

 780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

SEMIoTICS

Deliverable D3.11
Field-level middleware & networking toolbox

(Final)

Deliverable release date 30.04.2020 (revised on 18.04.2021)

Authors

1. Kostas Ramantas, Prodromos Vasileios Mekikis (IQU)
2. Luis Sanabria-Ruso, Jordi Serra, David Pubill, Angelos
Antonopoulos, Christos Verikoukis (CTTC)
3. Konstantinos Fysarakis, Manolis Chatzimpyrros, Thodoris Galousis,
Michalis Smyrlis (STS)
4. Manos Papoutsakis, Manolis Michalodimitrakis (FORTH)
5. Ermin Sakic, Darko Anicic, Arne Boering (SAG)

Responsible person Kostas Ramantas (IQU)

Reviewed by
Konstantinos Fysarakis (STS), Ermin Sakic (SAG), Eftychia Lakka
(FORTH), Jordi Serra (CTTC), Urszula Rak (Bluesoft), Nikos Petroulakis

Approved by

PTC Members (Vivek Kulkarni, Nikolaos Petroulakis, Ermin Sakic, Mirko
Falchetto, Domenico Presenza, Verikoukis Christos)
PCC Members (Vivek Kulkarni, Nikolaos Petroulakis, Verikoukis Christos,
Georgios Spanoudakis, Domenico Presenza, Danilo Pau, Joachim
Posegga, Darek Dober, Kostas Ramantas)

Status of the Document Final

Version 1.0

Dissemination level Confidential

https://upload.wikimedia.org/wikipedia/commons/b/b7/Flag_of_Europe.svg

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D3.11 Field-level middleware & networking toolbox (final)
Dissemination level: Confidential

2

Table of Contents
1 Introduction 4

1.1 What has changed in the final cycle deliverable 4

1.2 PERT chart of SEMIoTICS 6

2 Middleware design and implementation 7

2.1 SEMIoTICS Middleware 7

2.2 SEMIoTICS Implementation process 13

2.3 SEMIoTICS development workflow 14

3 Software-Defined integration of IoT/IIoT devices 18

3.1 NFV MANO framework 18

3.2 SEMIoTICS NFV Orchestration 24

3.3 SDN based integration and orchestration 32

4 Semantic bootstrapping and Interoperability 35

4.1 Semantic bootstrapping and interoperability framework 35

4.2 Network-level Semantic Interoperability framework 37

4.3 Integration of Brownfield devices 50

5 Deployment and Evaluation of the Middleware at the SEMIoTICS testbed 53

5.1 SEMIoTICS Integration testbed 53

5.2 Slicing implementation and verification 60

5.3 Experimental evaluation of the NFV Orchestration subsystems 63

5.4 Deployment and Evaluation of Service Function Chaining ιν the SEMIoTICS testbed 67

6 Conclusions and Future Work 81

7 References 82

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D3.11 Field-level middleware & networking toolbox (final)
Dissemination level: Confidential

3

Acronyms Table

Acronym Definition

COTS Commercial Off the Shelf

CPU Central Processing Unit

ICT Information Communication Technology

IoT Internet of Things

IIoT Industrial Internet of Things

JSON JavaScript Object Notation

KPI Key Performance Indicator

KVM Kernel-based Virtual Machine

LCVNF Latency Critical VNF

LTVNF Latency Tolerant VNF

LXD Linux Containers

MEC Mobile Edge Computing

NETCONF Network Configuration Protocol

NF Network Functions

NFV Network Functions Virtualization

NFVO NFV Orchestrator

OFCONF OpenFlow Configuration

ODL OpenDaylight

OvS Open vSwitch

OVSDB Open vSwitch Database Management Protocol

PNF Physical Network Function

POP Point of Presence

QoS Quality of Service

SDN Software-Defined Networking

SSC SEMIoTICS SDN Controller

SARA Socially Assistive Robotic Solution for Mild Cognitive Impairment or mild
Alzheimer’s disease

SEMIoTICS Smart End-to-end Massive IoT Interoperability, Connectivity and Security

