

 780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

SEMIoTICS

Deliverable D5.9:
Demonstration and Validation of

IWPC - Energy Use Case (Cycle 2)

Deliverable release date 29.12.2020

Authors 1. Darko Anicic, Arne Bröring, Ermin Sakic (SAG)
2. Ulrich Hansen (BWC)
3. Manolis Michalodimitrakis, Konstantinos Georgopoulos, Georgios

Tsirantontakis (FORTH)
4. Kostas Ramantas (IQU)

Responsible person Ermin Sakic (SAG)

Reviewed by Ermin Sakic, Vivek Kulkarni (SAG), Nikolaos Petroulakis (FORTH),
Konstantinos Fysarakis (STS), Mirko Falchetto (ST-I)

Approved by PTC Members (Vivek Kulkarni, Nikolaos Petroulakis, Ermin Sakic,
Mirko Falchetto, Domenico Presenza, Christos Verikoukis)
PCC Members (Vivek Kulkarni, Nikolaos Petroulakis, Christos
Verikoukis, Georgios Spanoudakis, Domenico Presenza, Danilo Pau,
Joachim Posegga, Darek Dober, Kostas Ramantas, Ulrich Hansen)

Status of the Document Final

Version 1.0

Dissemination level Public

Ref. Ares(2020)7994133 - 29/12/2020

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D5.9 Demonstration and validation of IWPC - Energy (Cycle 2)
Dissemination level: Public

2

Table of Contents

1 Introduction ... 5
1.1 Overview ... 5
1.2 D5.9 Content updates compared to D5.4 ... 6

2 Use Case Description... 7
2.1 Overview of the Use Case .. 7
2.2 Main Objectives of Use Case 1 ... 11
2.3 UC1 Sub Use Cases .. 12

3 Realization of The SDN-Based Connectivity .. 14
3.1 SDN Bootstrapping ... 16
3.2 Flow Establishment .. 17

4 Sub Use Case 1: Audio Processing Demo – Detection of Loose Objects 20
4.1 Scope and Objectives ... 20
4.2 Interaction with SEMIoTICS Framework and Components .. 21
4.3 Setup Testbed and Integration .. 24

5 Sub Use Case 2: Video Processing demo – Oil/Grease leakage detection 25
5.1 Scope and Objectives ... 25
5.2 Interaction with SEMIoTICS Framework and Components .. 26
5.3 Setup Testbed and Integration .. 27

6 Sub Use Case 3: Inclination measurement of tower ... 29
6.1 Scope and Objectives ... 29
6.2 Interaction with SEMIoTICS Framework and Components .. 31
6.3 Setup Testbed and Integration .. 33

7 Sub Use Case 4: Field Devices Availability monitoring ... 38
7.1 Scope and Objectives ... 38
7.2 Interaction with SEMIoTICS Framework and Components .. 39
7.3 Setup Testbed and Integration .. 41
7.4 Validation .. 42

8 Overall KPIs and Requirements Validation .. 50
8.1 KPI-1.1: Number of SPDI Patterns .. 55
8.2 KPI-2.1 Semantic descriptions for 6 types of smart objects ... 57
8.3 KPI-2.2: Data type mapping and ontology alignment ... 58
8.4 KPI-2.3: Semantic interoperability with 3 IoT platforms ... 61
8.5 KPI-3.1.1: Generating monitoring strategies ... 62
8.6 KPI-3.1.3: Performing predictive monitoring with an average accuracy of 80% 66
8.7 KPI-4.1: Delivery of lightweight ML algorithms.. 67
8.8 KPI-4.2: Delivery of mechanisms with adaptation time of 15ms ... 69
8.9 KPI-4.6: Development of new security Mechanisms/Controls .. 70
8.10 KPI-6.1: Reduce manual interventions required for bootstrapping of smart object in each use case
domain by at least 80% ... 71

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D5.9 Demonstration and validation of IWPC - Energy (Cycle 2)
Dissemination level: Public

3

8.11 KPI-6.3: Delivery of 3 prototypes of IIoT/IoT applications .. 72
8.12 KPI-7.1 Provision the SEMIoTICS building blocks .. 72

9 Conclusion .. 73
9.1 Observed obstacles .. 73
9.2 Concluding Remarks .. 73

10 Appendix ... 74
10.1 Thing Description for Brownfield Device... 74
10.2 Thing Description for Greenfield Device ... 74
10.3 MindSphere Asset Model .. 76
10.4 Mapping Rule of GW Semantic Mediator ... 76

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D5.9 Demonstration and validation of IWPC - Energy (Cycle 2)
Dissemination level: Public

4

Acronyms Table

Acronym Definition

API Application Programming Interface

GUI Graphical User Interface

HTTP Hypertext Transfer Protocol

Hz Hertz

IIoT Industrial IoT

IoT Internet of Things

Kbps Kilobits / Second

KPI Key Performance Indicator

MDSP MindSphere

MQTT Message Queuing Telemetry Transport

NFV Network Function Virtualization

OEDK Open Edge Device Kit

PE Pattern Engine

QoS Quality of Service

REST Representational State Transfer

SDN Software Defined Networking

SSC SEMIoTICS SDN Controller

UC1 Use Case 1

VM Virtual Machine

W3C World Wide Web Consortium

WoT Web of Things

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D5.9 Demonstration and validation of IWPC - Energy (Cycle 2)
Dissemination level: Public

5

1 INTRODUCTION

1.1 Overview

Use Case 1 (UC1 hereafter) focuses on the demonstration of the SEMIoTICS framework in a power
generation environment. UC1 demonstration features four Sub Use Cases, focused on local edge analytics
for processing unstructured data, interoperability with private and public cloud environment for use case of
classic analytics of structured data and field layer monitoring, as well as the interoperability within the field
layer in the utility network itself. The orchestration processes and industrial operation occur over an SDN
capable of providing the necessary Quality of Service (QoS) guarantees to deployed network flows.
Summarized, UC1 highlights the following benefits of using the SEMIoTICS framework:

▪ Usage of SEMIoTICS for simplified definition of the business logic, distribution, and instantiation of
applications in an edge device in the field layer;

▪ Usage of SEMIoTICS to achieve semantic interoperability between a greenfield device executing

the business logic and a legacy brownfield environment connected to a model wind turbine utilizing
a common semantic abstraction layer;

▪ Usage of SEMIoTICS to achieve efficient “plug and play” on-boarding of a new field layer IIoT

devices;

▪ Usage of SEMIoTICS to integrate field layer devices in interoperable manner with private and public
clouds;

▪ Usage of integrated SEMIoTICS orchestration to deploy network services with deterministic QoS

properties and;

▪ Usage of SEMIOTICS to guarantee Security (Data Integrity and Confidentiality), and Connectivity
properties in the system, using the pattern-based framework.

Considering the above and being the final output of Task 5.4 (“Demonstration and validation of IWPC-
Energy scenario”), this deliverable detail the business motivation behind the final set of Sub Use cases, as
well as their final implementation state.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D5.9 Demonstration and validation of IWPC - Energy (Cycle 2)
Dissemination level: Public

6

1.2 D5.9 Content updates compared to D5.4

Compared to D5.4, the previous deliverable of T5.4, which provided the initial description of the conceptual
goals of UC1, and the intermediate implementation of the SEMIoTICS components supporting the use
case, D5.9 is updated and contain the most recent and final status of the testbed integration. In more detail:

▪ Section 2 was updated with the latest information, content, and photos of the integrated Use Case
1 demonstrator. Additional visual presentation and execution is presented in the accompanying
demonstrator video

▪ Section 3 now provides a separate and up-to-date description of the networking approach adopted

throughout each of the four sub Use-Cases

▪ Sections 4 to 7 were updated to contain the latest and final description of their implementations.
i.e. they are the four Sub Use Case Sections defining the UC1

▪ Section 8 now includes the description of requirements and KPIs addressed by the Sub Use Cases,

comprising their achievement status and the methodology of evaluation

▪ Section 9 now succinctly describes obstacles observed during the UC1 development and
integration

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D5.9 Demonstration and validation of IWPC - Energy (Cycle 2)
Dissemination level: Public

7

2 USE CASE DESCRIPTION

2.1 Overview of the Use Case

The overall success criteria of UC1 is to demonstrate the coexistence of a highly integrated control system
and an agile IIoT ecosystem based on the SEMIoTICS framework; which in return allows service providers
to deploy new value-added services faster and provide effective access to data from both an existing
‘brownfield’ control system and a newly deployed ‘greenfield’ sensor network. The demonstrator of UC1 in
the lab trial addresses some of the common challenges in extending the capabilities of an existing control
system in a brownfield environment in the Wind Energy domain.

Control systems for industrial processes are in general terms heavily embedded in nature. Extending the
capabilities of such a system typically involves engagement with component manufacturer or service
integrator to fuse-in the new functionality that must be tested to validate the new component does not void
the integrity and the intended behaviour of the control system. Most of these control systems expose certain
high-level machine-readable interfaces for seamless integration with other systems, which is not enough
to take full advantage of the value that can be generated.

The SEMIoTICS approach in UC1 provides an end-to-end ecosystem allowing service integrators and
service operators to build and deploy new value-added services, interfacing directly with the existing
assets.

Overall, SEMIoTICS UC1 demonstrates four concrete Sub Use cases in a lab trial showing the IIoT field
devices and applications:

▪ Sub Use Case 1: Audio Processing Demo – Detection of loose objects
▪ Sub Use Case 2: Video Processing Demo – Oil/Grease leakage detection
▪ Sub Use Case 3: Inclination Measurement of wind turbine tower
▪ Sub Use Case 4: Availability Monitoring of Field Orchestration Layer devices

The physical components involved in the developed demonstrator are visualized in Figure 1, and comprise:

a) A wind turbine model with a rotating piece
b) a SIMATIC S7 programmable logic controller (PLC) used to control the wind turbine rotor
c) the greenfield sensory devices (microphone, camera, inclinometer), attached either directly to a

Nanobox device (see h)) or to a Raspberry Pi field layer device
d) six OpenFlow 1.3 SDN switches
e) the SEMIoTICS SDN Controller (SSC) hosted on a Siemens Microbox Industrial PC (IPC)
f) the backend components of the SEMIoTICS platform hosted on a Siemens NanoBox Industrial PC
g) the video and audio analytics software processes hosted on the two IPCs
h) the integrated SEMIoTICS Gateway solution hosted on another IPC
i) the LTE Gateway for enabling internet access and connectivity to remote clouds
j) a management switch for enabling out-of-band control channel over SDN switches and visualization

on an external device
k) external software application counterparts in the MindSphere cloud and a private cloud at IQU’s

premises

780315 —
 S

EM
IoTIC

S
 —

 H
2020-IO

T-2016-2017/H
2020-IO

T-2017
D

eliverable D
5.9 D

em
onstration and validation of IW

P
C

 - E
nergy (C

ycle 2)
D

issem
ination level: P

ublic

8

Figure 1: H

ardw
are setup of the dem

o bag

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D5.9 Demonstration and validation of IWPC - Energy (Cycle 2)
Dissemination level: Public

9

The components of the SEMIoTICS platform deployed in UC1 are portrayed on the left in Figure 1 and
include the:

▪ Recipe Cooker for orchestration of business logic
▪ Pattern Orchestrator for translation of recipe descriptions into Security and Connectivity

patterns
▪ The Pattern Engine in the Application Orchestration Layer for ensuring Security constraints in

the private cloud for the purpose of enabling the Sub Use Case 4
▪ The Pattern Engine in the SDN/NFV Orchestration Layer for ensuring Connectivity constraints

in the local network for the purpose of enabling the Sub Use Cases 1 and 2
▪ Global and Local Thing Directory components in Application Orchestration Layer and Field

Orchestration Layer, respectively. Thing Directory instances are used for local and global
registration of field layer devices, their capabilities, and exposure of these to the backend
Recipe Cooker

▪ The backend GUI in the Application Orchestration Layer for visualization of the state of Pattern
requirements and Thing Directories

▪ The majority of sub-components of the SEMIoTICS SDN Controller for enabling end-to-end
connectivity with delay, bandwidth, and redundancy constraints for point-to-point network
connections

▪ The majority of IoT Gateway components for enabling local embedded intelligence, semantic
mediation between brownfield and greenfield field components and exposure of their
capabilities and actions to external entities using Semantic API and Protocol bindings

The exact deployment mapping of SEMIoTICS platform components to the underlying hardware resources
and layers of SEMIoTICS architecture is depicted in Figure 2.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D5.9 Demonstration and validation of IWPC - Energy (Cycle 2)
Dissemination level: Public

10

FIGURE 2: OVERVIEW OF KEY COMPONENTS IN USE CASE 1

Finally, Figure 3 shows the final deployment of the hardware components and the separation of SEMIoTICS
layers in the transportable demo case that was created for this purpose.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D5.9 Demonstration and validation of IWPC - Energy (Cycle 2)
Dissemination level: Public

11

FIGURE 3: FINAL DEPLOYMENT OF THE DEMONSTRATOR IN THE TRANSPORTABLE

DEMONSTRATOR CASE

2.2 Main Objectives of Use Case 1

Current wind turbine controllers in a wind park control network are typically highly integrated operating systems,
which follow a long process of thorough development, testing, pre-qualification, and finally deployment in the
real world. As a result of this long process, introduction of new features, addition of new sensors, actuators and
related advancements require several months or even years to be fully matured and become operational in the
field. To improve this situation and shorten this development cycle, the UC1 achieves the following objectives:

1) Local predictive analytics for structured data, smart behavior and monitoring: We deploy a localized

edge to achieve semi-autonomous IIoT behavior where a minimal amount of data is transferred between
the wind turbine and the remote control center, while the majority of pre-processing, analytics and triggering
of the actuation steps happen at the ‘edge’ of the system, close to the actual turbine. In Sub Use Case 1
and 2 we demonstrate the sensing of unstructured data (i.e., audio and video respectively), processing the
data in real-time, and taking an immediate action to prevent any damage to the parts of the turbine.
Additionally, a federation, based on a semantic data model and capabilities, is formed between the IIoT
Gateway and the legacy control system in Sub Use Cases 1, 2 and 3, to enable the use of data exposed
by the sensors connected to the legacy control system. This allows the operators to leverage the existing
computing resources to make use of data exposed by sensors connected to an existing brownfield
infrastructure, in an automated manner.

2) Multi-tenant capable network service establishment: A wind park network typically comprises multiple

stakeholders requiring access to a common network infrastructure. Nevertheless, providing reliable and
Quality of Service (QoS)-constrained packet transmission for critical IoT services, in conjunction with non-
real-time and bandwidth-heavy services, necessitates service differentiation. The SSC support this case. In
Sub Use Cases 1 and 2, the users of the system (i.e., the operators) communicate their network
requirements to the SSC by means of a simple service specification interface (Recipe Cooker) that is

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D5.9 Demonstration and validation of IWPC - Energy (Cycle 2)
Dissemination level: Public

12

eventually propagated to the SSC for embedding. Thus, all accepted stakeholders in the system are isolated
with regards to the network resource utilization and are guaranteed their requested service invariants.

3) Semantic-based engineering: In a motivating scenario, an engineer wants to add a new IIoT device (e.g.,

a sensor, actuator) or replace an existing one with minimal effort. To achieve this, the device should be
bootstrapped in a semi-automated fashion. Further, it should expose its functionality over an IIoT Gateway
via a machine-interpretable interface so that the engineer can develop a new service or application with that
device. UC1 demonstrates that, leveraging SEMIoTICS, the integration and configuration of a new IIoT
device in an automation system of a wind park requires very low effort. For this purpose, the greenfield IIoT
devices are equipped with an associated semantic description, which support the process of device
discovery, as well as commissioning, engineering and re-engineering of automation functions, within an
ecosystem of heterogeneous devices and services. The SEMIoTICS semantic models, which enable these
device descriptions, are based on standardized semantics such W3C Web of Things1 (Thing Description),
as well as on the IoT domain semantics created by iot.schema.org2. SEMIoTICS, thus, supports creation of
IIoT applications in a cost-effective manner. The brownfield devices, on the other hand, are similarly
supported with their semantics models and exposed by means of a combination of an intermediate semantic
API and the semantic binding.

