

 780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

SEMIoTICS

Deliverable D3.10
Network-level Semantic Interoperability

(final)

Deliverable release date 28.02.2020 (revised on 16.04.2021)

Authors
1. Ermin Sakic, Arne Bröring (SAG)
2. Jordi Serra, Luis Sanabria-Russo, David Pubill, Angelos

Antonopoulos, Christos Verikoukis (CTTC)

3. Konstantinos Fysarakis, Michalis Smyrlis, Emmanouil
Chatzimpyrros, Konstantina Koloutsou (STS)

4. Prodromos-Vasileios Mekikis (IQU)

Responsible person Konstantinos Fysarakis (STS)

Reviewed by Ermin Sakic (SAG), Nikolaos Petroulakis (FORTH)

Approved by PTC Members (Vivek Kulkarni, Nikolaos Petroulakis, Ermin Sakic, Mirko
Falchetto, Domenico Presenza, Verikoukis Christos)

PCC Members (Vivek Kulkarni, Nikolaos Petroulakis, Verikoukis Christos,
Georgios Spanoudakis, Domenico Presenza, Danilo Pau, Joachim
Posegga, Darek Dober, Kostas Ramantas, Ulrich Hansen)

Status of the Document Final

Version 1.0

Dissemination level Public

https://upload.wikimedia.org/wikipedia/commons/b/b7/Flag_of_Europe.svg

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D3.10 Network-level Semantic Interoperability (final)

Dissemination level: Public

2

Table of Contents

 Introduction .. 6

 PERT chart of SEMIoTICS ... 7

 Network Interfacing Considerations and Requirements .. 8

 IT & Cloud Infrastructures interfacing.. 9

2.1.1 Management and orchestration .. 9

 IoT Platforms interfacing ...11

 Network-level Interfacing with SEMIoTICS framework ..13

2.3.1 IIoT integration in Wind Park Control Network ..13

2.3.2 Socially Assistive Robotic Solution for Ambient assisted living (SARA)15

2.3.3 Intelligent Heterogeneous Embedded Sensors for future IoT systems (IHES)15

2.3.4 Complex types of interactions ..15

 Interfacing with IoT applications ..16

 Requirements Specification considerations ..18

 Associated KPIs ...21

 Enabling Technologies ...24

 Networking protocols ..24

3.1.1 Hypertext Transfer Protocol (HTTP) ...24

3.1.2 Advanced Message Queuing Protocol (AMQP) ...25

3.1.3 Constrained Application Protocol (CoAP) ...26

3.1.4 Message Queuing Telemetry Transport (MQTT) ...27

3.1.5 Overview of Networking protocols ..28

 Data formats ..28

3.2.1 Extensible Markup Language (XML) ..29

3.2.2 JavaScript Object Notation (JSON) ..29

3.2.3 Google Protocol Buffers ..29

3.2.4 Overview of data formats ..30

 Data Modeling - Yet Another Next Generation (YANG) ...30

 IoT Workflow Composition ..31

3.4.1 Composing Services and Devices ..31

3.4.2 Supporting the Composition of Services And Devices ...32

 Pattern-driven NorthBound Interface ...35

 Interface Design ...35

 Interface Specification ..37

 Implementation Details ...39

4.3.1 Testing & Basic Functionality Validation ...40

 Interface Security Considerations ..42

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D3.10 Network-level Semantic Interoperability (final)

Dissemination level: Public

3

 Patterns for Network-level Semantic Interoperability ..43

 Technical Interoperability ..45

5.1.1 Pattern definition ..45

5.1.2 Pattern Specification Rule ...46

 Syntactic Interoperability...48

5.2.1 Pattern definition ..48

5.2.2 Pattern Specification Rule ...49

 Semantic Interoperability ..51

5.3.1 Pattern definition ..51

5.3.2 Pattern Specification Rule ...52

 Organisational Interoperability ...54

5.4.1 Pattern Definition ..54

5.4.2 Pattern Specification Rule ...55

 E2E Interoperability Within the SEMIoTICS platform...57

 E2E Interoperability Across IoT Platforms ..58

 Pattern-Driven NBI in Use – An Enabler of Key SEMIoTICS Features ...61

 IoT Orchestrations with End-to-End Semantic Interoperability, SPDI and QoS Guarantees61

 Interfacing with External IoT Platforms...65

 Conclusion ..67

References ..68

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D3.10 Network-level Semantic Interoperability (final)

Dissemination level: Public

4

Acronyms Table

Acronym Definition

AAA Authentication, Authorisation and Accounting

API Application Programmable Interface

AI Artificial Intelligence

AMQP Advanced Message Queuing Protocol

ASCII American Standard Code for Information Interchange

BSS Business Support System

BAN Body Area Network

BLE Bluetooth Low Energy

CAN Controller Area Network

CB Context Broker

CP Context Producer

CC Context Consumer

CoAP Constrained Application Protocol

CoRE Constrained RESTful Environments

DTLS Datagram Transport Layer Security

ETSI European Telecommunications Standards Institute

E2E End to End

GRE Generic Routing Encapsulation

HTTP HyperText Transfer Protocol

IoT Internet of Things

IIoT Industrial Internet of Things

IT Information Technology

IHES Intelligent Heterogeneous Embedded Sensors

IETF Internet Engineering Task Force

IPC Inter-Process Communication

IP Internet Protocol

IPv4 Internet Protocol version 4

IPv6 Internet Protocol version 6

IFTTT If This, Then That

JSON JavaScript Object Notation

LwM2M Lightweight Machine to Machine

6LoWPAN IPv6 over Low-power Wireless Personal Area Network

LHS Left Hand Side

MAC Media Access Control

MQTT Message Queuing Telemetry Transport

MQTT-SN Message Queuing Telemetry Transport – For Sensor Networks

MANO Management and Orchestration

M2M Machine to Machine
NETCONF Network Configuration Protocol

NBI Northbound Interface

NFV Network Functions Virtualization

NFVO NFV Orchestrator

NFVI Network Functions Virtualization Infrastructure

NS Network Service

OASIS Organization for the Advancement of Structured Information Standards

OFCONF OpenFlow Configuration

OVSDB Open vSwitch Database Management Protocol

OSS Operations Supports System

OGC Open Geospatial Consortium

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D3.10 Network-level Semantic Interoperability (final)

Dissemination level: Public

5

QoS Quality of Service

OEM Original Equipment Manufacturer

OWL Web Ontology Language

PNF Physical Network Functions

PLC Programmable Logic Controller

RA Robotic Assistant

REST Representational State Transfer

RO NBI Resource Orchestrator Northbound Interface

RR Robotic Rollator

RPC Remote Procedure Call

RHS Right Hand Size

SARA Socially Assistive Robotic Solution for Mild Cognitive Impairment or mild
Alzheimer’s Disease

SAWSDL Semantic Annotations for WSDL and xml schema

SASL Simple Authentication and Security Layer

SBI Southbound Interface

SCADA Supervisory Control and Data Acquisition

SDN Software-Defined Networking

SEMIoTICS Smart End-to-end Massive IoT Interoperability, Connectivity and Security

SSC SEMIoTICS SDN Controller
SPDI Security, Privacy, Dependability, and Interoperability

SE Smart Environment

SSWAP Simple Semantic Web Architecture and Protocol

TD Thing Description

TCP Transmission Control Protocol

TLS Transport Layer Security

UC Use Case

UDP User Datagram Protocol

URL Uniform Resource Locator

VIM Virtualized Infrastructure Manager

VLAN Virtual Local Area Network

VXLAN Virtual Extensible Local Area Network

VM Virtual Machine

VNF Virtual Network Function

VNF-FG Virtual Network Function-Forwarding Graphs

VTN Virtual Tenant Networks

W3C World Wide Web Consortium

WoT Web of Things

WSDL Web Services Description Language

WSMO Web Service Modeling Ontology

WS-BPEL Web Services Business Process Execution Language

XML Extensible Markup Language

XSD XML Schema Definition

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D3.10 Network-level Semantic Interoperability (final)

Dissemination level: Public

6

 INTRODUCTION
This deliverable is the final output of Task 3.4 (“Network-level Semantic Interoperability”), providing an update
on deliverable D3.4 - “Network-level Semantic Interoperability (first draft)” and targeting the third objective of
WP3 (“To develop and offer adaptable and dynamic networking services to client IoT applications”).

As such, it provides the final design and specification of the network programming interfaces that enables the
development, optimization and adaptation properties required for the SEMIoTICS framework to support the
deployment of network services from all SEMIoTICS layers and its seamless interaction with IoT Applications,
as specified by SPDI patterns. As detailed herein, in SEMIoTICS SDN interfaces can be utilized from various
levels in the IoT implementation stack (IT & Cloud infrastructures, IoT platforms, the SEMIoTICS framework
and IoT applications) for the provisioning of adaptable and dynamic networking services. The pattern-based
SEMIoTICS approach is adopted here as well, to specify the use of network services and define specific SPDI
properties. Finally, in the context of this task, the adopted key enabling technologies are extensively described
to provide an overview of the pertinent technological landscape.

In addition to the State-of-the-Art Analysis and the requirements identified during WP2 activities that where
essential on guiding the efforts of this Task 3.4, it is also important to mention the interplay with other WP3
activities, such as the ones taking place in the context of Task 3.1 (“Software defined Aggregation,
Orchestration and Cloud Networks”) and T3.2 (“IIoT Network Function Virtualization”), since compatibility with
(and requirements of) SPDI-driven Task 3.4 interfaces are considered in the first phases of the work carried
out in these tasks. Moreover, the thing descriptions and semantic schemas defined in Task 3.3 (“Semantics-
based Bootstrapping & Interfacing”) are influenced by Task 3.4, since said thing descriptions must also include
network-level capabilities and semantic as well as SPDI information of the involved entities. Considering the
use of SPDI patterns, there is significant interaction with WP4, and more specifically the pattern language and
associated patterns defined in Task 4.1 (“Architectural SPDI Patterns”), as these are driving the network-level
semantic capabilities of the interfaces described herein. Moreover, the semantic annotations adopted in Task
3.4 are integral in the work carried out in Task 4.4 (“End-to-End Semantic Interoperability”).

From the perspective of the delta compared to the previous version of the deliverable (i.e. D3.4 - “Network-
level Semantic Interoperability (first draft)”), the contributions in D3.10 can be summarized as follows:

• Provides the final design and specification of the SEMIoTICS SPDI-driven NBI (see subsections 4.1
and 4.2, respectively).

• Provides final implementation details and testing results (see subsection 4.3)

• Provides full set of Interoperability-focused patterns (see section 5)

• Highlights the use of the Pattern-driven NBI as an enabler for key SEMIoTICS features (see section
6), including role in end-to-end (E2E) semantic interoperability features, definition of IoT Orchestrations
and use by external IoT platforms

To address the above issues, the deliverable is structured as follows. Section 2 lists some key aspects that
the network interfaces will need to support across all different IoT application/services levels (IT & Cloud
infrastructures, IoT platforms, the SEMIoTICS framework, and IoT applications), also considering complex
types of interactions that may introduce additional requirements (e.g., Cross-platform, Cross-layer, Cross-
application and Higher-level services). Section 3 describes the key enabling technologies considered as well
as the subset of those finally adopted to implement the network-level semantic interoperability. Section 4
features the specification of the pattern-driven Network Services API, the development of the described
interfaces and the testing results. Section 5 provides the full set of interoperability patterns, while section 6
positions the work presented herein in the context of the SEMIoTICS framework and its key features. Finally,
Chapter 7 provides the concluding remarks.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D3.10 Network-level Semantic Interoperability (final)

Dissemination level: Public

7

 PERT chart of SEMIoTICS

The role of Task 3.4 is shown in the PERT chart of the project (Figure 1).

36 months Leader: SAG

31.12.202001.01.2018

WP1: Project Management

23 months Leader: ST-I

30.11.201901.01.2018

WP2: Requirements and Architecture for
Smart Sensing and Smart Actuation

24 months Leader: SAG

30.04.202001.05.2018

WP3: Smart objects and networks

25 months Leader: FORTH

30.06.202001.06.2018

WP4: Pattern-driven smart behavior of
IIoT with End-to-End Security and Privacy

24 months Leader: ENG

31.12.202001.01.2019

WP5: System Integration and Evaluation

36 months Leader: SAG

31.12.202001.01.2018

T1.1: Project coordination 36 months Leader: FORTH

31.12.202001.01.2018

T1.2: Project technical and innovation
management

36 months Leader: SAG

31.12.202001.01.2018

T1.3: Coordination with EU programme
level activities

3 months Leader: STS

31.03.201801.01.2018

T2.1: Analysis of emerging business and
technical IoT value drivers

4 months Leader: SAG

30.04.201801.01.2018

T2.2: Specification of use case scenarios
& applications and their requirements

4 months Leader: ST-I

30.06.201801.03.2018

T2.3: Specification of infrastructure
requirements

18 months Leader: BS

31.12.201901.07.2018

T2.4: SEMIoTICS architecture design

22 months Leader: SAG

29.02.202001.05.2018

T3.1: Software defined Aggregation,
Orchestration and cloud networks

22 months Leader: CTTC

29.02.202001.05.2018

T3.2: IIoT Network Function Virtualization

22 months Leader: SAG

29.02.202001.05.2018

T3.3: Semantics-based bootstrapping &
interfacing

22 months Leader: STS

29.02.202001.05.2018

T3.4: Network-level semantic
Interoperability

22 months Leader: IQU

30.04.202001.07.2018

T3.5: Implementation of Field-level
middleware & networking toolbox

23 months Leader: STS

30.04.202001.06.2018

T4.1:Architectural SPDI patterns

22 months Leader: ENG

30.04.202001.07.2018

T4.2: Monitoring, prediction and
diagnosis

22 months Leader: ST-I

30.04.202001.07.2018

T4.3: Embedded Intelligence and local
analytics

22 months Leader: FORTH

30.04.202001.07.2018

T4.4: End-to-End Semantic
Interoperability

22 months Leader: BS

30.06.202001.09.2018

T4.6: Implementation of SEMIoTICS
backend API

22 months Leader: UP

30.04.202001.07.2018

T4.5: End-to-End Security and Privacy

5 months Leader: UP

31.10.201901.06.2019

T5.1: KPIs and Evaluation Methodology

15 months Leader: BS

31.08.202001.06.2019

T5.2: Software system integration

20 months Leader: IQU

31.08.202001.01.2019

T5.3: IIoT Infrastructure set-up and
testing

13 months Leader: SAG

31.12.202001.12.2019

T5.4: Demonstration and validation of
IWPC- Energy scenario

13 months Leader: ENG

31.12.202001.12.2019

T5.5: Demonstration and validation of
SARA-Health scenario

13 months Leader: ST-I

31.12.202001.12.2019

T5.6: Demonstration and validation of
IHES-Generic IoT scenario

36 months Leader: CTTC

31.12.202001.01.2018

T6.1: Impact Creation and Dissemination 31 months Leader: ENG

31.12.202001.06.2018

T6.2: Exploitation of results

24 months Leader: SAG

31.12.202001.01.2019

T6.3: Standardization
36 months Leader: CTTC

31.12.202001.01.2018

WP6: Impact, Dissemination and
Standardization

FIGURE 1. TASK 3.4 WITHIN THE SEMIOTICS PERT

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D3.10 Network-level Semantic Interoperability (final)

Dissemination level: Public

8

 NETWORK INTERFACING CONSIDERATIONS AND
REQUIREMENTS

This section aims to document the key elements and considerations that drove the design and specification of
the SPDI-driven network programming interfaces of SEMIoTICS, to enable the deployment of network services
from all SEMIoTICS layers and the seamless interaction of the framework with IoT applications.

To identify the relevant requirements for all cases/layers, we also consider complex types of interactions that
may introduce additional requirements, such as:

• Cross-layer, whereby entities deployed at different layers of the SEMIoTICS framework interface with
each other, thus allowing interactions across non-adjacent layers, such as cloud to edge or application to
network.

• Cross-platform, whereby applications or services access resources from multiple platforms through the
common interfaces. This covers requests to different instances of the SEMIoTICS platform and/or 3rd
party IoT platforms; effectively providing the means to an application deployed on one platform (e.g., an
IIoT wind turbine status monitoring application aggregating information from pertinent sensors) to collect
data from other platforms that process related data.

• Cross-application domain, with applications or services accessing now information not only from several
platforms, but also from platforms that process data from different application domains. Therefore, such
an application could potentially collect data about environmental conditions and traffic from a smart city
application, in order to propose the least polluted routes to patients with breathing issues covered under
a smart healthcare application.

• Higher level services, whereby exposed interfaces enable higher level services to orchestrate existing
deployments, applications, and the associated services, to provide value-added services, such as
providing wind turbine failure predictions or energy demand predictions (to fine-tune energy output) from
data aggregated across associated services, enabling effective predictions even for
stakeholders/deployments that do not have the breadth of historical data or computational capabilities to
extract this knowledge.

To enable the above, two basic properties have to be guaranteed across the deployment, also affecting the
design of the networking interfaces:

• Platform-scale independence, allowing the integration of resources from platforms at different scale.
More specifically, at the Cloud/IoT backend level, platforms can host high volumes of data from a large
number of devices. In contrast, field-level deployments (e.g., fog) interact with nearby devices in the field
and only maintain limited amount of information. Device level platforms (e.g., at the IoT gateway level)
have direct communication with the things, managing heterogeneous data. As a result, in the SEMIoTICS
framework, an application should be able to uniformly aggregate information for the different scale
platforms (e.g., collect wind turbine status values for a specific area via cloud or minimally processed data
via a platform at field).

• Platform independence, allowing the integration of distinct platforms that implement the same
functionality, like an IIoT wind turbine status monitoring in different wind parks. The platforms may utilize
different equipment and techniques in order to monitor the wind turbines (e.g., legacy wired sensors
attached to smart gateway or newer wireless sensors); a single application at the backend should be able
to interface with all instances in a uniform manner without requiring any changes.

The vision of such a heterogeneous and flexible deployment is sketched in Figure 2, where different
applications in an IoT marketplace are interacting with IoT devices via a common API that support various
operations, such as discovery, access etc. While driven by the above, in the subsections below more specific
requirements are investigated, focusing on particular layers and types of interactions.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D3.10 Network-level Semantic Interoperability (final)

Dissemination level: Public

9

FIGURE 2: INTEROPERABILITY VISION ACROSS ALL 4 LEVELS, INSPIRED BY [2]

 IT & Cloud Infrastructures interfacing

Taking the most advantage out of the physical infrastructure requires the ability of sharing its resources in a
secure and dependable way. This is achieved via virtualization, where former physical components such as
network devices (e.g., switches or routers), i.e. Physical Network Functions (PNFs), are replaced by software
counterparts (i.e. Virtual Network Functions (VNF)) that provide the same functionality on top of the required
isolation properties for guaranteeing security and privacy among different tenants/applications.

In this domain, ETSI NFV is part of the European Telecommunication Standards Institute (ETSI), an
independent standardization organization that develops NFV standards and proofs-of-concepts, see e.g.,
[1][3]. Within ETSI’s Network Functions Virtualization (NFV) paradigm, the task of abstracting the
infrastructure’s hardware and its exposure as virtual resources are tasks assigned to the Virtualized
Infrastructure Manager (VIM). Such an entity ensures that appropriate network overlays, compute and storage
resources are configured according to predefined configurations (descriptors) containing specifics of each VNF
and how to interconnect them together to realize a Network Service (NS).

Applications requiring a NS should send requests to the NFV orchestrator the backend/Cloud level. This entity
exposes HTTP RESTful APIs via the so-called endpoints, which trigger the allocation of virtual resources from
the VIM, as well as SDN Controllers (if any). Particular modifications to components of existing NS are also
possible. VNF management tasks such as: start, stop, resume, pause, snapshots are achievable through VIM
endpoints tailored to managing compute resources. Moreover, physical or virtual network-related settings can
also be modified using similar endpoints at the VIM or the SDN Controller; the same is true for block storage
allocations for VNFs.

2.1.1 MANAGEMENT AND ORCHESTRATION

Within ETSI’s NFV and SEMIoTICS, the role of the Management and Orchestration (MANO) controller is to
provide a higher level of abstraction for the deployment of NS. Such abstraction is achieved by exchanging
information about the physical/virtual infrastructure (from here on referred to as Network Functions
Virtualization Infrastructure (NVFI)) with the VIM and maintaining a catalogue of VNF and NS descriptors. The
associated standards (e.g.,[1]) document some pertinent network related considerations that arise from these
standards, such as the need for portability, service continuity, and operational and management requirements.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D3.10 Network-level Semantic Interoperability (final)

Dissemination level: Public

10

Based on the above, in the subsections below, we provide descriptions about the information exchange
endpoints between the VIM and MANO, and a description of how applications could trigger the deployment of
VNFs or NS via the exposed northbound APIs.

