC (Figure 24) is used with 32GB RAM, 500GB storage and a CPU i7-6770HQ 
2.60GHz with 8 cores. The Proxmox Virtual Environment is installed in the Intel NUC which hosts the 
following VMs: 

• Pattern Orchestrator VM 
o 10 GB storage 
o 4 GB RAM 
o 4 CPU cores. 
o Ubuntu 18.04.4 LTS operating system 

• Pattern Engine VM 
o 10 GB storage 
o 4 GB RAM 
o 4 CPU cores. 
o Ubuntu 18.04.4 LTS operating system  

• MQTT Broker VM 
o 10 GB storage 
o 2 GB RAM 
o 4 CPU cores. 
o Ubuntu 18.04.4 LTS operating system  

 

 
FIGURE 24: THE INTEL NUC 
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After all the local testing was successful, the Pattern Orchestrator and the Pattern Engine were transferred 
in Siemens premises, in the form of Docker images inside the NanoBox (Figure 1), to create the UC1 
integrated testbed. 
 

7.4 Validation 
 
The above testbed allowed validating the functionality of the components by implementing the sequence 
diagram in Figure 22. Figure 25 shows the two REST endpoints implemented on the Broker.  In the 
configuration of the MQTT Broker, all the related information for incoming connections such as port, 
protocol certificates etc., is grouped and the terminology used to describe that group is “listener”. The 
“enableEncryption” alters the configuration of the Broker in such a manner that it will include certificates 
for the available listener for incoming connections, whereas the “encryptionStatus” verifies whether such 
certificates are present in the configuration. 
Additionally, the REST endpoints are protected with self-signed certificates generated at the Broker side 
to guarantee encrypted communication. At the Backend Pattern Engine, the appropriate certificate is also 
installed in order to trust the Broker, thus fulfilling the requirement R.GSP.4. 
 

 

 
FIGURE 25: MQTT BROKER REST APIS 

 
Figure 26 and Figure 27 shows the capture of packets from the Broker side before encryption is enabled. 
At this point all the communication is unencrypted, thus making the credentials exchange as well as all 
other data exchanges readable for passive attackers listening in on the connection. 
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FIGURE 26: CREDENTIALS EXCHANGE 

 

 
FIGURE 27: DATA EXCHANGE 

 
As data is published to the MQTT Broker, an InfluxDB is populated with this data. We can see the latest 
data for each of the three sensors in Figure 28, as well as the latest value inserted to the InfluxDB. This 
data, among others, includes information regarding the availability of the sensors with the field “status” and 
the timestamp of the latest value with the field “Time”. 
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FIGURE 28 GUI FOR INFLUXDB DATA 

 
Figure 29 shows the REST “encryptionStatus” that gives a response encryption: false. 
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FIGURE 29: ENCRYPTION STATUS BEFORE PATTERN REASONING 

 
As mentioned, we want to enforce secure communications on our sensors; so, we create a new recipe with 
the “Security” Property on the Broker. This recipe is sent to the Pattern Orchestrator via an HTTP request, 
using the Recipe Cooker interface, as shown in Figure 30. 
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FIGURE 30: SECURE BROKER COMMUNICATION RECIPE SPECIFICATION 

 
While the facts inserted to the Backend Pattern Engine do no satisfy any rule, the output of the Pattern 
Engine is “0 rules fired” as we see in Figure 31. As soon the final required fact is inserted, the rules are 
triggered, and the Pattern Engine initiates communication with the MQTT Broker. After that, the application 
on the Broker side makes the appropriate changes to the configuration and encryption is enabled. The 
response of the MQTT Broker, stating that the encryption is enabled, is also shown in Figure 31. 



780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017 
Deliverable D5.9 Demonstration and validation of IWPC - Energy (Cycle 2)  
Dissemination level: Public  

 

 
 

47 

 
FIGURE 31: PATTERN ENGINE OUTPUT 

 
As a confirmation, when we call the REST /encryptionStatus again (Figure 32), we get a different 
response, this time indicating that the encryption is enabled on the MQTT Broker. 
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FIGURE 32: ENCRYPTION STATUS AFTER PATTERN REASONING 

 
At this point the connection between the sensors and the MQΤT Broker does not work anymore because it 
does not use the encryption. As soon as we configure them to use encryption the communication is 
restored.   
We further verify the security of communications with the capture of packets from the Broker side after the 
encryption is enabled. At this point all the communication is encrypted with TLS1.3, making the credentials 
exchange as well as any data exchange unreadable, as per Figure 33. 
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FIGURE 33: DATA EXCHANGE AFTER REASONING 

 
In the SEMIoTICS GUI we also see that in the SPDI pattern monitoring view there is the Security Pattern 
Satisfied at the Backend Layer. 
 

 
FIGURE 34: GUIHUB GRAPHICAL INTERFACE 
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8 OVERALL KPIS AND REQUIREMENTS VALIDATION 
 
This section aims to provide a summary of requirements and KPIs relevant for evaluation in Use Case 1. 
The four presented Sub Use Cases, together with the remaining Use Cases 2 & 3 aim to address and 
validate the requirements presented in Table 5, while the relevant KPIs are presented in Table 6. 
 
Further information on use case -specific requirements related to Use Case 1 are provided in D2.3. The 
original methodology of KPI evaluation contained in D5.1 was updated where required and is mostly 
summarized here for brevity. 
 

TABLE 5: REQUIREMENTS PLACED ON USE CASE 1 AS PER D2.3 

Req-ID 
 

Description Reference Fulfilment 

R.UC1.1, R.GP.1 
(from D2.3) 

Automatic establishment of 
networking setup MUST be 
performed to establish End-to-end 
connectivity between different 
stakeholders 

Sections on Sub Use Cases 
1 and 2 and SDN-enabled 
connectivity. Deliverables 

D3.1/D3.7. 

This requirement is fulfilled and 
demonstrated by the interaction 

of Pattern Engine and Path 
Finding and reservation 
components in the SSC. 

R.UC1.2 

Automatic establishment of 
computing environment MUST be 
performed in IIoT Gateway for the 
minimum operation of the IIoT 
devices through network controller 
based on SDN/NFV 

Sections on Sub Use Cases 
1 and 2. Deliverables 

D3.2/D3.8. 

Dynamic orchestration of 
computing resources is the 

focus of Use Case 2, SFC being 
the main highlighted benefit of 
the approach. Nevertheless, 

computing resources in UC1 are 
orchestrated by the Recipe 

Cooker when deploying 
machine learning workloads on 

NanoBox devices. 

R.UC1.3 

There MUST be enabled the 
definition of network QoS on 
application-level and automated 
translation into SDN controller 
configurations. 

Section on SDN-enabled 
connectivity. Deliverables 

D3.1/D3.7. 

This requirement is fulfilled and 
demonstrated by the interaction 
of Pattern Engine, Path Finding 

and Resource Manager 
components in the SSC, in Sub 

Use Cases 1 and 2. 

R.UC1.4 

Network resource isolation MUST 
be performed for guaranteed 
Service properties – i.e. reliability, 
delay and bandwidth constraints. 

Section on SDN-enabled 
connectivity. Deliverables 

D3.1/D3.7.  

This requirement is fulfilled and 
demonstrated by the Path 

Finding / Resource Manager 
modules of SSC, in Sub Use 

Cases 1 and 2. 

R.UC1.8 

Semantic and robust 
bootstrapping/registration of IIoT 
sensors and actuators with IIoT 
gateway MUST be supported. 

Section on Sub Use Case 3. 
Deliverables D3.3/D3.9. 