4) Semantics-based application creation – Going beyond integration and configuration supported by the

“semantic-based engineering” (described above), an application developer needs to be supported in
connecting and composing services and devices to Edge-level or Cloud-level applications. To this end, the
following aspects are considered:

a. In order to facilitate quicker development of applications, the Recipe Cooker allows for compositions
by the developer as templates (or “recipes”) that describe how logical links are established and
what kind of devices are required in these compositions.

b. As part of these definitions of compositions, the developer needs to be able to define Security,

Integrity, Connectivity, Privacy or Dependability criteria on the connections for the logical links of
the distributed application. These criteria are semantically described and are interpretable by the
Pattern Engine instances prior to the deployment of the application to evaluate whether the
infrastructure can meet the requirements of the application. Thus, with the seamless integration of
specification of pattern requirements with the application workflow design, the developer is capable
of both orchestrating the available resources to deploy and execute the application, but also
automatically enabling, validating and monitoring additional security and connectivity invariants
from a single interface.

2.3 UC1 Sub Use Cases

Prior to addressing the details of the individual Sub Use cases within UC1, a summary of each is provided
below.

Sub Use Case 1 - Audio Processing Demo – Detection of Loose Objects: Sub Use Case 1
demonstrates the integration of a distributed audio processing function with the remainder of the
SEMIoTICS framework. The analytics function detects a loose object in the wind turbine by processing a
continuous stream of unstructured audio data, issuing an emergency stop command to the wind turbine if
an anomaly is detected while the wind turbine is in operation. Numerous greenfield and brownfield field
layer devices are involved in the operation. Furthermore, the analytics function is realized by deploying an
application to an edge device using orchestration introduced by SEMIoTICS and involves other
components of the framework, namely the SSC and the IIoT Gateway, to guarantee the network invariants
and expose audio state to external applications, respectively.

1 https://www.w3.org/WoT/WG/
2 Currently available from: http://iotschema.org/

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D5.9 Demonstration and validation of IWPC - Energy (Cycle 2)
Dissemination level: Public

13

Sub Use Case 2 - Video Processing Demo – Oil/grease leakage detection: This sub use case focuses
on demonstrating video processing capabilities deployed at the field layer, to detect a grease leakage from
a main bearing in a wind turbine. This is achieved by processing a stream of unstructured video data and,
as above, issuing an emergency stop command to the wind turbine if a severe grease leakage is detected.
The capability is realized by deploying an application to multiple edge devices installed at the field layer,
by mean of several components of the SEMIoTICS framework to provide the needed supporting
capabilities.

Sub Use Case 3 – Inclination Measurement of the Tower: An application deployed in an external IoT
platform, i.e., MindSphere, interfaces with a SEMIoTICS-enabled wind park and consumes the inclination
data measured by an inclinometer in the field layer, along with other operational data from the simulated
wind turbine environment, for visualization and manual decision making. The cloud application furthermore
periodically evaluates the reported inclination values and triggers an alarm if a set threshold is exceeded,
enabling the operator to act. Only raw data from the inclinometer is being transferred to the cloud and all
business logic for decision making is being defined in the cloud application.

Sub Use Case 4 – Field Devices Availability Monitoring: The final business application is being
deployed in a private cloud environment with the purpose of monitoring the deployed inclinometer and other
greenfield sensors in the system for availability purposes. As the inclinometer sensor is not natively
integrated with the existing control and instrumentation system of the wind turbine, it is not being monitored
by the native turbine monitoring system. Instead, a small agent deployed at the field layer continuously
monitors the availability of the deployed inclinometer sensor and forwards a heartbeat signal to the private
cloud for monitoring purposes. In this Sub Use Case only availability information of the sensor is being
transmitted to the private cloud, whereas all operational data recorded is being transmitted to the public
cloud application as in the Sub Use Case 3. Finally, the Confidentiality and Integrity (and thus Security) of
data transmitted to the private cloud is guaranteed with the use of pattern framework.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D5.9 Demonstration and validation of IWPC - Energy (Cycle 2)
Dissemination level: Public

14

3 REALIZATION OF THE SDN-BASED CONNECTIVITY

The components of the SEMIoTICS SDN Controller (SSC) designed and developed in Work Package 3
are, for reader’s reference, depicted in Figure 4. While most of the presented components were deployed
in the SEMIoTICS demonstrators, the SEMIoTICS Use Cases 1 and Use Case 2 focus on the functionalities
of only a subset of these.
In the final Use Case 1 prototype we deploy the SSC for two purposes:

▪ To allow for simplified deployment of the infrastructural services, using the SDN controller as a flow
rule installation proxy (internet access, connectivity among the industrial devices);

▪ To allow for establishment of QoS-enabled end-to-end path configurations requiring minimal user
intervention – network requests are specified as part of application description using a Recipe
template in the Recipe Cooker.

To establish the QoS constrained network flows, the UC1 relies on interaction between Recipe Cooker, the
Pattern Orchestrator, and the Pattern Engine of the SSC to provide for the facts (i.e., the knowledge base)
used in the instantiation of QoS connectivity services.

FIGURE 4: COMPONENTS OF THE SEMIOTICS SDN CONTROLLER (SSC)

Use Case 1 deploys a number of industrial end-devices interconnected by a Layer-2 network comprising 6
OpenFlow switches. The network stack is based on OpenFlow 1.3.1 switch instances, deployed using the
kernel-space forwarding daemon of Open vSwitch and the corresponding OpenFlow agent. The physical
switches are 1 Gbps Banana PI R1 hardware devices. Each switch is equipped with 4xRJ45 interfaces.
Figure 5 and Figure 6 showcase the networking deployment in the UC1 transportable testbed, and the
close-up of the deployed data plane, respectively. In addition to the SSC and switches, we also deploy an
LTE router attached to switch OF:104, acting as the gateway to enable reachability of backend layer

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D5.9 Demonstration and validation of IWPC - Energy (Cycle 2)
Dissemination level: Public

15

services. The SSC, including the Pattern Engine (SDN PE), is deployed on the SIMATIC IPC427E industrial
PC running Linux, equipped with a recent Intel i7 Processor and 16 GB of DDR4 RAM.

FIGURE 5: NETWORKING COMPONENTS IN THE UC1 TRANSPORTABLE TESTBED

FIGURE 6: CLOSE-UP OF THE SDN SWITCHES INTERCONNECTED IN THE UC1 TOPOLOGY

The SDN was used to route a subset of flows that required only the Best -Effort connectivity. These
connections are thus considered ‘infrastructural’ services, as they necessitate only partial bandwidth
without time-slot allocations and guarantees to transfer the data. The examples of these are:

▪ Interconnection of all SEMIoTICS components: Recipe Cooker Ù Pattern Orchestrator, Pattern
Orchestrator Ù SSC, IIoT Gateway Ù LTE Ù InfluxDB / MindSphere, Recipe Cooker Ù
Distributed Node-RED workers etc.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D5.9 Demonstration and validation of IWPC - Energy (Cycle 2)
Dissemination level: Public

16

▪ Interconnection of networking services: DNS resolve, SSC Ù SDN Switches control channel;

Additionally, the networking infrastructure hosts the QoS-constrained network flows used to interconnect
the sensory and actuation devices of Sub Use Case 1 and Sub Use Case 2. The aim is to provide for per-
packet delay guarantees in transmission of the mission-critical camera and audio information that are used
to infer the decision about the need to stop the turbine at the receiver.

3.1 SDN Bootstrapping

After the initial bootup of network devices, the switches first discover the SSC. The switches are configured
with the IP address of the SSC and the port on which the SSC is listening for new OpenFlow connections.
Indeed, the controller/port configurations in the Open vSwitch implementation persists after reboots, hence
a single-time configuration was necessary to achieve this functionality. Bootstrapping Manager can
alternatively deploy the DHCP server and provide the switches with automatically derived IPv4 addresses
but we opted for manual IPv4 configuration of management interfaces of the switches for lowered
complexity of the UC1 demonstration.

Both the switches’ and the SSC’s management interfaces are thus configured in the same IP subnet. After
the switches have initiated an OpenFlow session to the controller, the Bootstrapping Manager initiates the
bootstrapping procedure in the newly instantiated switches, i.e., by provisioning them with default flow rules
used for control channel communication. Figure 7 showcases the SSC’s UI containing resulting discovered
topology (including deployed endpoints). Access to the UI and all other REST-enabled functions of the SSC
requires HTTPS digest authentication.

FIGURE 7: THE DISCOVERED TOPOLOGY AND END-DEVICES IN SSC AFTER CONNECTING

THREE END-POINTS, BOOTING UP THE SWITCHES AND THEIR SUCCESSFUL ESTABLISHMENT
OF OPENFLOW SESSIONS WITH THE SSC

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D5.9 Demonstration and validation of IWPC - Energy (Cycle 2)
Dissemination level: Public

17

3.2 Flow Establishment

To establish default infrastructure communication flows, SDN switches propagate any unmatched packets
(including the ARP requests) to the SSC for further handling. The SSC compares the source and destination
nodes with the contents of the discovered topology in the Bootstrapping Manager, and accordingly
computes a route between the two endpoints in the Path Manager. Prior to notifying the Path Manager of
the route request, the Bootstrapping Manager interacts with the VTN Manager to evaluate the mapping of
endpoints to the default VTN (pre-provisioned). Namely, in at least one of the provisioned VTNs, the egress
ports of the switches on which the source/destination end-nodes are connected must have been pre-
registered. Thus, isolation of critical from best-effort services can be guaranteed on all communication
layers. If the end-devices can be found registered in a VTN, the Path Manager handles the route requests
and notifies the Resource Manager of the identified path and the flow rules to be installed in the switches.
The Resource Manager enforces the installation of the best-effort flows. Best-effort flows in UC1 are always
mapped to Queue 0, i.e., the lowest priority queue used by the Strict Priority scheduler implemented by the
SDN switches.

To establish the QoS-enabled connectivity between declared endpoints of the evaluated test scenario, we
rely on instantiation of the relevant Dependability pattern instances using the SSC’s Pattern Engine. The
Pattern Engine interacts with the VTN Manager to evaluate the mapping of endpoints to the default VTN
(pre-provisioned) and, if satisfied, notifies the Path Manager module of the path request. The Path Manager
then computes the corresponding path fulfilling the QoS constraints and notifies the Resource Manager of
the flow rules, as well as the associated queue mapping for each hop on the computed path. Thus, an end-
to-end path is established in the Sub Use Cases 1 & 2 with deterministic queueing decided individually for
each hop on the path. Resource Manager finally installs the flow rules, and the end-point connectivity is
enabled.

The corresponding QoS pattern used in implementation of the QoS-enabled service path interconnecting
the sensors and actuators is described in Drools syntax in Figure 8, per the pattern rule specification
approach detailed in deliverable D4.8.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D5.9 Demonstration and validation of IWPC - Energy (Cycle 2)
Dissemination level: Public

18

FIGURE 8: DEFINITION OF THE DEPENDABILITY PATTERN USED IN NETWORK SERVICE

INSTANTIATION

Referring to the Drool definition provided in Figure 8, the request properties considered in the instantiation
of the network service are:

▪ Line 32: The request identifier;
▪ Line 20: The required bandwidth share in Kilobits per Second (Kbps);
▪ Line 21: The requested end-to-end delay requirement in milliseconds;
▪ Line 22: The input traffic burst in max. Kbps;
▪ Line 14: The source MAC address;
▪ Line 15: The destination MAC Address;
▪ Line 23: The requirement for resilient path establishment.

After establishment of the above flow, the referenced endpoints (with given MAC addresses as identifiers
in the flow rules) are guaranteed the requested QoS requirements (bandwidth and delay). This is assuming
that that the input traffic arrivals are shaped as per promised maximal traffic burst and sending rate and do
not exceed the requested rate.
The full sequence of steps taken starting from specification of individual fields of the request in the Recipe
Cooker to embedding of flow rules and automated per-flow / per-hop queue mapping by the SSC are
visualized and explained further in our demonstration video (ref. Figure 9).

780315 —
 S

EM
IoTIC

S
 —

 H
2020-IO

T-2016-2017/H
2020-IO

T-2017
D

eliverable D
5.9 D

em
onstration and validation of IW

P
C

 - E
nergy (C

ycle 2)
D

issem
ination level: P

ublic

19

FIG

U
R

E 9: EM
B

ED
D

IN
G

 O
F Q

O
S

-EN
H

A
N

C
IN

G
 TR

A
FFIC

 FLO
W

S U
SIN

G
 R

EC
IPE C

O
O

K
ER

, PA
TTER

N
 O

R
C

H
ESTR

A
TO

R
 A

N
D

 SSC
. TH

E EN
H

A
N

C
ED

 Q
O

S IS
PR

O
VID

ED
 FO

R
 IN

TER
C

O
N

N
EC

TIN
G

 SEN
SO

R
Y A

N
D

 IN
FER

EN
C

E D
EVIC

ES D
EPLO

YED
 IN

 TH
E SU

B
 U

SE C
A

SE 1 (R
EF. U

C
1 D

EM
O

N
STR

A
TIO

N
 VID

EO
)

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D5.9 Demonstration and validation of IWPC - Energy (Cycle 2)
Dissemination level: Public

20

4 SUB USE CASE 1: AUDIO PROCESSING DEMO – DETECTION
OF LOOSE OBJECTS

4.1 Scope and Objectives

The first sub use case focuses on demonstrating analytical capabilities deployed at the field layer to detect
a loose object in the wind turbine by processing a stream of unstructured audio data and issuing an
emergency stop command to the wind turbine if an anomaly is detected while the wind turbine is in
operation. The capability is realized by deploying an application to an edge device installed at the field
layer utilizing various components of the SEMIoTICS framework, as will be detailed below. The analytical
capability is implemented, using an approach based on machine learning techniques to detect an abnormal
change in the audio stream.

The system, when deployed in real life, is expected to be in proximity of the wind turbine’s hub as shown
in Figure 3. The hub is the casted mechanical structure at the very front of the wind turbine, where the
three blades are fastened to.

The business objective is to detect a foreign object in hub during operation and stop the wind turbine before
any severe damage occurs to the internal parts of the hub.
The hub contains several critical hydraulic and electrical systems responsible for controlling the individual
blades’ angle in the wind. This system is known as the pitch control system and is in constant rotation while
the wind turbine is in operation. If parts of this critical system are damaged, causing the embedded wind
turbine controller to detect an error in the pitch control system, the wind turbine will stop automatically with
an error and will be unable to produce electricity until it has been manually inspected and repaired.
Said foreign objects can be loose internal mechanical parts to the hub or the three blades, that have been
shook loose during operation or seldom forgotten hand tools by wind turbine technicians. Examples of such
objects are broken and/or loose bolts in the interface between the hub and the blade bearings, or even
plastic covers or access covers to the blades.

Depending on the severity of the damage caused to the internal system by such a loose object, the cost of
bringing the turbine back into operation can be very costly in terms of direct expenditure related to the
repair work, but also lost revenue, as the wind turbine is unable to produce until repaired. The latter is likely
to account for the largest part of the cost.