2.1.1.1 NFVI ENDPOINTS FOR ORCHESTRATION

Figure 3 shows the reference NFV architectural framework as defined by ETSI. The figure groups VIM and
MANO into NFV Management and Orchestration. It also defines a considerable set of reference points for
information exchange among components. Most relevant for the deployment of NS within SEMIoTICS are the
Nf-Vi, Os-Ma-Nfvo, and Or-Vi reference points[3].

FIGURE 3. NFV REFERENCE ARCHITECTURAL FRAMEWORK

In more detail, these are:

• Nf-Vi:
This reference point is used for NFVI-VIM communication. Particularly:

o Assignment of virtualized resources after an allocation request.
o Forwarding of virtualized resources state information.
o Hardware resources configuration, information exchange and events capture.

• Os-Ma-Nfvo
It realizes Operations Support System/Business Support System (OSS/BSS)-NFV Management and
Orchestration communication. It is used for:

o Request for network service lifecycle management.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D3.10 Network-level Semantic Interoperability (final)

Dissemination level: Public

11

o Requests for VNF lifecycle management.
o Forwarding of NFV related state information.
o Policy management exchanges.
o Data analytics exchanges.
o Forwarding of NFV related accounting and usage records.
o NFVI capacity and inventory information exchanges.

It is valid to assume the use of this reference point to software other than OSS/BSS. That is, any
authorized software external to NFV could use this reference point for gathering information of the
physical/virtualized infrastructure, as well as signalling the intention to create a NS via the MANO
controller.

• Or-Vi
Orchestrator-VIM communication reference point. It is used for:

o Resource reservation and/or allocation requests by the Orchestrator.
o Virtualized hardware resource configuration and state information exchange.

As mentioned before, the Os-Ma-Nfvo reference point can be used by OSS/BSS (or other entity such
as SEMIoTICS global pattern orchestrator) to gather information of the NFVI and trigger the
creation/modification of a NS; but the Or-Vi reference point is the one that enables direct
communication between MANO and VIM in order to realize such service by allocating resources from
the infrastructure.

2.1.1.2 INTERFACES FOR NS MANAGEMENT

From SEMIoTICS Pattern orchestrator’s perspective, it is envisioned that the creation and modification of NS
could be achieved through the MANO controller Resource Orchestrator northbound interface (RO NBI) [4]. In
the global NFV architectural framework this NBI is reached via the Os-Ma-Nfvo endpoint.

Applications or any pattern enforcement entity should trigger such HTTP RESTful APIs in order to gather
information or act upon the configuration of a new or existing NS. Some of the entities upon which modifications
are possible through this NBI are:

• Tenant or applications.

• Gathering information from several VIMs. Notice that the MANO is able to handle many different VIMs,
so orchestration of NS across different domains is possible.

• VNFs.

• VNF-FG (VNF-Forwarding Graphs) and topologies. Notice that NS and VNF-FG are two sides of the
same concept, the former is an application’s perspective, while the latter specifies the actual
interconnection of VNFs.

• NS instances. This relates to the re-instantiation or termination of NS already onboarded on the NFVO
catalogue.

 IoT Platforms interfacing

SEMIoTICS aims to offer federation and interoperability with other IoT platforms, most notably. IoT platforms
generally rely on message-oriented middleware technologies, including reliable message queuing and
publish/subscribe messaging. These "brokered" messaging capabilities can be thought of as decoupled
messaging features that support publish/subscribe and message decoupling, where clients and servers can
connect and perform their operations in an asynchronous fashion. At the core of all IoT platforms we generally
find a Message (or Event) Broker which is able to mediate between content producers (e.g. , sensors) and the
context consumer applications (e.g., Smartphone applications visualizing of the context information provided
by the sensors), offering Publish/Subscribe functionality. Publish/subscribe pattern provides a one-to-many
form of communication via topics and subscriptions, where each published message is made available to each
subscription registered with the topic. Messages are sent to a topic and delivered to one or more associated
subscriptions, depending on filter rules that can be set on a per-subscription basis. The subscriptions can use
additional filters to restrict the messages that they want to receive. Messages are sent to a topic but are not
received from the topic directly, instead subscribers to the copy receive copies from the message. In what
follows, we summarize the main actors of an IoT platform:

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D3.10 Network-level Semantic Interoperability (final)

Dissemination level: Public

12

• Publish/Subscribe Context Broker. As already mentioned, the Publish/Subscribe Context Broker
(CB) is the main component of an IoT platform. It works as a handler and aggregator of context data
and as an interface between architecture actors. Primarily the CB has to control context flow among
all attached actors; in order to do that, the CB has to know every Context Provider (CP) in the
architecture; this feature is done through an announcement process detailed in the next sections.
Typically, the CB also provides a Context Provider Lookup Service and a Context Persistence Service.

• Context Producer. A Context Producer (CP) is an actor (e.g., a temperature sensor) able to generate
context. The basic Context Producer is the one that spontaneously updates context information, about
one or more context attributes according to its internal logic. This communication is between CS and
CB is in push mode, from the CP to the CB.

• Context Consumer. A Context Consumer (CC) is an entity (e.g., a context-based application) that
exploits context information. A CC can retrieve context information sending a request to the CB or
invoking directly a CP over a specific interface. Another way for the CC to obtain information is by
subscribing to context information updates that match certain conditions (e.g., are related to certain
set of entities). The CC registers a call-back operation with the subscription for the purpose, so the CB
notifies the CC about relevant updates on the context by invoking this call-back function.

In FIWARE (see Figure 4), the Orion Context Broker fulfils the pub/sub Message Broker functionality and must
be federated with SEMIoTICS. FIWARE leverages the NGSIv2 Data Model and API, which relies on JSON
representation to make data from multiple providers accessible for data consumers. The interaction with both
data providers and data consumers is taking place via the FIWARE NGSI 10 context data API [5]. SEMIoTICS
must leverage the API for context queries, context subscription and context updates to interact with the
respective context elements (i.e., sensors and actuators) in a FIWARE domain.

On the contrary, for FIWARE to access context elements in other domains (in this case SEMIoTICS) a
specialized FIWARE entity, namely the Context Provider, must be involved. The latter can be registered via
its URL as the source of context information for specific entities and attributes included in that registration,
using the ORION NGSIv1 and NGSIv2 APIs. In the case of NGSIv2 Data Model, which uses JSON
representation, this is provided by the field provider:

"provider":{
 "http": {
 "url": "http://mysensors.com/Rooms"
 }
}

If FIWARE Orion fails to find a context element locally (i.e. in its internal database) for a query or update
operation but a Context Provider is registered for that context element, then it will forward the query or update
request to the respective Provider. In this case, Orion acts as proxy, while the client that issues the request,
the process is transparent. SEMIoTICS must implement the respective NGSI10 API (at least partially) to
support query/update operations from FIWARE to a context element in the SEMIoTICS domain.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D3.10 Network-level Semantic Interoperability (final)

Dissemination level: Public

13

FIGURE 4: FEDERATION WITH FIWARE IOT PLATFORM

 Network-level Interfacing with SEMIoTICS framework

The network level interfacing requirements consider the intricacies of the different envisioned application
domains in order to offer a flexible and adaptable network infrastructure within the SEMIoTICS framework.
Therefore, each scenarios’ requirements are explicitly examined; energy, IIoT integration in wind park control
network (D2.2 subsection 2.1); healthcare, socially assistive robotic solution for ambient assisted living (SARA)
(D2.2 subsection 2.2); smart cities, Intelligent Heterogeneous Embedded Sensors for future IoT systems
(IHES) (D2.2 subsection 2.3). Some important considerations in this context are presented in the subsections
below.

2.3.1 IIOT INTEGRATION IN WIND PARK CONTROL NETWORK

In the IIoT SEMIoTICS deployment in the wind park control network the pattern language will have to consider
simple interactions between the field devices deployed in the wind park (i.e. the IIoT ecosystem); cross layer
interactions with the network management system, enabled via an SDN/NFV capable control network; finally,
cross layer interactions with the backend/cloud platforms. Additional complex interactions are explored in
section 2.3.4 below, while a high level view of these are depicted in Figure 5.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D3.10 Network-level Semantic Interoperability (final)

Dissemination level: Public

14

Cloud

Apps

Wind park internal
SDN/NFV capable
Control network

SCADA

Wind turbines

Network
Management

System

IIoT Ecosystem
(Gateway, Sensor, Actuator)

Legacy Control
System

Private
Cloud

Public

Cloud

3rd party
OEM vendor

Grid
Operator

Wind farm owner

Remote
Maintenance
and Services

C
o

n
n

e
ct

iv
it

y
N

e
tw

o
rk

B
ac

ke
n

d
/C

lo
u

d
Fi

e
ld

 d
e

vi
ce

s
N

e
tw

o
rk

FIGURE 5. INTERACTIONS BETWEEN STAKEHOLDERS AT EACH LAYER IN THE IIOT WIND PARK
SCENARIO

Examining closer the field level interactions, we observe the interactions between devices in the IIoT
Ecosystem; IIoT gateway communicates with the IIoT sensor and, in turn, with the IIoT actuator, to accomplish
that, first a simple but robust (i.e. reliable and secure) registration operation must be completed to pair the IIoT
sensor with the IIoT gateway, a procedure known as commissioning. Then, the data collected by the sensor
can be processed (features are extracted from data) by the IIoT gateway or relayed directly to the actuator to
act accordingly.

In times where the collection of requests from the connected sensors and actuators exhaust the computational
resources of the current IIoT gateway, the gateway is expected to communicate with the NFV Orchestrator
(NFVO) so that the later will consecutively deploy (or migrate) the necessary VMs, allowing the gateway to
offload computations to the private cloud, where computational resources are abundant. So, if the gateway
suggests (via the analytics algorithm) that a certain action has to be taken, it sends this decision to the control
center without sending high-frequency and large amount of data.

It’s also very important to consider the scalability of the NFVO and SDN controller so that it can keep up with
the requests received by the gateways and to be able to provide the integration of the necessary IoT
components. For the scaling to function properly, QoS network-related criteria should be identified on
application-level (e.g., latency between motion and motion input) and be able to determine if the current

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D3.10 Network-level Semantic Interoperability (final)

Dissemination level: Public

15

network configuration is sufficient. If not, then these criteria are automatically translated to an improved
configuration by the SDN controller. Moreover, service quality specific -properties, such as reliability, delay
and bandwidth, must be guaranteed by the SDN controller. Therefore, QoS measures such as isolation through
VLANs, traffic prioritization, and bandwidth allocation should be supported by the network and the interfaces
should be in place to allow for such QoS specific negotiations between involved entities.

Although SDN controllers work excellent in this scenario, there is always room for error or malicious misuse .
For example, a malicious entity could launch a denial service type of attack, packet-in flooding, in which the
SDN control plane is flooded with packet_In_messages potentially making the SDN controller to waste all
available resources to process these messages, thus becoming unreachable or ending up in an unpredictable
state [30][31][32] (additional attacks for SDN are thoroughly explored in [33]. Such cases should be swiftly
identified and excluded from the network; thus, the SDN controller must accommodate such security related
services and facilitate their interactions and adaptation actions (e.g., rerouting/isolating malicious traffic to a
honeypot system).

2.3.2 SOCIALLY ASSISTIVE ROBOTIC SOLUTION FOR AMBIENT ASSISTED LIVING (SARA)

In the SARA deployment scenario, pattern-based mechanisms will ensure that the various communication
between different stakeholders will occur in a reliable and secure manner (further explored in D4.1). Initially,
the pattern engine needs to setup up those connections by employing network-level interoperability operations.
Considerations for the following communications should be met. The SS (Smart Environment) hub should be
able to act as a gateway for Internet access for all four hubs (BAN, RR, RA, SE) and also provide sufficient
communication resources between them via ZigBee technology; the smart wearable device within BAN (Body
Area Network) should be connected to the BAN hub (i.e. smartphone) via Bluetooth Low Energy (BLE)
technology; the BAN hub is connected to the internet via cellular connectivity (i.e. possibly 5G in the future)
and should also be able to engage communication with devices within RR (Robotic Rollator) via BLE or WIFI;
devices within RR use a Controller Area Network bus architecture (CAN-bus) to exchange information; finally,
cross layer interactions between the SARA backend services and the SARA IoT field devices and cross
platform interactions between the SARA backend services and the SARA client applications should be
accommodated and realized by internet protocols (IPv4/IPv6). The pattern language will resolve those issues
by defining and enforcing mechanisms that will guarantee the proper network interfaces are present and
functional to achieve those communications.

2.3.3 INTELLIGENT HETEROGENEOUS EMBEDDED SENSORS FOR FUTURE IOT SYSTEMS (IHES)

In the horizontal scenario for IHES, the pattern language needs to support interactions between various
components. We describe some interactions in the following paragraph.

For the IIoT Sensing unit, network-level interoperability mechanisms should ensure the communication with
the IIoT gateway to notify it for any changes and send any sensor measurement data; the initialization of low
latency and reliable communication (further explored in D4.1) between the controllers, when they are deployed
at the IoT gateways must be arranged. Low latency and reliable communication could also be needed in some
cases (e.g., in a time sensitive scenario where a sensor monitors a safety parameter and must promptly trigger
an actuator to avoid life threating incident, such as a wind turbine with very high inclination or a smart vehicle
collision or a patient fall)

it’s important to receive a measurement from a sensor in time or activate an actuator); cross layer interactions
are explored in subsection 2.3.4.2. The network-level interoperability mechanisms need to also deal with those
concerns.

2.3.4 COMPLEX TYPES OF INTERACTIONS

Some additional types of more complex interactions are explored in the subsections below.

2.3.4.1 CROSS-PLATFORM

Cross-platform interactions between various components in different SEMIoTICS instances in addition with
interactions with corresponding entities in other platforms (e.g., FIWARE or MindSphere) should be supported.
For the Wind Park scenario, we can identify such interactions on the Backend/Cloud layer (e.g. , Cloud
applications exchanging data with the private/public cloud).

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D3.10 Network-level Semantic Interoperability (final)

Dissemination level: Public

16

Considering the SARA scenario, the SEMIoTICS framework should be able to communicate with the AREAS
Business Framework to access various features such as the AREA suite (e.g., Patient Health Record) and its
corresponding management services (e.g., Identity & Access Management, Storage).

For the IHES scenario, and in all the applications built on top, we can foresee cross platform interactions of
the SEMIoTICS Backend with Open IoT Platforms (e.g., FIWARE) and domain specific IoT platforms (e.g.,
MindSphere), providing seamless interactions across heterogeneous devices via the Semantic Mediator
components and associated interfaces which will be present on the SEMIoTICS field gateway, as well as its
backend.

2.3.4.2 CROSS-LAYER

Cross layer interactions are possible when data is exchanged between components of a different layer (e.g.,
field devices to cloud).

For the Wind Park scenario, we need to consider the IIoT ecosystem’s capability to exchange information
with the cloud, as data coming from the edge, through the IIoT gateway, to the cloud apps. Additionally, the
communication of the IIoT gateway with the backend must be ensured, as the former will need to send a
request whether the current computing environment doesn’t cover its needs (e.g., the combined requests from
connected sensors and actuators) and the latter will need to deploy/configure the required VMs to meet those
needs. The SEMIoTICS framework should also support the communication of the IIoT gateway with the remote-
control center, as the gateway needs to send the results of the actions taken towards the remote-control center.

The SCADA system integrated in this scenario needs to establish communication with the individual turbines,
the sub-station and the meteorological stations so that the wind park operator can supervise (e.g., monitor) it
effectively. Another cross-layer interaction within the scope of automated configuration needed to be
considered, covers the connectivity between the control devices (SDN controller) and IoT c loud components.
Additionally, the interaction between the grid operation, that will send instructions regarding the
stability/efficiency of the grid based on demand-response (i.e. to adjust the power generation), to the SCADA
system must be established.

Finally, the interaction from cloud to edge, between the third-party OEM vendors and their assets (e.g.,
turbines), should be taken into consideration, since during the maintenance period of the wind park the vendors
commonly need to access the turbines or any other equipment they provided.

Regarding the SARA scenario, the SEMIoTICS framework should provide the connection between the AREAS
Cloud services and the IoT infrastructure and consecutively the interaction between the IoT infrastructure and
the actual IoT devices via the four SARA hubs. Moreover, the communication between the specialized artificial
intelligence services and the SARA hubs should be supported, as the latter rely on those functions (e.g. , object
& people/face recognition, natural language processing etc.). Finally, the software client interfaces allowing
the various actors (e.g., General Practitioners) to access the management functionalities are provided by the
AREAS suite, hence the SEMIoTICS framework does not need to provide additional interfaces on that matter.

Considering the IHES scenario, we identified that the SEMIoTICS framework should support the exchange of
information, aggregated by the AI Sensing IIoT gateway, between itself, the cloud and the sensing units.

2.3.4.3 CROSS-APPLICATION & HIGHER-LEVEL SERVICES

SEMIoTICS should also facilitate cross-application interactions; e.g., application A exchanging data with
application B, for the latter to calculate some values based on the output of application A. While a direct
interaction falls out of the scope of SEMIoTICS, there could be cases where the two applications are interfaced
through different instances of SEMIoTICS. We foresee that in such cases, the cross-platform considerations
detailed in subsection 2.3.3.1. The SEMIoTICS framework will be able to interface with higher level services,
exposing interfaces to enable the deployment of higher-level services that orchestrate existing
applications/services/infrastructures. To allow for these value-added services, the SEMIoTICS network’s
northbound API, as well as the backend interfaces, will have to expose the necessary resources that may be
needed for the creation of such services (e.g., network connectivity view, network resource view, computing
resource view).

 Interfacing with IoT applications

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D3.10 Network-level Semantic Interoperability (final)

Dissemination level: Public

17

Typically, applications are hosted on end-user devices, e.g., smart phone or desktop computer, and they
interact with the cloud-layer of a system. Examples of such applications are messenger or email clients,
mapping tools, shopping, or personal health apps. A cloud backend provides the interface (API) to the pool of
data (e.g., emails, maps, products). In these cases, the application is clearly restricted to the upmost layer of
the system stack [5][6].

IoT applications are defined and characterized differently. We consider here applications that are hosted by
an IoT device (i.e. a thing), a gateway to multiple IoT devices, or by a device residing on the Edge of the
network. For example, this could be a data analytics application that analyses the data generated by the hosting
device (e.g., process monitoring and optimization, predictive maintenance, or functional safety). Other
examples for such IoT applications are user interfaces (if the device has a display) and visualizations. We also
consider the provision of protocol bindings as IoT applications. Such a provision of a protocol binding is an IoT
application that offers an interface to other applications for accessing data or functionalities of the device.
Here, the interface of the application needs to be clearly defined. An example could be an application that
implements an HTTP or CoAP REST interface to interact with a device. The Web of Things activities [5] at the
W3C are working on a standard for such an interface.

Figure 6 shows the architectural model proposed by the W3C Web of Things group as an execution
environment for IoT applications. Thereby the concept of “servient” is central. It can be applied to the different
layers, i.e., a servient could be hosted by an IoT device or even on the Cloud. In the W3C approach, the Thing
Description [6] provides comprehensive metadata about the possible interactions of the servient and thereby
describes the interface of the IoT application.

FIGURE 6. ARCHITECTURE FOR IOT APPLICATION EXECUTION USING W3C WEB OF THINGS [5]

Besides the above described case of single IoT applications hosted on a dedicated device, there are use cases
where multiple IoT applications, distributed on multiple devices, interact and collaborate with each other
towards a common goal. These IoT applications can be on different layers of the system stack (see cross-layer
interactions above). An example for such a scenario is described in Figure 7 below. The figure illustrates a
data flow from three devices, a microphone, accelerometer and camera, which could be deployed in a wind

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D3.10 Network-level Semantic Interoperability (final)

Dissemination level: Public

18

turbine of the SEMIoTICS Wind Park scenario. The data output of these devices and their installed IoT
applications flows then further to other IoT applications hosted by e.g., edge devices. In Figure 7, the data
from the IoT devices is going into analytics components and then to a data correlation component to determine
whether the PLC controlling the turbine needs to be stopped. This collaboration of IoT applications is similar
to microservices architectures.