This requirement is fulfilled and 
demonstrated by the 

SEMIoTICS components of the 
IIoT Gateway and is 

demonstrated in Sub Use Cases 
1, 2, 3. 

R.UC1.9 

Semantic interaction between use-
case specific application on IIoT 
Gateway and legacy turbine control 
system MUST be supported. 

Sections on Sub Use Cases 
1, 2, and 3. 

This requirement is fulfilled and 
demonstrated by the 

SEMIoTICS components of the 
IIoT Gateway and is 

demonstrated in Sub Use Cases 
1 and 2 - automated turbine 

rotor stopping (using a 
brownfield PLC) based on 
greenfield sensor inputs. 
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R.UC1.10 

Local analytical capability of IIoT 
Gateway to run machine learning 
algorithms (e.g. specific to 2 
specific Sub Use cases) 

Sections on Sub Use Cases 
1 and 2, KPI evaluation 

(below). 

This requirement is fulfilled and 
demonstrated by the video and 

audio analytics applications 
demonstrated in Sub Use Cases 

1 and 2. 

R.UC1.11 
Device composition and application 
creation SHALL be supported 
through template approach. 

Sections on Sub Use Cases 
1, 2, and 4. 

This requirement is fulfilled and 
demonstrated by the Recipe 
Cooker as Recipe (Template) 

orchestration tool and is 
demonstrated in Sub Use Cases 

1, 2 and 4. 

R.UC1.12 
Standardized semantic models for 
semantic-based engineering and 
IIoT applications MUST be utilized. 

Sections on Sub Use Cases 
1, 2, and 3 (especially). 

Deliverables D3.3 and D3.9. 

This requirement is fulfilled and 
demonstrated by the integration 

of Thing descriptions (WoT), 
i.e., by semantic modelling in 

IIoT Gateway is demonstrated in 
Sub Use Cases 1, 2 and 3. 

R.UC1.13 

Middleware functionality MUST be 
supported on IIoT gateway, to deal 
with termination of IIoT sensors, 
signal processing and termination 
of interfaces to legacy systems to 
provide prioritization and QoS for 
IIoT applications. 

Section on Sub Use Cases 
3 and 4. Deliverables 

D3.3/D3.9. Section on SDN-
enabled connectivity and 

D3.1/D3.7 

The requirement of sensor flow 
termination is fulfilled and 

demonstrated by the scenario of 
information splitting in the IIoT 

Gateway and is demonstrated in 
Sub Use Cases 3 and 4. QoS 

and prioritization are 
demonstrated in Sub Use Cases 

1 and 2. 

R.UC1.5 

Fail-over and highly available 
network management SHALL be 
performed in the face of either 
controller or data-plane failures. 

Deliverables D3.1/D3.7. 

This requirement is fulfilled, 
demonstrated and evaluated in 

a demonstrator and paper 
presented at ACM SIGCOMM 
2019. Due to numerous other 
highlights of UC1, it has been 
excluded from demonstration.  

R.UC1.6 
Decisions made by unreliable, i.e. 
faulty or malicious SDN controllers, 
SHALL be identified and excluded. 

Deliverables D3.1/D3.7. 

This requirement is fulfilled, 
demonstrated and evaluated in 

a demonstrator and paper 
presented at ACM SIGCOMM 
2019. Due to numerous other 
highlights of UC1, it has been 
excluded from demonstration.  

R.UC1.7 

The operation of the SDN control 
SHALL be scalable to cater for a 
massive IoT device integration and 
large-scale request handling in the 
SDN controller(s) using a (near-) 
optimal IoT client – SDN controller 
assignment procedure. 

Deliverables D3.1/D3.7. 

This requirement is fulfilled, 
demonstrated and evaluated in 

a demonstrator and papers 
presented at IEEE GLOBECOM 

2019 and ACM SIGCOMM 
2019. Due to numerous other 
highlights of UC1, it has been 
excluded from demonstration.  

R.GP.2 Scalable infrastructure due to the 
fast-paced growth of IoT devices 

Sections on Sub Use Cases 
1, 2, 3 and 4. 

This requirement is fulfilled and 
demonstrated in Sub Use Cases 

1, 2, 3 and 4 by IoT 
orchestration via Recipe Cooker 

in Node-RED environment. 

R.GP.3 

High adaptation capability to 
accommodate different QoS 
connectivity needs (e.g. low 
latency, reliable communication) 

Sections on Sub Use Cases 
1 and 2 and SDN-enabled 
connectivity. Deliverables 

D3.1/D3.4/D3.7/D3.10. 

This requirement is fulfilled and 
demonstrated by the interaction 
of Pattern Engine, Path Finding 

and Resource Manager 
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components in the SSC, in Sub 
Use Cases 1 and 2. 

R.GP.4 

Detection of events requiring a QoS 
change and triggering network 
reconfiguration need by SPDI 
pattern 

Sections on SDN-enabled 
connectivity and Sub Use 

Cases 1 and 2. Deliverables 
D3.1/D3.7. 

This requirement is fulfilled and 
demonstrated by Dependability 

(Connectivity) and Security 
pattern in Sub Use Cases 1 and 

4.  

R.GP.5 

Interaction between SDN controller 
and IoT backend cloud through a 
dedicated interface (called 
northbound software interface) 

Sections on Sub Use Cases 
1 and 2 and SDN-enabled 
connectivity. Deliverables 

D3.1/D3.4/D3.7/D3.10. 

This requirement is fulfilled and 
demonstrated by interaction 

between Pattern Orchestrator in 
backend and SSC. 

R.GP.6 

Interaction between SDN controller 
and network nodes (e.g. switches, 
routers or IoT Gateways) through 
dedicated interface (called 
southbound software interface) 

Section on SDN-enabled 
connectivity. Deliverables 

D3.1//D3.7. 

This requirement is fulfilled and 
demonstrated by SSC controller 
in Sub Use Cases 1, 2, 3 and 4. 

R.BC.16 Prediction mechanism based on 
the data stored in the cloud 

Section on Sub Use Case 3. 
Deliverables D3.3 and D3.9. 

This requirement is fulfilled and 
demonstrated by Sub Use Case 

3 via MindSphere – condition 
monitoring and predictive 

maintenance Apps. 

R.BC.18 
The backend layer must feature 
SPDI pattern reasoning embedded 
intelligence capabilities 

Section on Sub Use Case 4. 
Deliverables D4.1/D4.8. 

This requirement is fulfilled by 
the deployment and integration 
of pattern orchestration and 
reasoning capabilities at the 
backend (Pattern Orchestrator & 
Backend Pattern Engine), as 
showcased in sub-use case 4. 

R.BC.19 
The backend layer should feature 
pattern-driven cross-layer 
orchestration capabilities 

Sections on Sub Use Cases 
1, 2 and 4. 

Deliverables D4.1/D4.8. 

This requirement is fulfilled and 
demonstrated by Recipe Cooker 

component implemented in 
Node-RED. 

R.NL.12 
The network layer must feature 
SPDI pattern reasoning local 
embedded intelligence capabilities 

Section on SDN-enabled 
connectivity. Deliverables 

D3.1/D3.7. 

This requirement is fulfilled and 
demonstrated by interaction of 

Pattern Engine in SSC and 
Pattern Orchestrator. 

R.NL.13 

The network layer must aggregate 
intra-layer monitored information to 
enable local intelligence reasoning 
and adaptation 

Section on SDN-enabled 
connectivity. Deliverables 
D3.1/D3.7 & deliverables 

D4.1/D4.8. 