The scope of the demonstrator focuses on showcasing the following SEMIoTICS advancements:

• The use of select SEMIoTICS components to define the business logic, distribute and to instantiate
the application in an edge device at the field layer

• To demonstrate the semantic interoperability between a greenfield device executing the business
logic and a simulated legacy brownfield environment connected to a model wind turbine utilizing a
common semantic abstraction layer

• The implementation of the business logic focusing on the use of unsupervised machine learning to
detect an anomaly in the stream of audio. The demonstrator does not focus on extending the
capabilities of the business application required for adoption by industry.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D5.9 Demonstration and validation of IWPC - Energy (Cycle 2)
Dissemination level: Public

21

4.2 Interaction with SEMIoTICS Framework and Components

Successful deployment of the business application, for detecting a loose object in the wind turbine’s hub
relies on several components provided by the SEMIoTICS framework along with components specifically
implemented for enabling the demonstration of the use case. An overview of the components and their use
is provided in Table 1.

TABLE 1: INVOLVED SEMIOTICS COMPONENTS IN SUB USE CASE

Component SEMIoTICS
component

Architecture
reference

Description of use

Semantic Edge Platform ✓ Field Layer • Provides capabilities for initial device
bootstrapping and discovery

• Hosts Local Thing Directory service
• Provides API for interaction with other

devices enrolled in the SEMIoTICS
framework deployment

Semantic API and
Protocol Binding

✓ Field Layer • Processing capabilities for interacting
with brownfield environments, e.g. the
legacy control system

Edge device Field Layer • Raspberry Pi device with an embedded
microphone for capturing the audio

• Anomaly detection process, based on
unsupervised machine learning

• Execution of the business logic
Legacy Control System Field Layer • Simulation of Wind Turbine Control

System based on Power Logic
Controllers and an operational and
controllable wind turbine model

Recipe Cooker ✓ Backend
Layer

• Recipe Cooker framework based on
Node Red is used to define and deploy
the business logic to the field device in
a recipe style format

Pattern Orchestrator ✓ Backend
Layer

• Used to translate the recipe (business
logic request) into a set of patterns
comprising Connectivity requirements.

Network Pattern Engine ✓ SDN/NFV
Layer

• Used to trigger embedding of
networking services in the SDN via
associated SDN Controller
components, under consideration of
delay and bandwidth constraints
stemming from Connectivity pattern
properties.

SDN Controller ✓ SDN/NFV
Layer

• SDN Controller sub-modules, such as
Path Finding, Registry Handler, and
Resource Manager are used to
compute the network paths necessary
to fulfil the Connectivity pattern
constraints, refer to and keep track of
reserved network resources, as well as
to embed the service via external
configuration of SDN switches.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D5.9 Demonstration and validation of IWPC - Energy (Cycle 2)
Dissemination level: Public

22

Global Thing Directory ✓ Backend
Layer

• Orchestration of devices and
capabilities registered with the Local
Thing Directory

• Information made available to the
Recipe Cooker through an API

Figure 10 shows the sequence diagram of the detection of loose objects. As a prerequisite, the field device
(Raspberry Pi with the microphone attached) must be successfully bootstrapped, connected to the
communication network and on boarded in the SEMIoTICS eco-system. The application is defined in the
Recipe Cooker and the business logic is deployed to the field device.

Audio processing: captures and processes sound recorded by the microphone. The audio process
bridges between the physical and digital world: capturing raw sound, amplifies the signal in hardware and
converts the analog signal to a digital format. The digitized raw audio signal is then used by the detection
process.

Detection process: relying on Fast Fourier Transformation (utilizing Python library Librosa3) of the
unstructured audio signal source, the detection process creates a structured pattern from the audio signal
and compares it with those known to the neural network. The machine learning model has been pre-trained
with a finite number of audio samples from a normal operational environment. If an anomaly in the audio
signal is detected – indicating a detection of a loose object in the wind turbine – the process will forward
an event notification to the action process.

Action process: this process is being triggered whenever the detection process detects an anomaly. The
process will first determine the running state of the wind turbine. If the turbine is not in an operational mode
(e.g., it is in service mode or not operational for other reasons), it will simply ignore the anomaly detected.
If, however, the wind turbine is in operational mode and producing electricity when the anomaly is detected,
the process assumes the anomaly to be a legitimate reason for concern and will immediately issue a stop
command to the wind turbine.

Semantic Edge Platform: it provides an API that enables the action process to interact with another device
enrolled to the SEMIoTICS deployment. The API exposes enrolled devices as Device Nodes, along with
their associated capabilities, as sourced from the devices’ Thing Descriptions. It ultimately enables the
application to interact with the legacy control system.

Semantic API and protocol binding: this component is responsible for the translation between Web of
Things protocol and the last mile connection to the simulated brownfield control system, that is using a
legacy industrial protocol. It provides a uniform semantic API for all connected devices. This service is the
primary enabler to bridge greenfield edge technology with existing brownfield installations. When the stop
command has been received by the action process, the service will forward the stop command to the wind
turbine via the industrial communication protocol that is supported by the (simulated, in this case) wind
turbine control system.

Wind turbine control system: the autonomous simulation of a wind turbine control system. It will take the
action to stop the turbine when the command is received. The simulated control system exposes the
operational state of the wind turbine, which is used by the action process to determine the authenticity of
the anomaly detected.

3 https://pypi.org/project/librosa/

780315 —
 S

EM
IoTIC

S
 —

 H
2020-IO

T-2016-2017/H
2020-IO

T-2017
D

eliverable D
5.9 D

em
onstration and validation of IW

P
C

 - E
nergy (C

ycle 2)
D

issem
ination level: P

ublic

23

FIG

U
R

E 10: O
VER

VIEW
 O

F D
ETEC

TIO
N

 O
F LO

O
SE O

B
JEC

T A
PPLIC

A
TIO

N
 (U

C
1 - SU

B
 U

C
1)

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D5.9 Demonstration and validation of IWPC - Energy (Cycle 2)
Dissemination level: Public

24

4.3 Setup Testbed and Integration

A prerequisite for this sub use case to work is that all systems are operational and connected to the
SEMIoTICS framework deployment, also including the Smart Audio Processing device that must be
connected and registered with the Thing Directory.

Furthermore, the capabilities of the legacy control system are loaded to the Thing Directory and the protocol
binding service is operational. These Thing capabilities are replicated to the Global Thing Directory so that
services can find them. The Backend GUI can visualize the set of capabilities of involved field layer devices
based on the content of the global Thing Directory. The IoT Gateway is operational with excess capacity
to execute the application. Finally, the Recipe Cooker framework is operational and the application flow for
the audio fault detection is already setup.

Figure 11 shows the deployment setup of Sub Use Case 1 broken down to actual machines and installed
software components on the right.

FIGURE 11: SUB UC1 DEPLOYMENT SETUP

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D5.9 Demonstration and validation of IWPC - Energy (Cycle 2)
Dissemination level: Public

25

5 SUB USE CASE 2: VIDEO PROCESSING DEMO –
OIL/GREASE LEAKAGE DETECTION

5.1 Scope and Objectives

The second sub use case focuses on demonstrating analytical capabilities deployed at the field layer to
detect grease leakage from the main bearing in a wind turbine, by processing a stream of unstructured
video data and issuing an emergency stop command to the wind turbine if a severe grease leakage is
confidently detected. The capability is realized by deploying an application to multiple edge device installed
at the field layer, also leveraging various components of the SEMIoTICS framework.

The analytical capability is implemented is using an approach based on Machine Learning techniques to
detect grease leakages in the video feed images. A large set of training images has been created using a
small-scale bearing mock-up that was created for this purpose. This set was used to train the model before
deploying the business logic to the field.

The business objective is to prevent an uncontrolled grease leakage from the main bearing by monitoring
and eventually stopping the wind turbine as a preventive maintenance act ion.

Main bearings on large, modern wind turbines are designed to consume and lose some grease during
normal operation. Thus, they are fitted with automating greasing systems that ensure the bearing is re-
greased with a regular interval. Dependent on the implementation by the wind turbine manufacturer, the
bearings are re-greased either at fixed time intervals or ad-hoc by use of more advanced monitoring
techniques involving continuously monitoring the pressure inside the bearings (if a lower limit threshold is
exceeded the system will re-grease the bearing).

In this context, while grease leakage is expected, larger grease leakages could indicate an issue with the
seal of the bearing that needs repair or replacement. An early detection of the issue enables the operator
to monitor the development of the leakage and plan appropriate measures to address the issue before
stopping the turbine becomes as necessity. A stopped turbine means loss of revenue for the operator.
Since some industrial implementations do not have an automated re-greasing and monitoring system put
in place, early detection is critical to avoid mechanical failure.

The scope of the demonstrator focuses on showcasing the following SEMIoTICS advancements:

• The use of select SEMIoTICS components to define the business logic, distribute, and to instantiate
the application in an edge device at the field layer

• To demonstrate the semantic interoperability between a greenfield device executing the business
logic and a simulated legacy brownfield environment connected to a model wind turbine utilizing a
common semantic abstraction layer

• The implementation of the business logic focusing on the use of supervised machine learning to
detect a leak in a mock-up of a bearing. The demonstrator does not focus on extending the
capabilities of the business application required for adoption by industry.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D5.9 Demonstration and validation of IWPC - Energy (Cycle 2)
Dissemination level: Public

26

5.2 Interaction with SEMIoTICS Framework and Components

Successful deployment of the business application, for detecting a loose object in the wind turbines’ hub,
relies on several components provided by the SEMIoTICS framework along with components implemented
for enabling the demonstrating of the use case specifically. An overview of the components and their use
is provided in Table 2.

TABLE 2: INVOLVED SEMIOTICS COMPONENTS IN SUB USE CASE 2

Component SEMIoTICS
component

Architecture
reference

Description of use

Semantic Edge Platform ✓ Field Layer • Provides capabilities for initial device
bootstrapping and discovery

• Hosts Local Thing Directory service
• Provides API for interaction with other

devices enrolled in the SEMIoTICS
framework deployment

Semantic API and
Protocol Binding

✓ Field Layer • Processing capabilities for interacting
with brownfield environments; e.g., the
legacy control system

Edge device Field Layer • Raspberry Pi device with an external
camera connected for capturing the
video stream

• Anomaly detection process, based on
machine learning

• Execution of the business logic
Legacy Control System Field Layer • Simulation of Wind Turbine Control

System based on Power Logic
Controllers and an operational and
controllable wind turbine model

Recipe Cooker ✓ Backend
Layer

• Recipe Cooker framework based on
Node Red is used to define and deploy
the business logic to the field device in
a recipe style format

Global Thing Directory ✓ Backend
Layer

• Orchestration of devices and
capabilities registered with the Local
Thing Directory

• Information made available to the
Recipe Cooker through an API

Pattern Orchestrator ✓ Backend
Layer

• Used to translate the recipe (business
logic request) into a set of patterns
comprising Connectivity requirements.

Network Pattern Engine ✓ SDN/NFV
Layer

• Used to trigger embedding of
networking services in the SDN via
remaining SDN Controller components,
under consideration of delay and
bandwidth constraints stemming from
Connectivity pattern properties.

SDN Controller ✓ SDN/NFV
Layer

• SDN Controller sub-modules, such as
Path Finding, Registry Handler, and
Resource Manager are used to
compute the network paths necessary
to fulfil the Connectivity pattern

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D5.9 Demonstration and validation of IWPC - Energy (Cycle 2)
Dissemination level: Public

27

constraints, refer to and keep track of
reserved network resources, as well as
to embed the service via external
configuration of SDN switches.

Figure 12 shows an overview of the business logic view for grease leakage detection. As a prerequisite,
the field devices (consists of Raspberry Pi with the camera attached and another NanoBox running the
anomaly detection application) need to have been successfully bootstrapped, connected to the
communication network and on boarded in the SEMIoTICS eco-system. Following that, the application is
defined in the Recipe Cooker and the business logic is deployed to the field device.

Transcoder: captures the video feed from the camera and encodes the signal to reduce the size of the
video when transmitted via the SDN network to the detection process. The latter is hosted and executed
on a different device (i.e., the Microbox in Figure 1) in this demonstrator.

Detection process: processes the encoded video feed, providing it to the machine learning model with
the purpose of detecting an anomaly. The machine learning model has been pre-trained with a finite
number of image samples from a simulated environment, enabling the model to determine when a grease
leakage occurs with a high accuracy. If the model determines - with significant confidence - that significant
leakage occurs, the process forwards an event notification to the action process.

Action process: this process is being triggered whenever the detection process detects an anomaly. The
process immediately issues a stop command to the wind turbine.

Semantic Edge Platform: this component provides an API that enables the action process to interact with
another device enrolled to the SEMIoTICS deployment. The API exposes enrolled devices as Device
Nodes, along with their associated capabilities sourced from Thing Descriptions. It ultimately enables the
application to interact with the legacy control system.

Semantic API and protocol binding: it is responsible for the translation between Web of Things protocol
and the last mile connection to the simulated brownfield control system, that is using a legacy industrial
protocol. It provides a uniform semantic API for all connected devices. This service is the pr imary enabler
to bridge greenfield edge technology with existing brownfield installations. When the stop command has
been received by the action process, the service forwards the stop command to the model wind turbine via
the industrial communication protocol that is supported by the (simulated, in this case) wind turbine control
system.

Wind turbine control system: the autonomous simulation of a wind turbine control system. It will take the
action to stop the model turbine when the command is received.

5.3 Setup Testbed and Integration

A prerequisite for this sub use case to work is that all systems are operational and connected to the
SEMIoTICS framework deployment, also including the video processing unit that must be connected and
registered with the Thing Directory. The capabilities of the legacy control system are registered at the Thing
Directory. The protocol binding service is operational, and the thing capabilities are replicated at the Global
Thing Directory. Furthermore, the IoT Gateway is operational with excess capacity to execute the
application. Finally, the Recipe Cooker framework is operational, and the application flow is designed and
ready to be deployed.

780315 —
 S

EM
IoTIC

S
 —

 H
2020-IO

T-2016-2017/H
2020-IO

T-2017
D

eliverable D
5.9 D

em
onstration and validation of IW

P
C

 - E
nergy (C

ycle 2)
D

issem
ination level: P

ublic

28

FIG

U
R

E 12: O
VER

VIEW
 O

F G
R

EA
SE LEA

K
A

G
E D

ETEC
TIO

N
 A

PPLIC
A

TIO
N

 (U
C

1 - SU
B

 U
C

2)

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D5.9 Demonstration and validation of IWPC - Energy (Cycle 2)
Dissemination level: Public

29

6 SUB USE CASE 3: INCLINATION MEASUREMENT OF TOWER

6.1 Scope and Objectives

The third sub use case focuses on “plug and play” onboarding capabilities provided by the SEMIoTICS
framework, demonstrating integration of a third-party inclination sensor for deployment in a wind turbine.
An inclination sensor is used to measure the orientation angle of an object in relation to the gravitational
field of the earth.

Furthermore, it focuses on publishing selected data to both the public and private cloud environments,
demonstrating the use of various SEMIoTICS components for interoperability from field layer to cloud. Two
business applications deployed in the cloud and making use of said data were created for this purpose.
One business application, deployed in the public cloud, consumes the measured inclination data along with
other operational data from the simulated model wind turbine environment, for visualization and decision-
making purposes. The cloud application monitors the inclination values transmitted and enables the
operator to act if a set threshold is exceeded. Only raw data from the inclinometer is transferred to the
cloud and all business logic for decision making is defined in the cloud application.

The second business application is deployed in the private cloud environment with the purpose of
monitoring the health of field devices, i.e., the inclinometer sensor. As the inclinometer sensor is not
natively integrated with the existing control and instrumentation system of the wind turbine, it is not being
monitored by it. The part of the application, which is deployed at the field layer, continuously monitors the
availability of the deployed inclinometer sensor and forwards a heartbeat signal to the private cloud. In this
example, only availability information of the sensor is transmitted to the private cloud, whereas all
operational inclination data recorded is transmitted to the public cloud application.