An important requirement for SEMIoTICS is to enable this definition of flows between IoT applications. Also, it
is crucial to be able to define QoS constraints between the flows from one IoT application to the next. These
high-level application QoS constraints need to be translated into network-level QoS constraints. The IoT
applications interface designs as well as the flows need to be able to capture all relevant information to support
this definition and translation of QoS constraints. To realize these requirements, we rely on and extend our
previous work on recipes for IoT application, which we describe in Section 2.3.2 below.

FIGURE 7. EXAMPLE OF A DATA FLOW BETWEEN IOT APPLICATIONS OF A WIND TURBINE

 Requirements Specification considerations

Table 1 below features some essential network interfacing requirements, as defined in deliverable D2.3
(“Requirements specification of SEMIoTICS framework”) that need to be examined concurrently with designing
the pattern language.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D3.10 Network-level Semantic Interoperability (final)

Dissemination level: Public

19

TABLE 1. NETWORK INTERFACING REQUIREMENTS

SEMIoTICS Requirement
Network interfacing

considerations Reference Req. ID Description

R.NL.12
The network layer must feature SPDI
pattern reasoning local embedded
intelligence capabilities

These are core requirements
for the development of the
network interfacing
capabilities of the
SEMIoTICS framework. In
this regard, the developed
interfacing mechanisms
must, by design, be tailored to
and support the SPDI-driven
approach that is at the core of
SEMIoTICS, enabling both
the SPDI reasoning as well as
the transmission of SPDI-
related information across
layers.

The developed
solutions feature a
dedicated network
layer module
integrated in the
SDN controller
module that is able
to process and
reason on SPDI
patterns, as well as
communicate these
to the backend (see
Section 4).
Moreover, the
network interface
exposed by said
controller module is
driven by SPDI
parameters (see
detailed specification
in subsection 4.2).

R.NL.13

The network layer must aggregate
intra-layer monitored information to
enable local intelligence reasoning
and adaptation

R.GP.1

End-to-end connectivity between the
heterogeneous IoT devices (at the
field level) and the heterogeneous IoT
Platforms (at the backend cloud level)

The network interfaces must,
define and enforce (via the
pattern engine) mechanisms
that guarantee the
establishment of E2E
connectivity (e.g., by 5G
cellular network, Bluetooth
BLE) between different types
of devices (e.g. SARA hubs,
sensors, backend servers),
actors (e.g., human
operators, applications) and
interaction type (e.g.,
maintenance, medical staff,
simple user/patient).

Additionally, the networks
should support various more
complex interactions such as
cross platform (e.g., cloud
apps <-> private cloud), cross
layer interactions (e.g., field
devices <->backend), cross
application (e.g., SDN
controller <-> remote
management service) or
interactions with higher level
services (e.g., Third-party

The networking
capabilities of the
SEMIoTICS
framework as a
whole (the focus of
WP3 activities) do, in
tandem, cover these
requirements and
guided the design
and specification of
the Pattern-driven
controller NBI
(Section 4).

R.UC1.1

Automatic establishment of networking
setup MUST be performed to establish
end-to-end connectivity between
different stakeholders.

R.UC2.3

The SEMIoTICS platform SHOULD
guarantee proper connectivity
between the various components of
the SARA distributed application. The
SARA solution is a distributed
application not only because it uses
different cloud services (e.g., AREAS
Cloud services, AI services) from
different remote computational nodes,
but also because the SARA application
logic itself is distributed across various
edge nodes (SARA Hubs).

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D3.10 Network-level Semantic Interoperability (final)

Dissemination level: Public

20

entities); more in section
2.3.3.

R.GP.5

Interaction between SDN controller
and IoT backend cloud through a
dedicated interface (called northbound
software interface)

The northbound interfaces
will provide applications, such
as the NFV orchestrator or
heterogeneous IoT backend
platforms, with access to
information (e.g., links’ traffic
load, reliability and latency
per link).

The southbound interfaces
will dynamically reconfigure
network nodes. A functional
requirement for SDN is to
provide southbound
interfaces with switches, IoT
gateways and routers (e.g.,
OpenFlow, NETCONF,
OFCONF, OVSDB).

Both of these complex
interactions will need to be
supported by interoperability
mechanisms defined in the
pattern language.

Covered by Pattern-
driven NBI (Section
4) and interfacing
capabilities of
SEMIoTICS SDN
Controller (SSC).

R.GP.6

Interaction between SDN controller
and network nodes (e.g. switches,
routers or IoT Gateways) through
dedicated interface (called
southbound software interface)

Covered by
Southbound
interfacing
capabilities of SSC

R.NL.9
Interface between the VIM and the
SDN controller to allow VTN.

Covered by Pattern-
driven NBI (Section
4), interfacing
capabilities of
SEMIoTICS SDN
Controller (SSC),
and backend MANO
features.

R.GP.3

High adaptation capability to
accommodate different QoS
connectivity needs (e.g. low latency,
reliable communication)

The IoT Orchestration
mechanisms (i.e., the
Recipes) in tandem with the
pattern language, should
define and provide the
communication between
various IoT devices through
their interfaces.

Further, the interaction with
edge devices should also be
assured.

The Pattern
Language, along
with the associated
Pattern Engine
components (see
deliverable D4.1 and
its follow-up, D4.8)
encompass
reasoning on SPDI
and QoS properties.
By extension, the
pattern-driven NBI
interface (presented

R.GP.4
 Detection of events requiring a QoS
change and triggering network
reconfiguration need by SPDI pattern

R.GP.7

SDN controller giving feedback for a
future generation of SPDI patterns to
avoid using the same pattern in case of
failure

R.UC1.3 There MUST be enabled the definition
of network QoS on application-level

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D3.10 Network-level Semantic Interoperability (final)

Dissemination level: Public

21

and automated translation into SDN
controller configurations.

Finally, using pattern-based
operations SEMIoTICS
should translate high-level
application SPDI and QoS
constraints to network-level
QoS constraints, enforcing
the requirements by
triggering adaptations where
needed (e.g., to provide fault
tolerance).

in Section 4 herein)
covers these aspects
as well and acts as
an enabler for the
end-to-end
deployment and
reasoning on the
SPDI and QoS
properties of the IoT
orchestrations.
Moreover, the
integration of a
“Recipe”-based IoT
Orchestration (see
subsection 5 and
deliverable D4.1 and
its follow-up, D4.8)
leveraging
standardized
semantic models
facilitates
interoperability with
existing works.

R.UC1.4

Network resource isolation MUST be
performed for guaranteed Service
properties – i.e. reliability, delay and
bandwidth constraints.

R.UC1.5

Fail-over and highly available network
management SHALL be performed in
the face of either controller or data-
plane failures.

R.UC1.12
Standardized semantic models for
semantic-based engineering and IIoT
applications MUST be utilized.

R.UC2.15

“The SEMIoTICS platform SHOULD
provide low latency connectivity
between the SARA hubs and cloud
services (i.e. AREAS cloud services
and AI services) to allow offloading of
near real-time computation intensive
tasks to the cloud.)

R.S.1
The confidentiality of all network
communication MUST be protected
using state-of-the-art mechanisms.

The network interfaces
developed in the context of
T3.4 will need to feature
strong and unambiguous
security controls, including
encryption, authentication
and logging, to minimize risk
of unauthorized use and
compromise.

Covered by Network
Interface Security
considered by
design (see
subsection 4.4), and
work in the context
of Task 4.5, focusing
on E2E security and
privacy.

R.S.4

All components from gateway, via
SDN Controller, to cloud platforms and
their users MUST authenticate
mutually.

R.S.7
The negotiation interface of the SDN
Controller SHALL be secure against
network-based attacks

R.NL.11

Secure communication with the
various Backend Cloud components
(e.g., use of dedicated management
network, appropriate Firewall rules),
as well as the communication between
VIM, SDN Controller, and MANO, with
data paths acting as computing nodes
for VNF spinoff

R.P.12

During all communication and
processing phases logging MUST be
performed to enable the examination
that the system is operating as
promised

 Associated KPIs

In addition to the requirements stemming from the project’s concept and approach (as described in subsections
2.1 to 2.4), as well as the formally defined project requirements (subsection 2.5), an additional aspect
considered are the overarching Objectives and associated KPIs. These are detailed in Table 2.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D3.10 Network-level Semantic Interoperability (final)

Dissemination level: Public

22

TABLE 2. CONSIDERATIONS AND RELATION TO OVERARCHING PROJECT OBJECTIVES AND
ASSOCIATED KPIS

Objective KPI

Relation to network interface # Description ID Description

1 Development of
patterns for
orchestration of smart
objects and IoT
platform enablers in IoT
applications with
guaranteed security,
privacy, dependability
and interoperability
(SPDI) properties.

KPI-
1.1

Delivery of 36 verified
SPDI patterns covering
the 6 core property
types for 3 data states
and 2 cases of platform
connectivity.

The interface specification and processing
capabilities at the network layer (see
section 4) is by design compatible with the
pattern language developed within
SEMIoTICS and is able to process the
associated patterns, as well as reason on
the associated properties locally (enabling
local embedded intelligence at the network
layer). Moreover, in terms of directly
covering the requirements set forth by KPI-
1.1, six (6) of the developed patterns
presented herein cover the Interoperability
property (the “I” in SPDI), and the relevant
data state and platform connectivity cases
(see Table 6). For the full set of SPDI
patterns and the associated language, we
defer the reader to deliverable D4.8.

KPI-
1.2

Machine-processable
pattern language

2 Development of
semantic
interoperability
mechanisms for smart
objects, networks and
IoT platforms

KPI-
2.3

Validated semantic
interoperability
between the
SEMIoTICS framework
and 3 IoT platforms

The NBI specified within T3.4 is pattern-
driven, and the backend Pattern
Orchestration elements are integrated with
the semantically rich “Recipes” approach
for defining IoT Orchestrations and the
associated semantic components (see
sections 5, and deliverable D4.1 and its
follow-up, D4.8). Therefore, through this
integration, and the presence of semantic
mediator components, the semantic
interoperability is facilitated. The pattern-
driven NBI presented herein is a key
enabler in this (see section 6).

3 Development of
dynamically and self-
adaptable monitoring
mechanisms supporting
integrated and
predictive monitoring of
smart objects of all
layers of the IoT
implementation stack in
a scalable manner.

KPI-
3.2

Delivery of a monitoring
language capable of
defining platform
agnostic monitoring
conditions (as part of
SPDI patterns),
correlations of different
IoT platform events that
are necessary for this,
and predictive
monitoring checks

The pattern language includes monitoring
of SPDI properties and related features
(see deliverable D4.1 and its follow-up,
D4.8). Moreover, the translation of SPDI
and QoS property requirements in pattern-
driven orchestrations to monitoring
policies is provided (see deliverable D4.2).
While the monitoring and reasoning of said
properties is catered for by the relevant
components developed in the context of
T4.2 and T4.1, respectively, the needed
instantiation of communications is enabled
by the interface specified within T3.4.

4 Development of core
mechanisms for multi-
layered embedded

KPI-
4.2

Delivery of adaptation
mechanisms that
support proactive and

Pattern-driven adaptations of the
SEMIoTICS platform are, in the context of
the network layer, enabled by the interface

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D3.10 Network-level Semantic Interoperability (final)

Dissemination level: Public

23

intelligence, IoT
application adaptation,
learning and evolution,
and end-to-end
security, privacy,
accountability and user
control.

reactive, as well as
horizontal and vertical
adaptation actions,
related to network,
smart objects and IoT
platforms with an
adaptation time of 15ms

specified in the context of T3.4/D3.4, in
tandem with the Pattern Engine
(reasoning) components developed in the
context of T4.1 that is integrated into the
SDN controller. Said component interfaces
with components within the controller for
path instantiation and for getting a real-
time view of the network conditions (see
subsection 4.1 herein).

KPI-
4.6

Development of 3 new
security
mechanisms/controls
enabling the secure
management of smart
devices and sensors
over programmable
industrial networks

The Pattern-driven management and
adaptation of the networking
infrastructure, enabled by the pattern
mechanisms (T4.1/D4.1) and the relevant
network interface presented herein is an
enabler for the satisfaction of this KPI,
allowing the SPDI monitoring and
adaptation of the networking
infrastructure.

6 Development of a
reference prototype of
the SEMIoTICS open
architecture,
demonstrated and
evaluated in both IIoT
(renewable energy) and
IoT (healthcare), as well
as in a horizontal use
case bridging the two
land-scapes (smart
sensing), and delivery
of the respective open
API

KPI-
6.1

Reduce Required
Manual Interventions

The Pattern-based specification of the
network and its properties (through work
carried out in T3.4) enables the pattern-
driven management of the networking
aspects of the IoT infrastructure and, in
line with the SEMIoTICS semi-
autonomous operation, will allow for the
reduction of manual interventions required
for maintaining the required properties of
the IoT deployment (see subsection 3.4,
section 6, and the pattern-driven IoT
Orchestrations approach detailed in D4.1 –
with final version in D4.8).

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D3.10 Network-level Semantic Interoperability (final)

Dissemination level: Public

24

 ENABLING TECHNOLOGIES
In this section, we discuss about the key enabling technologies that drove forward the development and
adaptation properties required for the SEMIoTICS framework to support the deployment of network services
from all SEMIoTICS layers. The section covers the various networking protocols in order to identify their
strengths and weaknesses, and then elaborates on the data formats that can be used for the delivery of the
measurements from the field layer to the backend and vice versa.

 Networking protocols

Continuous innovations in hardware, software and communication solutions in the last decade have led to the
expansion of the Internet of Things (IoT) with the number of connected devices growing vigorously. The huge
amount of data generated by these devices require to find a system architecture able to both process and store
all the data. Hence, several networking protocols have been proposed in order to properly manage the large
amount of data. In this section, we discuss about the most prominent networking protocol solutions, including
HTTP, AMQP, CoAP, MQTT and YANG.

3.1.1 HYPERTEXT TRANSFER PROTOCOL (HTTP)

This protocol is the fundamental client-server model protocol used for the Web, and the most compatible with
the existing network infrastructure. Currently, the most widely accepted version of this protocol is HTTP/1.1.
The communication between a client and a server is established via a request/response messaging, with the
client sending an HTTP request message and the server returning a response message, containing the
resource that was requested if the request was accepted. Recently, HTTP has been associated with
Representational State Transfer (REST), a guideline for developing web services based on a specific
architectural style in order to define the interaction between different components. Because of the success of
RESTful Web services, there has been a lot of effort in bringing this architecture into IoT based systems by
combining HTTP and REST. The combination of HTTP protocol with REST is commendable, as it is very easy
to create, read, update, and delete data (the so-called CRUD operations). According to this mapping, the
operations for creating, updating, reading and deleting resources correspond to the HTTP POST, GET, PUT
and DELETE methods, respectively. For developers, the fact that REST establishes a mapping of these CRUD
operations with HTTP methods, means that they can easily build a REST model for different IoT devices. The
presentation of the data is not pre-defined and as such, the type is arbitrary, with the most common being
JSON and XML, as we will discuss in the following section. In most cases, IoT standardizes around JSON over
HTTP. In Figure 8, we illustrate a typical REST HTTP request/reply interaction.

FIGURE 8. REST HTTP REQUEST/REPLY INTERACTION MODEL

Regarding the transport protocol used, HTTP uses TCP. While using TCP provides reliable delivery of large
amounts of data, which is an advantage in connections that do not have strict latency requirements, it creates
challenges in resource constrained environments. One of the main problems is that the constrained nodes
most of the time send small amounts of data sporadically and setting up a TCP connection takes time and
produces unnecessary overhead. Moreover, for quality of service (QoS), HTTP does not provide additional
options, but instead it relies on TCP, which guarantees successful delivery as long as connection is not
interrupted.

Regarding security, HTTP uses the very well-known TLS for enabling secure encrypted communication
channel, resulting in a secure version of HTTP, also known as HTTPS. The first part of securing the client -
server data exchange is a TLS handshake, implemented as an exchange of a ’client hello’ and a ’server hello’

HTTP Response

HTTP GET
Request

HTTP Response

HTTP POST

Request

REST HTTP Client

Sensors/Gateway

REST HTTP
Server

REST HTTP Client

Mobile Application

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D3.10 Network-level Semantic Interoperability (final)

Dissemination level: Public

25

messages where they have to agree upon a cipher suite, which is a combination of algorithms they will use to
assure secure settings. After that, the client and server exchange keys based on the agreed key exchange
algorithm. The result is an exchange of messages encrypted with a shared secret key. The data is encrypted
to prevent anyone from listening to and understanding the content.

To summarize, the REST HTTP is not enough for the IoT-cloud communication, due to its complexity. It uses
the request/reply paradigm, which is not suitable for push notifications, where the server delivers notifications
to client without client request. Moreover, the amount of additional data over the protocol TCP is too large
because of multiple provided options, which is unnecessary for simple computing nodes in the lower levels of
IoT architecture. HTTP does not explicitly define QoS levels and requires additional support for it. This meant
that it was necessary to explore other messaging protocols or to improve the HTTP itself. To this end, the new
version of the protocol, HTTP/2.0, introduces a number of improvements, some of which are especially relevant
in IoT context. It enables a more efficient use of network resources and a reduced latency by introducing
compressed headers using a very efficient and low memory compression format and allowing multiple
concurrent exchanges on the same connection. These features are particularly interesting for the IoT as it
means the size of packets is significantly smaller, making it a more adequate option for constrained devices.
Additionally, it introduces the so-called server push, which means the server can send content to clients with
no need to wait for their requests. The drawbacks of HTTP/2.0 are not known yet, as there are no implemented
solutions reported in the literature, as of today.

3.1.2 ADVANCED MESSAGE QUEUING PROTOCOL (AMQP)

AMQP is an open standard protocol, standardized by OASIS, designed to enable interoperability between a
wide range of different applications and systems, regardless of their internal designs. It was originally,
developed for business messaging with the idea of offering a non-proprietary solution that can manage a large
amount of message exchanges that could happen during a short time in a system. This AMQP interoperability
feature is significant as it allows that different platforms, implemented in different languages, can exchange
messages, which is crucial in heterogeneous systems.

AMQP has been implemented in two very different versions, AMQP 0.9.1 and AMQP 1.0, each with a
completely different messaging paradigm. AMQP 0.9.1 implements the publish-subscribe paradigm, which
revolves around two main AMQP entities, both part of an AMQP broker: the exchanges and the messages
queues. The exchanges represent a part of the broker that is used to direct the messages received from
publishers. The publishing of messages to an exchange entity is the first step in the process, and after that,
the messages are routed into one or more appropriate queues. This depends on whether there are more
subscribers interested in a particular message, in which case the broker can duplicate the messages and send
their copies to multiple queues. A message will stay in the queue until it is received by a subscriber. This
routing process, that actually links exchanges and queues, depends on so called bindings, which are
predefined rules and conditions for message distribution. On the other hand, the newer version of the AMQP
protocol, AMQP 1.0, is not tied to any particular messaging mechanism. While the older versions of the protocol
used the publish-subscribe approach with an architecture that consists of exchanges and messages queues,
the new AMQP implementations exploit a peer-to-peer protocol and can be used without a broker in the middle.
A broker is present only in the communication that needs to provide a store-and-forward mechanism, while in
other cases direct messaging is possible. This option of supporting different topologies increases the flexibility
for the possible AMQP based solutions, enabling different communication patterns such as client -to-client,
client-to-broker, and broker-to-broker.

AMQP uses TCP for reliable transport, and in addition it provides three different levels of QoS. QoS-0 delivers
on the best effort basis, without confirmation on message reception. For example, a temperature sensor sends
data every few minutes. For this kind of telemetry information over a longer time period, it is acceptable if
sometimes the messages are missing, because the average temperature is still known since most of the
message updates have been received. The next level of guarantee is QoS-1, which assures that messages
will arrive, so a message confirmation is necessary. This means receiver must send an acknowledgement, and
if it does not arrive in a defined period of time, the publisher will send a publish message again. The third
option, QoS-2, guarantees that the message will be delivered exactly once without duplications. Since in
resource constrained nodes the battery life is more important than reliable communication, QoS-0 is a valid
option. For the message exchange between more powerful nodes, QoS-1 and QoS-2 are obviously better

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D3.10 Network-level Semantic Interoperability (final)

Dissemination level: Public

26

options. Finally, the AMQP protocol provides complementary security mechanisms, for data protection by using
TLS protocol for encryption, and for authentication by using SASL (Simple Authentication and Security Layer).

With all the features it offers, AMQP has relatively high power-, processing- and memory-related requirements,
making it a rather heavy protocol, which has been its biggest disadvantage in IoT-based ecosystems. This
protocol is better suited in the parts of the system that is not bandwidth and latency restricted, with more
processing power.