SFC Service Function Chaining

SPDI Security, Privacy, Dependability, and Interoperability

TD Thing Description

UC Use Case

VIM Virtualized Infrastructure Manager

VLAN Virtual Local Area Network

VM Virtual Machine

VNF Virtual Network Function

vSwitch Virtual Switch

VTN Virtual Tenant Network

WoT Web of Things

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D3.11 Field-level middleware & networking toolbox (final)
Dissemination level: Confidential

4

1 INTRODUCTION

SEMIoTICS aims to enhance the connectivity, latency and bandwidth in industrial environments, while reducing
the cost of their Information and Communications Technology (ICT) systems through a set of technologies
under the umbrella of virtualization. On the other hand, network function virtualization (NFV) is a technique
that can significantly benefit industries by optimizing their network services. It allows for a software-defined
implementation of networks as it decouples several network functions from previously required network
devices, such as firewalls, and runs them as software, i.e., Virtual Network Functions (VNFs), at a data center.
In this way, the NFV infrastructure (NFVI) does not only drop the deployment cost, as less equipment and
installation personnel are needed, but it also reduces the service creation time from hours to minutes resulting
in an extensively more efficient procedure.

To automate even further the networking procedures in the Industrial Internet of Things (IIoT), software-
defined networking (SDN) can be employed, which is a complementary approach to NFV that separates the
control and forwarding planes to offer a centralized view of the network. Moreover, for the handling of the
physical and virtual resources that support the network virtualization, an NFV management and orchestration
(MANO) is responsible for the lifecycle management of the VNFs and it focuses on all virtualization-specific
management tasks necessary in the NFV framework. To that end, a service chain of connected VNFs, i.e., a
service function chain (SFC), can be created to automatically run a requested application based on the current
traffic demand. This capability can be employed by industries to set up sets of connected VNFs that allow the
use of a single network connection for many services that have different characteristics.

Although the set of aforementioned technologies can substantially improve the efficiency of the network layer
in IIoT, there is still the obstacle of the ability of things to interact in a meaningful way. Knowing that there are
so many diverse IIoT devices and even more possible ways of their interaction using diverse communication
protocols, there is a need to define novel technologies that introduce interoperability in IIoT environments. One
way to achieve this is to describe things, their capabilities, and data they produce or consume in a machine
understandable form. Such a description could be then used to discover things relevant for an application. It
can also serve to figure out how these things could interact. The description should be formalized, with a clear
semantic meaning, so that both humans and machines can interpret it. In this way we would not have just
Internet of mere things. Instead, IoT would be the Internet of semantically-described things. Semantics for IoT
is the key enabler of applications that operate on physical world objects. It is a prerequisite for achieving the
interoperability of things, and thus for realization of a new class of IoT applications.

In this deliverable, we investigate the introduction and adaption of SDN/NFV, semantic bootstrapping and
interoperability technologies in industrial environments. Furthermore, we employ the well-defined SEMIoTICS
architecture1 and Middleware to build an experimental platform that consists of open-source software and novel
SEMIoTICS modules and frameworks. Hence, the contribution of this deliverable is the following:

i) In Section 2, we contribute the design of the SEMIoTICS field-level middleware and define the
SEMIoTICS development and release procedure.

ii) In Section 3, we discuss how concepts like NFV and SDN can be leveraged in the Industrial IoT
domain.

iii) In Section 4, we study standardized semantic models for IIoT applications and SPDI pattern-driven
mechanisms that guarantee network-level semantic bootstrapping and interoperability.

iv) Finally, in Section 5, we present the design of the SEMIoTICS integration testbed and contribute
performance evaluation results that provide useful insights for the deployment of IIoT applications
on top of virtualized, programmable and pattern-driven infrastructures.

1.1 What has changed in the final cycle deliverable

Deliverable D3.11 is the final cycle deliverable of T3.5. In this section, we detail how the previous version of
the deliverable was updated, and which new sections were added:

• Section 3.2.3 was added, detailing the role of the Pattern Orchestrator in the NFV context, along with
an associated sequence diagram.

1 SEMIoTICS webpage: https://www.semiotics-project.eu/

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D3.11 Field-level middleware & networking toolbox (final)
Dissemination level: Confidential

5

• Section 4.1 was heavily revised, to be in-line with D3.10 and section 4.2.1.2 was added, detailing
the pattern-driven NBI enabling components, network pattern elements, and the main web services
exposed by the NBI.