The business objective is to enable continuous monitoring of the structural health of the wind turbine tower,
by continuously monitoring the X/Y sway of the tower. It is common in the wind industry to assess and offer
lifetime extending upgrade packages for brownfield installations when they are nearing the end of their
original design life, e.g., by performing extended service, inspections and upgrades that would extend the
lifetime of a wind turbine; for example, from 25 to 30 years.

Steel towers lose structural strength over time due to fatigue caused by the cycling loads, when the turbine
is both in stand-still and in operational mode, therefore it is important to monitor the condition of the tower
when the structure is nearing the end of its designed life.

The tubular steel tower of the wind turbine is not easy to or economically viable to exchange for such an
upgrade. Inclination sensors can then be fitted at certain locations inside the tower, to continuously monitor
the sway of the tower in relation to the current operational and weather conditions, to aid structural
engineers to determine to health of the structure.

The scope of the demonstrator focuses on showcasing the following SEMIoTICS advancements:

• The use of select SEMIoTICS components to define the business logic, distribute and to instantiate
the application in an edge device at the field layer

• To demonstrate the efficient “plug and play” onboarding of a new field layer IIoT device utilizing the
SEMIoTICS framework

• The integration of field layer devices and exposure of data to both private and public cloud.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D5.9 Demonstration and validation of IWPC - Energy (Cycle 2)
Dissemination level: Public

30

• Sample business applications, deployed at the field layer, in public and private cloud environment,
to monitor the inclination of the wind turbines tower and the availability of the inclinometer sensor.

An overview of the components and their use is provided in Table 3.

TABLE 3: INVOLVED SEMIOTICS COMPONENTS IN SUB USE CASE 3

Component SEMIoTICS
component

Architecture
reference

Description of use

Semantic Edge Platform ✓ Field Layer • Provides capabilities for initial device
bootstrapping and discovery

• Hosts Local Thing Directory service
• Provides API for interaction between

SEMIoTICS IoT Gateway and other
devices enrolled to SEMIoTICS
architecture

Semantic API and
Protocol Binding

✓ Field Layer • Implements field integration with
brownfield and greenfield devices

• Implements protocol bindings for field
devices

• Provides a unified semantic interface
for field devices

GW Semantic Mediator ✓ Field Layer • Translates one semantic model into
another one, e.g., an existing metadata
of brownfield device can be
transformed into W3C Thing
Description or a Thing Description can
be translated into the MindSphere
Asset model

Local Thing Directory ✓ Field Layer • Provides API to manage W3C Thing
Descriptions for field devices, e.g.,
create, read, update, delete, and query

• Synchronizes the content (TDs) with
Global Thing Directory

Edge device Field Layer • Raspberry Pi device with an external
inclinometer connected for measuring
the inclination of a wind turbine tower

• W3C Web of Thing servient, which
provides field data and a Thing
Description for this (greenfield) device

Legacy Control System Field Layer • Simulation of Wind Turbine Control
System based on Power Logic
Controllers and an operational and
controllable wind turbine model
(brownfield device)

Public Cloud ✓ Application
Layer

• Cloud where inclination filed data from
wind turbine park is gathered and
processed, implemented with Siemens
MindSphere

• A host for Condition Monitoring and
Predictive Maintenance application

Private Cloud ✓ Application
Layer

• Cloud implemented with InfluxDB
• A host for Health Monitoring application

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D5.9 Demonstration and validation of IWPC - Energy (Cycle 2)
Dissemination level: Public

31

6.2 Interaction with SEMIoTICS Framework and Components

The primary components used are the Semantic Edge Platform, IoT Gateway API, the network layer and
the data forward application running on the SEMIoTICS IoT Gateway. Furthermore, the connectivity to the
cloud is demonstrated. An application to compute and visualize the incoming flow of data from the
inclination sensor is defined in MindSphere. The Semantic Edge Platform visualizes the set of and
capabilities of newly detected field layer devices, based on the content of Local / Global Thing Directory.

Figure 13 shows an overview of the inclination measurement Sub Use Case, covering all interactions (from
the inclinometer bootstrapping process, to the process of use of data in two Clouds). An operator installs
an inclinometer in the tower and plugs it in the communication network where IIoT Gateway operates. GW
Semantic Mediator discovers and registers the device, using the Thing Description of the device. It stores
the description in the Local and Global Thing Directories. Further on, it exposes the device over the
gateway’s API and generates a Device Node object used to interact with the device (based on information
from Thing Description).

In order to integrate brownfield devices, the GW Semantic Mediator first generates a Thing Description
(TD). Brownfield devices are different as they originate from very different domains. For this purpose, in
this use case we consider a wind turbine and a Siemens controller which controls the turbine. The GW
Semantic Mediator reuses existing metadata for the controller (which can be exported from Siemens
engineering tool) to create a TD for that brownfield device (see Deliverable 3.9, Section 4.1.2). The GW
Semantic Mediator’s role, in general, is to mediate and map one form of semantic information of a field
device into another form. In this case it maps brownfield metadata of the controller into the W3C Thing
Description format. The Mediator is also used in the Cloud integration, i.e., to map W3C Thing Description
into the MindSphere Asset model, which is a data model used by said Siemens cloud application.

Once the bootstrapping process is complete, the device can be used in an application. Concerning this sub
use-case we have provided two applications, one deployed in MindSphere Cloud and another one in a
private Cloud (refer to Sub Use Case 4 as well). We have also provided an Edge application that puts the
inclinometer data in a data format suitable for both of the Cloud applications and, in addition, creates device
health -related data (e.g., heart-beat data stating that the inclinometer is alive). The Edge application
publishes this data to both Clouds. The MindSphere Cloud requires that the inclinometer data is sent to the
Cloud over a special agent (MindSphere Agent). The agent is integrated by using Open Edge Device Kit
(OEDK)4. Device-health data is sent to Private Cloud directly (with no agent) over MQTT.

4 https://support.industry.siemens.com/cs/document/109766079/open-edge-device-kit-
(oedk)?dti=0&lc=en-YE

780315 —
 S

EM
IoTIC

S
 —

 H
2020-IO

T-2016-2017/H
2020-IO

T-2017
D

eliverable D
5.9 D

em
onstration and validation of IW

P
C

 - E
nergy (C

ycle 2)
D

issem
ination level: P

ublic

32

FIG

U
R

E 13: O
VER

VIEW
 O

F IN
C

LIN
A

TIO
N

 M
EA

SU
R

EM
EN

T O
F TO

W
ER

 (U
C

1 - SU
B

 U
C

3)

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D5.9 Demonstration and validation of IWPC - Energy (Cycle 2)
Dissemination level: Public

33

FIGURE 14: APPLICATIONS RELATED TO INCLINATION MEASUREMENT OF TOWER

Figure 14 provide details on the two applications that rely on inclinometer data. The user initializes both
applications over the Semantic Edge Platform (IIoT Gateway), per the sequence shown in Figure 13. The
first application continuously monitors the sway of the tower and detects anomal ies (the tower inclination
exceeds the allowed threshold). This application is deployed in the MindSphere Cloud. The second
application monitors the health status of the inclinometer and visualizes this data. The application is
deployed in the private Cloud.

6.3 Setup Testbed and Integration

This subsection describes the testbed setup and integration results of the third sub use case. In this test
we successfully on-boarded an inclinometer sensor via the SEMIoTICS IIoT Gateway and visualized its
data in the MindSphere Cloud. The test succeeded via a communication enabled by the SEMIoTICS SDN
network.

Figure 15 shows the final deployment of the demonstrator with components relevant for Sub Use Case 3
marked in red. The inclinometer is a greenfield device that is added to brown-field installations with the
goal of continuously monitoring the condition and health of the wind turbine tower. The inclinometer (the
blue sensor in Figure 15) is integrated in the overall automation system with minimal effort, i.e., in plug-
and-play manner. Apart from the inclinometer, Figure 15 also shows the other field devices, e.g., a camera
and a microphone (the latter used in the previous Sub Use Case), as well as the Siemens S7 controller,
i.e., the brownfield device.

The SEMIoTICS IIoT Gateway on-boards the inclinometer. This process includes discovery of the newly
plugged device, registration of its semantic meta data (Thing Description) with the Local and Global Thing
Directory, and the exposure of the sensor’s data over the unified (WoT) API. The IIoT Gateway and the
newly plugged device are not directly connected. The gateway scans the network and discovers the device.
Based on Thing Description, the gateway is enabled to perform the onboarding procedure in an automated
fashion.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D5.9 Demonstration and validation of IWPC - Energy (Cycle 2)
Dissemination level: Public

34

FIGURE 15: HARDWARE FOR INCLINOMETER SUB USE CASE

FIGURE 16: INTEGRATION OF IIOT GATEWAY WITH MINDSPHERE CLOUD

The IIoT Gateway integrates field-level data and eases development of Edge applications. The data of the
inclinometer sensor in Sub Use Case 3 is processed and visualized in the public MindSphere Cloud
(MindSphere Cloud App). Therefore, we have extended IIoT Gateway to meet this requirement. Open Edge
Device Kit (OEDK)5 has been used for this purpose. Figure 16 depicts how a custom device (on the Edge
level) may communicate with the MindSphere Cloud over OEDK. For example, the inclinometer data can
be sent to OEDK via MQTT protocol and further from OEDK to MindSphere Cloud over HTTP (in fact over
the secure HTTPS protocol). This communication pattern works for any field device that is registered by
the IIoT Gateway.

5 OEDK: https://developer.mindsphere.io/resources/openedge-devicekit/index.html

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D5.9 Demonstration and validation of IWPC - Energy (Cycle 2)
Dissemination level: Public

35

The data of an on-boarded field device can be forwarded to the MindSphere Cloud via the Semantic Edge
Platform6. The latter provides a convenient user interface for interacting with field devices, the IIoT
Gateway, and the Cloud (via OEDK). Figure 17 shows a Node-RED flow for testing Sub Use Case 3, i.e.,
the provision of inclinometer (field-level) data via gateway to the Cloud (MDSP Cloud).

FIGURE 17: PROVISION OF INCLINOMETER DATA IN MINDSPHERE CLOUD OVER

SEMANTIC EDGE PLATFORM

In general, the Cloud has the capability to integrate all kinds of data from the field. Thousands of
inclinometers can be connected from wind farms to MindSphere (together with other types of sensors, e.g.,
for audio, video etc.). This brings up the question how to interpret all these different kinds of data in the
Cloud. To this end, MindSphere requires a user to create an information model (meta-data)7 for an asset
before the data of the asset can be sent to the Cloud.
IIoT Gateway has the goal to provide the semantic integration of field-level data. Thus, the semantic meta-
data, which the gateway integrates and provides at the Edge level, is used in the Cloud integration too.
GW Semantic Mediator, which is a component of the IIoT Gateway, automatically creates the MindSphere
information model based on a Thing Description. Figure 18 shows an automatically created MindSphere
information model based on Thing Description for inclinometer and a temperature sensor.

6 Semantic Edge Platform is a SEMIoTICS extension of Node-RED, see deliverables D3.3 and D3.9.
7 https://documentation.mindsphere.io/resources/html/asset-manager/en-US/113537583883.html

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D5.9 Demonstration and validation of IWPC - Energy (Cycle 2)
Dissemination level: Public

36

FIGURE 18: IIOT GATEWAY AUTOMATICALLY CREATES MINDSPHERE INFORMATION

MODEL BASED ON W3C THING DESCRIPTION

Figure 19 shows a successful test, i.e., field data of the inclinometer is available in Cloud. The test
demonstrates the integration of a field device, the IIoT Gateway, the SEMIoTICS SDN network, and the
MindSphere Cloud. With this infrastructure in place, a SEMIoTICS user can, through simple interaction via
the Semantic Edge Platform, onboard a field device and access its data in MindSphere.

FIGURE 19: DATA OF INCLINOMETER AVAILABLE IN MINDSPHERE CLOUD

Finally, Figure 20 shows the Cloud app (MDSP App), which consumes the inclinometer data and triggers
an alert when the data exceed a predefined threshold. The left-hand side of Figure 20 shows a list of on-

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D5.9 Demonstration and validation of IWPC - Energy (Cycle 2)
Dissemination level: Public

37

boarded assets in the MindSphere Cloud. In the context of this demonstration, each of them represents a
wind park. For the selected asset in Munich (Perlach 31) we see locations of four wind turbines (Figure
20). Furthermore, we see a time series data from our inclinometer. In the right-bottom part of Figure 20 we
see the inclinometer sensor and the sensed movement around its axes. The application monitors the
stream of inclinometer data and, for a user-defined threshold, triggers an alert. An engineer first gets a
warning. If the problem does not get solved and the condition of the tower gets worse, then the user gets
an alert. The stop signal is sent to SEMIoTICS IIoT Gateway, which in turn issues a command to stop the
turbine.

FIGURE 20: CONDITION MONITORING AND PREDICTIVE MAINTENANCE APPLICATION IN

MINDSPHERE

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D5.9 Demonstration and validation of IWPC - Energy (Cycle 2)
Dissemination level: Public

38

7 SUB USE CASE 4: FIELD DEVICES AVAILABILITY
MONITORING

7.1 Scope and Objectives

Continuous availability of field devices, such as sensors and actuators, enrolled to the SEMIoTICS eco-
system, is a prerequisite for critical applications – whether instantiated in the cloud or at the edge level.
In this scenario, it’s foreseen that the integrator or operator of the wind farm is responsible for ensuring the
availability and security of the field devices enrolled, whereas the applications deployed that rely on said
devices to generate value, is defined by other actors, e.g., business intelligence experts, data scientists,
or external applications that are instantiated on license from an application marketplace.
In this context, the fourth Sub Use Case focuses on demonstrating interoperability and seamless integration
with an ‘availability monitoring application’, defined and instantiated in the private cloud space, simulating
a third-party integrator responsible for the availability monitoring of field devices enrolled to the SEMIoTICS
eco-system.
All field devices used throughout the UC1 demonstrator are being monitored and the availability status is
displayed in a global user interface hosted in the private cloud. Additionally, in order to guarantee that data
in-transit is not accessible nor modifiable by unauthorized parties, i.e., to guarantee confidentiality and
integrity of said data, the involved components are forced to use encryption when it is detected that
encryption is not used. As the field devices are registered to an MQTT Broker, as per Figure 21, enforcing
encryption is possible by interacting with the Broker.

FIGURE 21: INTERACTION OF FIELD DEVICES IN SUB USE CASE 3

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D5.9 Demonstration and validation of IWPC - Energy (Cycle 2)
Dissemination level: Public

39

7.2 Interaction with SEMIoTICS Framework and Components

The components of the SEMIoTICS framework that are used in this sub use case are highlighted in Table
4. The backend components include the Recipe Cooker, the Pattern Orchestrator, and the Pattern Engine,
with the SEMIoTICS GUI at the application layer. While initially a Pattern Engine was also deployed at the
field layer, it was finally considered not crucial for the execution of the specific scenario and its role was
adopted by the Pattern Engine deployed at the backend. The deployment of a lightweight Pattern Engine
at the field layer is showcased in the context of UC3.
The Recipe Cooker is used to relay to the Pattern Orchestrator a specific recipe which contains the sensors,
the MQTT Broker and the requirement for encrypted communication between them.
The Pattern Orchestrator, in turn, is responsible for automated configuration, coordination, and
management of the different patterns needed to implement the Recipe, as well as their deployment to the
various Pattern Engines. To achieve this, the Pattern Orchestrator processes received recipes; the result
of the said processing enables the Pattern Orchestrator to choose which Pattern Engine should receive
the corresponding Drools facts. Additionally this processing includes the generation of the REST endpoint
required by the SEMIoTICS GUI to visualize the status of the relevant SPDI properties.