3.1.3 CONSTRAINED APPLICATION PROTOCOL (COAP)

This protocol was designed by the Constrained RESTful Environments (CoRE) working group of IETF for the
use in constrained devices with limited processing capabilities. Similar to HTTP, one of its most important
characteristics is its use of tested and well accepted REST architecture. With this feature CoAP supports
request/response paradigm just like REST HTTP, and especially for constrained environments. CoAP is
considered a lightweight protocol, so the headers, methods and status codes are all binary encoded, thus
reducing the protocol overhead in comparison with many protocols. It also runs over less complexed UDP
transport protocol instead of TCP, further reducing the overhead. When a CoAP client sends one or multiple
CoAP requests to the server and gets the response, this response is not sent over a previously established
connection but exchanged asynchronously over CoAP messages. The price of this reduction is reliability. It
should be noted that because of the unreliability that comes with using UDP, which proved to be a problem for
some environments, IETF created an additional document adding the possibility of CoAP running over TCP.

CoAP relies on a structure that is divided into two logically different layers. One of the layers, dubbed as
request/response layer implements the RESTful paradigm and allows for CoAP clients to use the same
methods as HTTP when sending requests. Thus, clients can use GET, PUT, POST or DELETE methods to
manage the URI identified resources in the network. The same procedure is followed in HTTP when requesting
to obtain data from the server, for example sensor value, client will use method GET with a server URL, and
as a reply will receive a packet with that data. The request and responses are matched through a token; a
token in the response has to be the same as the one defined in the request. It is also possible for a client to
push data, for example updated sensor data, to a device by using method POST to its URL. As we can see, in
this layer CoAP uses the same methods as REST HTTP. What makes it different, is its other layer. Because
UDP does not ensure reliable connections, for reliability CoAP relies on its second structural layer - message
layer, designed for retransmitting lost packets. This layer defines four types of messages: CON (Confirmable),
NON (non-confirmable), ACK (Acknowledgement), and RST (reset). The CON messages are used for ensuring
reliable communication, and they demand to be acknowledged from the receiver side. Precisely this feature to
mark whether the messages need the acknowledgement is what enables QoS differentiation in CoAP, albeit
in a limited fashion.

CoAP has an optional feature that can improve the request/response model by allowing clients t o continue
receiving changes on a requested resource from the server by adding an observe option to a GET request.
With this option, the server adds the client to the list of observers for the specific resource, which will allow the
client to receive the notifications when resource state changes. Instead of relying on repetitive polling to check
for changes in resource state, setting an observe flag in a CoAP client’s GET request, allows an interaction
which is similar to a publish-subscribe paradigm with the server alerting a client when changes exist. In an
attempt to get even closer to publish/subscribe paradigm, IETF has recently released the draft of Publish-
Subscribe Broker that extends the capabilities of CoAP for supporting nodes with long interruptions in
connectivity and/or up-time, with preliminary performance evaluations showing promising results [8].

As a security mechanism CoAP uses DTLS on top of its UDP transport protocol. It is based on TLS protocol
with necessary changes to run over an unreliable connection. The result is a secure CoAPS protocol version.
Most of the modifications in comparison to TLS include features that stop connection termination in case of
lost or out of order packets. An example is a possibility to retransmit handshake messages. The handshaking
process is very similar to the one in TLS, with the exchange of client and server ’hello’ messages, but with the
additional possibility for a server to send a verification query to make sure that the client was sending its ’hello’
message from the authentic source address. This mechanism helps prevent Denial-of-Service attacks.
Through these messages, the client and server also exchange supported cipher suits and keys, which will
further be used for data exchange protection during the communication. Since DTLS was not origina lly
designed for IoT and constrained devices, new versions optimized for the lightweight devices have emerged

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D3.10 Network-level Semantic Interoperability (final)

Dissemination level: Public

27

recently. Some of the DTLS optimization mechanisms with a goal of making it more lightweight include IPv6
over Low-power Wireless Personal Area Network (6LoWPAN) header compression mechanisms to compress
the DTLS header. However, due to its limitations, optimizing DTLS for IoT is still an open issue.

3.1.4 MESSAGE QUEUING TELEMETRY TRANSPORT (MQTT)

MQTT is one of the lightweight messaging protocols that follows the publish-subscribe paradigm, which makes
it rather suitable for resource constrained devices and non-ideal network connectivity conditions, such as with
low bandwidth and high latency. MQTT was released by IBM, with its latest version MQTT v3.1 adopted for
IoT by the OASIS [10]. Because of its simplicity, and a very small message header comparing with other
messaging protocols, it is often recommended as the communication solution in IoT. MQTT runs on top of the
TCP transport protocol, which ensures its reliability. In comparison with other reliable protocols, i.e., HTTP,
MQTT uses lighter headers with are much lower power requirements, making it one of the most prominent
protocols solutions in constrained environments.

There are two communication parties in the MQTT architecture that usually take the roles of publishers and
subscribers, clients and servers/brokers. Clients are the devices that can publish messages, subscribe to
receive messages, or both. The client must know about the broker that it connects to, and for its subscriber
role it has to know the subject it is subscribing to. A client subscribes to a specific topic, in order to receive
corresponding messages. However, other clients can also subscribe to the same topic and get the updates
from the broker with the arrival of new messages. The broker serves as a central component that accepts
messages published by clients and with the help of the topic and filtering, delivers them to the subscribed
clients. In MQTT, instead of using RESTful HTTP, a publish-subscribe interaction model can be used. The
local server has a role of broker, e.g., a PC. For this role, it is necessary to install the MQTT broker library, for
example the Mosquitto broker [10], which is one of best-known open source MQTT brokers. It should be noted
that there are various other MQTT protocol brokers that are open for use, which differ by way of implementation
of the MQTT protocol. A Raspberry Pi could serve as an MQTT client, by installing appropriate MQTT client
libraries, such as the Paho Library [11] that is fully compatible with the Mosquitto broker. These clients
correspond to IoT abstraction layer, representing devices with sensing and computing capabilities. The broker,
on the other hand, corresponds to the higher abstraction layer representing a c loud computing node,
characterized by larger computing and storage capacities.

The messages are the string data and they have to be labelled with topics. Topics in MQTT are treated as a
hierarchy, with strings separated by slashes that indicate the topic level. One MQTT publisher can publish
messages to define a set of topics. This information will be published to the broker which can temporally store
it in a local database in case that later another interested subscriber appears. MQTT uses TCP which can be
critical for constrained devices. To this end, a solution has been proposed as MQTT for Sensor Networks
(MQTT-SN) version that uses UDP and supports topic name indexing. The MQTT-SN was specifically designed
for sensor networks and is considered to be an improved version of MQTT. It does not depend on TCP, but
instead uses UDP as faster, simpler, and more efficient transport option over a wireless link. The other
important improved feature is the reduced size of the payloads. This is done by numbering the data packets
with numeric topic id’s rather than long topic names. The biggest disadvantage is that at the moment MQTT-
SN is only supported by a few platforms, and there is only one free broker implementation known, called Really
Small Message Broker.

For QoS, MQTT has the same three QoS levels as AMQP, QoS-0, QoS-1, and QoS-2. The amount of resources
necessary to process MQTT packet increases with higher QoS level, so it is important to adjust the QoS choice
to specific network conditions. Another important feature MQTT offers is the possibility to store some messages
for new subscribers by setting a ’retain’ flag in published messages. For example, a temperature sensor
publishes new information when the temperature changes. By default, if there is nobody interested in that
topic, broker will discard the published messages. In some situations, especially when the state of the followed
topic does not change often, it is useful to enable for new subscribers to receive the information on that topic.
In this default case new subscribers would have to wait for the state to change in order to receive a message
about the temperature. By setting a ’retain’ flag to value: true broker is informed that it should store the
published message, so it could be delivered to new subscribers, as shown in Figure 9.

Subscribe Publish Publisher

Sensors/Gateway
Broker Subscriber

Mobile Application

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D3.10 Network-level Semantic Interoperability (final)

Dissemination level: Public

28

Since it was designed to be as lightweight as possible, MQTT does not provide encryption, instead data is
exchanged as plain-text, which is clearly an issue from the security point of view. Therefore, encryption needs
to be implemented as a separate feature, for instance via TLS, which on the other hand increases overhead.
Authentication is implemented by many MQTT brokers, through one of the MQTTs control type message
packets, called CONNECT. Brokers require from clients, that when sending the CONNECT message, they
should define username/password combination before validating the connection or refusing it in case the
authentication was unsuccessful.

All in all, while all aforementioned messaging protocols have their own advantages, MQTT and CoAP are more
suitable for IoT frameworks like SEMIoTICS as they are more lightweight and can offer a wide range of
capabilities in constraint environments. On the other hand, HTTP and AMQP are heavyweight and not
recommended. However, since HTTP is widely used in the industry, the SEMIoTICS framework will provide
support for all MQTT, CoAP, and HTTP messaging protocols.

3.1.5 OVERVIEW OF NETWORKING PROTOCOLS

All in all, while all aforementioned messaging protocols have their own advantages, MQTT and CoAP are more
suitable for IoT frameworks like SEMIoTICS as they are more lightweight and can offer a wide range of
capabilities in constraint environments. On the other hand, HTTP and AMQP are heavyweight and not
recommended. However, since HTTP is widely used in the industry, the SEMIoTICS framework will provide
support for all MQTT, CoAP, and HTTP messaging protocols. Table 3 aggregates the above into a comparison
table.

TABLE 3. NETWORKING PROTOCOLS’ OVERVIEW

 HTTP AMQP COAP MQTT

Architecture model client/server peer-to-peer client/server Publish/subscribe

Transport TCP TCP TCP TCP

Payload Heavyweight Heavyweight Lightweight Lightweight

QoS Levels 1 3 1 3

Security High High Medium Medium

 Data formats

The purpose of this section is to provide enough information about most widely used data formats, their viability
in IoT systems and their current implementations. Data formats play an integral role in IoT, defining directly
the overall system performance in terms of resources and security. Extra overhead data must remain compact
and the format is preferred to be simplistic due to the limited capabilities of the sensing devices and vast
amount of data processed and stored.

Publish

Topic “factory/processor”

Payload {“temperature”: 50}

QoS 1

Retain True

Subscribe

Topic “factory/processor”

QoS 1

FIGURE 9. MQTT PUBLISH/SUBSCRIBE INTERACTION MODEL

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D3.10 Network-level Semantic Interoperability (final)

Dissemination level: Public

29

3.2.1 EXTENSIBLE MARKUP LANGUAGE (XML)

XML is a markup language that defines a set of rules for encoding data in a format that is both human-readable
and machine-readable. The design goals of XML emphasize simplicity, generality, and usability across
devices. It is a textual data format with strong support via Unicode for different human languages. Although
the design of XML focuses on documents, the language is widely used for the representation and interchange
of arbitrary data structures such as those used in web services over the internet. Many industry data standards
are based on XML and the rich features of the XML schema specification. Disparate systems communicate
with each other by exchanging XML messages. In general, XML and its extensions have regularly been
criticized for verbosity, complexity and redundancy. Mapping the basic tree model of XML to type systems of
programming languages or databases can be difficult, especially when XML is used for exchanging highly
structured data between applications, which was not its primary design goal.

JSON is frequently proposed as simpler alternative that focus on representing highly structured data, which
may contain both highly structured and relatively unstructured content. However, the standardized XML
schema specifications offer a broader range of structured XSD data types compared to simpler serialization
formats and offer modularity and reuse through XML namespace.

3.2.2 JAVASCRIPT OBJECT NOTATION (JSON)

JSON is a lightweight data interchange format. It is an open-standard file format that uses human-readable
text to transmit data objects. It is easy for humans to read and write. It is easy for machines to parse and
generate. It is mainly based on a subset of the JavaScript programming language.

It is a very common data format used for asynchronous browser–server communication, including as a
replacement for XML. JSON has become a popular inter-process communication (IPC) data interchange format
for a variety of computer languages. It enables structured data to be serialized into a text format. It is completely
language independent but uses conventions that are familiar to programmers of the C-family of languages,
including C, C++, C#, Java, JavaScript, Perl, Python, and many others. These properties make JSON an ideal
data-interchange language.

JSON is built on two structures: A collection of name/value pairs. In various languages, this is realized as
an object, record, struct, dictionary, hash table, keyed list, or associative array. And an ordered list of values.
In most languages, this is realized as an array, vector, list, or sequence. These are universal data structures.
Virtually all modern programming languages support them in one form or another. It makes sense that a data
format that is interchangeable with programming languages also be based on these structures.

In contrast, XML is a markup language. JSON on the other hand is a way of representing data objects.
Generally, JSON is preferred for IoT applications since it can self-describe and is more programmatic, where
XML was initially made for document mark up like HTML. JSON is typically used in IoT protocols that do not
provide native support for data structure serialization, due to its simplicity.

3.2.3 GOOGLE PROTOCOL BUFFERS

Protocol buffers are a flexible, efficient, automated mechanism for serializing structured data. It works by
initially defining the data structure, called message, once and then by using a special generated source code
to easily write and read the structured data to and from a variety of data streams and using a va riety of
languages. The data structure can also be updated without causing problems, because it is well defined and
backwards compatible.

Protocol Buffers are a method of serializing structured data. It is useful in developing IoT applications that
communicate with each other over a wire or for storing data. The method involves an interface description
language that describes the structure of some data and a program that generates source code from that
description for generating or parsing a stream of bytes that represents the structured data.

Protocol Buffers developed and widely used internally at Google for storing and interchanging all kinds of
structured information. The method serves as a basis for a custom remote procedure call (RPC) system that
is used for nearly all inter-machine communication at Google.

Canonically, messages are serialized into a binary wire format which is compact, forward and backward
compatible, but not self-describing. There is no defined way to include or refer to such an external specification
within a Protocol Buffers file. The officially supported implementation includes an ASCII serialization format,

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D3.10 Network-level Semantic Interoperability (final)

Dissemination level: Public

30

but this format—though self-describing—loses the forward- and backward-compatibility behaviour and is thus
not a good choice for applications other than debugging.

Though the primary purpose of Protocol Buffers is to facilitate network communication, its simplicity and speed
make Protocol Buffers an alternative to data-centric C++ classes and structs, especially where interoperability
with other languages or systems might be needed in the future.

Protocol buffers have many advantages over XML for serializing structured data. They are simpler, 3 to 10
times smaller in size and they are 20 to 100 times faster [12]. They also generate data access classes that are
easy to be employed by any type of programming language.

Overall, JSON is a better and more versatile option. The simplicity and advanced features of the XML schema
specification should also not be ignored. Although Protocol Buffers offer some compelling advantages, JSON
and XML are well-established and flexible data formats, widely used in IoT industry and thus will be used in
the SEMIoTICS framework.

3.2.4 OVERVIEW OF DATA FORMATS

Considering the above, overall JSON appears as more versatile option that is better suited to the requirements
of the project. The simplicity and advanced features of the XML schema specification should also not be
ignored. Although Protocol Buffers offer some compelling advantages, JSON and XML are well -established
and flexible data formats, widely used in IoT industry and thus will be used in the SEMIoTICS framework. Table
4 presents a comparison among the data formats.

TABLE 4. DATA FORMATS’ OVERVIEW

 XML JSON PROTOBUF

Creator W3C Douglas rockford Google

Standardized No Yes No

Specification Specs Specs Guide

Binary Partial No Yes

Human-readable Yes Yes Partial

Standard APIs Yes (DOM, SAX,
XQuery, XPath)

Partial, JSON-LD C++, C#, Java, Python,
JavaScript, Go

 Data Modeling - Yet Another Next Generation (YANG)

YANG is a data modelling language used to model configuration and state data manipulated by the Network
Configuration Protocol (NETCONF), NETCONF remote procedure calls, and NETCONF notifications. A YANG
module defines a hierarchy of data that can be used for NETCONF-based operations, including configuration,
state data, Remote Procedure Calls (RPCs), and notifications. This allows a complete description of all data
sent between a NETCONF client and server.

Moreover, YANG models the hierarchical organization of data as a tree in which each node has a name, and
either a value or a set of child nodes. YANG provides clear and concise descriptions of the nodes, as well as
the interaction between those nodes.

In this protocol, the data models are structured into modules and submodules. A module can import data from
other external modules, and include data from submodules. The hierarchy can be augmented, allowing one
module to add data nodes to the hierarchy defined in another module. This augmentation can be conditional,
with new nodes appearing only if certain conditions are met.

Additionally, YANG models can describe constraints to be enforced on the data, restricting the appearance or
value of nodes based on the presence or value of other nodes in the hierarchy. These constraints are
enforceable by either the client or the server, and valid content MUST abide by them. YANG defines a set of

http://xmlrpc.scripting.com/spec.html
https://tools.ietf.org/html/rfc8259
https://developers.google.com/protocol-buffers/docs/encoding

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D3.10 Network-level Semantic Interoperability (final)

Dissemination level: Public

31

built-in types, and has a type mechanism through which additional types may be defined. Derived types can
restrict their base type’s set of valid values using mechanisms like range or pattern restrictions that can be
enforced by clients or servers. They can also define usage conventions for use of the derived type, such as a
string-based type that contains a host name. YANG permits the definition of reusable groupings of nodes. The
instantiation of these groupings can refine or augment the nodes, allowing it to tailor the nodes to its particular
needs. Derived types and groupings can be defined in one module or submodule and used in either that
location or in another module or submodule that imports or includes it. YANG data hierarchy constructs include
defining lists where list entries are identified by keys that distinguish them from each other. Such lists may be
defined as either sorted by user or automatically sorted by the system. For user-sorted lists, operations are
defined for manipulating the order of the list entries.

YANG modules can be translated into an equivalent XML syntax called YANG Independent Notation (YIN),
allowing applications using XML parsers and Extensible Stylesheet Language Transformations (XSLT) scripts
to operate on the models. The conversion from YANG to YIN is lossless, so content in YIN can be round-
tripped back into YANG. YANG strikes a balance between high-level data modelling and low-level bits-on-the-
wire encoding. The reader of a YANG module can see the high-level view of the data model while
understanding how the data will be encoded in NETCONF operations.

YANG is an extensible language, allowing extension statements to be defined by standards bodies, vendors,
and individuals. The statement syntax allows these extensions to coexist with standard YANG statements in
a natural way, while extensions in a YANG module stand out sufficiently for the reader to notice them. YANG
resists the tendency to solve all possible problems, limiting the problem space to allow expression of
NETCONF data models, not arbitrary XML documents or arbitrary data models. The data models described
by YANG are designed to be easily operated upon by NETCONF operations. To the extent possible, YANG
maintains compatibility with Simple Network Management Protocol’s (SNMP’s) SMIv2 (Structure of
Management Information version 2). SMIv2-based MIB modules can be automatically translated into YANG
modules for read-only access. However, YANG is not concerned with reverse translation from YANG to SMIv2.

 IoT Workflow Composition

Key enabling technologies for SEMIoTICS are methods for enabling the definition and execution of IoT
workflows that are composed of several services and devices. In the last decades, there has been intense
research activity related to the composition of Web services, and more recently also IoT services and devices.
In the following, we provide an overview about this field of research based on our previous works [7] and [8].

3.4.1 COMPOSING SERVICES AND DEVICES

Service composition tackles the challenges of discovering services, reserving them, and connecting them to
each other. Thereby, we can distinguish two distinct kinds of service composition[9]: orchestration and
choreography. The first case relies on a composed service that controls the interaction with other services,
while in the second case the control is distributed, and each Web service describes its part of an interaction.
Basis for the composition of services are formal descriptions of their interfaces. This is also the case for the
composition of IoT functions or data offered by services, platforms, or devices.

Traditional approaches describe services solely based on syntactical information, as it is for example done
using WSDL [10] by specifying service interfaces, their offered operations, and data types. However, if different
vendors develop services independently it can easily happen that the same functionalities (or data) are
provided by services using different data types. This issue can be addressed by using semantic descriptions
or annotations. Instead of relying solely on syntactic data types for the specification of service interfaces, a
semantic description for operations and data is used. This description can relate to the semantic enrichment
of the service interface and used data formats, as well as the description of constraints for utilizing the service
(e.g., quality of service, availability, location, time, or price).