This requirement is fulfilled by 
the integration of the SDN 

Pattern Engine within the SSC 
and demonstrated in UCs 
relying on the reasoning 
capabilities of the SSC. 

R.FD.1 
Field devices SHOULD be able to 
get data from the environment 
through sensors (sensors). 

Sections on Sub Use Cases 
3 and 4. Deliverables D3.3 

and D3.9. 

This requirement is fulfilled and 
demonstrated by IIoT Gateway 

components in UC1 (i.e., 
camera, microphone and 

inclinometer sensors). 

R.FD.2 
Field devices SHOULD be able to 
process data in near real time 
(process units). 

Sections on Sub Use Cases 
3 and 4. Deliverables D3.3 

and D3.9. 

This requirement is fulfilled and 
demonstrated by IIoT Gateway 
components in UC1 (real-time 

anomaly detection and 
actuation). 

R.FD.3 
Field devices SHOULD be able to 
control (at least) a mechanism / 
system (actuators). 

Sections on Sub Use Cases 
3 and 4. Deliverables D3.3 

and D3.9. 

This requirement is fulfilled and 
demonstrated by IIoT Gateway 
components in UC1 (ref. legacy 

PLC controller). 
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R.FD.5 
Field devices SHOULD be able to 
interact with SEMIoTICS IIoT/IoT 
gateway dedicated components 

Sections on Sub Use Cases 
3 and 4. Deliverables D3.3 

and D3.9. 

This requirement is fulfilled and 
demonstrated by semantic 
integration of brownfield / 

greenfield devices in the IIoT 
Gateway in UC1. 

R.FD.6 

Field devices MUST interoperate 
using a standard communication 
protocol like REST APIs, COAP, 
MQTT. 

Sections on Sub Use Cases 
3 and 4. Deliverables D3.3 

and D3.9. 

This requirement is fulfilled and 
demonstrated by IIoT Gateway 
components in UC1 (ref. MQTT 

broker and REST API 
exposure). 

R.FD.7 
Field devices MUST use 
standardize interoperable message 
format (e.g. JSON, etc.). 

Sections on Sub Use Cases 
3 and 4. Deliverables D3.3 

and D3.9. 

This requirement is fulfilled and 
demonstrated by IIoT Gateway 

components in UC1. 

R.FD.8 
Field devices MUST support secure 
bootstrapping / registration 
protocol. 

Sections on Sub Use Cases 
3 and 4. Deliverables D3.3 

and D3.9. 

This requirement is fulfilled and 
demonstrated by semantic 

bootstrapping in IIoT Gateway 
components. 

R.FD.9 

Field devices MUST be able to 
communicate with the IIoT 
Gateway / other architectural 
components. 

Sections on Sub Use Cases 
3 and 4. Deliverables D3.3 

and D3.9. 

This requirement is fulfilled and 
demonstrated by IIoT Gateway 

components. This is possible by 
semantic integration of 

greenfield and brownfield 
devices (S7/MQTT/REST HTTP 

protocol support) . 

R.FD.10 Field devices SHOULD minimize 
data traffic. 

Sections on Sub Use Cases 
3 and 4. Deliverables D3.3 

and D3.9. 

This requirement is fulfilled and 
demonstrated by Local Analytics 
component in IIoT Gateway (ref. 
KPI-3.1.1 description below for 

further information). 

R.FD.12 

Greenfield device is expected to 
expose its capability over a W3C 
Thing Description, which 
semantically describes field 
resources, and to be 
computationally powerful enough to 
run a node-wot servient (that 
exposes the TD). 

Sections on Sub Use Cases 
3 and 4. Deliverables D3.3 

and D3.9. 

This requirement is fulfilled and 
demonstrated by the 

inclinometer greenfield IoT 
device. 

R.FD.13 

Brownfield device is assumed to 
consist of a sensor/actuator and a 
controller (PLC). The controller is 
expected to expose capability of its 
sensor/actuator over a native 
brownfield protocol (without the 
need for IIoT Gateway to interact 
directly with them). 

Sections on Sub Use Cases 
3 and 4. Deliverables D3.3 

and D3.9. 

This requirement is fulfilled and 
demonstrated by field layer 

devices (S7 protocol for 
interacting with the PLC). 

R.FD.15 

The field layer must aggregate 
intra-layer monitored information to 
enable local intelligence reasoning 
and adaptation 

Sections on Sub Use Cases 
1 and 2. Deliverables D3.3 

and D3.9. 

This requirement is fulfilled and 
demonstrated by the audio and 

video anomaly detection 
applications. 

R.S.1 
The confidentiality of all network 
communication MUST be protected 
using state-of-the-art mechanisms. 

Sections on Sub Use Case 
4. 

This requirement is fulfilled and 
demonstrated in tandem with 
SEMIoTICS’ pattern-based 

reasoning and adaptation SPDI 
capabilities, enabling TLS in 

Sub Use Case 4 

R.P.1 The collection of raw data MUST be 
minimized 

Sections on Sub Use Cases 
1 and 2. 

This requirement is fulfilled by 
the Pattern Engines in all layers 
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because no raw data is 
collected. Additionally, Sub Use 

Cases 1 & 2 demonstrate 
inference in field layer thus 

resulting in decrease of 
information transfer outside the 

local wind park. 

R.P.3 Storage of data MUST be 
minimized. 

Sections on Sub Use Cases 
1 and 2. 

This requirement is fulfilled by 
the Pattern Engines in all layers 

because no raw data is 
collected. Additionally, Sub Use 

Cases 1 & 2 demonstrate 
immediate inference in field 

layer thus resulting in decrease 
of the total information storage 

in the local wind park. 

R.P.12 

During all communication and 
processing phases logging MUST 
be performed to enable the 
examination that the system is 
operating as promised 

N/A. 

This requirement is fulfilled 
natively by Recipe Cooker, 

SSC, Pattern Orchestrator and 
IIoT Gateway that log all 
information of operation. 

R.GSP.4 Platforms, e.g. cloud platform and 
sensor, SHALL be trusted. 

Sections on Sub Use Case 
4. 

This requirement is fulfilled and 
demonstrated by the Backend 

Pattern Engine capable of 
enabling secure interactions of 
MQTT broker and MQTT clients 

on-demand. 

 
 

TABLE 6: KPIS VALIDATED / MEASURED IN USE CASE 1 

KPI-ID Name 

KPI-1.1 Number of SPDI Patterns 

KPI-2.1 Semantic descriptions for 6 types of smart objects 

KPI-2.2 Data type mapping and ontology alignment 

KPI-2.3 Semantic interoperability with 3 IoT platforms 

KPI-3.1.1 Generating monitoring strategies in the 3 targeted IoT 
platforms 

KPI-3.1.3 Performing predictive monitoring with an average 
accuracy of 80% 

KPI-4.1 Delivery of lightweight ML algorithms 

KPI-4.2 Delivery of mechanisms with adaptation time of 15ms 

KPI-4.6 Development of new security mechanisms/controls 

KPI-6.1 Reduce manual interventions required for 
bootstrapping of smart object in each use case 

domain by at least 80% 

KPI-6.3 Delivery of 3 prototypes of IIoT/IoT applications 

KPI-7.1 Provision the SEMIoTICS building blocks 
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8.1 KPI-1.1: Number of SPDI Patterns 
This KPI is satisfied through the delivery of the final set of SEMIoTICS SPDI patterns that well exceed the 
initially specified KPI of 36 patterns, as detailed in the deliverable D4.8 – “SEMIoTICS SPDI Patterns 
(final)”.  
In the context of UC1, the Dependability and Security patterns were used in sub use case 1 and sub use 
case 4, respectively. The Dependability pattern (Figure 35) was modified and was preinstalled in the SDN 
Pattern Engine while the Security pattern (Figure 37) was part of the Backend Pattern Engine. 
 