• Section 4.2.2 was added, with an overview of Interoperability-focused patterns that have been
defined in SEMIoTICS, and their coverage in terms of type, data state and platform connectivity.

• Section 4.2.3 was added, with a summary of mechanisms developed in the context of Task 3.4 for
the provisioning of E2E semantic interoperability, translating from recipes to executable facts.

• Section 5.1.3 was added, detailing the integration of SEMIoTICS with OpenHab, a third party IoT
platform leveraged in UC3.

• Section 5.2 was added to demonstrate the interaction between the Pattern Engine and the SDN
Controller, emulating a real-world e-health scenario in the SEMIoTICS testbed. This scenario sets-
up Service-Function Chains (SFCs) among different elements under the control of the SDN Controller
and the SEMIoTICS pattern engine.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D3.11 Field-level middleware & networking toolbox (final)
Dissemination level: Confidential

6

1.2 PERT chart of SEMIoTICS

36 months Leader: SAG

31.12.202001.01.2018

WP1: Project Management

23 months Leader: ST-I

30.11.201901.01.2018

WP2: Requirements and Architecture for
Smart Sensing and Smart Actuation

24 months Leader: SAG

30.04.202001.05.2018

WP3: Smart objects and networks

25 months Leader: FORTH

30.06.202001.06.2018

WP4: Pattern-driven smart behavior of
IIoT with End-to-End Security and Privacy

24 months Leader: ENG

31.12.202001.01.2019

WP5: System Integration and Evaluation

36 months Leader: SAG

31.12.202001.01.2018

T1.1: Project coordination 36 months Leader: FORTH

31.12.202001.01.2018

T1.2: Project technical and innovation
management

36 months Leader: SAG

31.12.202001.01.2018

T1.3: Coordination with EU programme
level activities

3 months Leader: STS

31.03.201801.01.2018

T2.1: Analysis of emerging business and
technical IoT value drivers

4 months Leader: SAG

30.04.201801.01.2018

T2.2: Specification of use case scenarios
& applications and their requirements

4 months Leader: ST-I

30.06.201801.03.2018

T2.3: Specification of infrastructure
requirements

18 months Leader: BS

31.12.201901.07.2018

T2.4: SEMIoTICS architecture design

22 months Leader: SAG

29.02.202001.05.2018

T3.1: Software defined Aggregation,
Orchestration and cloud networks

22 months Leader: CTTC

29.02.202001.05.2018

T3.2: IIoT Network Function Virtualization

22 months Leader: SAG

29.02.202001.05.2018

T3.3: Semantics-based bootstrapping &
interfacing

22 months Leader: STS

29.02.202001.05.2018

T3.4: Network-level semantic
Interoperability

22 months Leader: IQU

30.04.202001.07.2018

T3.5: Implementation of Field-level
middleware & networking toolbox

23 months Leader: STS

30.04.202001.06.2018

T4.1:Architectural SPDI patterns

22 months Leader: ENG

30.04.202001.07.2018

T4.2: Monitoring, prediction and
diagnosis

22 months Leader: ST-I

30.04.202001.07.2018

T4.3: Embedded Intelligence and local
analytics

22 months Leader: FORTH

30.04.202001.07.2018

T4.4: End-to-End Semantic
Interoperability

22 months Leader: BS

30.06.202001.09.2018

T4.6: Implementation of SEMIoTICS
backend API

22 months Leader: UP

30.04.202001.07.2018

T4.5: End-to-End Security and Privacy

5 months Leader: UP

31.10.201901.06.2019

T5.1: KPIs and Evaluation Methodology

15 months Leader: BS

31.08.202001.06.2019

T5.2: Software system integration

20 months Leader: IQU

31.08.202001.01.2019

T5.3: IIoT Infrastructure set-up and
testing

13 months Leader: SAG

31.12.202001.12.2019

T5.4: Demonstration and validation of
IWPC- Energy scenario

13 months Leader: ENG

31.12.202001.12.2019

T5.5: Demonstration and validation of
SARA-Health scenario

13 months Leader: ST-I

31.12.202001.12.2019

T5.6: Demonstration and validation of
IHES-Generic IoT scenario

36 months Leader: CTTC

31.12.202001.01.2018

T6.1: Impact Creation and Dissemination 31 months Leader: ENG

31.12.202001.06.2018

T6.2: Exploitation of results

24 months Leader: SAG

31.12.202001.01.2019

T6.3: Standardization
36 months Leader: CTTC

31.12.202001.01.2018

WP6: Impact, Dissemination and
Standardization

Please note that the PERT chart is kept on task level for better readability.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D3.11 Field-level middleware & networking toolbox (final)
Dissemination level: Confidential