TABLE 4: SEMIOTICS COMPONENTS USED IN SUB USE CASE 4

Component SEMIoTICS
component

Architecture
reference

Description of use

Recipe Cooker ✓ Application
Layer

• Recipe Cooker framework based on
Node Red is used to define and deploy
the business logic to the Gateway and
Backend Pattern Engines using Pattern
Orchestrator as a proxy.

Pattern Orchestrator ✓ Backend
Layer

• Pattern Orchestrator is used to
translate the recipe (business logic
request) into a set of patterns
comprising Security requirements.

Backend Pattern Engine ✓ Backend
Layer

• Pattern Engine at the backend layer is
used to toggle encryption on the MQTT
broker in the public cloud based on
triggered Security pattern by the
Pattern Orchestrator.

Backend GUI ✓ Backend
Layer

• Used to visualize the SPDI properties’
status, as received by the Pattern
Orchestrator, including the adaptation
of patterns applied to health monitoring
connection.

The Pattern Engine at the backend layer is used for gathering all the facts from the Pattern Orchestrator
regardless which layer are referred to. This enables the Pattern Engine at the SEMIoTICS Backend to have
a complete view of the current status of the SPDI properties across layers. All the application-related
pattern rules are also hosted at this engine; specifically in this Sub Use Case, this includes the encryption
rules that must be enforced to protect all interactions with the MQTT Broker. Finally, the GUI is used for
visualizing the status of the SPDI properties through the Pattern Orchestrator’s corresponding REST
endpoint.
Figure 22 shows the sequence of interactions involved in the current scenario and the messages
exchanged between components in order to carry out the functionality comprising the Sub Use Case.

The Recipe Cooker initiates the flow by sending the recipe to the Pattern Orchestrator. As already
described, the recipe contains the field devices, the MQTT Broker and the requirement for encryption

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D5.9 Demonstration and validation of IWPC - Energy (Cycle 2)
Dissemination level: Public

40

between the communication of the sensors and the MQTT Broker. The Pattern Orchestrator, after
processing the recipe, translates the recipe “ingredients” to Drools facts and sends them to the Backend
Pattern Engine. For every fact the Pattern Engine receives, it tries to match it to a rule, triggering the
associated reasoning process.

FIGURE 22: SEQUENCE DIAGRAM OF THE SECURITY ASPECT (UC1 - SUB UC4)

As soon as all the necessary facts are received, the encryption rule is triggered as per Figure 23.

FIGURE 23: MQTT ENCRYPTION RULE

The when part of the rule specifies:

1. An IoT sensor.
2. A software component that represents the MQTT Broker.
3. A sequence of the sensor and the MQTT Broker indicating their interaction.
4. The orchestration property that can be guaranteed through the application of the pattern, i.e., the

encryption property in this case ($PR).
The then part triggers adaptation actions by contacting the Broker and forcing him to use encryption.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D5.9 Demonstration and validation of IWPC - Energy (Cycle 2)
Dissemination level: Public

41

For more details on the pattern specification and reasoning approach followed in SEMIoTICS, we refer the
reader to deliverable D4.8.

7.3 Setup Testbed and Integration

A testbed was set up to integrate and test the security aspects of the sub use case detailed above and to
implement the sequence diagram shown in Figure 22. The technologies used to implement this include
Java, Maven and Spring Boot for the development and creation of the Pattern Engine. Moreover, as
detailed in deliverable D4.8, the Pattern Engine integrates the Drools Business Rules Management System
(BRMS) solution to implement its reasoning capabilities. Finally, the Eclipse Mosquitto was extended with
a restful service based also in Java, Maven and Spring Boot.

Initially in FORTH’s premises the Pattern Orchestrator, Backend Pattern Engine and MQTT Broker are
deployed in VMs. An Intel NUC (Figure 24) is used with 32GB RAM, 500GB storage and a CPU i7-6770HQ
2.60GHz with 8 cores. The Proxmox Virtual Environment is installed in the Intel NUC which hosts the
following VMs:

• Pattern Orchestrator VM
o 10 GB storage
o 4 GB RAM
o 4 CPU cores.
o Ubuntu 18.04.4 LTS operating system

• Pattern Engine VM
o 10 GB storage
o 4 GB RAM
o 4 CPU cores.
o Ubuntu 18.04.4 LTS operating system

• MQTT Broker VM
o 10 GB storage
o 2 GB RAM
o 4 CPU cores.
o Ubuntu 18.04.4 LTS operating system

FIGURE 24: THE INTEL NUC

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D5.9 Demonstration and validation of IWPC - Energy (Cycle 2)
Dissemination level: Public

42

After all the local testing was successful, the Pattern Orchestrator and the Pattern Engine were transferred
in Siemens premises, in the form of Docker images inside the NanoBox (Figure 1), to create the UC1
integrated testbed.

7.4 Validation

The above testbed allowed validating the functionality of the components by implementing the sequence
diagram in Figure 22. Figure 25 shows the two REST endpoints implemented on the Broker. In the
configuration of the MQTT Broker, all the related information for incoming connections such as port,
protocol certificates etc., is grouped and the terminology used to describe that group is “listener”. The
“enableEncryption” alters the configuration of the Broker in such a manner that it will include certificates
for the available listener for incoming connections, whereas the “encryptionStatus” verifies whether such
certificates are present in the configuration.
Additionally, the REST endpoints are protected with self-signed certificates generated at the Broker side
to guarantee encrypted communication. At the Backend Pattern Engine, the appropriate certificate is also
installed in order to trust the Broker, thus fulfilling the requirement R.GSP.4.

FIGURE 25: MQTT BROKER REST APIS

Figure 26 and Figure 27 shows the capture of packets from the Broker side before encryption is enabled.
At this point all the communication is unencrypted, thus making the credentials exchange as well as all
other data exchanges readable for passive attackers listening in on the connection.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D5.9 Demonstration and validation of IWPC - Energy (Cycle 2)
Dissemination level: Public

43

FIGURE 26: CREDENTIALS EXCHANGE

FIGURE 27: DATA EXCHANGE

As data is published to the MQTT Broker, an InfluxDB is populated with this data. We can see the latest
data for each of the three sensors in Figure 28, as well as the latest value inserted to the InfluxDB. This
data, among others, includes information regarding the availability of the sensors with the field “status” and
the timestamp of the latest value with the field “Time”.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D5.9 Demonstration and validation of IWPC - Energy (Cycle 2)
Dissemination level: Public

44

FIGURE 28 GUI FOR INFLUXDB DATA

Figure 29 shows the REST “encryptionStatus” that gives a response encryption: false.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D5.9 Demonstration and validation of IWPC - Energy (Cycle 2)
Dissemination level: Public

45

FIGURE 29: ENCRYPTION STATUS BEFORE PATTERN REASONING

As mentioned, we want to enforce secure communications on our sensors; so, we create a new recipe with
the “Security” Property on the Broker. This recipe is sent to the Pattern Orchestrator via an HTTP request,
using the Recipe Cooker interface, as shown in Figure 30.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D5.9 Demonstration and validation of IWPC - Energy (Cycle 2)
Dissemination level: Public

46

FIGURE 30: SECURE BROKER COMMUNICATION RECIPE SPECIFICATION

While the facts inserted to the Backend Pattern Engine do no satisfy any rule, the output of the Pattern
Engine is “0 rules fired” as we see in Figure 31. As soon the final required fact is inserted, the rules are
triggered, and the Pattern Engine initiates communication with the MQTT Broker. After that, the application
on the Broker side makes the appropriate changes to the configuration and encryption is enabled. The
response of the MQTT Broker, stating that the encryption is enabled, is also shown in Figure 31.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D5.9 Demonstration and validation of IWPC - Energy (Cycle 2)
Dissemination level: Public

47

FIGURE 31: PATTERN ENGINE OUTPUT

As a confirmation, when we call the REST /encryptionStatus again (Figure 32), we get a different
response, this time indicating that the encryption is enabled on the MQTT Broker.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D5.9 Demonstration and validation of IWPC - Energy (Cycle 2)
Dissemination level: Public

48

FIGURE 32: ENCRYPTION STATUS AFTER PATTERN REASONING

At this point the connection between the sensors and the MQΤT Broker does not work anymore because it
does not use the encryption. As soon as we configure them to use encryption the communication is
restored.
We further verify the security of communications with the capture of packets from the Broker side after the
encryption is enabled. At this point all the communication is encrypted with TLS1.3, making the credentials
exchange as well as any data exchange unreadable, as per Figure 33.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D5.9 Demonstration and validation of IWPC - Energy (Cycle 2)
Dissemination level: Public

49

FIGURE 33: DATA EXCHANGE AFTER REASONING

In the SEMIoTICS GUI we also see that in the SPDI pattern monitoring view there is the Security Pattern
Satisfied at the Backend Layer.

FIGURE 34: GUIHUB GRAPHICAL INTERFACE

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D5.9 Demonstration and validation of IWPC - Energy (Cycle 2)
Dissemination level: Public

50

8 OVERALL KPIS AND REQUIREMENTS VALIDATION

This section aims to provide a summary of requirements and KPIs relevant for evaluation in Use Case 1.
The four presented Sub Use Cases, together with the remaining Use Cases 2 & 3 aim to address and
validate the requirements presented in Table 5, while the relevant KPIs are presented in Table 6.

Further information on use case -specific requirements related to Use Case 1 are provided in D2.3. The
original methodology of KPI evaluation contained in D5.1 was updated where required and is mostly
summarized here for brevity.

TABLE 5: REQUIREMENTS PLACED ON USE CASE 1 AS PER D2.3

Req-ID

Description Reference Fulfilment

R.UC1.1, R.GP.1
(from D2.3)

Automatic establishment of
networking setup MUST be
performed to establish End-to-end
connectivity between different
stakeholders

Sections on Sub Use Cases
1 and 2 and SDN-enabled
connectivity. Deliverables

D3.1/D3.7.

This requirement is fulfilled and
demonstrated by the interaction

of Pattern Engine and Path
Finding and reservation
components in the SSC.

R.UC1.2

Automatic establishment of
computing environment MUST be
performed in IIoT Gateway for the
minimum operation of the IIoT
devices through network controller
based on SDN/NFV

Sections on Sub Use Cases
1 and 2. Deliverables

D3.2/D3.8.

Dynamic orchestration of
computing resources is the

focus of Use Case 2, SFC being
the main highlighted benefit of
the approach. Nevertheless,

computing resources in UC1 are
orchestrated by the Recipe

Cooker when deploying
machine learning workloads on

NanoBox devices.

R.UC1.3

There MUST be enabled the
definition of network QoS on
application-level and automated
translation into SDN controller
configurations.

Section on SDN-enabled
connectivity. Deliverables

D3.1/D3.7.

This requirement is fulfilled and
demonstrated by the interaction
of Pattern Engine, Path Finding

and Resource Manager
components in the SSC, in Sub

Use Cases 1 and 2.

R.UC1.4

Network resource isolation MUST
be performed for guaranteed
Service properties – i.e. reliability,
delay and bandwidth constraints.

Section on SDN-enabled
connectivity. Deliverables

D3.1/D3.7.

This requirement is fulfilled and
demonstrated by the Path

Finding / Resource Manager
modules of SSC, in Sub Use

Cases 1 and 2.

R.UC1.8

Semantic and robust
bootstrapping/registration of IIoT
sensors and actuators with IIoT
gateway MUST be supported.

Section on Sub Use Case 3.
Deliverables D3.3/D3.9.

This requirement is fulfilled and
demonstrated by the

SEMIoTICS components of the
IIoT Gateway and is

demonstrated in Sub Use Cases
1, 2, 3.

R.UC1.9

Semantic interaction between use-
case specific application on IIoT
Gateway and legacy turbine control
system MUST be supported.

Sections on Sub Use Cases
1, 2, and 3.

This requirement is fulfilled and
demonstrated by the

SEMIoTICS components of the
IIoT Gateway and is

demonstrated in Sub Use Cases
1 and 2 - automated turbine

rotor stopping (using a
brownfield PLC) based on
greenfield sensor inputs.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D5.9 Demonstration and validation of IWPC - Energy (Cycle 2)
Dissemination level: Public

51

R.UC1.10

Local analytical capability of IIoT
Gateway to run machine learning
algorithms (e.g. specific to 2
specific Sub Use cases)

Sections on Sub Use Cases
1 and 2, KPI evaluation

(below).

This requirement is fulfilled and
demonstrated by the video and

audio analytics applications
demonstrated in Sub Use Cases

1 and 2.

R.UC1.11
Device composition and application
creation SHALL be supported
through template approach.

Sections on Sub Use Cases
1, 2, and 4.

This requirement is fulfilled and
demonstrated by the Recipe
Cooker as Recipe (Template)

orchestration tool and is
demonstrated in Sub Use Cases

1, 2 and 4.

R.UC1.12
Standardized semantic models for
semantic-based engineering and
IIoT applications MUST be utilized.

Sections on Sub Use Cases
1, 2, and 3 (especially).

Deliverables D3.3 and D3.9.

This requirement is fulfilled and
demonstrated by the integration

of Thing descriptions (WoT),
i.e., by semantic modelling in

IIoT Gateway is demonstrated in
Sub Use Cases 1, 2 and 3.

R.UC1.13

Middleware functionality MUST be
supported on IIoT gateway, to deal
with termination of IIoT sensors,
signal processing and termination
of interfaces to legacy systems to
provide prioritization and QoS for
IIoT applications.

Section on Sub Use Cases
3 and 4. Deliverables

D3.3/D3.9. Section on SDN-
enabled connectivity and

D3.1/D3.7

The requirement of sensor flow
termination is fulfilled and

demonstrated by the scenario of
information splitting in the IIoT

Gateway and is demonstrated in
Sub Use Cases 3 and 4. QoS

and prioritization are
demonstrated in Sub Use Cases

1 and 2.

R.UC1.5

Fail-over and highly available
network management SHALL be
performed in the face of either
controller or data-plane failures.

Deliverables D3.1/D3.7.

This requirement is fulfilled,
demonstrated and evaluated in

a demonstrator and paper
presented at ACM SIGCOMM
2019. Due to numerous other
highlights of UC1, it has been
excluded from demonstration.

R.UC1.6
Decisions made by unreliable, i.e.
faulty or malicious SDN controllers,
SHALL be identified and excluded.

Deliverables D3.1/D3.7.

This requirement is fulfilled,
demonstrated and evaluated in

a demonstrator and paper
presented at ACM SIGCOMM
2019. Due to numerous other
highlights of UC1, it has been
excluded from demonstration.

R.UC1.7

The operation of the SDN control
SHALL be scalable to cater for a
massive IoT device integration and
large-scale request handling in the
SDN controller(s) using a (near-)
optimal IoT client – SDN controller
assignment procedure.

Deliverables D3.1/D3.7.

This requirement is fulfilled,
demonstrated and evaluated in

a demonstrator and papers
presented at IEEE GLOBECOM

2019 and ACM SIGCOMM
2019. Due to numerous other
highlights of UC1, it has been
excluded from demonstration.

R.GP.2 Scalable infrastructure due to the
fast-paced growth of IoT devices

Sections on Sub Use Cases
1, 2, 3 and 4.

This requirement is fulfilled and
demonstrated in Sub Use Cases

1, 2, 3 and 4 by IoT
orchestration via Recipe Cooker

in Node-RED environment.

R.GP.3

High adaptation capability to
accommodate different QoS
connectivity needs (e.g. low
latency, reliable communication)

Sections on Sub Use Cases
1 and 2 and SDN-enabled
connectivity. Deliverables

D3.1/D3.4/D3.7/D3.10.

This requirement is fulfilled and
demonstrated by the interaction
of Pattern Engine, Path Finding

and Resource Manager

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D5.9 Demonstration and validation of IWPC - Energy (Cycle 2)
Dissemination level: Public

52

components in the SSC, in Sub
Use Cases 1 and 2.