 
FIGURE 35: DEPENDABILITY PATTERN AT THE SDN 

 
The Dependability pattern is modified in such a manner to include network QoS properties.  
The when part of the rule specifies:  

1. Two OrchestrationActivities that act as the two endpoints. The OrchestrationActivity is a parent 
class for Host, IoTSensor, IoTGateway etc, which enables the rule to be more abstract without the 
need to specify a new rule for every class. 

2. A Link that represents the connection between the OrchestrationActivities. 
3. A sequence of the OrchestrsatonActivities indicating their interaction. 
4. Four QoS properties  
5. The orchestration property that can be guaranteed through the application of the pattern, i.e., the 

dependability property in this case ($qpr). 
The then part triggers the enforcement of the QoS properties which uses the SDN controller to generate 
in the switches per flow mapping configurations. 
The QoS properties are provided by the Recipe Cooker (Figure 36) and are forwarded via the Pattern 
Orchestrator to the appropriate SEMIoTICS layer and the corresponding Pattern Engine. 
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FIGURE 36: RECIPE COOKER QOS MAPPING 

 
The Security pattern is a combination of three rules in the Backend Pattern Engine, Security decomposition, 
MQTT_Encryption and Security_verification. 
Security decomposition:  
The when part of the rule specifies:  

1. A software component that represents the MQTT Broker. 
2. The orchestration property that can be guaranteed through the application of the pattern, i.e., the 

security property in this case ($PR). 
The then part creates a new property that we need to verify and that is the MQTT_Encryption of the 
software component. 
 
MQTT_Encryption: 
The when part of the rule specifies:  

1. An IoT sensor. 
2. A software component that represents the MQTT Broker. 
3. A sequence of the sensor and the MQTT Broker indicating their interaction. 
4. The orchestration property that can be guaranteed through the application of the pattern, i.e., the 

encryption property in this case ($PR). 
The then part triggers adaptation actions by contacting the Broker and forcing him to use encryption. 
 
Security_verification 
The when part of the rule specifies:  

1. A software component that represents the MQTT Broker. 
2. The orchestration property that can be guaranteed through the application of the pattern, i.e., the 

security property in this case ($PR1). 
3. The property of MQTT_Encryption that must already be satisfied. 
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The then part modifies the status of the orchestration property to state that the property holds. 
 

 
FIGURE 37: SECURITY PATTERN AT THE BACKEND PATTERN ENGINE 

 
In both the Dependability and the Security pattern, the recipe that will invoke the triggering of the rules is 
originating from the Recipe Cooker. The Pattern Orchestrator receives the translated recipe to SEMIoTICS 
pattern language and forwards the ingredients of the recipe as facts to the appropr iate pattern engine for 
reasoning. The visualization of the pattern status occurs in the GUI component where the information is 
queried in standard intervals from the Pattern Orchestrator. More information on this process can be found 
in deliverable D4.8. 
 

8.2 KPI-2.1 Semantic descriptions for 6 types of smart objects 
 
This KPI is satisfied as, within the project, semantic descriptions for six types of smart objects have been 
created. We have used W3C Thing Description (TD) standard for this purpose.  
The Thing Descriptions which were created in SEMIoTICS include: (i) inclinometer, (ii) wind turbine, (iii) 
camera, (iv) microphone, (v) temperature sensing device, (vi) energy monitoring device, and (vii) multi-
sensor node.  
Two Thing Descriptions are provided in this document as examples, i.e., a TD for the wind turbine (a legacy 
device used in Use-Case 1) is shown in Appendix 10.1, and a TD for the inclinometer (a greenfield device 
used in Use-Case 1) is presented in Appendix 10.2. 
In Deliverable D3.9 we provided information explaining how a TD is generated by SEMIoTICS IoT Gateway. 
Further on, we described how a TD can be used for creating applications. Thing Description is a 
cornerstone for making a field device programmatically accessible. The gateway will create a Device Node 
in Semantic Edge Platform for each interaction pattern from a TD. Figure 38 shows how an inclination 
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Device Node has been created from a TD provided in Appendix 10.2, and how this node has been used in 
an application to monitor Field Devices Availability (see Section 7). 
 

 
FIGURE 38: FIELD DEVICES AVAILABILITY MONITORING 

 
 

8.3 KPI-2.2: Data type mapping and ontology alignment 
  
The aim of this Use Case is the IIoT integration in Wind Park Control Network providing value-added 
services. Specifically, one of its parts refers to taking local action on sensing and analyzing structured data 
to find the inclination of a steel tower.  
However, at runtime, a possible change in resource availability may require an adaptation mechanism for 
the dynamic recompositing of the flow components, without any change of the system behavior. We assume 
that the above flow has an Inclinometer component. If, for a reason, the Inclinometer becomes unavailable, 
another component from the IoT repository with the same functionality is selected to replace the one that 
has become unavailable. In this case, interoperability of the link between the replaced component and the 
connected flow component should be checked before the final decision for the replacement to ensure the 
initial target of the system. In particular, a potential conflict that needs to be addressed in case of the 
Inclinometer is the different unit of measurement of angle (degrees, radians), which is used by the two 
components (the replaced and the connected flow component). 
The solution in this interoperability adaptation issue is with the participation of the Backend Semantic 
Validator as a core component. It examines the interoperability between the corresponding sensors and 
tries to ensure the interaction between them creating Adaptor Nodes. Figure 39 highlights and explains 
said methodology in the specific Use Case scenario. 
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FIGURE 39: DATA MAPPING APPROACH 

 
Even though it was conceptually described in D4.11 Backend Semantic Validator is not presented in the 
UC1 due to focusing on other aspects of SEMIoTICS architecture. Nevertheless, the Backend Semantic 
Validator is presented in UC2. 
In order to ensure interoperability from the application definition all the way through to the execution at 
runtime, we have implemented four levels of abstraction and accordingly three steps of transformation 
between them. These steps are indicated in below Figure 40. 
 

 
FIGURE 40: TRANSLATIONS FROM RECIPES TO EXECUTABLE RULES 

 
Recipes are designed in the Recipe Cooker component and serialized in the N3 language. Then, we have 
implemented various N3-based rules that can transform the Recipe into a network configuration. An 
overview of these 2 models (Recipe and Network model) and their transformation is shown in Figure 41. 
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FIGURE 41: TRANSFORMATION FROM RECIPE TO NETWORK CONFIGURATION 

 
In Table 7 a few semantics are presented related to SDN patterns. In the LHS, the components which 
constitute the topology of the pattern are defined. Different facts such as hosts, and links are included in 
the list. Moreover, the Property represents the constraints of the topology and the required property. In the 
RHS, the pattern provides the solution by inserting, modifying, updating or retracting facts from the 
knowledge base which will also update the inventory list in the controller. Each component is converted 
through the respective Java class to an understandable format to the Pattern Engine. 
 