The OWL-S ontology [11] is a W3C recommendation that can be used together with the Web Ontology
Language (OWL) [12] to define the semantics of data and operations of Web services. Conceptually similar to
OWL-S is the WSMO standard [13]. Building up on the widely-used WSDL standard, SAWSDL [14] has been
the first standard for adding semantic annotations to such descriptions of Web services. However, in more
recent years, the design of Web services and APIs followed more and more often the REST principles, instead

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D3.10 Network-level Semantic Interoperability (final)

Dissemination level: Public

32

of WSDL and SOAP based Web services. Consequently, approaches for the interface designs for IoT
applications and the flows need to be able to capture all relevant information to support this definition and
translation of QoS constraints. To fulfil these requirements, we rely on and extend our previous work on recipes
for IoT application, which we describe in D4.1, Section 3, semantically describing RESTful services came up
and examples are hRESTS [15] and RESTdesc [16].

Using semantically-enriched descriptions of services makes their discovery more powerful, as it allows finding
of services depending on their semantic descriptions. Through utilizing semantic descriptions, also the
composition of services can be advanced by automatically finding semantically matching service instances
that can interact. Service compositions utilize service components to provide added functionality. A standard
for purely syntactic Web service orchestration is WS-BPEL[29] It is largely supported in industry.

A prominent realization of semantic service composition is the Simple Semantic Web Architecture and Protocol
(SSWAP). It originated from the BioMOBY [26] project and comprises over 2.400 resources published in the
field of genetic engineering [17]. Other projects that tackle semantic service orchestration include Service Web
3.0 [27] or SOA4All [18].

3.4.2 SUPPORTING THE COMPOSITION OF SERVICES AND DEVICES

Today, when new devices are added to an IoT environment, they need to be connected physically, and the
software on the centralized controller needs to be reparametrized and reconfigured. Manually designing
composite services is time-consuming, cumbersome, and error prone. If there is a high number of Web
services, this is hardly applicable [9].

There have been attempts to fully automate the generation of service compositions based on some user
defined request or goal. For example, [16] present a service composition system that enables the goal-driven
configuration of smart environments based on semantic meta-data and reasoning. Such fully automated
approaches are still facing challenges. The key difficulty lies in the unambiguous semantic description of the
goal and states that lead to the goal. This becomes very challenging when dealing with more complex
environments, where a lot of devices can interact in a lot of ways and each has a lot of possible states. In such
environments semantic models become complex, and reasoners turn to be inefficient when solving goals over
them.

Due to these challenges, a semi-automated approach that supports users in creating service compositions,
rather than to fully automate the process, seems to be the most promising direction. Previous work has been
done in this direction, such as [18], where optimal service compositions are automatically computed with
support of composition templates, or [19], where a composability model is introduced to ascertain that Web
services can be safely combined.

Commercially successful systems such as “If This Then That” (at ifttt.com) use simple composition techniques
similar to the recipe context but create and execute centralized orchestrations instead of decentralized
choreographies [20] . The IFTTT platform lacks systematic engineering support leading to widely duplicated
recipes, as shown by Ur [21]. Node-RED [28] is another tool that follows a similar approach. It provides a
browser-based editor that makes it easy to wire hardware devices, APIs and online services, thereby creating
application flows. Flows are specified in JSON. Giang et al. [22] focus on application-level distributed
choreographies by building on Node-RED as a visual programming tool. However, they do not address the
configuration of critical automation systems and their need for failure detection and recovery.

In our previous work [7] the concept of recipes has been introduced to represent the design of an IoT service
composition separate from its implementation. A semi-automated service composition and instantiation tool is
provided, in order to assist the user in creating the composition of placeholders for actual services and devices.
Later, these placeholders are replaced with actual services and devices based on suggestions provided by the
system using semantic reasoning. While in [7],we generate a simple application script, which is executed by a
centralized orchestrator. In [8], we extended this approach by enabling the distributed execution of instantiated
recipes as choreographies.

“Recipes” define templates for compositions of ingredients and their interactions. Ingredients are placeholders
for offerings, i.e., devices and services that process and transform data. Interactions describe the dataflow
between these ingredients. The Recipe model (shown in Figure 10) is a light-weight semantic model that
describes ingredients and interactions semantically. An ingredient of a recipe specifies the requirements that

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D3.10 Network-level Semantic Interoperability (final)

Dissemination level: Public

33

should be fulfilled by an offering in order to create an application. An Interaction between the ingredients is
defined by creating a data-flow between them. That is, by connecting the output data of one ingredient with
the input data of another ingredient. In addition to this, an interaction also spec ifies an operation that defines
the operation (e.g., GET, POST, OBSERVE etc.) to be performed on an ingredient to access its data or
function.

FIGURE 10. RECIPE MODEL [7]

An example recipe, as a template for a lighting control system, is shown in Figure 11. A lighting controller takes
input from brightness sensors, calculates the output brightness through an algorithm (averaging, for example)
and outputs the calculated value to the connected lights, but only if one of the switches is switched on. Inputs
and outputs have both a name and a type. The type is used for matching offerings with ingredients.

FIGURE 11. EXAMPLE OF A RECIPE [8]

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D3.10 Network-level Semantic Interoperability (final)

Dissemination level: Public

34

More details on the integration of the above Recipes approach to the pattern-driven SPDI management of the
SEMIoTICS deployment (across all layers, including network) can be found in deliverable D4.1 and its follow-
up, D4.8.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D3.10 Network-level Semantic Interoperability (final)

Dissemination level: Public

35

 PATTERN-DRIVEN NORTHBOUND INTERFACE
To support the capabilities detailed in Section 1, in addition to the SBI and NBI interfaces and associated
technologies detailed in D3.1 and D3.2 a pattern-driven NBI is integrated into the SEMIoTICS SDN controller
(SSC). We discuss the corresponding design herein. The design augments the semantically rich networking
capabilities with SPDI-driven management of the network layer’s operation, as well as its interactions with the
south (the field layer) and north (e.g., the SEMIoTICS backend, IoT applications, and external IoT platforms)
entities.

 Interface Design

As per SEMIoTICS architecture definition (see Figure 12, with highlighted components), the majority of
interactions at the SSC’s exposed NBI are consumed by the overarching Pattern Orchestrator. In the controller
YANG is used as a general-purpose modelling language. In order to be compatible with the OpenDaylight
controller that already supports YANG, we implement the aforementioned NBIs as REST-based RPCs defined
in YANG. In addition, the YANG language, being protocol independent, can be converted into any encoding
format, e.g. XML or JSON that the network configuration protocol supports. In order to be flexible in terms of
using a variety of network management tools it is considered beneficial to use YANG for modelling.

Based on the above, the Pattern Orchestrator leverages the REST-based northbound interface of the controller
to describe the pattern requirements initiated at the higher-layer recipe definition. In the SSC development,
the Pattern Schema describing the structure of the networking-related pattern, is intentionally kept open and
extensible to support the most diverse types of connectivity-related patterns possible.

FIGURE 12. PATTERN-DRIVEN NBI ENABLING COMPONENTS IN THE SEMIOTICS ARCHITECTURE

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D3.10 Network-level Semantic Interoperability (final)

Dissemination level: Public

36

FIGURE 13. THE PATTERN-DRIVEN NBI (IN RED) WITHIN THE SEMIOTICS SDN CONTROLLER’S
PATTERN MODULE

As mentioned in D4.1, patterns can be used as an instrument for modifying and verifying the topology of SDN
networks, at runtime. At runtime, an existing SDN network design (topology) and the required SPDI properties
are provided, and patterns are applied to reconfigure the network according to the specified constraints. The
controller is then in charge of analysing the applied pattern and ensuring that the pattern invariants are
satisfied. The analysis is based on checking if the state of the network configuration matches totally or partly
the specified rule objective with corresponding constraints. When a network that matches and embeds an SDN
pattern does not satisfy the required property, the pattern may be used to substitute, add or remove an existing
configuration in order to satisfy the property.

Figure 13 depicts the pattern-driven network APIs providing a closer view of the architecture at the SDN/NFV
orchestration level. Moreover, the pattern-driven network APIs (refer to D3.1 for SDN Controller architecture
details) define and monitor the operation of different SPDI properties of the applications that interact with the
API. Doing so it is guaranteed that the said interactions are in line with the SPDI requirements. When that is
not the case, appropriate adaptations are triggered. The corresponding information, in this case, is relayed to

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D3.10 Network-level Semantic Interoperability (final)

Dissemination level: Public

37

the Pattern Engine at the SEMIoTICS backend, since this is the entity responsible for SPDI reasoning at the
application level.

 Interface Specification

The implementation approach for the pattern-driven network interfacing in order to provide a machine
processable form of SPDI properties definition and reasoning is in line with the one defined in Section 4 of
D4.1 (“SEMIoTICS SPDI Patterns (first draft)”). Therefore, network-level SPDI properties are expressed as
Drools [23] production rules, and the associated rule engine, by applying and extending the Rete algorithm
[24] and later the PHREAK algorithm [25].

In more detail, a Drools rule that encodes an SDN pattern includes the inputs of the pattern’s components, the
type of composition and the required property in Left Hand Side (LHS). When the conditions in the LHS are
satisfied, then the rule is fired to execute the actions as described in its Right-Hand Side (RHS). In the RHS,
the new requirements of the compositions or atomic components can be inserted, updated or deleted.

In order to specify and express SDN patterns, the semantics of the pattern language should be defined. In
Table 5 the most useful preliminary network semantics are presented. In the LHS, the network components
which constitute the topology of the pattern are defined. Different network topology facts such as Nodes, Links
and Flows are included in the list. Moreover, the Requirement represents the constraints of the topology and the
required property. In the RHS, the pattern provides the solution by inserting, modifying, updating or retracting
facts from the knowledge base which will also update the inventory list in the controller. Each component is
converted through the respective Java class to an understandable format to the SDN controller. Finally, the
semantics of Drools language give the potentiality to represent more complex patterns by adding more
variables and pattern properties.

Key elements in the pattern rule definition include:

• Pattern Requirement: The pattern constraints are defined as requirements which represent the
property that the pattern guarantee such as E2E path establishment or fault tolerance. Depending on
the type of requirement property, the SDN controller may utilize various routing algorithms to deploy
the path, e.g., Dijkstra algorithm which adapts breadth-first algorithm to find single source shortest path
in the simplest case, or more complex path finding for cases where additional QoS propert ies are
specified.

• Pattern Action: When the pattern identifies the fitting path between source and destination, the actions
of the pattern includes the installation of suitable flow rules in the OpenFlow-enabled switches.

TABLE 5. NETWORK PATTERN RULE CONSTRUCTS

Type Syntax Description

rule rule "name" name of the rule

Left Hand Side (LSH)

when

Network Pattern Elements (Facts)

Node (address, ports,

txPackets, rxPackets)
match network nodes such as switches and hosts

Link (srcId, srcPort, destId,

destPort)
match links between source and destination nodes

Path (srcId, destId)
match paths between source node intermediate

links and destination node

Flow (switchId, inPort,

outPort, priority)
match flow rules between nodes

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D3.10 Network-level Semantic Interoperability (final)

Dissemination level: Public

38

Requirement (src, dest,

category, satisfied)

match requirements of pattern such as source,

destination, property category and satisfied

Conditional Elements

== match conditions

contains contains object (logical)

not not match (logical)

!= not match (arithmetic)

Right Hand Side (RSH)

then

Actions

modify (\$fact)\{pro=pro'\} modify knowledge base fact

retract (\$fact) retract knowledge base fact

insert (new Fact ()) insert knowledge base fact

update (\$fact) update knowledge base fact

Java commands other Java language syntax

We extend the above presented LSH Network Pattern Elements from [34] with additional matching
requirements for more-detailed specification of the QoS-encompassing patterns specific to SEMIoTICS use
cases:

– Application structure: structure that contains application-related information and consists of the following
fields

o Application Identifier: A unique identified for the specific application
o Application Tenant: identifier for different tenant contexts of each application

– Service structure: Structure that contains information about a running or a requested service

Service: substructure that groups connectivity, QoS and time requirements for a requested service

o Service Identifier: A unique service identifier.
o List of Flows: the application defines the flows that requests to be established and the QoS

requirement for each flow. The default connectivity type that this design enables is unidirectional
point-to-point. This is considered as a single flow that can have specific QoS requirements.
However, the design is also made in a way that allows establishing bidirectional flows by also
providing the reverse flow information as well as point-to-multipoint connectivity by defining a
number of flows which share the same source identifier. Note that this scheme allows each
requested flow in a bidirectional or a point-to-multipoint scenario (or even in a scenario that
combines them) to have different QoS requirements. In more detail, each industrial flow entry
consists of, i) Flow Requirement Structure and ii) Flow QoS structure.
o Flow Requirement structure: Structure that defines the information of the end hosts for each

required E2E connection request
- Endpoint structure (src, dst): structure that specifies different options for expressing

end host information:

• Host: host identifier information (i.e., a generic node ID/name)

• Host MAC: MAC address and VLAN identifier information

• Host IP: IP address information

• Host IP+port number: IP address and port information
o Flow QoS structure: Structure that groups QoS requirements for each end-to-end connection

- Bandwidth: measured in kbit/s, default value 0 – no bandwidth guarantees.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D3.10 Network-level Semantic Interoperability (final)

Dissemination level: Public

39

- Burst: maximum burst size of a flow, measured in Bytes, default value 0 – no burst
size guarantees.

- Delay: measured in milliseconds, default value 0 – no delay guarantees. O
- Resilience: integer identifier of a resilience class – values:

• 0 (default value) – no protection

• 1 – OpenFlow standard protection (using OpenFlow Fast-Failover Groups)

• 2 – rapid path protection (using a data-plane-based end-to-end custom
protection mechanism that addresses the limitations of the OpenFlow Fast -
Failover Groups – to be developed in a later phase of the project)

 Implementation Details

The development of SEMIoTICS’ Pattern-driven Network Services API, as well as the preliminary testing
results is presented in this section. The technologies that are used include Java, Maven, and YANG.

The pattern-driven NBI follows the same logic regarding the interaction with the Pattern Orchestrator as the
other Pattern Engines in the other layers (i.e., Backend and Field) as described in D5.2 section 3.4.2. The
main purpose of this interaction is to dispatch the created Drools facts and rules. These interactions take place
via the common API exposed by the Pattern Engines; the design decision to have a common API in all Pattern
Engines was taken to enhance homogeneity and facilitate integration, as applications can interact with all
Pattern Engines, regardless of their layer, through the same functions.

Moreover, said API is used by the pattern-driven NBI (as well as the Pattern Engine residing to the field layer)
to send at runtime fact updates to the Backend Pattern Engine, allowing the latter to have an up-to-date view
of the SPDI state of SDN layer and the corresponding components.

The main web services exposed from the pattern-driven NBI are shown in Figure 14.

FIGURE 14. PATTERN-DRIVEN NBI API

The above correspond to the creation, retrieval, deletion of facts and creation and deletion of rules. In more
detail, the addFact REST service is used by the Pattern Orchestrator for the communication of new Drools
facts of a new IoT Service orchestration.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D3.10 Network-level Semantic Interoperability (final)

Dissemination level: Public

40

Moreover, the factRemove is used in order for a fact to be deleted from the Drools Memory of the SDN Pattern
Engine. The factUpdate is used again by the Pattern Orchestrator in case some changes need to be applied
to a Drools Fact. The factStatus REST service returns the current status of a special type of Drools facts, the
instances of Property class. These instances are used to describe SPDI and QoS properties for the
components of an IoT Service orchestrator. The requirements REST service can be used for the visualization
of the SPDI properties of an orchestration. Finally, the insertRule REST service is used only by the Pattern
Orchestrator to communicate Drools Rules to the pattern-driven NBI for the reasoning of the SPDI and QoS
properties.

4.3.1 TESTING & BASIC FUNCTIONALITY VALIDATION

In order to test and demonstrate the functionality of the pattern-driven NBI, we assume a simple setup which
features a virtual network topology comprising an SDN controller, one OpenFlow switch (s1) and two hosts
(which are part of a testing orchestration, interacting with each other); see Figure 15, and refer to D5.3, section
3.4.2.3 for a more detailed description.

FIGURE 15. TEST SETUP NETWORK TOPOLOGY

The first step of our testing methodology is to send a request to Pattern Orchestrator, which is expected to
receive instantiated orchestrations of IoT services (i.e. Recipes). The Pattern Orchestrator receives the
incoming Recipe and creates instances of the corresponding Java classes (Host, Softwarecomponent, Link,
Sequence, Property), which correspond to Drools facts in the Pattern Engine. These Java instances are then
sent to the pattern-driven NBI through one of its REST APIs, called addFact. The Pattern Engine receives all
the Java instances sent by the Pattern Orchestrator. Each of the received instances are inserted into the
working memory of the Drools Rule Engine, as Drools facts. Once there, they can trigger Drools Rules
(patterns; see Figure 16).

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D3.10 Network-level Semantic Interoperability (final)

Dissemination level: Public

41

FIGURE 16. TESTING PATTERN-DRIVEN NBI OPERATION AND RULE FIRING

The output of the network drools rules that run for the verification of properties in question, is included in the
red rectangle. The description of the test setup, evaluation scenario, network rules and assessment results for
the pattern-driven interface and its interactions with the Pattern Orchestrator have been presented in detailed
in section 3.4.2.3 of D5.3; for the sake of brevity, we do not repeat them here, and refer the reader to said
deliverable.

Due to the decision to use of standardized, REST-based interfaces for all pattern engines, the development of
a dedicated client was not needed. Instead, the use of any typical REST client is adequate to test the
implementation and compatibility of third-party modules in terms of their interaction with the Pattern Engines.
In our testing Postman was used (a well-established tool in this regard) to send these requests to the exposed
REST APIs Postman allows us to create REST requests with the needed headers and the body we are
interested in. To that end, specific scripts were created that allowed us to send well -formulated requests and
test all operations supported by the Pattern Engines’ interfaces (including the pattern-driven NBIs). These
scripts are available at the project’s GitLab.

It should also be noted that, since fundamental functionality is in place and tested, and basic interfacing is
achieved, efforts towards the final stages of the project will focus on the interconnection of the Pattern

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D3.10 Network-level Semantic Interoperability (final)

Dissemination level: Public

42

Orchestrator component (see D4.1) with the NFV Management and Orchestration components via the Os-Ma-
Nfvo endpoint, and consequently with the SEMIoTICS SDN Controller (SSC) via its Pattern-driven NBI
presented herein. This will not only enable the E2E deployment of semantically-rich IoT Orchestrations (as
described in subsection 3.4), but also the triggering of adaptations (e.g., spawning a new VNF when needed
to guarantee a specific SPDI or QoS property). Nevertheless, these developments are outside of the scope of
Task 3.4, and thus are not documented herein.

For additional validation and evaluation results of the pattern-driven NBI presented herein, we defer the reader
to deliverable D4.9 ("SEMIoTICS Monitoring, Prediction and Diagnosis Mechanisms (final)") , and subsection
5.3 in specific, where more complex scenarios are deployed to evaluate the performance of the developed
mechanisms more accurately and to validate their efficacy in configuring, monitoring, and adapting the network,
as needed, in order to satisfy the defined SPDI properties.

The final validation and evaluation of the above mechanisms will take place in the context of the project’s first
two use cases, and the corresponding demonstrators, with the results appearing in the pertinent deliverables
(i.e., D5.9, D5.10, for UC1 and UC2, respectively).

Finally, regarding the validation of the SPDI patterns approach in general, we defer the reader to deliverable
D4.8, whereby the concluding section aggregates all the relevant validation and evaluation steps involved.

 Interface Security Considerations

The Pattern Related components are responsible not only for validating SPDI/QoS properties but enforcing
them when necessary as well. Therefore, it is imperative to take into consideration the security aspects of the
exposed interface.

The SDN Pattern Engine adopts the security mechanisms available in the ODL controller, and by extension
the SSC, which features basic authentication capabilities (via username and password). Through this feature,
all modules used by the SDN controller are subject to this authentication. Case in point, the Pattern
Orchestrator is forced to provide credentials in order to be able to communicate with the SDN Pattern Engine.

Additionally, security is hardened on a per-case basis, considering the intrinsic requirements (e.g., complexity
of interactions) foreseen in each scenario. Said intrinsic requirements are addressed by adding encryption to
the communication (E2E, where needed) by using SSL/TLS in the REST endpoints.