R.GP.4

Detection of events requiring a QoS
change and triggering network
reconfiguration need by SPDI
pattern

Sections on SDN-enabled
connectivity and Sub Use

Cases 1 and 2. Deliverables
D3.1/D3.7.

This requirement is fulfilled and
demonstrated by Dependability

(Connectivity) and Security
pattern in Sub Use Cases 1 and

4.

R.GP.5

Interaction between SDN controller
and IoT backend cloud through a
dedicated interface (called
northbound software interface)

Sections on Sub Use Cases
1 and 2 and SDN-enabled
connectivity. Deliverables

D3.1/D3.4/D3.7/D3.10.

This requirement is fulfilled and
demonstrated by interaction

between Pattern Orchestrator in
backend and SSC.

R.GP.6

Interaction between SDN controller
and network nodes (e.g. switches,
routers or IoT Gateways) through
dedicated interface (called
southbound software interface)

Section on SDN-enabled
connectivity. Deliverables

D3.1//D3.7.

This requirement is fulfilled and
demonstrated by SSC controller
in Sub Use Cases 1, 2, 3 and 4.

R.BC.16 Prediction mechanism based on
the data stored in the cloud

Section on Sub Use Case 3.
Deliverables D3.3 and D3.9.

This requirement is fulfilled and
demonstrated by Sub Use Case

3 via MindSphere – condition
monitoring and predictive

maintenance Apps.

R.BC.18
The backend layer must feature
SPDI pattern reasoning embedded
intelligence capabilities

Section on Sub Use Case 4.
Deliverables D4.1/D4.8.

This requirement is fulfilled by
the deployment and integration
of pattern orchestration and
reasoning capabilities at the
backend (Pattern Orchestrator &
Backend Pattern Engine), as
showcased in sub-use case 4.

R.BC.19
The backend layer should feature
pattern-driven cross-layer
orchestration capabilities

Sections on Sub Use Cases
1, 2 and 4.

Deliverables D4.1/D4.8.

This requirement is fulfilled and
demonstrated by Recipe Cooker

component implemented in
Node-RED.

R.NL.12
The network layer must feature
SPDI pattern reasoning local
embedded intelligence capabilities

Section on SDN-enabled
connectivity. Deliverables

D3.1/D3.7.

This requirement is fulfilled and
demonstrated by interaction of

Pattern Engine in SSC and
Pattern Orchestrator.

R.NL.13

The network layer must aggregate
intra-layer monitored information to
enable local intelligence reasoning
and adaptation

Section on SDN-enabled
connectivity. Deliverables
D3.1/D3.7 & deliverables

D4.1/D4.8.

This requirement is fulfilled by
the integration of the SDN

Pattern Engine within the SSC
and demonstrated in UCs
relying on the reasoning
capabilities of the SSC.

R.FD.1
Field devices SHOULD be able to
get data from the environment
through sensors (sensors).

Sections on Sub Use Cases
3 and 4. Deliverables D3.3

and D3.9.

This requirement is fulfilled and
demonstrated by IIoT Gateway

components in UC1 (i.e.,
camera, microphone and

inclinometer sensors).

R.FD.2
Field devices SHOULD be able to
process data in near real time
(process units).

Sections on Sub Use Cases
3 and 4. Deliverables D3.3

and D3.9.

This requirement is fulfilled and
demonstrated by IIoT Gateway
components in UC1 (real-time

anomaly detection and
actuation).

R.FD.3
Field devices SHOULD be able to
control (at least) a mechanism /
system (actuators).

Sections on Sub Use Cases
3 and 4. Deliverables D3.3

and D3.9.

This requirement is fulfilled and
demonstrated by IIoT Gateway
components in UC1 (ref. legacy

PLC controller).

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D5.9 Demonstration and validation of IWPC - Energy (Cycle 2)
Dissemination level: Public

53

R.FD.5
Field devices SHOULD be able to
interact with SEMIoTICS IIoT/IoT
gateway dedicated components

Sections on Sub Use Cases
3 and 4. Deliverables D3.3

and D3.9.

This requirement is fulfilled and
demonstrated by semantic
integration of brownfield /

greenfield devices in the IIoT
Gateway in UC1.

R.FD.6

Field devices MUST interoperate
using a standard communication
protocol like REST APIs, COAP,
MQTT.

Sections on Sub Use Cases
3 and 4. Deliverables D3.3

and D3.9.

This requirement is fulfilled and
demonstrated by IIoT Gateway
components in UC1 (ref. MQTT

broker and REST API
exposure).

R.FD.7
Field devices MUST use
standardize interoperable message
format (e.g. JSON, etc.).

Sections on Sub Use Cases
3 and 4. Deliverables D3.3

and D3.9.

This requirement is fulfilled and
demonstrated by IIoT Gateway

components in UC1.

R.FD.8
Field devices MUST support secure
bootstrapping / registration
protocol.

Sections on Sub Use Cases
3 and 4. Deliverables D3.3

and D3.9.

This requirement is fulfilled and
demonstrated by semantic

bootstrapping in IIoT Gateway
components.

R.FD.9

Field devices MUST be able to
communicate with the IIoT
Gateway / other architectural
components.

Sections on Sub Use Cases
3 and 4. Deliverables D3.3

and D3.9.

This requirement is fulfilled and
demonstrated by IIoT Gateway

components. This is possible by
semantic integration of

greenfield and brownfield
devices (S7/MQTT/REST HTTP

protocol support) .

R.FD.10 Field devices SHOULD minimize
data traffic.

Sections on Sub Use Cases
3 and 4. Deliverables D3.3

and D3.9.

This requirement is fulfilled and
demonstrated by Local Analytics
component in IIoT Gateway (ref.
KPI-3.1.1 description below for

further information).

R.FD.12

Greenfield device is expected to
expose its capability over a W3C
Thing Description, which
semantically describes field
resources, and to be
computationally powerful enough to
run a node-wot servient (that
exposes the TD).

Sections on Sub Use Cases
3 and 4. Deliverables D3.3

and D3.9.

This requirement is fulfilled and
demonstrated by the

inclinometer greenfield IoT
device.

R.FD.13

Brownfield device is assumed to
consist of a sensor/actuator and a
controller (PLC). The controller is
expected to expose capability of its
sensor/actuator over a native
brownfield protocol (without the
need for IIoT Gateway to interact
directly with them).

Sections on Sub Use Cases
3 and 4. Deliverables D3.3

and D3.9.

This requirement is fulfilled and
demonstrated by field layer

devices (S7 protocol for
interacting with the PLC).

R.FD.15

The field layer must aggregate
intra-layer monitored information to
enable local intelligence reasoning
and adaptation

Sections on Sub Use Cases
1 and 2. Deliverables D3.3

and D3.9.

This requirement is fulfilled and
demonstrated by the audio and

video anomaly detection
applications.

R.S.1
The confidentiality of all network
communication MUST be protected
using state-of-the-art mechanisms.

Sections on Sub Use Case
4.

This requirement is fulfilled and
demonstrated in tandem with
SEMIoTICS’ pattern-based

reasoning and adaptation SPDI
capabilities, enabling TLS in

Sub Use Case 4

R.P.1 The collection of raw data MUST be
minimized

Sections on Sub Use Cases
1 and 2.

This requirement is fulfilled by
the Pattern Engines in all layers

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D5.9 Demonstration and validation of IWPC - Energy (Cycle 2)
Dissemination level: Public

54

because no raw data is
collected. Additionally, Sub Use

Cases 1 & 2 demonstrate
inference in field layer thus

resulting in decrease of
information transfer outside the

local wind park.

R.P.3 Storage of data MUST be
minimized.

Sections on Sub Use Cases
1 and 2.

This requirement is fulfilled by
the Pattern Engines in all layers

because no raw data is
collected. Additionally, Sub Use

Cases 1 & 2 demonstrate
immediate inference in field

layer thus resulting in decrease
of the total information storage

in the local wind park.

R.P.12

During all communication and
processing phases logging MUST
be performed to enable the
examination that the system is
operating as promised

N/A.

This requirement is fulfilled
natively by Recipe Cooker,

SSC, Pattern Orchestrator and
IIoT Gateway that log all
information of operation.

R.GSP.4 Platforms, e.g. cloud platform and
sensor, SHALL be trusted.

Sections on Sub Use Case
4.

This requirement is fulfilled and
demonstrated by the Backend

Pattern Engine capable of
enabling secure interactions of
MQTT broker and MQTT clients

on-demand.

TABLE 6: KPIS VALIDATED / MEASURED IN USE CASE 1

KPI-ID Name

KPI-1.1 Number of SPDI Patterns

KPI-2.1 Semantic descriptions for 6 types of smart objects

KPI-2.2 Data type mapping and ontology alignment

KPI-2.3 Semantic interoperability with 3 IoT platforms

KPI-3.1.1 Generating monitoring strategies in the 3 targeted IoT
platforms

KPI-3.1.3 Performing predictive monitoring with an average
accuracy of 80%

KPI-4.1 Delivery of lightweight ML algorithms

KPI-4.2 Delivery of mechanisms with adaptation time of 15ms

KPI-4.6 Development of new security mechanisms/controls

KPI-6.1 Reduce manual interventions required for
bootstrapping of smart object in each use case

domain by at least 80%

KPI-6.3 Delivery of 3 prototypes of IIoT/IoT applications

KPI-7.1 Provision the SEMIoTICS building blocks

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D5.9 Demonstration and validation of IWPC - Energy (Cycle 2)
Dissemination level: Public

55

8.1 KPI-1.1: Number of SPDI Patterns
This KPI is satisfied through the delivery of the final set of SEMIoTICS SPDI patterns that well exceed the
initially specified KPI of 36 patterns, as detailed in the deliverable D4.8 – “SEMIoTICS SPDI Patterns
(final)”.
In the context of UC1, the Dependability and Security patterns were used in sub use case 1 and sub use
case 4, respectively. The Dependability pattern (Figure 35) was modified and was preinstalled in the SDN
Pattern Engine while the Security pattern (Figure 37) was part of the Backend Pattern Engine.

FIGURE 35: DEPENDABILITY PATTERN AT THE SDN

The Dependability pattern is modified in such a manner to include network QoS properties.
The when part of the rule specifies:

1. Two OrchestrationActivities that act as the two endpoints. The OrchestrationActivity is a parent
class for Host, IoTSensor, IoTGateway etc, which enables the rule to be more abstract without the
need to specify a new rule for every class.

2. A Link that represents the connection between the OrchestrationActivities.
3. A sequence of the OrchestrsatonActivities indicating their interaction.
4. Four QoS properties
5. The orchestration property that can be guaranteed through the application of the pattern, i.e., the

dependability property in this case ($qpr).
The then part triggers the enforcement of the QoS properties which uses the SDN controller to generate
in the switches per flow mapping configurations.
The QoS properties are provided by the Recipe Cooker (Figure 36) and are forwarded via the Pattern
Orchestrator to the appropriate SEMIoTICS layer and the corresponding Pattern Engine.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D5.9 Demonstration and validation of IWPC - Energy (Cycle 2)
Dissemination level: Public

56

FIGURE 36: RECIPE COOKER QOS MAPPING

The Security pattern is a combination of three rules in the Backend Pattern Engine, Security decomposition,
MQTT_Encryption and Security_verification.
Security decomposition:
The when part of the rule specifies:

1. A software component that represents the MQTT Broker.
2. The orchestration property that can be guaranteed through the application of the pattern, i.e., the

security property in this case ($PR).
The then part creates a new property that we need to verify and that is the MQTT_Encryption of the
software component.

MQTT_Encryption:
The when part of the rule specifies:

1. An IoT sensor.
2. A software component that represents the MQTT Broker.
3. A sequence of the sensor and the MQTT Broker indicating their interaction.
4. The orchestration property that can be guaranteed through the application of the pattern, i.e., the

encryption property in this case ($PR).
The then part triggers adaptation actions by contacting the Broker and forcing him to use encryption.

Security_verification
The when part of the rule specifies:

1. A software component that represents the MQTT Broker.
2. The orchestration property that can be guaranteed through the application of the pattern, i.e., the

security property in this case ($PR1).
3. The property of MQTT_Encryption that must already be satisfied.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D5.9 Demonstration and validation of IWPC - Energy (Cycle 2)
Dissemination level: Public

57

The then part modifies the status of the orchestration property to state that the property holds.

FIGURE 37: SECURITY PATTERN AT THE BACKEND PATTERN ENGINE

In both the Dependability and the Security pattern, the recipe that will invoke the triggering of the rules is
originating from the Recipe Cooker. The Pattern Orchestrator receives the translated recipe to SEMIoTICS
pattern language and forwards the ingredients of the recipe as facts to the appropr iate pattern engine for
reasoning. The visualization of the pattern status occurs in the GUI component where the information is
queried in standard intervals from the Pattern Orchestrator. More information on this process can be found
in deliverable D4.8.

8.2 KPI-2.1 Semantic descriptions for 6 types of smart objects

This KPI is satisfied as, within the project, semantic descriptions for six types of smart objects have been
created. We have used W3C Thing Description (TD) standard for this purpose.
The Thing Descriptions which were created in SEMIoTICS include: (i) inclinometer, (ii) wind turbine, (iii)
camera, (iv) microphone, (v) temperature sensing device, (vi) energy monitoring device, and (vii) multi-
sensor node.
Two Thing Descriptions are provided in this document as examples, i.e., a TD for the wind turbine (a legacy
device used in Use-Case 1) is shown in Appendix 10.1, and a TD for the inclinometer (a greenfield device
used in Use-Case 1) is presented in Appendix 10.2.
In Deliverable D3.9 we provided information explaining how a TD is generated by SEMIoTICS IoT Gateway.
Further on, we described how a TD can be used for creating applications. Thing Description is a
cornerstone for making a field device programmatically accessible. The gateway will create a Device Node
in Semantic Edge Platform for each interaction pattern from a TD. Figure 38 shows how an inclination

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D5.9 Demonstration and validation of IWPC - Energy (Cycle 2)
Dissemination level: Public

58

Device Node has been created from a TD provided in Appendix 10.2, and how this node has been used in
an application to monitor Field Devices Availability (see Section 7).

FIGURE 38: FIELD DEVICES AVAILABILITY MONITORING

8.3 KPI-2.2: Data type mapping and ontology alignment

The aim of this Use Case is the IIoT integration in Wind Park Control Network providing value-added
services. Specifically, one of its parts refers to taking local action on sensing and analyzing structured data
to find the inclination of a steel tower.
However, at runtime, a possible change in resource availability may require an adaptation mechanism for
the dynamic recompositing of the flow components, without any change of the system behavior. We assume
that the above flow has an Inclinometer component. If, for a reason, the Inclinometer becomes unavailable,
another component from the IoT repository with the same functionality is selected to replace the one that
has become unavailable. In this case, interoperability of the link between the replaced component and the
connected flow component should be checked before the final decision for the replacement to ensure the
initial target of the system. In particular, a potential conflict that needs to be addressed in case of the
Inclinometer is the different unit of measurement of angle (degrees, radians), which is used by the two
components (the replaced and the connected flow component).
The solution in this interoperability adaptation issue is with the participation of the Backend Semantic
Validator as a core component. It examines the interoperability between the corresponding sensors and
tries to ensure the interaction between them creating Adaptor Nodes. Figure 39 highlights and explains
said methodology in the specific Use Case scenario.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D5.9 Demonstration and validation of IWPC - Energy (Cycle 2)
Dissemination level: Public

59

FIGURE 39: DATA MAPPING APPROACH

Even though it was conceptually described in D4.11 Backend Semantic Validator is not presented in the
UC1 due to focusing on other aspects of SEMIoTICS architecture. Nevertheless, the Backend Semantic
Validator is presented in UC2.
In order to ensure interoperability from the application definition all the way through to the execution at
runtime, we have implemented four levels of abstraction and accordingly three steps of transformation
between them. These steps are indicated in below Figure 40.