TABLE 7: PATTERN RULE SEMANTICS 

Type Syntax Description 
rule rule "name" name of the rule 
Left Hand Side (LSH) 

when 

Network Pattern Elements (Facts) 
Host (mac, activityAddress) match network nodes such as switches and hosts 
Link (srcId, destId) match links between source and destination nodes 

Property (subject, category, 
satisfied) 

match requirements of pattern such as subject (e.g. 
host), property category (e.g. Dependability) and 
satisfied (e.g. true/false) 
Conditional Elements 

== match conditions 
contains contains object (logical) 
not not match (logical) 
!= not match (arithmetic) 

Right Hand Side (RSH) 
then Actions 
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modify (\$fact)\{pro=pro'\} modify knowledge base fact 
retract (\$fact) retract knowledge base fact 
insert (new Fact ()) insert knowledge base fact 
update (\$fact) update knowledge base fact 
Java commands other Java language syntax 

 

8.4 KPI-2.3: Semantic interoperability with 3 IoT platforms 
The semantic interoperability between the IIoT Gateway and two IoT platforms has been achieved. These 
are the public MindSphere Cloud and the private InfluxDB Cloud. Integration and interoperability with a 
third Cloud were not required by this use case. Thus, we focused on tighter integration and interoperability 
between the Field and Edge as well as between the two Cloud deployments. Each of these Clouds runs a 
UC-specific application. Figure 14 depicts details about the two applications, which are based on the data 
from the inclinometer. The user initializes both applications over Semantic Edge Platform (IIoT Gateway) 
as shown in Figure 13. The first application continuously monitors the sway of the tower and detects 
anomaly. This application is deployed in the MindSphere Cloud. The second application monitors the health 
status of the inclinometer and visualizes this data. The application is deployed in a private InfluxDB Cloud. 
Both applications use the data from the Field level, integrated by the Gateway at the Edge level, and 
pushed to two different Clouds, see Figure 42. 
 

 
FIGURE 42: SEMANTIC INTEROPERABILITY ACROSS FIELD, EDGE AND TWO CLOUD 

PLATFORMS 
 
In the following we summarize how the semantic interoperability has been achieved (further details are 
provided in Deliverable D3.9). The cornerstone for the semantic interoperability is based on the W3C Thing 
Description standard. Each field device is semantically described with a Thing Description (TD). The IoT 
Gateway generates a TD for brownfield device, whereas greenfield devices already have a TD available. 
Based on these TDs, the gateway provides a unified API at the Edge level. This has been realized with a 
standardized W3C Web of Things API. By making all field devices accessible over a unified and 
standardized API and describing them with standardized semantics, we have achieved the full 
interoperability at the Edge level.   
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In order to provide interoperability with the Cloud layer, our approach in SEMIoTICS is to reuse semantics 
from Edge in the Cloud. This means, that Thing Descriptions provided at the Edge has been used to form 
a Cloud-level semantics. The functionality of GW Semantic Mediator in the IoT Gateway has been extended 
for this purpose.  
 

 
FIGURE 43: SEMANTIC MODELS TRANSFORMATION WITH GW SEMANTIC MEDIATOR 

 
The GW Semantic Mediator accepts one semantic model as input and converts it into another semantic 
model, based on a mapping knowledge; see Figure 43. For example, in order to provide data of the 
inclinometer in the public MindSphere Cloud, we have to generate a MindSphere Asset model for the 
inclinometer. The GW Semantic Mediator automates this task. It takes a TD for the inclinometer (see 
Appendix 10.2) and automatically produces a valid MindSphere Asset model (see Appendix 0). The 
MindSphere model is generated with the same semantics as specified in the initial TD at the Edge. The 
two models differ in syntax and data formats though, e.g., TD is provided in JSONLD, whereas the 
MindSphere accepts the JSON format. The automated mapping is ensured based on Mapping Knowledge, 
see Figure 43. The Mapping Knowledge explains how to map one semantic model into another one. It is a 
declarative way to express the mapping rules. This knowledge can be created once for certain input/output 
models and used many times afterwards for an automated integration between Edge and Cloud. In 
Appendix 10.4 we show the Mapping Knowledge we created to map W3C Thing Description into Siemens 
MindSphere Asset model. 
 

8.5 KPI-3.1.1: Generating monitoring strategies 
 
Monitoring the infrastructure, in this use case the wind turbine, was mainly done via a microphone and a 
video camera. The strategies for handling the gathered data from those smart sensors are described below. 
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FIGURE 44: MICROPHONE (AT THE BOTTOM OF THE DOOR) INSTALLED IN WIND TURBINE 
NACELLE 

Figure 44 shows the microphone mounted within the housing of a wind turbine. This Siemens NanoBox on 
the field layer, accesses the microphone and captures the audio data. The recorded audio is sliced into 
samples of predefined length. The audio samples are then transformed into images using Fourier 
transformation. These images are then fed into the AI model for inference to identify whether it is an 
anomaly (e.g., loose objects making tumbling noise) or a regular sound. These images of the audio are 
then sent via the network to the NanoBox on the backend layer, which is used to do the AI inference on 
the received data. 
The concrete application flow of the audio processing that is setup in the Recipe Cooker is shown in Figure 
45. The distribution of the implemented IoT applications over the two NanoBoxes on field and backend 
layer is also visible in their workflow, which is realized with Node-RED. On the left, we see the components 
deployed on the field NanoBox, and on the right the components deployed on the backend NanoBox. Such 
distribution of the application workflow on two (or more) edge devices has the advantage that the 
computational load can be shared, or processes can be parallelized. The workflow shown in Figure 45 
comprises the following steps (each step is marked with a red square in the figure): 

1. The audio data is accessed. 
2. The recorded sample is played to the user. 
3. The recorded audio sample is transformed into an image via Fourier transformation, which is then 

send over the network. 
4. The image files are received. 
5. The inference is computed.  
6. Finally, the exceedance over a specified loss threshold indicates an anomaly, so a loose object in 

the turbine. Then, the PLC controller is triggered to stop the turbine. 
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FIGURE 45: FLOW OF THE AUDIO PROCESSOR 

 
Figure 46 shows example images resulting from Fourier Transformation of audio samples: on the left is a 
normal sound sample transformed into an image and on the right is an abnormal sound sample.  
 

 
FIGURE 46: AUDIO FILES AFTER FOURIER TRANSFORMATION 

Figure 47 shows the IoT application workflow of this video analytics case. On the left, we see the 
components deployed on the NanoBox on the field layer, and on the right the components deployed on the 
backend NanoBox. The workflow steps are as follows (shown in red squares in the figure): 

1. The video analytics workflow starts by accessing and preparing the data. 
2. In a second step it is sent over the network. 
3. Where the data is received in this block and displayed through this node. 
4. Feed into the AI inference here, which is captured in a Python script. 
5. While the last step reacts to the inference output: the loss. If the loss exceeds a specified threshold, 

it means that grease has been detected, and the Wind turbine is switched off through contacting 
the PLC controller. 
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FIGURE 47: APPLICATION FLOW FOR THE VIDEO PROCESSING AND ANALYSIS 

 
Compared to a conventional approach where raw data from the microphone deployed in Sub Use Case 1: 
Audio Processing Demo and the video camera deployed in Sub Use Case 2: Video Processing Demo 
respectively would be transmitted over a wide area and processed in either a private or public compute 
environment, the deployment of the application to the field layer for processing in an edge computing node, 
effectively eliminates the need to transmit the high-volume data off site. 
 
The application deployed in Sub Use Case 1: Audio Processing Demo exploits a continuous 705 kilobits 
per second (kbps) stream of audio data (16-bit mono stream sampled at 44.1 KHz) from the microphone 
deployed equivalent every second. For a single deployment, the daily bandwidth saved by processing the 
data at the edge, can be seen in Equation 1. 
 