Moreover, advanced Authentication, Authorisation and Accounting (AAA) features are implemented with the
help of the Security Manager who is responsible for providing tokens that enforce the said features (see Task
4.5, focused on E2E security and privacy). Leveraging these mechanisms, the communication between Pattern
Orchestrator and pattern-driven NBI is hardened by the use of an authentication token. In all interactions, the
Pattern Orchestrator will first request a token from the Security Manager that will later use to contact the
pattern-driven NBI. If the token is verified to be able to grant access to the pattern-driven NBI then the
communication proceeds successfully. This process prevents unauthorized use of the pattern-driven NBI.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D3.10 Network-level Semantic Interoperability (final)

Dissemination level: Public

43

 PATTERNS FOR NETWORK-LEVEL SEMANTIC
INTEROPERABILITY

To fully exploit the above pattern-driven networking features and provide an E2E provision for interoperability
throughout the SEMIoTICS framework, a set of Interoperability-focused patterns have to be defined. A first set
of such patterns pertaining to the definition and monitoring of SPDI properties across the SEMIoTICS layers,
also including Interoperability -related aspects, were defined in Section 5 of D4.1 (“SEMIoTICS SPDI Patterns
(first draft)”).

The full set of SPDI patterns will be documented in D4.8 (“SEMIoTICS SPDI Patterns (final)”) which is currently
under finalisation, whereby the network-related ones are extracted from said deliverable and presented herein.
An overview of these patterns and their coverage in terms of type, data state and platform connectivity are
presented in Table 6.

TABLE 6. SUMMARY OF INTEROPERABILITY PATTERNS AND THEIR COVERAGE

Pattern Interoperability Type Data State Coverage
Platform

Connectivity

Name Technical Syntactic Semantic Organisational
In

Transit
At

Rest
In

Processing
Within Across

1 Technical   

2 Syntactic    

3 Semantic   

4 Organisational    

5 E2E Within      

6 E2E Across       

Elaborating on Table 6, and as discussed in deliverable D4.1 and its follow-up, D4.8 (see Section 2), four
levels of interoperability are considered in SEMIoTICS: technical, syntactic, semantic and organizational
interoperability. In more detail, from bottom up, the following types of interoperability can be distinguished and
will be covered by SEMIoTICS:

• Technical interoperability – enables seamless operation and cooperation of heterogeneous devices
that utilize different communication protocols on the transmission layer

• Syntactic interoperability – establishes clearly defined formats for data, interfaces and encoding

• Semantic interoperability – settles commonly agreed information models and ontologies for the used
terms that are processed by the interfaces or are included in exchanged data

• Organizational interoperability – cross-domain and cross-platform service integration and
orchestration, through common semantic and programming interfaces

The above correspond to the “Interoperability Type” column of Table 6, while the different patterns necessary
to ensure the above are presented as lines in said table, with their definitions being presented in the subsection
that follow. Moreover, these patterns are classified in terms of their coverage of the different data states and
cases of platform connectivity, as is the norm with all patterns defined within SEMIoTICS.

It is important to note that the higher levels of interoperability assume the existence of the lower ones, otherwise
they cannot be achieved, e.g., to have syntactic interoperability, you need to have established technical first
(see Figure 17).

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D3.10 Network-level Semantic Interoperability (final)

Dissemination level: Public

44

FIGURE 17. DIFFERENT LEVELS OF INTEROPERABILITY AND THEIR DEPENDENCY RELATIONSHIPS

Moreover, even though the boundaries of each level are not strict, we consider in our methodology that
technical, syntactic, and semantic interoperability enable E2E interoperability between the involved
technologies within a platform and/or specific IoT deployment, while operation across verticals and platforms
is accomplished through organizational interoperability.

Indeed, all types/cases of interoperability fall within the four categories specified (technical, syntactic,
semantic, and organizational), while the expressiveness of the SEMIoTICS language and extensibility of the
underlying orchestration specification model (see D4.1, Section 3 and subsection 3.8, in specific) guarantee
that there is no instance of interoperability check that cannot be defined and, consequently, verified through
this process. At the rule verification-level, the property variables used in the rules (as will be shown in the
subsections that follow) are, by definition, able to accommodate any communication means (radio protocols,
transport protocols, semantics etc.), as they operate through string matching, comparing what is defined in the
specification of each individual placeholder. Furthermore, the underlying model itself is extensible and - as
detailed in subsection 3.8 of D4.1 – allows to user to accommodate all future needs that may not be anticipated
right now, by extending the model (and, consequently, the language) used in the instantiation. This ensures
that the SEMIoTICS approach to Interoperability verification can also be used to cover future use cases that
fall outside the scope of this project - e.g., for specifying human-machine interoperability/interaction properties
for Augmented Reality / human-in-the-loop applications.

Regarding data states, it should be noted that interoperability cannot be defined for data at rest since, by
definition, data as rest is data that is not being used, access or processed upon and, thus, no interoperability
challenges arise. When an entity accesses said data (to read a value, perform analytics etc.), it becomes data
in transit and in processing, depending on the scenario. Therefore, as shown in Table 6, the Interoperability of
data at rest is not covered within the defined patterns.

The definition of the interoperability patterns of SEMIoTICS is detailed in the subsections that follow. The
structure followed first provides the (theoretical) definition of each interoperability property, followed by the
workflow-level specification and the associated verification rules. Thus, these can be directly usable, provided
of course that the orchestrations and associated placeholders (components) involved in them are defined using
the methodology described in deliverable D4.1 (and final version appearing in D4.8). The only caveat would
be that, depending on the number of e.g., syntactic-level protocols that need to be checked, the rules will have
to be used iteratively for each one of them (e.g., once to check that both devices support XMP and another to
check that both use MQTT, if both are needed).

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D3.10 Network-level Semantic Interoperability (final)

Dissemination level: Public

45

 Technical Interoperability

Technical Interoperability is about enabling the communication between systems and platforms at a protocol
level and the infrastructure needed for those protocols to operate [35]. Within the context of the work presented
herein, the associated pattern rule aims to cover and address the technological issues that may arise from the
interaction among heterogeneous devices, with different technical specifications and supported communication
means on the transmission layer (e.g., wireless motes communicating via ZigBee, other motes via 802.15.4,
and more powerful infrastructure devices communicating over WiFi or Ethernet) , as is often the case in IoT
environments.

5.1.1 PATTERN DEFINITION

Let us consider:

– C := the set of all instantiated components
– TA := A set of technical attributes
– C1, C2 ⊆ C, where C1 ≠ C2
– Ci_TA ⊆ TA := technical attributes of Ci
– TMD := Technical Mediator (mediator which connects to components with various technical attributes; e.g.,

a sensor gateway that acts as a bridge between 802.15.4 radio and wired network infrastructures using
6LBR [36])

Then, we can define the following:

Lemma 1: If C1, C2 are at the same domain and C1_TA ∩ C2_TA ≠ ⌀ then C1 and C2 are directly technically

interoperable.

Lemma 2: If C1, C2 are on different domain but are both directly technically interoperable with TMD (Figure 18)

then C1, C2 are indirectly technically interoperable.

Lemma 3: If C1, C2 are directly or indirectly technical interoperable, then C1, C2 are technically interoperable.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D3.10 Network-level Semantic Interoperability (final)

Dissemination level: Public

46

FIGURE 18. INDIRECT TECHNICAL INTEROPERABILITY VIA TECHNICAL MEDIATOR

5.1.2 PATTERN SPECIFICATION RULE

Using the above detailed pattern, we can derive the following workflow-based definition of technical
interoperability for the fundamental scenario of two IoT components communicating with each other:

1. WF “technical-interoperability”
2. Placeholder (A1, (PlaceholderActivity, PlaceholderDescription))
3. Placeholder (A2, (PlaceholderActivity, PlaceholderDescription))
4. Placeholder (TMD, (PlaceholderActivity, ”technical mediator”))
5. Link (L1, A1, A2)
6. Link (L2, A1, TMD)
7. Link (L3, A2, TMD)
8. Property (conn1, L1, required, (pattern-based, pattern),” technical-interoperability”, in_transit)
9. Property (conn2, L2, required, (pattern-based, pattern),” technical-interoperability”, in_transit)
10. Property (conn3, L3, required, (pattern-based, pattern),” technical-interoperability”, in_transit)
11. Property (conn4, “_technical-interoperability”, required, (pattern-based, PR1), ”_technical-

interoperability”, end_to_end)
12. Pattern rule: (PR1: conn1 || (conn2, conn3) ➔ conn4)

For details on this workflow-based approach followed in SEMIoTICS pattern definition, please refer to
deliverable D4.1 and its follow-up D4.8. In said deliverables the process of transforming these workflows and
the pertinent requirements into a machine-processable format using Drools rules and facts is also documented.
The output of this process is shown in Listing 1.

LISTING 1. TECHNICAL INTEROPERABILITY VERIFICATION DROOL RULE

rule "Sequence Technical Interoperability Verification"
 when
 Placeholder($pA:=placeholderid)
 Property ($pA:=subject, category=="technical", $prvaluein1:=input_value,

$prvalueout1:=output_value, satisfied==true)
 Placeholder($pB:=placeholderid)

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D3.10 Network-level Semantic Interoperability (final)

Dissemination level: Public

47

 Property ($pB:=subject, category=="technical", $prvaluein2:=input_value,

$prvalueout2:=out_value, satisfied==true)
 Sequence($sId:=placeholderid, $pA:=placeholdera, $pB:=placeholderb)
 $PR: Property ($sId:=subject, category=="technical", $prvalueout1==$prvaluein2,

satisfied==false)
 then
 modify($PR){satisfied=true, input_value=$prvaluein1, output_value=$prvalueout2};
end

Whenever the “Sequence Technical Interoperability Verification” rule, is fired, the Property with category
technical of a Sequence is verified. According to the LSH part of the rule, if:

i) the two Placeholders of a Sequence have a Property of category technical; and
ii) the output_value of the first Placeholder is equal to the input_value of the second Placeholder

($prvalueout1==$prvaluein2),

then the RHS part of the rule verifies the corresponding Property of the Sequence in question and sets its
input_value and output_value to $prvalueout1 and $prvaluein2 respectively.

A property of category technical with input_value $prvaluein1 and output_value $prvaluout1, denotes that the
corresponding component uses a specific input communication protocol whose description is given by
$prvaluein1 and a specific output communication protocol whose description is given by $prvalueout1. For
example, if we have a component (PlaceholderA) which has an endpoint that uses the Wi-Fi 802.11a protocol,
then this would be translated to a Property with category technical and input_value “Wi-Fi 802.11a”.
Additionally, if the said component uses a different protocol for forwarding information to other components
such as Ethernet 802.3, then the output_value of the same Property will be “Ethernet 802.3”.

Figure 19 depicts a sequence (Sequence1) of two Placeholders. PlaceholderA has a property of category
technical with input_value “Wi-Fi 802.11a” and output_value “Ethernet 802.3”. Similarly, PlaceholderB has a
property of category technical with input_value “Ethernet 802.3” and output_value “Wi-Fi 802.11g”. As step 1
shows, the corresponding property of the Sequence1 is false and input_value and output_value are not set.
The aforementioned protocol properties trigger the “Sequence Technical Interoperability Verification” rule,
verifying (satisfied=true) the property of category technical of Sequence1, and assigning the appropriate values
to input_value and output_value of the property (step 2).

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D3.10 Network-level Semantic Interoperability (final)

Dissemination level: Public

48

FIGURE 19. EXECUTION STEPS OF TECHNICAL INTEROPERABILITY PATTERN

 Syntactic Interoperability

Syntactic Interoperability refers to the challenge of enabling interactions between different devices which may
often be communicating using different messaging protocols, while also usually associated with data formats
[35]. This is especially challenging in the IoT domain where, while manufacturers typically try to adopt
standardised messaging protocols, the plethora of such established protocols with different intrinsic
characteristics (e.g., RESTful HTTP, CoAP, XMP, MQTT, DPWS) and a variety of data formats (e.g., XML,
JSON), which leads to a fragmented landscape.

5.2.1 PATTERN DEFINITION

Let us consider:

– C := the set of all instantiated ingredients/activities in an IoT orchestration
– PR := A set of protocols
– C1,C2 ⊆ C, where C1 ≠ C2
– Ci_PR ⊆ PR := protocols supported by Ci
– SyMD := Syntactic Mediator (component which connects to components with various protocols, and

translates between them, such as SeMIBIoT [37])

Then, we can define the following:

Lemma 1: If C1, C2 are technically interoperable and C1_PR ∩ C2_PR ≠ ⌀ then C1 and C2 are directly syntactically

interoperable.

Lemma 2: If C1, C2 are technically interoperable and are both directly syntactical interoperable with SyMD (Figure

20) then C1, C2 are indirectly syntactically interoperable

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D3.10 Network-level Semantic Interoperability (final)

Dissemination level: Public

49

Lemma 3: If C1, C2 are directly or indirectly syntactically interoperable, then C1, C2 are syntactically interoperable.

FIGURE 20. INDIRECT SYNTACTIC INTEROPERABILITY VIA SYNTACTIC MEDIATOR

5.2.2 PATTERN SPECIFICATION RULE

Considering the above, we can define the following workflow-based definition for Syntactic Interoperability
between two IoT activities A1, A2 interacting with each other.

1. WF “syntactic-interoperability”
2. Placeholder (A1, (PlaceholderActivity, PlaceholderDescription))
3. Placeholder (A2, (PlaceholderActivity, PlaceholderDescription))
4. Placeholder (SyMD, (PlaceholderActivity,”syntactic mediator”))
5. Link (L1, A1, A2)
6. Link (L2, A1, SyMD)
7. Link (L3, A2, SyMD)
8. Property (conn01, L1, required, (pattern-based, pattern),” technical-interoperability”, in_transit)
9. Property (conn02, L2, required, (pattern-based, pattern),” technical-interoperability”, in_transit)
10. Property (conn03, L3, required, (pattern-based, pattern),” technical-interoperability”, in_transit)
11. Property (conn1, L1, required, (pattern-based, pattern),” syntactic-interoperability”, in_transit_ ∨

in_processing)
12. Property (conn2, L2, required, (pattern-based, pattern),” syntactic-interoperability”, in_transit_ ∨

in_processing)
13. Property (conn3, L3, required, (pattern-based, pattern),” syntactic-interoperability”, in_transit_ ∨

in_processing)
14. Property (conn4, “_syntactic-interoperability”, required, (pattern-based, PR1), ”_syntactic-

interoperability”, end_to_end)
15. Pattern rule: (PR1: (conn01,conn1) || (conn02,conn2,con03,conn3) ➔ conn4)

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D3.10 Network-level Semantic Interoperability (final)

Dissemination level: Public

50

Furthermore, the above property can be encoded in machine-processable Drool-based form, as shown in
Listing 2.

LISTING 2. SYNTACTIC INTEROPERABILITY VERIFICATION DROOL RULE

rule "Sequence Syntactic Interoperability Verification"
 when
 Placeholder($pA:=placeholderid)
 Property ($pA:=subject, category=="dataFormat", $prvaluein1:=input_value,

$prvalueout1:=output_value, satisfied==true)
 Placeholder($pB:=placeholderid)
 Property ($pB:=subject, category==" dataFormat ", $prvaluein2:=input_value,

$prvalueout2:=out_value, satisfied==true)
 Sequence($sId:=placeholderid, $pA:=placeholdera, $pB:=placeholderb)
 $PR: Property ($sId:=subject, category==" dataFormat ", $prvalueout1==$prvaluein2,

satisfied==false)
 then
 modify($PR){satisfied=true, input_value=$prvaluein1, output_value=$prvalueout2};
end

Similar to the process described for the Technical Interoperability Verification rule, each time the “Sequence
Syntactic Interoperability Verification” rule, is fired, the dataFormat Property of a Sequence is verified.
According to the LSH part of the rule, if:

i) the two Placeholders of a Sequence have a Property of category dataFormat; and
ii) the output_value of the first Placeholder is equal to the input_value of the second Placeholder

($prvalueout1==$prvaluein2)

then the RHS part of the rule verifies the corresponding Property of the Sequence in question and sets its
input_value and output_value to $prvalueout1 and $prvaluein2 respectively.

A property of category dataFormat with input_value $prvaluein1 and output_value $prvaluout1, denotes that
the corresponding component uses a specific syntax for the incoming data whose description is given by
$prvaluein1 and a specific output protocol whose description is given by $prvalueout1. For example, if we have
a component (PlaceholderA) which receives data in XML format, then this would be translated to a Property
with category “dataFormat” and input_value “XML”. Moreover, if the said component uses a different syntax
for forwarding information to other components such as JSON, then the output_value of the same Property will
be “JSON”.

Figure 21 depicts a sequence (Sequence1) of two Placeholders. PlaceholderA has a dataFormat property with
input_value “XML” and output_value “JSON”. Similarly, PlaceholderB has a dataFormat property with
input_value “JSON” and output_value “HTML”. As step 1 shows, the dataFormat property of the Sequence1 is
false, and input_value and output_value are not set. The aforementioned dataFormat properties trigger the
“Sequence Syntactic Interoperability Verification” rule, verifying(satisfied=true) the dataFormat property of
Sequence1 and assigning the appropriate values to input_value and output_value of the property (step 2).

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D3.10 Network-level Semantic Interoperability (final)

Dissemination level: Public

51

FIGURE 21. EXECUTION STEPS OF SYNTACTIC INTEROPERABILITY PATTERN

 Semantic Interoperability

Interoperability on the Semantic level means that there is a common understanding between the involved
systems of the meaning of the content (information) being exchanged. This means that the exchanged data
have an unambiguous, shared meaning. For example, temperature units can be Fahrenheit, Celsius or Kelvin,
but they express the same information which can be obtained after proper instance transformation.

5.3.1 PATTERN DEFINITION

Let us consider:

– C := the set of all instantiated components
– MDL := A set of semantic models
– C1,C2 ⊆ C , where C1 ≠ C2
– Ci_MDL ⊆ MDL := semantic models used by Ci
– SeMD := Semantic Mediator; e.g., a Semantic Mediator as defined in Hatzivasilis et al [38], or a Semantic

Information Broker [39].

Then, we can define the following:

Lemma 1: If C1, C2 are syntactically interoperable and C1_MDL ∩ C2_MDL ≠ ⌀ then C1 and C2 are directly semantically

interoperable

Lemma 2: If C1, C2 are syntactically interoperable and are both directly semantically interoperable with SeMD

(Figure 22), then C1, C2 are indirectly semantically interoperable

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D3.10 Network-level Semantic Interoperability (final)

Dissemination level: Public

52

Lemma 3: If C1, C2 are directly or indirectly semantically interoperable, then C1, C2 are semantically interoperable.

FIGURE 22. INDIRECT SEMANTIC INTEROPERABILITY VIA SEMANTIC MEDIATOR

5.3.2 PATTERN SPECIFICATION RULE

Based on the above, the workflow-based definition of semantic interoperability in the fundamental scenario of
two IoT activities A1 and A2 interacting with each other, is as follows:

1. WF “semantic-interoperability”
2. Placeholder (A1, (PlaceholderActivity, PlaceholderDescription))
3. Placeholder (A2, (PlaceholderActivity, PlaceholderDescription))
4. Placeholder (SeMD, (PlaceholderActivity,”Semantic Broker”))
5. Link (L1, A1, A2)
6. Link (L2, A1, SeMD)
7. Link (L3, A2, SeMD)
8. Property (conn01, L1, required, (pattern-based, pattern),” syntactic-interoperability” , in_transit_ ∨

in_processing)
9. Property (conn02, L2, required, (pattern-based, pattern),” syntactic-interoperability” , in_transit_ ∨

in_processing)
10. Property (conn03, L3, required, (pattern-based, pattern),” syntactic-interoperability” , in_transit_ ∨

in_processing)
11. Property (conn1, L1, required, (pattern-based, pattern),” semantic-interoperability” , in_processing)
12. Property (conn2, L2, required, (pattern-based, pattern),” semantic -interoperability” , in_processing)
13. Property (conn3, L3, required, (pattern-based, pattern),” semantic -interoperability” , in_processing)
14. Property (conn4, “_semantic-interoperability”, required, (pattern-based, PR1),” “_semantic-

interoperability”, end_to_end)
15. Pattern rule: (PR1: (conn01,conn1) || (conn02,conn2,conn03,conn3) ➔ conn4)

Moreover, we can define the semantic interoperability rule in a machine-processable Drool rule format, as
show in Listing 3.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D3.10 Network-level Semantic Interoperability (final)

Dissemination level: Public

53

LISTING 3. SEMANTIC INTEROPERABILITY VERIFICATION DROOL RULE

rule "Sequence Semantic Interoperability Verification"
 when
 Placeholder($pA:=placeholderid)
 Property ($pA:=subject, category=="semantic", $prvaluein1:=input_value,

$prvalueout1:=output_value, satisfied==true)
 Placeholder($pB:=placeholderid)
 Property ($pB:=subject, category=="semantic", $prvaluein2:=input_value,

$prvalueout2:=out_value, satisfied==true)
 Sequence($sId:=placeholderid, $pA:=placeholdera, $pB:=placeholderb)
 $PR: Property ($sId:=subject, category=="semantic", $prvalueout1==$prvaluein2,

satisfied==false)
 then
 modify($PR){satisfied=true, input_value=$prvaluein1, output_value=$prvalueout2};
end

The “Sequence Semantic Interoperability Verification” rule verifies the semantic Property of a Sequence every
time it is triggered. According to the LSH part of the rule, if:

i) the two Placeholders of a Sequence have a Property of category semantic, and
ii) the output_value of the first Placeholder is equal to the input_value of the second Placeholder

($prvalueout1==$prvaluein2),

then the RHS part of the rule verifies the corresponding Property of the Sequence in question and sets its
input_value and output_value to $prvalueout1 and $prvaluein2 respectively.