FIGURE 40: TRANSLATIONS FROM RECIPES TO EXECUTABLE RULES

Recipes are designed in the Recipe Cooker component and serialized in the N3 language. Then, we have
implemented various N3-based rules that can transform the Recipe into a network configuration. An
overview of these 2 models (Recipe and Network model) and their transformation is shown in Figure 41.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D5.9 Demonstration and validation of IWPC - Energy (Cycle 2)
Dissemination level: Public

60

FIGURE 41: TRANSFORMATION FROM RECIPE TO NETWORK CONFIGURATION

In Table 7 a few semantics are presented related to SDN patterns. In the LHS, the components which
constitute the topology of the pattern are defined. Different facts such as hosts, and links are included in
the list. Moreover, the Property represents the constraints of the topology and the required property. In the
RHS, the pattern provides the solution by inserting, modifying, updating or retracting facts from the
knowledge base which will also update the inventory list in the controller. Each component is converted
through the respective Java class to an understandable format to the Pattern Engine.

TABLE 7: PATTERN RULE SEMANTICS

Type Syntax Description
rule rule "name" name of the rule
Left Hand Side (LSH)

when

Network Pattern Elements (Facts)
Host (mac, activityAddress) match network nodes such as switches and hosts
Link (srcId, destId) match links between source and destination nodes

Property (subject, category,
satisfied)

match requirements of pattern such as subject (e.g.
host), property category (e.g. Dependability) and
satisfied (e.g. true/false)
Conditional Elements

== match conditions
contains contains object (logical)
not not match (logical)
!= not match (arithmetic)

Right Hand Side (RSH)
then Actions

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D5.9 Demonstration and validation of IWPC - Energy (Cycle 2)
Dissemination level: Public

61

modify (\$fact)\{pro=pro'\} modify knowledge base fact
retract (\$fact) retract knowledge base fact
insert (new Fact ()) insert knowledge base fact
update (\$fact) update knowledge base fact
Java commands other Java language syntax

8.4 KPI-2.3: Semantic interoperability with 3 IoT platforms
The semantic interoperability between the IIoT Gateway and two IoT platforms has been achieved. These
are the public MindSphere Cloud and the private InfluxDB Cloud. Integration and interoperability with a
third Cloud were not required by this use case. Thus, we focused on tighter integration and interoperability
between the Field and Edge as well as between the two Cloud deployments. Each of these Clouds runs a
UC-specific application. Figure 14 depicts details about the two applications, which are based on the data
from the inclinometer. The user initializes both applications over Semantic Edge Platform (IIoT Gateway)
as shown in Figure 13. The first application continuously monitors the sway of the tower and detects
anomaly. This application is deployed in the MindSphere Cloud. The second application monitors the health
status of the inclinometer and visualizes this data. The application is deployed in a private InfluxDB Cloud.
Both applications use the data from the Field level, integrated by the Gateway at the Edge level, and
pushed to two different Clouds, see Figure 42.

FIGURE 42: SEMANTIC INTEROPERABILITY ACROSS FIELD, EDGE AND TWO CLOUD

PLATFORMS

In the following we summarize how the semantic interoperability has been achieved (further details are
provided in Deliverable D3.9). The cornerstone for the semantic interoperability is based on the W3C Thing
Description standard. Each field device is semantically described with a Thing Description (TD). The IoT
Gateway generates a TD for brownfield device, whereas greenfield devices already have a TD available.
Based on these TDs, the gateway provides a unified API at the Edge level. This has been realized with a
standardized W3C Web of Things API. By making all field devices accessible over a unified and
standardized API and describing them with standardized semantics, we have achieved the full
interoperability at the Edge level.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D5.9 Demonstration and validation of IWPC - Energy (Cycle 2)
Dissemination level: Public

62

In order to provide interoperability with the Cloud layer, our approach in SEMIoTICS is to reuse semantics
from Edge in the Cloud. This means, that Thing Descriptions provided at the Edge has been used to form
a Cloud-level semantics. The functionality of GW Semantic Mediator in the IoT Gateway has been extended
for this purpose.

FIGURE 43: SEMANTIC MODELS TRANSFORMATION WITH GW SEMANTIC MEDIATOR

The GW Semantic Mediator accepts one semantic model as input and converts it into another semantic
model, based on a mapping knowledge; see Figure 43. For example, in order to provide data of the
inclinometer in the public MindSphere Cloud, we have to generate a MindSphere Asset model for the
inclinometer. The GW Semantic Mediator automates this task. It takes a TD for the inclinometer (see
Appendix 10.2) and automatically produces a valid MindSphere Asset model (see Appendix 0). The
MindSphere model is generated with the same semantics as specified in the initial TD at the Edge. The
two models differ in syntax and data formats though, e.g., TD is provided in JSONLD, whereas the
MindSphere accepts the JSON format. The automated mapping is ensured based on Mapping Knowledge,
see Figure 43. The Mapping Knowledge explains how to map one semantic model into another one. It is a
declarative way to express the mapping rules. This knowledge can be created once for certain input/output
models and used many times afterwards for an automated integration between Edge and Cloud. In
Appendix 10.4 we show the Mapping Knowledge we created to map W3C Thing Description into Siemens
MindSphere Asset model.

8.5 KPI-3.1.1: Generating monitoring strategies

Monitoring the infrastructure, in this use case the wind turbine, was mainly done via a microphone and a
video camera. The strategies for handling the gathered data from those smart sensors are described below.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D5.9 Demonstration and validation of IWPC - Energy (Cycle 2)
Dissemination level: Public

63

FIGURE 44: MICROPHONE (AT THE BOTTOM OF THE DOOR) INSTALLED IN WIND TURBINE
NACELLE

Figure 44 shows the microphone mounted within the housing of a wind turbine. This Siemens NanoBox on
the field layer, accesses the microphone and captures the audio data. The recorded audio is sliced into
samples of predefined length. The audio samples are then transformed into images using Fourier
transformation. These images are then fed into the AI model for inference to identify whether it is an
anomaly (e.g., loose objects making tumbling noise) or a regular sound. These images of the audio are
then sent via the network to the NanoBox on the backend layer, which is used to do the AI inference on
the received data.
The concrete application flow of the audio processing that is setup in the Recipe Cooker is shown in Figure
45. The distribution of the implemented IoT applications over the two NanoBoxes on field and backend
layer is also visible in their workflow, which is realized with Node-RED. On the left, we see the components
deployed on the field NanoBox, and on the right the components deployed on the backend NanoBox. Such
distribution of the application workflow on two (or more) edge devices has the advantage that the
computational load can be shared, or processes can be parallelized. The workflow shown in Figure 45
comprises the following steps (each step is marked with a red square in the figure):

1. The audio data is accessed.
2. The recorded sample is played to the user.
3. The recorded audio sample is transformed into an image via Fourier transformation, which is then

send over the network.
4. The image files are received.
5. The inference is computed.
6. Finally, the exceedance over a specified loss threshold indicates an anomaly, so a loose object in

the turbine. Then, the PLC controller is triggered to stop the turbine.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D5.9 Demonstration and validation of IWPC - Energy (Cycle 2)
Dissemination level: Public

64

FIGURE 45: FLOW OF THE AUDIO PROCESSOR

Figure 46 shows example images resulting from Fourier Transformation of audio samples: on the left is a
normal sound sample transformed into an image and on the right is an abnormal sound sample.

FIGURE 46: AUDIO FILES AFTER FOURIER TRANSFORMATION

Figure 47 shows the IoT application workflow of this video analytics case. On the left, we see the
components deployed on the NanoBox on the field layer, and on the right the components deployed on the
backend NanoBox. The workflow steps are as follows (shown in red squares in the figure):

1. The video analytics workflow starts by accessing and preparing the data.
2. In a second step it is sent over the network.
3. Where the data is received in this block and displayed through this node.
4. Feed into the AI inference here, which is captured in a Python script.
5. While the last step reacts to the inference output: the loss. If the loss exceeds a specified threshold,

it means that grease has been detected, and the Wind turbine is switched off through contacting
the PLC controller.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D5.9 Demonstration and validation of IWPC - Energy (Cycle 2)
Dissemination level: Public

65

FIGURE 47: APPLICATION FLOW FOR THE VIDEO PROCESSING AND ANALYSIS

Compared to a conventional approach where raw data from the microphone deployed in Sub Use Case 1:
Audio Processing Demo and the video camera deployed in Sub Use Case 2: Video Processing Demo
respectively would be transmitted over a wide area and processed in either a private or public compute
environment, the deployment of the application to the field layer for processing in an edge computing node,
effectively eliminates the need to transmit the high-volume data off site.

The application deployed in Sub Use Case 1: Audio Processing Demo exploits a continuous 705 kilobits
per second (kbps) stream of audio data (16-bit mono stream sampled at 44.1 KHz) from the microphone
deployed equivalent every second. For a single deployment, the daily bandwidth saved by processing the
data at the edge, can be seen in Equation 1.

𝐾𝑖𝑙𝑜𝑏𝑦𝑡𝑒𝑠 𝑝𝑒𝑟 𝑠𝑒𝑐𝑜𝑛𝑑 𝐾𝐵/𝑠 =
𝐾𝑖𝑙𝑜𝑏𝑖𝑡𝑠 𝑝𝑒𝑟 𝑠𝑒𝑐𝑜𝑛𝑑 (𝑘𝑏𝑝𝑠)

8

88.125 𝐾𝐵/𝑠 =
705𝑘𝑏𝑝𝑠

8

𝐷𝑎𝑖𝑙𝑦 𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ 𝑠𝑎𝑣𝑒𝑑 7,6 𝐺𝐵 = 88.125 𝑘𝐵/𝑠 𝑥 86400 𝑠𝑒𝑐𝑜𝑛𝑑𝑠

EQUATION 1: DAILY BANDWIDTH SAVED IN SUB USE CASE 1 AUDIO PROCESSING DEMO

SUB USE CASE 1 AUDIO PROCESSING DEMO

Whereas the application deployed in Sub Use Case 2: Video Processing Demo only samples the image
every 10 seconds. In the Sub Use Case 2 we sample a 1920 x 1080 (2MP) JPG compressed image that is
downloaded directly from the video camera. The average size of the sampled image is 420 Kbyte. Thus,
the daily bandwidth saved can be seen in Equation 2.

𝑀𝑒𝑔𝑎𝑏𝑦𝑡𝑒 𝑀𝐵 = 𝐾𝑖𝑙𝑜𝑏𝑦𝑡𝑒𝑠 ÷ 1024
 3.6288 𝐺𝐵 = 8640 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 ∗ 420𝐾𝐵 (𝑝𝑒𝑟 𝑠𝑎𝑚𝑝𝑙𝑒)

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D5.9 Demonstration and validation of IWPC - Energy (Cycle 2)
Dissemination level: Public

66

𝐷𝑎𝑖𝑙𝑦 𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ 𝑠𝑎𝑣𝑒𝑑 𝑖𝑠 3.62 𝐺𝐵
EQUATION 2: DAILY BANDWIDTH SAVED IN SUB USE CASE 2 VIDEO PROCESSING

8.6 KPI-3.1.3: Performing predictive monitoring with an average accuracy of 80%
In D4.10 we reported already the creation of data sets for the test and validation of the developed AI
algorithms for monitoring grease leakages within the wind turbine using video analytics. The final validation
accuracy has been 99% (see Figure 48). For the validation data set, the aggregated model (federated
model) was used for the calculation.

FIGURE 48: VALIDATION LOSS AND ACCURACY OF AGGREGATED MODEL FOR VIDEO ANALYSIS

As described in D4.10, we used Federated Learning to train the AI models. For the evaluation, the training
was distributed among the three workers Alice, Bob, and Charlie. To minimize the runtime for this test case,
all workers and the Orchestrator were started on the same device (and operating system). The data was
transferred via the WebSocket protocol but is not really sent over a network. Only the loopback interface
was used for the transmission since it is not important for the results of error and accuracy. A total of 5
training rounds were executed with a learning rate of 0.001. These two hyper parameters have a decisive
influence on the training. The difficulty is to find the optimal values for the hyperparameters.

FIGURE 49: ERROR AND ACCURACY OF WORKER MODELS FOR VIDEO ANALYSIS

Figure 49 shows errors and accuracy of the training records of the three workers. Please note that each
worker has his own model and training data set. Since the pre-trained model MobileNetV2 was used, the
error after the first epoch is already very low and the accuracy is very high. The accuracy is between 98%
and 99% for all workers after the training process.
In the following, we show how well the trained model works during operation. With the help of the library
Matplotlib these images are graphically displayed together with the probabilities predicted by the model.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D5.9 Demonstration and validation of IWPC - Energy (Cycle 2)
Dissemination level: Public

67

Figure 50 shows a screenshot of example images with their probabilities. The model has correctly classified
all images. On closer analysis, it is noticeable that with an increasing amount of oil, the probabilities also
increase. This means that the more oil there is, the more reliable the algorithm is. This is a further indication
that the algorithm is working correctly. For example, in the second image in the first row, which shows a lot
of oil, the algorithm is very secure at 98%. On the other hand, the third image in the third row has a
comparatively low probability of 83%, which is due to the significantly lower oil content.

FIGURE 50: CLASSIFICATION AFTER TRAINING WITH FEDERATED LEARNING

8.7 KPI-4.1: Delivery of lightweight ML algorithms
The efficiency of the developed Federated Learning algorithm (see D4.10) for the communication network
was analyzed using Wireshark. The used bandwidth was measured in both directions: between workers
and orchestrator. Table 8 below shows the results.

TABLE 8: TRANSMITTED DATA BETWEEN ORCHESTRATOR AND WORKER

Direction Size of model Traffic

Orchestrator to Worker 8,7 MB 18,6 MB

Worker for Orchestrator 8,7 MB 18,6 MB

The amount of data transferred is approximately the same in both directions. The largest part of the
transmission is determined by the size of the model. The reason for the considerably larger amount of data
during transmission is therefore the conversion to the hexadecimal representation.
There is significant potential for improvement in the PySyft implementation. The implementation allows
both the feature extract and the fine-tuning mode for transfer learning. By default, the latter is used because
the pre-trained MobileNetV2 already delivers good results. Therefore, only the weights of the last shift are
optimized during training. It would be more efficient to transfer only this layer and not the whole model. A
possible solution is to split the model into two models. The first model (frozen_model) consists of all so-
called frozen layer These are the layers whose parameters cannot be changed. In this case, these are all
but the last layer. This model only needs to be transferred to the workers once. The second model
(trainable_model) has the trainable layers, in this case only the last layer.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D5.9 Demonstration and validation of IWPC - Energy (Cycle 2)
Dissemination level: Public

68

The differences between MobileNetV2 and frozen_model is only in the kilobyte range and can therefore be
neglected. The file size of the trainable_model is much smaller with 11 KB. If only this model were to be
sent from the second training round onwards, an enormous amount of bandwidth could be saved.

In case of the audio analysis, to autonomously identify faults in the data captured by the microphone, we
used an AutoEncoder, which is a special kind of neural network, that can be used to detect anomalies in
data. The model of an AutoEncoder (Figure 51) has a bottleneck design, consisting of an Encoder (that
takes in the input data which is compressed) and a decoder (that decompresses the data again to re-
produce the input data). The output of the AutoEncoder has an intentional information reduction, which we
can quantify through the loss. The loss is smaller when the uncompressed output is more similar to the
input data.
Now, if the input data is an outlier, e.g., a fault situation such as an image that suddenly shows black dots
of leaked grease, it diverts from the norm it was trained on (which would be images without any grease
dots) and therefore it shows a higher loss. This fact can be used here to identify the faulty situations.