𝐾𝑖𝑙𝑜𝑏𝑦𝑡𝑒𝑠 𝑝𝑒𝑟 𝑠𝑒𝑐𝑜𝑛𝑑 𝐾𝐵/𝑠 =  
𝐾𝑖𝑙𝑜𝑏𝑖𝑡𝑠 𝑝𝑒𝑟 𝑠𝑒𝑐𝑜𝑛𝑑 (𝑘𝑏𝑝𝑠)

8  

88.125 𝐾𝐵/𝑠 =
705𝑘𝑏𝑝𝑠

8  

𝐷𝑎𝑖𝑙𝑦 𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ 𝑠𝑎𝑣𝑒𝑑 7,6 𝐺𝐵 = 88.125 𝑘𝐵/𝑠 𝑥 86400 𝑠𝑒𝑐𝑜𝑛𝑑𝑠  
 

EQUATION 1: DAILY BANDWIDTH SAVED IN SUB USE CASE 1 AUDIO PROCESSING DEMO 
 

SUB USE CASE 1 AUDIO PROCESSING DEMO 
 
Whereas the application deployed in Sub Use Case 2: Video Processing Demo only samples the image 
every 10 seconds. In the Sub Use Case 2 we sample a 1920 x 1080 (2MP) JPG compressed image that is 
downloaded directly from the video camera. The average size of the sampled image is 420 Kbyte. Thus, 
the daily bandwidth saved can be seen in Equation 2. 
 

𝑀𝑒𝑔𝑎𝑏𝑦𝑡𝑒 𝑀𝐵 =  𝐾𝑖𝑙𝑜𝑏𝑦𝑡𝑒𝑠 ÷  1024  
 3.6288 𝐺𝐵 = 8640 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 ∗ 420𝐾𝐵 (𝑝𝑒𝑟 𝑠𝑎𝑚𝑝𝑙𝑒)  
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𝐷𝑎𝑖𝑙𝑦 𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ 𝑠𝑎𝑣𝑒𝑑 𝑖𝑠 3.62 𝐺𝐵 
EQUATION 2: DAILY BANDWIDTH SAVED IN SUB USE CASE 2 VIDEO PROCESSING 

 

8.6 KPI-3.1.3: Performing predictive monitoring with an average accuracy of 80% 
In D4.10 we reported already the creation of data sets for the test and validation of the developed AI 
algorithms for monitoring grease leakages within the wind turbine using video analytics. The final validation 
accuracy has been 99% (see Figure 48). For the validation data set, the aggregated model (federated 
model) was used for the calculation. 
 

 
FIGURE 48: VALIDATION LOSS AND ACCURACY OF AGGREGATED MODEL FOR VIDEO ANALYSIS 
 
As described in D4.10, we used Federated Learning to train the AI models. For the evaluation, the training 
was distributed among the three workers Alice, Bob, and Charlie. To minimize the runtime for this test case, 
all workers and the Orchestrator were started on the same device (and operating system). The data was 
transferred via the WebSocket protocol but is not really sent over a network. Only the loopback interface 
was used for the transmission since it is not important for the results of error and accuracy. A total of 5 
training rounds were executed with a learning rate of 0.001. These two hyper parameters have a decisive 
influence on the training. The difficulty is to find the optimal values for the hyperparameters. 
 

 
FIGURE 49: ERROR AND ACCURACY OF WORKER MODELS FOR VIDEO ANALYSIS 

Figure 49 shows errors and accuracy of the training records of the three workers. Please note that each 
worker has his own model and training data set. Since the pre-trained model MobileNetV2 was used, the 
error after the first epoch is already very low and the accuracy is very high. The accuracy is between 98% 
and 99% for all workers after the training process. 
In the following, we show how well the trained model works during operation. With the help of  the library 
Matplotlib these images are graphically displayed together with the probabilities predicted by the model. 
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Figure 50 shows a screenshot of example images with their probabilities. The model has correctly classified 
all images. On closer analysis, it is noticeable that with an increasing amount of oil, the probabilities also 
increase. This means that the more oil there is, the more reliable the algorithm is. This is a further indication 
that the algorithm is working correctly. For example, in the second image in the first row, which shows a lot 
of oil, the algorithm is very secure at 98%. On the other hand, the third image in the third row has a 
comparatively low probability of 83%, which is due to the significantly lower oil content.   
 

 
FIGURE 50: CLASSIFICATION AFTER TRAINING WITH FEDERATED LEARNING 

 

8.7 KPI-4.1: Delivery of lightweight ML algorithms 
The efficiency of the developed Federated Learning algorithm (see D4.10) for the communication network 
was analyzed using Wireshark. The used bandwidth was measured in both directions: between workers 
and orchestrator. Table 8 below shows the results.  
 

TABLE 8: TRANSMITTED DATA BETWEEN ORCHESTRATOR AND WORKER 

Direction Size of model Traffic 

Orchestrator to Worker 8,7 MB 18,6 MB 

Worker for Orchestrator 8,7 MB 18,6 MB 

 
The amount of data transferred is approximately the same in both directions. The largest part of the 
transmission is determined by the size of the model. The reason for the considerably larger amount of data 
during transmission is therefore the conversion to the hexadecimal representation.  
There is significant potential for improvement in the PySyft implementation. The implementation allows 
both the feature extract and the fine-tuning mode for transfer learning. By default, the latter is used because 
the pre-trained MobileNetV2 already delivers good results. Therefore, only the weights of the last shift are 
optimized during training. It would be more efficient to transfer only this layer and not the whole model. A 
possible solution is to split the model into two models. The first model (frozen_model) consists of all so-
called frozen layer These are the layers whose parameters cannot be changed. In this case, these are all 
but the last layer. This model only needs to be transferred to the workers once. The second model 
(trainable_model) has the trainable layers, in this case only the last layer.  
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The differences between MobileNetV2 and frozen_model is only in the kilobyte range and can therefore be 
neglected. The file size of the trainable_model is much smaller with 11 KB. If only this model were to be 
sent from the second training round onwards, an enormous amount of bandwidth could be saved.  
 
In case of the audio analysis, to autonomously identify faults in the data captured by the microphone, we 
used an AutoEncoder, which is a special kind of neural network, that can be used to detect anomalies in 
data. The model of an AutoEncoder (Figure 51) has a bottleneck design, consisting of an Encoder (that 
takes in the input data which is compressed) and a decoder (that decompresses the data again to re-
produce the input data). The output of the AutoEncoder has an intentional information reduction, which we 
can quantify through the loss. The loss is smaller when the uncompressed output is more similar to the 
input data. 
Now, if the input data is an outlier, e.g., a fault situation such as an image that suddenly shows black dots 
of leaked grease, it diverts from the norm it was trained on (which would be images without any grease 
dots) and therefore it shows a higher loss. This fact can be used here to identify the faulty situations.  
 

 
FIGURE 51: AUTOENCODER PRINCIPLE8 

 
In order to train the AutoEncoder for the audio analytics for detection of loose objects within the turbine, 
we utilized the microphone within the turbine to record 24 hours of audio under normal cond itions, which 
was cut in samples of 10 seconds of audio. These samples are then transformed from the time into the 
frequency domain using a Fourier Transformation (Figure 52). We did this to produce 200 images from 
such audio samples. These images were then used to train the AutoEncoder. 

 
FIGURE 52: AUDIO ANALYTICS FOR LOOSE OBJECT DETECTION 

 
The model size of the AutoEncoder is about 108 MB so that would create a lot of overhead for the network. 
For the future, the goal is to implement a technique for reducing the size of the exchanged model, for 
example by compressing the model, or by transmitting the gradients that have changed significantly 
compared to the previous round, based on a threshold. Afterwards, the exchange of the partial model 
should be evaluated and compared with the one that suggests the exchange of the entire model. The 

 
8 Based on: https://towardsdatascience.com/applied-deep-learning-part-3-autoencoders-1c083af4d798 
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comparison should be in terms of accuracy and training loss, as it is very important to maintain the same 
accuracy. 
 