A property of category semantic with input_value $prvaluein1 and output_value $prvaluout1, denotes that the
corresponding component has a specific understanding regarding the content of the incoming data whose
description is given by $prvaluein1 and a specific understanding regarding the content of the output data whose
description is given by $prvalueout1. For example, if we have a component (PlaceholderA) which understands
temperature in Kelvin scale, then this would be translated to a Property with category “semantic” and
input_value “Kelvin”. Moreover, if the said component uses a different understanding for forwarding
temperature to other components such as Celsius, then the output_value of the same Property will be “Celsius”.

Figure 23 depicts a sequence (Sequence1) of two Placeholders. PlaceholderA has a semantic property with
input_value “Kelvin” and output_value “Celsius”. Similarly, PlaceholderB has a semantic property with
input_value “Celsius” and output_value “Fahrenheit”. As step 1 shows, the semantic property of the Sequence1
is false and input_value and output_value are not set. The aforementioned semantic properties trigger the
“Sequence Semantic Interoperability Verification” rule, verifying(satisfied=true) the semantic property of
Sequence1 and assigning the appropriate values to input_value and output_value of the property (step 2).

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D3.10 Network-level Semantic Interoperability (final)

Dissemination level: Public

54

FIGURE 23. EXECUTION STEPS OF SEMANTIC INTEROPERABILITY PATTERN

 Organisational Interoperability

Organisational Interoperability refers to the ability of different organisations to effectively exchange
(meaningful) data, even though they may be using a variety of different information systems over widely
different infrastructures. In the context of IoT and IIoT deployments, which are the focus of SEMIoTICS,
organisational interoperability is mapped to cross-domain and cross-platform service integration and
orchestration.

5.4.1 PATTERN DEFINITION

Let us consider:

– C := the set of all instantiated IoT platform deployments
– CSPI := A set of common semantic and programming interfaces
– C1,C2 ⊆ C , where C1 ≠ C2
– Ci_CSPI ⊆ CSPI := common semantic and programming interfaces supported by Ci
– IP := Integration Proxy; i.e., a proxy, broker or middleware, such as a platform integration gateway,

management or proxy service [40] or an IoT Broker [41].

Then, we can define the following:

Lemma 1: If C1, C2 are semantically interoperable and C1_CSPI ∩ C2_CSPI ≠ ⌀ then C1 and C2 are directly

organisationally interoperable

Lemma 2: If C1, C2 are semantically interoperable and are both directly organisationally interoperable with IP

(Figure 24), then C1, C2 are indirectly organisationally interoperable

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D3.10 Network-level Semantic Interoperability (final)

Dissemination level: Public

55

Lemma 3: If C1, C2 are directly or indirectly organisationally interoperable, then C1, C2 are organisationally

interoperable.

FIGURE 24. INDIRECT ORGANISATIONAL INTEROPERABILITY VIA INTEGRATION PROXY

5.4.2 PATTERN SPECIFICATION RULE

Based on the above, we can derive the following workflow-based definition of organisational interoperability
for the fundamental case of two IoT platform deployments, A1 & A2, interacting with each other:

1. WF “organisational-interoperability”
2. Placeholder (A1, (PlaceholderActivity, PlaceholderDescription))
3. Placeholder (A2, (PlaceholderActivity, PlaceholderDescription))
4. Placeholder (IP, (PlaceholderActivity,”Integration Proxy”))
5. Link (L1, A1, A2)
6. Link (L2, A1, IP)
7. Link (L3, A2, IP)
8. Property (conn01, L1, required, (pattern-based, pattern),” semantic -interoperability” , in_processing)
9. Property (conn02, L2, required, (pattern-based, pattern),” semantic -interoperability” , in_processing)
10. Property (conn03, L3, required, (pattern-based, pattern),” semantic -interoperability” , in_processing)
11. Property (conn1, L1, required, (pattern-based, pattern),” organisational-interoperability” , in_transit_ ∨

in_processing)
12. Property (conn2, L2, required, (pattern-based, pattern),”_organisational-interoperability” , in_transit_ ∨

in_processing)
13. Property (conn3, L3, required, (pattern-based, pattern),” organisational -interoperability” , in_transit_

∨ in_processing)
14. Property (conn4, “_organisational-interoperability”, required, (pattern-based, PR1),” semantic-

interoperability”, end_to_end)
15. Pattern rule: (PR1: (conn01,conn1) || (conn02,conn2,conn03,conn3) ➔ conn4)

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D3.10 Network-level Semantic Interoperability (final)

Dissemination level: Public

56

Moreover, we can specify organisational interoperability via the following machine-processable Drools rule, as
shown in Listing 4.

LISTING 4. ORGANIZATIONAL INTEROPERABILITY VERIFICATION DROOL RULE

rule "Sequence Organizational Interoperability Verification"
 when
 Placeholder($pA:=placeholderid)
 Property ($pA:=subject, category=="organizational", $prvaluein1:=input_value,

$prvalueout1:=output_value, satisfied==true)
 Placeholder($pB:=placeholderid)
 Property ($pB:=subject, category=="organizational", $prvaluein2:=input_value,

$prvalueout2:=out_value, satisfied==true)
 Sequence($sId:=placeholderid, $pA:=placeholdera, $pB:=placeholderb)
 $PR: Property ($sId:=subject, category=="organizational", $prvalueout1==$prvaluein2,

satisfied==false)
 then
 modify($PR){satisfied=true, input_value=$prvaluein1, output_value=$prvalueout2};
end

The “Sequence Organizational Interoperability Verification” rule verifies the organizational Property of a
Sequence every time it is triggered. According to the LSH part of the rule, if:

i) the two Placeholders of a Sequence have a Property of category organizational, and
ii) the output_value of the first Placeholder is equal to the input_value of the second Placeholder

($prvalueout1==$prvaluein2),

then the RHS part of the rule verifies the corresponding Property of the Sequence in question and sets its
input_value and output_value to $prvalueout1 and $prvaluein2 respectively. It is mentioned that Placeholders
in this case refer to processes/workflows of different IoT platforms and/or organisations (e.g., interactions
between a SEMIoTICS and FI-WARE deployment, or even between two SEMIoTICS deployments belonging
to different organisations).

As mentioned above, organizational interoperability requires the existence of all other more basic forms of
interoperability (semantic, syntactic, technological). Then, the verification focuses on the compatibility of
organizational processes and workflows. A property of category organizational with input_value $prvaluein1
and output_value $prvaluout1, denotes that the corresponding process has a specific understanding regarding
the content of the incoming data whose description is given by $prvaluein1 and a specific understanding
regarding the content of the output data whose description is given by $prvalueout1.

Nevertheless, this is not limited to the semantics, as in section 5.3 above, but also from a workflow and
organisational/business process context. For example, if we have a process (PlaceholderA) which expects
inputs from a specific organisational activity (e.g., new IoT asset registration request) , then this would be
translated to a Property with category “organizational” and input_value “Activity”. Moreover, if this process
uses different means for its output (e.g., needs to interact with an external service residing in another
organisation/IoT platform to retrieve assets available there), then the output_value of the same Property will
be “ExtService”.

To visualise this, Figure 25 depicts a sequence (Sequence1) of two Placeholders. PlaceholderA, residing in
“IoT Platform A” has an organizational property with input_value “Activity” and output_value “ExtService”.
Similarly, PlaceholderB has an organizational property with input_value “ServiceReq” (to denote that process
PlaceholderB residing in IoT Platform B expects requests from external parties) and output_value “Workflow”
(to denote this external request is then mapped to an internal workflow; e.g., for local asset discover). As step
1 shows, the organizational property of the Sequence1 is false, and input_value and output_value are not set.
The aforementioned organizational properties trigger the “Sequence Organizational Interoperability
Verification” rule, verifying (“satisfied=true”) the organizational property of Sequence1 and assigning the
appropriate values to input_value and output_value of the property (step 2).

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D3.10 Network-level Semantic Interoperability (final)

Dissemination level: Public

57

FIGURE 25. EXECUTION STEPS OF ORGANISATIONAL INTEROPERABILITY PATTERN

 E2E Interoperability Within the SEMIoTICS platform

Until now, we have described how the individual interoperability types (i.e., Technical, Syntactic, Semantic and
Organisational) are defined and verified for the fundamental case of a sequence of two components/activities.
Nevertheless, using these rules the E2E properties of these simple as well as more complex orchestrations
can be verified. More specifically, using the process defined within D4.1 (i.e., leveraging the SEMIoTICS
system model and the associated activity composition and decomposition rules defined in said deliverable),
more complex cases can also be verified using these fundamental property rules.

Moreover, and specifically for interoperability, if between an orchestration of two of more components/activities
within a given IoT platform (e.g., a deployed instance of SEMIoTICS) we can verify that the three properties of
Technical, Syntactic and Semantic Interoperability all hold, then we can claim that E2E Interoperability also
holds for the given orchestration within the given IoT platform. In other words, the Syntactic Interoperability
property, as defined in section 5.2, is the fundamental case of E2E Interoperability within an IoT platform, since
if it evaluates as true, the verifications of the other two underlying interoperability types (Technical and
Syntactic) also evaluate as true, and thus there is full interoperability between the interacting entities.
Consequently, in the more complex orchestrations, and using the process already described in D4.1 (see
section 2.4 and 4.4), if all of these three interoperability properties are verified for all parts of a given
orchestration, then the E2E Interoperability within the platform (referred to as the “E2E_WP_Interoperability”
Property) is also verified. This is what the rule in Listing 5 depicts; Technical, Syntactic and Semantic properties
are the prerequisites (LSH part of the rule) for the overall Interoperability Property to hold (RSH part of the
rule).

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D3.10 Network-level Semantic Interoperability (final)

Dissemination level: Public

58

LISTING 5. END-TO-END INTEROPERABILITY WITHIN PLATFORM VERIFICATION DROOL RULE

rule "Sequence Interoperability"
 when
 Sequence($sId:=placeholderid)
 $PR1: Property ($sId:=subject, category=="technical", satisfied==true)
 $PR2: Property ($sId:=subject, category=="dataFormat", satisfied==true)
 $PR3: Property ($sId:=subject, category=="semantic", satisfied==true)
 $PR4: Property ($sId:=subject, category=="E2E_WP_Interoperability", satisfied==false)
 then
 modify($PR4){satisfied=true};
end

Elaborating on the above, Figure 26 depicts a sequence (Sequence1) whereby the technical, dataFormat (i.e.
syntactic) and semantic properties have already been verified (step 1). The aforementioned interoperability
properties trigger the “Sequence Interoperability Verification” rule, verifying (satisfied=true) the E2E
interoperability property of Sequence1 as instantiated within the bounds of a given IoT platform (step 2).

FIGURE 26. EXECUTION STEPS OF E2E INTEROPERABILITY WITHIN PLATFORM PATTERN

 E2E Interoperability Across IoT Platforms

Similar to the reasoning detailed in section 5.5 above regarding the Semantic Interoperability and E2E
Interoperability verification within the SEMIoTICS platform, the fundamental case of E2E Interoperability across
platforms (e.g., across a SEMIoTICS and a FI-WARE deployment) is covered by the definition of the
Organisational Interoperability, as presented in section 5.4.The additional requirement in this case is the
satisfaction of the Organisational Interoperability property between the two interacting entities across different
IoT platforms, which in turn requires the verification of the Semantic, Syntactic and Technical Interoperability
properties in order to be possible. This is shown in

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D3.10 Network-level Semantic Interoperability (final)

Dissemination level: Public

59

Listing 6, with the property being referred to “E2E_AP_Interoperability”.

LISTING 6. END-TO-END INTEROPERABILITY ACROSS PLATFORM VERIFICAITON DROOL RULE

rule "Sequence Interoperability"
 when
 Sequence($sId:=placeholderid)
 $PR1: Property ($sId:=subject, category=="protocol", satisfied==true)
 $PR2: Property ($sId:=subject, category=="dataFormat", satisfied==true)
 $PR3: Property ($sId:=subject, category=="semantic", satisfied==true)

 $PR4: Property ($sId:=subject, category=="organisational", satisfied==true)
 $PR5: Property ($sId:=subject, category=="E2E_AP_Interoperability", satisfied==false)
 then
 modify($PR5){satisfied=true};
end

Figure 27 depicts a sequence (Sequence1) of two Placeholders. In this case, both Placeholders refer to IoT
platforms. As step 1 shows, E2E interoperability across IoT platforms property of the Sequence1 is false, and
input_value and output_value are not set. However, the technical, syntactic, semantic and organizational
properties hold for Sequence1. The aforementioned properties trigger the “Sequence Interoperability Across
IoT Platforms” rule, verifying(satisfied=true) the semantic property of Sequence1 (step 2).

FIGURE 27. EXECUTION STEPS OF E2E INTEROPERABILITY ACROSS PLATFORMS PATTERN

Considering more complex orchestrations, in the context of potential SEMIoTICS applications, and as detailed
in section 2 herein and section 2.4 of deliverable D4.1, end-to-end interoperability should cover heterogeneous
cases of cross-platform and scale connectivity. More specifically, based on previous work [42] carried out in
the BIG IoT project, the cases of interoperability across IoT platforms, as sketched in Figure 28, include:

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D3.10 Network-level Semantic Interoperability (final)

Dissemination level: Public

60

I. Cross platform – applications or services access resources from multiple platforms though common
interfaces.

II. Platform-scale independence – integrates the resources from platforms at different scale in the way
that application can uniformly aggregate information for different scale platforms (cloud-, fog-, device-
level).

III. Platform independence – refers to distinct platforms that implement the same functionality in the way
that ensures that a single driver application can interoperate with both platforms in a uniform manner
without requiring any changes.

IV. Cross application domain – refers to uniform access to information from platforms that process data
from different domains.

V. Higher-level service facades – services can also interact themselves through common API.
Therefore, a single application can interact with two platforms to create value-added operations.

FIGURE 28. FIVE CASES OF INTEROPERABILITY ACROSS PLATFORMS [42]

Each of the five cases described above and depicted in Figure 28 is supported through the SEMIoTICS end-
to-end semantic interoperability mechanisms and the network mechanisms detailed herein.

More specifically, and as mentioned in the case of the Interoperability with platforms (section 5.5), all of these
cases can be covered by the fundamental E2E_AP_Interoperability property verification rule definition, through
decomposition of said complex scenarios to one or more verifications of instances of these fundamental
property.

This process of composition and decomposition of complex workflows and the verification of their properties
has been defined in the context of Task 4.1 (“Architectural SPDI Patterns”) and detailed in the associated
outputs of the Task (D4.1, with the final version appearing in D4.8).

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D3.10 Network-level Semantic Interoperability (final)

Dissemination level: Public

61

 PATTERN-DRIVEN NBI IN USE – AN ENABLER OF KEY
SEMIOTICS FEATURES

 IoT Orchestrations with End-to-End Semantic Interoperability, SPDI and QoS
Guarantees

The Pattern-driven NBI and associated mechanisms developed in the context of T3.4 and presented in the
previous sections are essential enablers in the implementation of a number of key features in SEMIoTICS.
These include the provision of E2E semantic interoperability, while also allowing the specification and runtime
verification of SPDI properties required of IoT applications and their orchestrations, and the use of the
SEMIoTICS network features from external entities (e.g., other IoT platforms). These are detailed in the
subsections that follow.

The SDN NBI presented herein is an important enabler for the SEMIoTICS End-to-End semantic
interoperability capabilities, ensuring interoperability (i.e., the “I” in “SPDI”) from the application definition all
the way through to the execution at runtime, while also spanning all layers of the SEMIoTICS deployment. This
relies on four levels of abstraction and accordingly three steps of transformation between them, as shown in
Figure 29 and detailed below:

FIGURE 29. TRANSLATIONS FROM RECIPES TO EXECUTABLE FACTS

– Step 1: From the Recipe language to a semantically-rich network model (see Figure 30). As mentioned
in 3.4.2, SEMIoTICS adopts a user-friendly and semantically rich approach to IoT workflow composition.
In this first translation step, workflows created using this Recipe approach (left side of Figure 30) are
transformed to the SDN model (right side of Figure 30), which is inspired by the data structures used by
the northbound interfaces of SDN controllers, such as the ones defined by [43]. Through this scheme for
expressing application-level SPDI and QoS constraints as a collection of semantic rules, and by including
these rules in the triple store together with the semantic models, the application level constraints are
automatically translated by the semantic reasoner of the triple store into instances of the lower-level SDN
model. These instances can then be submitted as configurations to the SDN Pattern Engine, through its
pattern-driven NBI. More details on this process are presented in D4.4 (“Semantic Interoperability
Mechanisms for IoT (first draft)”, as part of the Task 4.4 (“End-to-End Semantic Interoperability) efforts.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D3.10 Network-level Semantic Interoperability (final)

Dissemination level: Public

62

FIGURE 30. TRANSORMATION FROM RECIPE TO NETWORK CONFIGURATION [43]

– Step 2: From the semantically-rich network model to workflow-based definitions leveraging the
SEMIoTICS Pattern Language. The IoT workflows defined and the results of the translation to the network
model are then translated to follow the workflow-based IoT Orchestration System Model, leveraging the
associated Pattern Language, using the process detailed and constructs specified in D4.1.

– Step 3: From the SEMIoTICS pattern language to Drools executable rules and facts. This last step in
the process involves translation from the workflows and their properties defined using the pattern language
into Drools facts and rules. Again, as detailed in D4.1, this allows the definition in a machine-processable
format, enabling reasoning engines (referred to as Pattern Engines) deployed at all layers of the
SEMIoTICS, to independently verify the desired SPDI and QoS properties hold, and trigger adaptations if
needed (thus acting as key enablers in the multi-layered embedded intelligence and semi-autonomous
adaptation aspects of SEMIoTICS).

The key components involved on implementing on this End-to-End Interoperability concept are depicted in
Figure 31 (semantic components in red, pattern ones in green), while more details will be presented in D4.11
(“Semantic Interoperability Mechanisms for IoT (final)”, as part of the Task 4.4 (“End-to-End Semantic
Interoperability) efforts.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D3.10 Network-level Semantic Interoperability (final)

Dissemination level: Public

63

FIGURE 31. PATTERN-DRIVEN NBI AS AN ENABLER OF END-TO-END SEMANTIC
INTEROPERABILITY

Through the above process and components, and leveraging the pattern-driven orchestration definition,
property verification and associated adaptations (via the interoperability-related patterns rules, as presented
in section 5) the end-to-end interoperability is ensured at design-time (at the Recipe specification phase), at
deployment-type (when the orchestrations are instantiated), as well as at runtime (via the interoperability
properties’ verification through pattern reasoning).

From an IoT Orchestration definition perspective, as it is shown in Figure 32 below, the user defines the recipe
(i.e., the application flow) and specifies the expected capabilities of ingredients, such as input and output data
types. The Recipe Cooker tool is utilized for this specification. After this step the instantiation of the recipe
takes place. “Instantiation” refers to the replacement of abstract components with concrete available
components. The recipe is then deployed. The recipe deployment triggers the transmission of the recipe
instance to the Pattern Translation Middleware, which is used for the translation of the network configuration
and details into SPDI patterns. It converts the network configuration defined in N3 into the Extended Backus -
Naur Form (EBNF) grammar defined in the ANTLR (https://www.antlr.org/) format. What follows is the
description of the recipe instance in terms of the pattern language. Translation from the JSON format into the
pattern language is realized through a series of graph transformation steps, where nodes from the recipe are

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D3.10 Network-level Semantic Interoperability (final)

Dissemination level: Public

64

collapsed into an orchestration of the pattern language (Sequence, Merge, etc.), until the graph has only a
single node left.