FIGURE 51: AUTOENCODER PRINCIPLE8

In order to train the AutoEncoder for the audio analytics for detection of loose objects within the turbine,
we utilized the microphone within the turbine to record 24 hours of audio under normal cond itions, which
was cut in samples of 10 seconds of audio. These samples are then transformed from the time into the
frequency domain using a Fourier Transformation (Figure 52). We did this to produce 200 images from
such audio samples. These images were then used to train the AutoEncoder.

FIGURE 52: AUDIO ANALYTICS FOR LOOSE OBJECT DETECTION

The model size of the AutoEncoder is about 108 MB so that would create a lot of overhead for the network.
For the future, the goal is to implement a technique for reducing the size of the exchanged model, for
example by compressing the model, or by transmitting the gradients that have changed significantly
compared to the previous round, based on a threshold. Afterwards, the exchange of the partial model
should be evaluated and compared with the one that suggests the exchange of the entire model. The

8 Based on: https://towardsdatascience.com/applied-deep-learning-part-3-autoencoders-1c083af4d798

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D5.9 Demonstration and validation of IWPC - Energy (Cycle 2)
Dissemination level: Public

69

comparison should be in terms of accuracy and training loss, as it is very important to maintain the same
accuracy.

8.8 KPI-4.2: Delivery of mechanisms with adaptation time of 15ms

For the Sub Use Case 4, the encryption between the sensors and the Broker is enabled during runtime by
the Pattern Engine. This is accomplished with the triggering of 3 Drools rules as mentioned in Section 8.1.

FIGURE 53: MEASUREMENTS OF RULES EXECUTION

The first rule is for the decomposition of the security property and the last is for the verification of the said
property. The middle rule will attempt to contact the broker through internet to access the public cloud and
enforce the encryption. The duration of the above process can be split in two parts. The first part includes
the duration of the tasks occurring inside the Pattern Engine, while the second part includes the duration
of the tasks occurring on the Broker side which is located in the cloud. In order to measure the duration of
the adaptation mechanism we calculate the duration of the tasks occurring at the Pattern Engine.
We can see from Figure 53, and in more detail in Figure 54 that the first rule is triggered at 11:15:44.355
and the second rule is triggered at 11:15:44.358. This means that the time needed to trigger the first rule
until the time that the engine-initiated contact with Broker took 3ms. Likewise, we see that we receive the
response from the public cloud at 11:15:44:530 and all the rules have ended at 11:15:44.535. This adds
5ms more to the initial duration resulting to a total of 8ms thus satisfying the limits set in KPI 4.2.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D5.9 Demonstration and validation of IWPC - Energy (Cycle 2)
Dissemination level: Public

70

FIGURE 54: MEASUREMENTS OF ADAPTATION MECHANISM

8.9 KPI-4.6: Development of new security Mechanisms/Controls
In the context of UC1, sensors are communicating with an MQTT Broker. The security of this
communication and particularly the encryption of the traffic, is controlled by an appropriate pattern rule
preinstalled in the Backend Pattern Engine (Figure 55). This pattern rule allows the enforcement of
encryption on the MQTT Broker with the help of an application developed on the Broker side.

FIGURE 55: PATTERN BASED ENCRYPTION ENFORCEMENT

In the configuration of the MQTT Broker, all the related information for incoming connections such as port,
protocol certificates etc., is grouped and the terminology used to describe that group is “listener”. The
“enableEncryption” alters the configuration of the Broker in such a manner that it will include certificates
for the available listener for incoming connections thus enforcing TLS encryption as shown in packet
capture of Figure 56.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D5.9 Demonstration and validation of IWPC - Energy (Cycle 2)
Dissemination level: Public

71

FIGURE 56: PACKET CAPTURE AFTER ENCRYPTION IS ENABLED

The interaction between the pattern Engine and the MQTT Broker occurs during runtime and the encryption
is enabled on the fly. The immediate effect of the above procedure is to break the communication with the
sensors until they are configured to use encryption from their side too. This way, the security of the system
is hardened, allowing only secure communication between the sensors and the MQTT Broker.

8.10 KPI-6.1: Reduce manual interventions required for bootstrapping of smart object in
each use case domain by at least 80%

In order to address this KPI we briefly describe how automation systems are engineered nowadays. We
then compare this procedure with our approach, which significantly reduces the effort.
The target of 80% is very much an exact number, which cannot be proven in general. Various automation
systems and applications differ significantly in their complexity. To reduce manual intervention is also a
qualitative measure (not only quantitative one as stated in this KPI). Nevertheless, in the following we
attempt to provide justification for our approach, which eases the engineering process.

The state of the art in engineering of automation systems is divided into five phases: 1. Design phase ; 2.
Development phase; 3. Engineering phase; 4. Commissioning phase, and 5. Operation phase.
An engineer starts the Design phase by defining an automation function, which needs to be implemented
on a field device. The function is defined with a model in accordance with the model-driven design. The
engineer runs the code generator to generate the skeleton of the function and implements the function in
the Development phase. The engineer will then typically engineer an automation system. The system
contains the field device with a newly developed function. Usually, it contains other field devices too. The
devices need to be networked with defined interactions between them (including protocols, IP addresses,
ports etc.). The semantics of data exchanged between devices need to be defined (data formats, data
types, units, quantities etc.). Finally, the engineer deploys and configures the system on an automation
station in the Commissioning phase and starts the system with a certain functionality (application).

If a new application, with a new device, needs to be realized (as it is the case in Use Case 1) then the
automation system has to be re-engineered. The new device is required to communicate over the same

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D5.9 Demonstration and validation of IWPC - Energy (Cycle 2)
Dissemination level: Public

72

protocol used by existing sensors. This is in contradiction to the requirements of our use case. Our
assumption is that a wind turbine has a lifecycle of 20 to 30 years. In this long period of time, new
applications with new devices and with different communication capabilities are bound to emerge,
especially considering the fast-paced landscape of the IIoT era. Thus, we need to make interoperable
brownfield devices with new devices.

With our approach the IoT Gateway integrates both brownfield and greenfield devices and enables a new
application. In tradition automation system, for devices with diverse communication capabilities or different
semantics of data, this is not possible at all. In contrast, the SEMIoTICS IIoT Gateway can do this, as it
features pre-created protocol bindings for devices with diverse communication capabilities and provides a
unified Thing Description as a common semantics for devices and their data. Moreover, it is integrated with
a Software Defined Network to ensure networking capabilities of field devices tailored to a given application.
It scans the network consisting of diverse field devices, and in a few minutes, it can bootstrap them.
Furthermore, it automatically generates programmable access to these devices. An engineer may then
implement an application knowing only one API and one semantic data model for all diverse field devices,
their capabilities, and the capabilities of the underlying network.

In our evaluation, an engineer was able to bootstrap few field devices and develop an application in less
than 15 minutes. In contrast to this, the traditional engineering process as described above requires a day
or longer. This always depends on the number of field devices and the size of an application (automat ion
system). Our evaluation was constrained to the class of applications as developed in this project.

8.11 KPI-6.3: Delivery of 3 prototypes of IIoT/IoT applications

In addition to Use Cases 2 and 3, Use Case 1 presents a prototype of an IoT platform implementing the
SEMIoTICS architecture. Therefore, the 3 use case demonstrators delivered by the project satisfy this KPI.

Regarding UC1 in specific, Sub Use Case 1 and Sub Use Case 2 use infrared camera and microphone
hardware sensors, in addition to an AI-based imagery/audio classifier interlinked via a recipe and deployed
on multiple devices networked via SDN. Based on the result of the inference of the imagery and audio
classifiers, a running system is triggered with an adaptation request, i.e., to stop turbine rotation, in real-
time. In addition, alarms are raised using remote Cloud platforms as enablers, in order to notify the system
owner of ongoing malfunctions and events. Sub Use Case 3 deploys an inclinometer mounted on the model
wind turbine to report the sensed measurements over the SDN to a Cloud platform (Siemens MindSphere)
where the data is recorded and available for analytics in the Predictive Maintenance and Condition
Monitoring applications.

8.12 KPI-7.1 Provision the SEMIoTICS building blocks

All components deployed in UC1 fulfil by definition the TRL level 4, due to their successful deployment in
the lab environment.
Some of the tested blocks additionally are validated for compatibility with the technological building blocks
at TRL 5. Specifically, the IIoT Gateway components used in Use Cases 1, 2, and 3, among other
functionalities, exposes an interface to interact with a PLC brownfield device (i.e., the SIMATIC S7 PLC).
This turbine controller emulates the functionality of the turbine controller hosted in the operational Wind
Park.
Details of the realization of the interface for brownfield interactions are provided in Section 6.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D5.9 Demonstration and validation of IWPC - Energy (Cycle 2)
Dissemination level: Public

73

9 CONCLUSION

9.1 Observed obstacles
Main obstacles encountered during the demonstrator development were related to the ongoing COVID-19
pandemic, imposing limitations in access to the integrated environment.

In particular, physically preparing the testbed (e.g., the demonstration case shown in Figure 3) and the execution
of tests where physical input was required (e.g., putting grease on the turbine model and subsequently collecting
sufficient amount of images to train the auto-encoder with good accuracy), imposed significantly delays in the
development of field layer applications.

Additionally, remote access had to be established to the system due to limited physical access and connection
to the testbed. However, connecting to each device in the distributed setup over provided SDN infrastructure
proved unstable, due to dependency of the SDN’s correct functioning on the SDN controller. Thus, whenever
the SDN controller was impacted, e.g., due to a planned code upgrade or test execution, the remote access
would accordingly be affected, or even made unavailable, which made the progress of SSC implementation
harder. In order to circumvent this issue, we deployed an out-of-band network to each device in the system,
configured it with a separate subnet and made it available for access to all contributors of the use case.

The limitation of not being able to execute technical workshops further delayed implementation and integration
achievements, whenever dependency on hardware or isolated testbed access was necessary. The need for
social distancing resulted in the adoption a token-based approach for persons requiring accessing the testbed.
Common integration rounds were, thus, unviable. Due to testbed being hosted at SAG premises, SAG had to
act as the sole point of contact and integrator in order to deploy the components developed by BS (SEMIoTICS
GUI - GUIHub) and FORTH (Pattern Engines, Pattern Orchestrator).

9.2 Concluding Remarks
The main goal of UC1 was to demonstrate the seamless coexistence of a highly integrated control system and
an agile and SPDI-aware IIoT ecosystem based on the SEMIoTICS framework, allowing service providers to
deploy new value-added services faster and provide effective access to data, from both existing control system
and the newly deployed edge sensor networks. The demonstrator of UC1, therefore, addresses some of the
common challenges in extending the capabilities of an existing control system in a brownfield environment in
the Wind Energy domain while highlighting the general benefits of the SEMIoTICS platform.

Deliverable D5.4 provided the initial insights on the development of UC1, while D5.9 presented herein the
final status of development of SEMIoTICS’ UC1 and the four associated Sub Use Cases. Compared to
D5.4, D5.9 extended the description of D5.4 with the final status of implementation and integration of the
UC1 components and elements of the SEMIoTICS platform and has presented the methodology and
measurement points (where applicable) used to quantify the reaching of KPIs in UC1, as defined in the
D5.1

Therefore, this deliverable presented the final achievements of the consortium regarding the integration of
physical equipment comprising industrial programmable logic controllers, actuation, the greenfield and
brownfield sensory and actuation devices, private and public clouds environments and hosted applications,
the orchestration mechanisms introduced in SEMIoTICS, as well as the resources orchestrated, and
applications dynamically instantiated and interconnected by our framework.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D5.9 Demonstration and validation of IWPC - Energy (Cycle 2)
Dissemination level: Public

74

10 APPENDIX
10.1 Thing Description for Brownfield Device
This is an example of a Thing Description for SEMIoTICS wind turbine (brownfield device).

FIGURE 57: THING DESCRIPTION FOR WIND TURBINE

10.2 Thing Description for Greenfield Device

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D5.9 Demonstration and validation of IWPC - Energy (Cycle 2)
Dissemination level: Public

75

This is an example of a Thing Description for SEMIoTICS inclinometer (greenfield device).

FIGURE 58: THING DESCRIPTION FOR INCLINOMETER

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D5.9 Demonstration and validation of IWPC - Energy (Cycle 2)
Dissemination level: Public

76

10.3 MindSphere Asset Model
This is an example of MindSphere Asset model for SEMIoTICS inclinometer.

FIGURE 59: MINDSPHERE ASSET MODEL FOR SEMIOTICS INCLINOMETER

10.4 Mapping Rule of GW Semantic Mediator
This is an example of a declarative mapping in GW Semantic Mediator. It provides an automated mapping
of a Thing Description (e.g., SEMIoTICS inclinometer shown in Figure 58) into a MindSphere Asset model
(see Figure 59). Figure 60 depicts the complete example mapping (note that all three parts below belong
to the same mapping rule).

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D5.9 Demonstration and validation of IWPC - Energy (Cycle 2)
Dissemination level: Public

77

PREFIX gr: <http://example.com/graph/>
PREFIX ms: <https://mindsphere.io/#>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX schema: <http://schema.org/>
PREFIX td: <https://www.w3.org/2019/wot/td#>
PREFIX transit: <http://temporary.transition.org/>
PREFIX this: <http://this.org/>
PREFIX pdc: <http://purl.org/dc/terms/>

INSERT {
 transit:externalId this:correspondTo ms:externalId.
 graph gr:f_example {[] transit:externalId ?object. }}
WHERE {
 graph gr:f_example {
 ?a pdc:title ?b}
 filter (
 not exists
 {graph gr:f_example { [] transit:externalId ?a. }}
)
 bind(if(isIRI(?a),str(?a),?a) as ?object)
};

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D5.9 Demonstration and validation of IWPC - Energy (Cycle 2)
Dissemination level: Public

78

INSERT { GRAPH gr:t_model{
 ?bn ms:variables [
 ms:name ?name;
 ms:dataType ?type;
 ms:unit ?unit;
 ms:qualityCode true;
 ms:searchable false
]}
} WHERE {
 graph gr:f_example{
 ?ident td:hasPropertyAffordance [
 td:name ?name;
 rdf:type ?oldtype;
 schema:unitCode ?unit
]
}
 graph gr:t_model{
 [ms:aspectType ?bn].
 }
 filter (
 not exists
 {
 graph gr:t_model {
 [ms:variables [
 ms:name ?name;
 ms:dataType ?type;
 ms:unit ?unit;
 ms:qualityCode true;
 ms:searchable false
]
]
 }
 }
)
 bind(if(STR(?oldtype)="https://www.w3.org/2019/wot/json-
schema#NumberSchema","DOUBLE",?oldtype) as ?type)
};

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D5.9 Demonstration and validation of IWPC - Energy (Cycle 2)
Dissemination level: Public

79

WITH gr:t_model
DELETE {
 ?bn ms:variables ?s.
 ?s ?p ?o
} WHERE {
 ?s ms:dataType "{{dataType}}".
 ?bn ms:variables ?s.
 ?s ?p ?o
} ;
DELETE {
 graph gr:t_model{?bn ms:name ?oldname.}
}
INSERT {
 graph gr:t_model{?bn ms:name ?newname}
}
WHERE {
 graph gr:t_model{?bn ms:name ?oldname.}
 [ms:asset ?bn].
 graph gr:f_example{ ?s <http://purl.org/dc/terms/title> ?newname.}
};
DELETE {
 graph gr:t_model{?bn ms:description ?olddescription.}
}
INSERT {
 graph gr:t_model{?bn ms:description ?newdescription;}

} WHERE {
 graph gr:t_model{ ?bn ms:description ?olddescription}
 graph gr:f_example{
 ?s <http://purl.org/dc/terms/description> ?newdescription;
 <http://purl.org/dc/terms/title> ?title }
 [ms:asset ?bn].
}

FIGURE 60: AN EXAMPLE OF A DECLARATIVE MAPPING IN GW SEMANTIC MEDIATOR