8.8 KPI-4.2: Delivery of mechanisms with adaptation time of 15ms  
 
For the Sub Use Case 4, the encryption between the sensors and the Broker is enabled during runtime by 
the Pattern Engine. This is accomplished with the triggering of 3 Drools rules as mentioned in Section 8.1.  

 

 
FIGURE 53: MEASUREMENTS OF RULES EXECUTION 

 
The first rule is for the decomposition of the security property and the last is for the verification of the said 
property. The middle rule will attempt to contact the broker through internet to access the public cloud and 
enforce the encryption. The duration of the above process can be split in two parts. The first part includes 
the duration of the tasks occurring inside the Pattern Engine, while the second part includes the duration 
of the tasks occurring on the Broker side which is located in the cloud. In order to measure the duration of 
the adaptation mechanism we calculate the duration of the tasks occurring at the Pattern Engine.  
We can see from Figure 53, and in more detail in Figure 54 that the first rule is triggered at 11:15:44.355 
and the second rule is triggered at 11:15:44.358. This means that the time needed to trigger the first rule 
until the time that the engine-initiated contact with Broker took 3ms. Likewise, we see that we receive the 
response from the public cloud at 11:15:44:530 and all the rules have ended at 11:15:44.535. This adds 
5ms more to the initial duration resulting to a total of 8ms thus satisfying the limits set in KPI 4.2. 
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FIGURE 54: MEASUREMENTS OF ADAPTATION MECHANISM 

 

8.9 KPI-4.6: Development of new security Mechanisms/Controls 
In the context of UC1, sensors are communicating with an MQTT Broker. The security of this 
communication and particularly the encryption of the traffic, is controlled by an appropriate pattern rule 
preinstalled in the Backend Pattern Engine (Figure 55). This pattern rule allows the enforcement of 
encryption on the MQTT Broker with the help of an application developed on the Broker side.  
 

 
FIGURE 55: PATTERN BASED ENCRYPTION ENFORCEMENT 

 
In the configuration of the MQTT Broker, all the related information for incoming connections such as port, 
protocol certificates etc., is grouped and the terminology used to describe that group is “listener”. The 
“enableEncryption” alters the configuration of the Broker in such a manner that it will include certificates 
for the available listener for incoming connections thus enforcing TLS encryption as shown in packet 
capture of Figure 56. 
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FIGURE 56: PACKET CAPTURE AFTER ENCRYPTION IS ENABLED 

The interaction between the pattern Engine and the MQTT Broker occurs during runtime and the encryption 
is enabled on the fly. The immediate effect of the above procedure is to break the communication with the 
sensors until they are configured to use encryption from their side too. This way, the security of the system 
is hardened, allowing only secure communication between the sensors and the MQTT Broker. 
 

8.10 KPI-6.1: Reduce manual interventions required for bootstrapping of smart object in 
each use case domain by at least 80% 

 
In order to address this KPI we briefly describe how automation systems are engineered nowadays. We 
then compare this procedure with our approach, which significantly reduces the effort.  
The target of 80% is very much an exact number, which cannot be proven in general. Various automation 
systems and applications differ significantly in their complexity. To reduce manual intervention is also a 
qualitative measure (not only quantitative one as stated in this KPI). Nevertheless, in the following we 
attempt to provide justification for our approach, which eases the engineering process.   
 
The state of the art in engineering of automation systems is divided into five phases: 1. Design phase ; 2. 
Development phase; 3. Engineering phase; 4. Commissioning phase, and 5. Operation phase.  
An engineer starts the Design phase by defining an automation function, which needs to be implemented 
on a field device. The function is defined with a model in accordance with the model-driven design. The 
engineer runs the code generator to generate the skeleton of the function and implements the function in 
the Development phase. The engineer will then typically engineer an automation system. The system 
contains the field device with a newly developed function. Usually, it contains other field devices too. The 
devices need to be networked with defined interactions between them (including protocols, IP addresses, 
ports etc.). The semantics of data exchanged between devices need to be defined (data formats, data 
types, units, quantities etc.). Finally, the engineer deploys and configures the system on an automation 
station in the Commissioning phase and starts the system with a certain functionality (application).  
 
If a new application, with a new device, needs to be realized (as it is the case in Use Case 1) then the 
automation system has to be re-engineered. The new device is required to communicate over the same 
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protocol used by existing sensors. This is in contradiction to the requirements of our use case. Our 
assumption is that a wind turbine has a lifecycle of 20 to 30 years. In this long period of time, new 
applications with new devices and with different communication capabilities are bound to emerge, 
especially considering the fast-paced landscape of the IIoT era. Thus, we need to make interoperable 
brownfield devices with new devices.  
 
With our approach the IoT Gateway integrates both brownfield and greenfield devices and enables a new 
application. In tradition automation system, for devices with diverse communication capabilities or different 
semantics of data, this is not possible at all. In contrast, the SEMIoTICS IIoT Gateway can do this, as it 
features pre-created protocol bindings for devices with diverse communication capabilities and provides a 
unified Thing Description as a common semantics for devices and their data. Moreover, it is integrated with 
a Software Defined Network to ensure networking capabilities of field devices tailored to a given application. 
It scans the network consisting of diverse field devices, and in a few minutes, it can bootstrap them. 
Furthermore, it automatically generates programmable access to these devices. An engineer may then 
implement an application knowing only one API and one semantic data model for all diverse field devices, 
their capabilities, and the capabilities of the underlying network.  
 
In our evaluation, an engineer was able to bootstrap few field devices and develop an application in less 
than 15 minutes. In contrast to this, the traditional engineering process as described above requires a day 
or longer. This always depends on the number of field devices and the size of an application (automat ion 
system). Our evaluation was constrained to the class of applications as developed in this project.    

 
 

8.11  KPI-6.3: Delivery of 3 prototypes of IIoT/IoT applications  
 
In addition to Use Cases 2 and 3, Use Case 1 presents a prototype of an IoT platform implementing the 
SEMIoTICS architecture. Therefore, the 3 use case demonstrators delivered by the project satisfy this KPI. 
 
Regarding UC1 in specific, Sub Use Case 1 and Sub Use Case 2 use infrared camera and microphone 
hardware sensors, in addition to an AI-based imagery/audio classifier interlinked via a recipe and deployed 
on multiple devices networked via SDN. Based on the result of the inference of the imagery and audio 
classifiers, a running system is triggered with an adaptation request, i.e., to stop turbine rotation, in real-
time. In addition, alarms are raised using remote Cloud platforms as enablers, in order to notify the system 
owner of ongoing malfunctions and events. Sub Use Case 3 deploys an inclinometer mounted on the model 
wind turbine to report the sensed measurements over the SDN to a Cloud platform (Siemens MindSphere) 
where the data is recorded and available for analytics in the Predictive Maintenance and Condition 
Monitoring applications. 
 