FIGURE 32. PATTERN-DRIVEN IOT ORCHESTRATIONS – KEY INTERFACES AND COMPONENT
INTERACTIONS

In sequence, the recipe expressed as the pattern is transmitted to Pattern Orchestrator. For that purpose, a
POST service request has been developed named insertRecipe. Pattern Orchestrator receives a request from
Recipe Cooker, which includes a recipe description in JSON format. Such a request is depicted in Figure 33.
Under “recipeID” a unique string that acts as an identifier is provided, while under “recipe” label lays the recipe
description itself. The recipe instance depicted in Figure 33 is very simple and consists of two software
components that are placed in sequence, which means that the output of the former is consumed as input by
the latter.

FIGURE 33. INSERT RECIPE REQUEST

An indicative scenario that highlights the above procedure and underlines the importance of the flexibility
offered by the pattern-driven NBI is presented in D5.3 - Section 4.1 “Use Case 1 demonstrator”, considering
the scenario of oil leakage detection IIoT application in a wind park environment (see Figure 34). In the defined
use case application, and aiming to focusing on the network aspects, while maintaining the high-level
abstractions needed for user-friendliness, a “Network Link” node enables definition of SPDI and QoS
constraints (e.g., encryption, minimum bandwidth, latency) and the whole orchestration specification (a
“Recipe”). In the specific example, QoS constraints are translated into the SEMIoTICS pattern language and
sent to Pattern Orchestrator. From the latter, the information is relayed to the pattern-driven NBI. A full analysis
of this scenario is outside the scope of this deliverable, since it only focuses on the pattern-driven interface

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D3.10 Network-level Semantic Interoperability (final)

Dissemination level: Public

65

exposed at the network layer; a detailed description of the scenario will be provided in D4.8 (“SEMIoTICS SPDI
Patterns (final)”).

FIGURE 34. OIL LEAKAGE DETECTION APPLICATION SCENARIO (UC1)

 Interfacing with External IoT Platforms

As already described in D5.3 section 3.3.5, there are two directions regarding interoperability with external IoT
platforms: i) interactions from SEMIoTICS towards external platforms (e.g. , a SEMIoTICS service accessing a
components of a FI-WARE deployment), and; ii) interactions from external IoT platforms towards SEMIoTICS
(e.g., a service running on a FI-WARE deployment accessing SEMIoTICS assets).

The direction of focus in the context of this deliverable is the one whereby information is given from the
SEMIoTICS framework to an external platform. A fundamental concept in this process is providing exposed
interfaces of key selected components of the SEMIoTICS framework that can be consumed by external parties,
thus being able to leverage the SEMIoTICS infrastructure (e.g., specific components at the various layers
and/or services) and integrate them into their workflows.

A key component in this regard is the Pattern Orchestrator residing at the SEMIoTICS backend. This
component, as described in Section 4 (and presented in more detail in deliverable D4.1 and its follow-up, D4.8,
along with all pattern-related components), exposes interfaces that allow the definition of IoT Orchestrations
and the required SPDI (and QoS, where needed) properties for said orchestrations. Then, through its
interaction with and management of the pattern engines residing at the various layers of the SEMIoTICS
deployment, the Pattern Orchestrator can offer a real-time view of the status of the orchestrations in terms of
the SPDI properties, as well as inform about potential adaptation that had to be made to the orchestrations to
retain these desired properties.

The use of these exposed interfaces of the Pattern Orchestrator and the features they enable are demonstrated
by its integration with the Recipes approach for user-friendly IoT Orchestration definition (see Sections 3.4.2
and 6.1 above, as well as the detailed description of this integration in D4.1). As the Recipe Cooker interfaces
with (and leverages the features of) the Pattern Orchestrator to deploy its Recipes and monitor the desired
SPDI and QoS properties, any external IoT platform may utilize the same mechanisms in order to integrate

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D3.10 Network-level Semantic Interoperability (final)

Dissemination level: Public

66

SEMIoTICS into its workflows, while also making use of the SPDI and QoS guarantees that the pattern-driven
approach provides.

The Pattern Orchestrator is the preferred entry point for interaction with external platforms, instead e.g., of
exposing directly the pattern driven NBI residing at the network layer, as the Pattern Orchestrator is in the
unique position of communicating with all three layers of the SEMIoTICS architecture, and maintaining a global,
real-time view of the SPDI and QoS properties’ status and the associated pattern components at all layers
(see Figure 35). Moreover, it offers a level of abstraction that allows for controlled interactions with the
underlying SEMIoTICS components, which is important both from a security perspective (e.g., avoiding
malicious use of the SEMIoTICS network or other assets) but also from a dependability one (e.g., avoiding
unpredicted interactions with the SEMIoTICS components from a third party that might affect the operation of
other applications relying on that).

FIGURE 35. INTERFACING WITH EXTERNAL IOT PLATFORMS

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D3.10 Network-level Semantic Interoperability (final)

Dissemination level: Public

67

 CONCLUSION
This deliverable presented the design approach followed for the development of the SEMIoTICS network
programming interfaces exposed to enable the deployment of network services from all the framework’s layers
and its seamless interaction with IoT applications, towards addressing the corresponding objective of WP3
dictating the need to “...develop and offer adaptable and dynamic networking services to client IoT
applications”.

The considerations and requirements presented in Section 1 are accomplished through the adoption of
semantically rich network interfacing capabilities throughout the SEMIoTICS framework, including the SBI -
focused aspects covered in Task 3.1 (“Software defined Aggregation, Orchestration and cloud networks”), as
documented in D3.1 (“Software defined programmability for IoT devices (first draft)”), the NBI -focused work
carried out in the context of Task 3.2 (“IIoT Network Function Virtualization”), as documented in D3.2 (“Network
Functions Virtualization for IoT (1st draft)”), and the pattern-driven NBI which is designed in the context of Task
3.4 (“Task 3.4 – Network-level semantic Interoperability”) and is detailed within this deliverable.

SEMIoTICS’ network-level semantic interoperability are enabled via the adoption of a set of key enabling
technologies and implemented interfaces (as documented in sections 3 and 4 above, respectively), along with
a full set of interoperability patterns (section 5) and the semantic descriptions developed in the context of Task
3.3 (“Semantics-based bootstrapping & interfacing”) and documented in D3.3 (“Bootstrapping and interfacing
SEMIoTICS field level devices (1st draft)”). The semantic descriptions in specific, in tandem with the
architectural SPDI patterns (see Task 4.1 “Architectural SPDI Patterns”, and D4.1 “SEMIoTICS SPDI Pat terns
(first draft)”), form the core of the SEMIoTICS Network-level semantic interoperability and SPDI-driven
monitoring and adaptation capabilities.

The SPDI properties also drive the pattern-driven NBI present on the SEMIoTICS’ SDN controller, the design
of which is presented herein. Via this interface, SPDI patterns, through translation from Recipes which describe
the high level IoT service orchestrations and their requirements and desired properties (see D4.1), are used
to define the operation of the SEMIoTICS network layer and its interactions with the IoT applications that may
run on top (i.e. at the backend or external IoT applications). Therefore, the interoperability and the SPDI
properties of the IoT/IIoT deployments can be defined at design time, as well as verified at runtime, triggering
adaptations, if needed, at the network layer.

Moreover, through well-defined and open interfaces at the SEMIoTICS backend (and more specifically, the
Pattern Orchestrator component), external IoT platforms can also leverage these features and integrate
SEMIoTICS assets and services into their workflows, with the SPDI and QoS guarantees that the framework
can provide.

It should also be noted that the work presented herein has resulted in a number of academic publications that
the reader may find of interest. More specifically, these include the following interoperability-focused works (in
order of publication):

• “The Interoperability of Things – Interoperable solutions as an enabler for IoT and Web 3.0“,
Hatzivasilis G., Askoxylakis I., Alexandris G., Anicic D., Bröring A., Kulkarni V., Fysarakis K. and
Spanoudakis G., 23rd International Workshop on Computer Aided Modeling and Design of
Communication Links and Networks (CAMAD 2018), Barcelona, Spain, 17.-19. September 2018.

• “End-to-End Semantic Interoperability Mechanisms for IoT“, Lakka E., Petroulakis N.E., Hatzivasilis
G., Soultatos O., Michalodimitrakis M., Rak U., Waledzik K., Anicic D., Kulkarni V., 2019 24th IEEE
International Workshop on Computer-Aided Modeling Analysis and Design of Communication Links
and Networks (CAMAD), Limassol, Cyprus, Sept. 11-13, 2019.

• “Secure Semantic Interoperability for IoT Applications with Linked Data“, G. Hatzivasilis, O. Soultatos,
E. Lakka, S. Ioannidis, D. Anicic, A. Bröring, K. Fysarakis, G. Spanoudakis, M. Falchettom, and L.
Ciechomski, 2019 IEEE Global Communications Conference (GLOBECOM), Waikoloa, HI, USA, Dec.
9-13, 2019.

Finally, while Task 3.4 concludes with the delivery of D3.10 (i.e., at M26 of the project), work will continue on
refining the pattern-driven network and semantic interoperability capabilities described herein in terms of their
integration with other SEMIoTICS components (in the context of Tasks 3.5 (“Implementation of Field-level
middleware & networking toolbox”), 4.6 (“Implementation of SEMIoTICS backend API”) and 5.2 (“Software

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D3.10 Network-level Semantic Interoperability (final)

Dissemination level: Public

68

system integration”), as well as the demonstration of the integrated solution on the context of the project’s use
cases Tasks 5.4-5.7.

REFERENCES
[1] ETSI (2013) ‘Network Functions Virtualisation (NFV); Virtualisation Requirements’, Etsi Gs Nfv 004 V1.1.1,

1(10), pp. 1–17. doi: DGS/NFV-0011.

[2] Hatzivasilis, G., I. Askoxylakis, G. Alexandris, D. Anicic, A. Broring, V. Kulkarni, K. Fysarakis, and G.

Spanoudakis. (2018) ‘The Interoperability of Things: Interoperable solutions as an enabler for IoT and Web
3.0’, IEEE International Workshop on Computer Aided Modeling and Design of Communication Links and
Networks, CAMAD, 2018– (September). doi: 10.1109/CAMAD.2018.8514952.

[3] ‘Virtual Network Functions Architecture’ (2014), 1, pp. 1–93.
[4] ETSI (2016) Open Source MANO (OSM) RO Northbound Interface. Available at:

https://osm.etsi.org/wikipub/index.php/RO_Northbound_Interface.
[5] W3C (2017) ‘Web of Things (WoT) Architecture’. Available at: https://www.w3.org/TR/2017/WD-wot-

architecture-20170914/.
[6] W3C (2017) ‘Web of Things (WoT) Things Description’. Available at: https://w3c.github.io/wot-thing-

description/.
[7] Thuluva, A.S., A. Bröring, G.P. Medagoda Hettige Don, D. Anicic & J. Seeger (2017): Recipes for IoT

Applications. Proceedings of the 7th International Conference on the Internet of Things (IoT 2017), 22.-25.
[8] Seeger, J., R.A. Deshmukh & A. Bröring (2018): Running Distributed and Dynamic IoT Choreographies.

Global Internet of Things Summit (GIoTS 2018), 4.-7. June 2018, Bilbao, Spain. IEEE.

[9] Quan Z Sheng, Xiaoqiang Qiao, Athanasios V Vasilakos, et al. Web services composition: A decade’s
overview. Information Sciences 280 (2014), 218–238

[10] Christensen, E., Curbera F., Meredith G., Weerawarana S. et al. (2001) Web Services Description
Languagfe (WSDL) 1.1, W3C.

[11] Martin, D., Burstein M., Mcdermott D., Mcilraith S., Paolucci M. et al. (2007) ‘Bringing semantics to web
services with OWL-S’, World Wide Web, 10(3), pp. 243–277. doi: 10.1007/s11280-007-0033-x.

[12] Allemang, D. and Hendler, J. (2008) Semantic Web for the Working Ontologist: Modeling in RDF, RDFS
and OWL. Amsterdam.

[13] Ruben, L., Polleres, A. and Lausen, H. (2004) ‘A conceptual comparison of WSMO and OWL-S’, WSMO
Working Group working draft, pp. 1–27. doi: 10.1007/b100919.

[14] Kopechy, J., Vitvar T., Bournez C., Farrell J. et al. (2007) ‘Sawsdl: Semantic annotations for WSDL and
XML schema’. Available at: https://www.w3.org/TR/sawsdl/.

[15] Kopecky, J., Gomadam, K. and Vitvar, T. (2008) ‘hRESTS : An HTML microformat for describing REST-
ful web services Conference Item’, 619. doi: 10.1109/WIIAT.2008.379.

[16] Mayer, S., Verborgh, R. and Kovatsch, M. (2016) et al. ‘Smart Configuration of Smart Environments’, IEEE
Transactions on Automation Science and Engineering 13, pp. 1–8.

[17] Gessler, D. D., Schiltz, G. S. and May, G. D. et al. (2009) ‘SSWAP: A Simple Semantic Web Architecture
and Protocol for semantic web services’, BMC Bioinformatics, 10(1), pp. 1–21. doi: 10.1186/1471-2105-
10-309.

[18] Lécué, F., Gorronogoitia, Y. and Gonzalez, R. (2010) ‘SOA4ALL: An innovative integrated approach to
services composition’, in ICWS 2010 - 2010 IEEE 8th International Conference on Web Services, pp. 58–
67. doi: 10.1109/ICWS.2010.68.

[19] Medjahed, B. and Bouguettaya, A. (2005) ‘A multilevel composability model for semantic web services’,
IEEE Transactions on Knowledge and Data Engineering, 17(7), pp. 954–966. doi:
10.1109/TKDE.2005.101.

[20] Ovadia, S. (2014) ‘Automate the Internet With “If This Then That” (IFTTT)’, Behavioral and Social Sciences
Librarian, 33(4), pp. 208–211. doi: 10.1080/01639269.2014.964593.

https://osm.etsi.org/wikipub/index.php/RO_Northbound_Interface
https://www.w3.org/TR/2017/WD-wot-architecture-20170914/
https://www.w3.org/TR/2017/WD-wot-architecture-20170914/
https://w3c.github.io/wot-thing-description/
https://w3c.github.io/wot-thing-description/
https://www.researchgate.net/publication/319276546_Recipes_for_IoT_Applications
https://www.researchgate.net/publication/319276546_Recipes_for_IoT_Applications
http://iot-conference.org/iot2017/
https://www.researchgate.net/publication/323118631_Running_Distributed_and_Dynamic_IoT_Choreographies
https://www.w3.org/TR/sawsdl/

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D3.10 Network-level Semantic Interoperability (final)

Dissemination level: Public

69

[21] Ur, B., Pak, M. and Ho, Y. (2016) ‘Trigger-Action Programming in the Wild: An Analysis of 200,000 IFTTT
Recipes’, Conference on Human Factors in Computing Systems, pp. 3227–3231. doi:
10.1145/2858036.2858556.

[22] Villarroel, G. F., Crosta, D. E. and Romero, C. (2017) ‘Integration of Analytical Tools to Obtain Reliable
Production Forecasts for Quick Decision-making’, 79th EAGE Conference and Exhibition 2017 - SPE
EUROPEC. doi: 10.3997/2214-4609.201701624.

[23] Drools Business Rules Management System (BRMS) (2019). Available at: https://www.drools.org.

[24] Science, C. (1982) ‘Rete: A Fast Algorithm for the Many Pattern / Many Object Pattern Match Problem *’,
Artificial Intelligence, 19(3597), pp. 17–37. doi: 10.1016/0004-3702(82)90020-0.

[25] PHREAK algorithm, https://docs.jboss.org/drools/release/6.5.0.Final/drools-
docs/html/ch05.html#PHREAK

[26] ‘Biomoby’ (2019). Available at: http://biomoby.org.

[27] ‘Serviceweb30’ (2019). Available at: http://www.serviceweb30.eu.

[28] ‘NodeRed’ (2019). Available at: https://flows.nodered.org.

[29] Weerawarana, S. et al. (no date) ‘Web services platform architecture: SOAP, WSDL, WS-policy, WS-
addressing, WS-BPEL, WS-reliable messaging and more’.

[30] Shin, S. and Gu, G. (2013) ‘Attacking Software-Defined Networks：A First Feasibility Study’,

InProceedings of ACM SIGCOMMWorkshop on Hot Topics in Software Defined Networking (HotSDN’13),
pp. 165–166.

[31] Shin, S., Vinod, Y. and Porras, P. (2013) ‘AVANT-GUARD: scalable and vigilant switch flow management
in software-defined networks’.

[32] Kotani, D. and Okabe, Y. (2016) ‘A Packet-In message filtering mechanism for protection of control plane
in OpenFlow switches’, IEICE Transactions on Information and Systems, E99D(3), pp. 695–707. doi:
10.1587/transinf.2015EDP7256.

[33] Yoon, C., Lee, S. and Kang, H., et al. (2017) ‘Flow Wars: Systemizing the Attack Surface and Defenses in
Software-Defined Networks’, IEEE/ACM Transactions on Networking, (25). doi:
10.1109/TNET.2017.2748159.

[34] Petroulakis, N. E., Spanoudakis, G. and Askoxylakis, I. (2017) ‘Fault Tolerance Using an SDN Pattern
Framework’, GLOBECOM 2017 - 2017 IEEE Global Communications Conference.

[35] H. van der Veer, A. Wiles, Achieving Technical Interoperability – the ETSI Approach, April 2008 ETSI White
Paper No. 3, [Online]. Available: http://www.etsi.org/images/files/ETSIWhitePapers/IOP%20whitepaper%
20Edition%203%20final.pdf

[36] CETIC 6LBR, 6LoWPAN/RPL Border Router solution. [Online]. Available: https://github.com/cetic/6lbr/wiki

[37] SeMIBIoT: Secure Multi-protocol Integration Bridge for the IoT, E. Palavras, K. Fysarakis, I.
Papaefstathiou, and I. Askoxylakis, IEEE International Conference on Communications (IEEE ICC 2018) ,
Communications QoS, Reliability, and Modeling Symposium (CQRM), Kansas City, MO, USA, May 20-24,
2018.

[38] G. Hatzivasilis, O. Soultatos, E. Lakka, S. Ioannidis, D. Anicic, A. Bröring, K. Fysarakis, G. Spanoudakis,
M. Falchettom, and L. Ciechomski, “Secure Semantic Interoperability for IoT Applications with Linked
Data”, 2019 IEEE Global Communications Conference (GLOBECOM 2019), Waikoloa, HI, USA, Dec. 9 -
13, 2019.

[39] Kiljander J. e. a., "Semantic interoperability architecture for pervasive computing and Internet of Things,"
IEEE Access, vol. 2, pp. 856-873, 2014.

[40] Schmid, S., Bröring, A., Kramer, D., Käbisch, S., Zappa, A., Lorenz, M., ... & Gioppo, L. (2016, November).
An architecture for interoperable IoT ecosystems. In International Workshop on Interoperability and Open-
Source Solutions (pp. 39-55). Springer, Cham.

[41] FIWARE Open Specification IoT Broker. [Online]. Available:
https://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/FIWARE.OpenSpecification.IoT.Backend.
IoTBroker

https://docs.jboss.org/drools/release/6.5.0.Final/drools-docs/html/ch05.html#PHREAK
https://docs.jboss.org/drools/release/6.5.0.Final/drools-docs/html/ch05.html#PHREAK
http://biomoby.org/
http://www.serviceweb30.eu/
https://flows.nodered.org/
http://www.etsi.org/images/files/ETSIWhitePapers/IOP%20whitepaper%25
https://github.com/cetic/6lbr/wiki
https://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/FIWARE.OpenSpecification.IoT.Backend.IoTBroker
https://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/FIWARE.OpenSpecification.IoT.Backend.IoTBroker

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D3.10 Network-level Semantic Interoperability (final)

Dissemination level: Public

70

[42] Bröring, A., Schmid, S., Schindhelm, C. K., Khelil, A., Käbisch, S., Kramer, D., ... & Teniente, E. (2017).
Enabling IoT ecosystems through platform interoperability. IEEE Software, 34(1), 54-61.

[43] Seeger, J., Bröring A., Pahl M.-O., Sakic. E. 2019. Rule-Based Translation of Application-Level QoS
Constraints into SDN Configurations for the IoT. EuCNC 2019, 18.-21. June, Valencia, Spain. IEEE.

[44] E. Sakic, Kulkarni V., Theodorou V., Matsiuk A., Kuenzer S., Petroulakis N. E., Fysarakis K. 2018.
Virtuwind–an SDN-and NFV-based architecture for softwarized industrial networks, in International
Conference on Measurement, Modelling and Evaluation of Computing Systems. Springer, 2018, pp. 251–
261.