8.12 KPI-7.1 Provision the SEMIoTICS building blocks 
 
All components deployed in UC1 fulfil by definition the TRL level 4, due to their successful deployment in 
the lab environment.  
Some of the tested blocks additionally are validated for compatibility with the technological building blocks 
at TRL 5. Specifically, the IIoT Gateway components used in Use Cases 1, 2, and 3, among other 
functionalities, exposes an interface to interact with a PLC brownfield device (i.e., the SIMATIC S7 PLC). 
This turbine controller emulates the functionality of the turbine controller hosted in the operational Wind 
Park.  
Details of the realization of the interface for brownfield interactions are provided in Section 6.  
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9 CONCLUSION 
 

9.1 Observed obstacles 
Main obstacles encountered during the demonstrator development were related to the ongoing COVID-19 
pandemic, imposing limitations in access to the integrated environment.  
 
In particular, physically preparing the testbed (e.g., the demonstration case shown in Figure 3) and the execution 
of tests where physical input was required (e.g., putting grease on the turbine model and subsequently collecting 
sufficient amount of images to train the auto-encoder with good accuracy), imposed significantly delays in the 
development of field layer applications.  
 
Additionally, remote access had to be established to the system due to limited physical access and connection 
to the testbed. However, connecting to each device in the distributed setup over provided SDN infrastructure 
proved unstable, due to dependency of the SDN’s correct functioning on the SDN controller. Thus, whenever 
the SDN controller was impacted, e.g., due to a planned code upgrade or test execution, the remote access 
would accordingly be affected, or even made unavailable, which made the progress of SSC implementation 
harder. In order to circumvent this issue, we deployed an out-of-band network to each device in the system, 
configured it with a separate subnet and made it available for access to all contributors of the use case. 
 
The limitation of not being able to execute technical workshops further delayed implementation and integration 
achievements, whenever dependency on hardware or isolated testbed access was necessary. The need for 
social distancing resulted in the adoption a token-based approach for persons requiring accessing the testbed. 
Common integration rounds were, thus, unviable. Due to testbed being hosted at SAG premises, SAG had to 
act as the sole point of contact and integrator in order to deploy the components developed by BS (SEMIoTICS 
GUI - GUIHub) and FORTH (Pattern Engines, Pattern Orchestrator). 
 

9.2 Concluding Remarks 
The main goal of UC1 was to demonstrate the seamless coexistence of a highly integrated control system and 
an agile and SPDI-aware IIoT ecosystem based on the SEMIoTICS framework,  allowing service providers to 
deploy new value-added services faster and provide effective access to data, from both existing control system 
and the newly deployed edge sensor networks. The demonstrator of UC1, therefore, addresses some of the 
common challenges in extending the capabilities of an existing control system in a brownfield environment in 
the Wind Energy domain while highlighting the general benefits of the SEMIoTICS platform.  
 
Deliverable D5.4 provided the initial insights on the development of UC1, while D5.9 presented herein the 
final status of development of SEMIoTICS’ UC1 and the four associated Sub Use Cases. Compared to 
D5.4, D5.9 extended the description of D5.4 with the final status of implementation and integration of the 
UC1 components and elements of the SEMIoTICS platform and has presented the methodology and 
measurement points (where applicable) used to quantify the reaching of KPIs in UC1, as defined in the 
D5.1 
 
Therefore, this deliverable presented the final achievements of the consortium regarding the integration of 
physical equipment comprising industrial programmable logic controllers, actuation, the greenfield and 
brownfield sensory and actuation devices, private and public clouds environments and hosted applications, 
the orchestration mechanisms introduced in SEMIoTICS, as well as the resources orchestrated, and 
applications dynamically instantiated and interconnected by our framework.  
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10 APPENDIX 
10.1 Thing Description for Brownfield Device 
This is an example of a Thing Description for SEMIoTICS wind turbine (brownfield device). 

 
FIGURE 57: THING DESCRIPTION FOR WIND TURBINE 

10.2 Thing Description for Greenfield Device 
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This is an example of a Thing Description for SEMIoTICS inclinometer (greenfield device). 
 

 
FIGURE 58: THING DESCRIPTION FOR INCLINOMETER 
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10.3 MindSphere Asset Model 
This is an example of MindSphere Asset model for SEMIoTICS inclinometer. 
 

 
FIGURE 59: MINDSPHERE ASSET MODEL FOR SEMIOTICS INCLINOMETER 

10.4 Mapping Rule of GW Semantic Mediator  
This is an example of a declarative mapping in GW Semantic Mediator. It provides an automated mapping 
of a Thing Description (e.g., SEMIoTICS inclinometer shown in Figure 58) into a MindSphere Asset model 
(see Figure 59). Figure 60 depicts the complete example mapping (note that all three parts below belong 
to the same mapping rule). 
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PREFIX gr: <http://example.com/graph/> 
PREFIX ms: <https://mindsphere.io/#> 
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> 
PREFIX schema: <http://schema.org/> 
PREFIX td: <https://www.w3.org/2019/wot/td#> 
PREFIX transit: <http://temporary.transition.org/> 
PREFIX this: <http://this.org/> 
PREFIX pdc: <http://purl.org/dc/terms/> 
 
INSERT { 
    transit:externalId this:correspondTo ms:externalId. 
    graph gr:f_example {[] transit:externalId ?object. }} 
WHERE { 
    graph gr:f_example { 
        ?a pdc:title ?b} 
 filter ( 
  not exists 
 {graph gr:f_example { [] transit:externalId ?a. }} 
    ) 
    bind( if(isIRI(?a),str(?a),?a) as ?object ) 
}; 
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INSERT { GRAPH gr:t_model{ 
   ?bn  ms:variables [ 
                            ms:name ?name; 
                            ms:dataType ?type; 
                            ms:unit ?unit; 
                            ms:qualityCode true; 
                            ms:searchable false 
    ]}      
} WHERE { 
    graph gr:f_example{ 
        ?ident td:hasPropertyAffordance [ 
  td:name ?name;            
  rdf:type ?oldtype; 
  schema:unitCode ?unit         
 ]                      
} 
    graph gr:t_model{ 
        [ms:aspectType ?bn]. 
    }  
    filter ( 
        not exists 
        { 
            graph gr:t_model { 
   [ ms:variables [ 
    ms:name ?name; 
    ms:dataType ?type; 
    ms:unit ?unit; 
    ms:qualityCode true; 
    ms:searchable false     
    ] 
   ] 
  } 
   } 
     ) 
    bind(if(STR(?oldtype)="https://www.w3.org/2019/wot/json-
schema#NumberSchema","DOUBLE",?oldtype) as ?type ) 
}; 
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WITH gr:t_model 
DELETE { 
    ?bn ms:variables ?s. 
    ?s ?p ?o 
} WHERE {  
 ?s ms:dataType "{{dataType}}". 
 ?bn ms:variables ?s. 
 ?s ?p ?o 
} ; 
DELETE { 
    graph gr:t_model{?bn ms:name ?oldname.} 
}  
INSERT {   
    graph gr:t_model{?bn ms:name ?newname}    
}  
WHERE { 
    graph gr:t_model{?bn ms:name ?oldname.} 
    [ms:asset ?bn].     
    graph gr:f_example{ ?s <http://purl.org/dc/terms/title> ?newname.}  
}; 
DELETE { 
    graph gr:t_model{?bn ms:description ?olddescription.} 
}  
INSERT {   
    graph gr:t_model{?bn ms:description ?newdescription;}           
  
} WHERE { 
    graph gr:t_model{  ?bn ms:description ?olddescription} 
    graph gr:f_example{  
 ?s <http://purl.org/dc/terms/description> ?newdescription; 
      <http://purl.org/dc/terms/title> ?title   } 
      [ms:asset ?bn].     
} 

FIGURE 60: AN EXAMPLE OF A DECLARATIVE MAPPING IN GW SEMANTIC MEDIATOR 