7

2 MIDDLEWARE DESIGN AND IMPLEMENTATION

The sheer number of smart objects that are expected to connect to the Internet will increase network traffic

dramatically and introduce more diversity of network traffic. A series of innovations across the IoT landscape
have converged to make IoT products, platforms and devices technically and economically feasible.
Specifically, Integrating IoT and SDN will increase network efficiency as it will make it possible for a network
to respond to changes or events detected at the IoT application layer through network reconfiguration.
Moreover, NFV architectures allow monitoring, caching, security and data analytics functions to be virtualized
and placed in a local and remote clouds, or event directly at IoT smart objects and Field level IoT gateways.
Finally, intelligent data analytics running locally at the Field layer are needed to implement autonomic
behaviour, but considering IoT smart objects' limited resources, specialized lightweight algorithms are
required. The aforementioned complexities must be abstracted from the IIoT applications and field -level
devices, simplifying the development and deployment of applications. Hence, SEMIoTICS has proposed the
development of a Field-Level Middleware that will integrate the application modules and networking APIs
implemented in T3.1-3.4 and provide, ensuring interoperability and simplifying application development.

2.1 SEMIoTICS Middleware

2.1.1 MIDDLEWARE DESIGN AND SPECIFICATIONS

This section will focus on the design of the SEMIoTICS unified Middleware, shown in Figure 1. Furthermore,
it details all SEMIoTICS specifications that are relevant to the Middleware implementation, and how they were
addressed. It must be noted that the Middleware is not a separate component of the SEMIoTICS architecture,
which is detailed in D2.4 and D2.5, but rather the implementation of frameworks and APIs designed within
T3.1-T3.4 and include the NFV, SDN, Semantic Interoperability and Pattern Engine frameworks. The mapping
of Middleware modules with the respective layers of the SEMIoTICS architecture is also provided in Figure 1
via colour coding. These are deployed and evaluated in a testbed environment as part of T3.5. The Middleware
ensures that functionalities such as establishing connectivity to a service, negotiating transport protocols and
networking paths, as well as service scale-out and load balancing functions will be totally transparent for IoT
applications, and are handled by the respective Middleware frameworks. The Middleware also serves the
purpose of bridging these frameworks with the SEMIoTICS Backend layer and the Pattern orchestrator. The
Pattern Orchestrator is responsible for defining policies leveraging the pattern language, which are enforced
by the relevant Pattern Engine. These policies and requirements are then implemented in each domain by the
respective framework (e.g., the networking policies are implemented by the SDN framework, Service policies
by the NFV framework, etc.).

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D3.11 Field-level middleware & networking toolbox (final)
Dissemination level: Confidential

8

FIGURE 1: FIELD LEVEL MIDDLEWARE AND MAPPING WITH SEMIOTICS ARCHITECTURE

At the Field layer, SEMIoTICS leverages semantically annotated messages transmitted from the Field

devices, that include Context Information (e.g., sensor values). To counter the fragmentation which is inherent
in the IoT ecosystem, the IIoT gateway performs Semantic Mapping of these messages, employing the W3C
Web of Thing (WoT) data model. The semantically annotated messages are then delivered to the Backend
where the context information is processed and stored. A Context API, which is part of the SEMIoTICS Backend
and implemented in WP4, provides access to the context data via a REST API, which includes:

• Context queries, e.g., for sensor data stored at the local database

• Context updates, e.g., to update the local database with sensor values

• Context subscriptions, to receive updates when a certain device status (or a certain topic) is updated

Table 1 lists all SEMIoTICS specifications that are relevant to the Middleware implementation, and lists the

steps taken to satisfy the respective specifications. For each specification we include its req-id, which maps
with the respective specification defined in D2.3, and its current status which can be “Done”, or Work In
Progress (“WIP”).

TABLE 1. SEMIOTICS MIDDLEWARE REQUIREMENTS SPECIFICATION

Topic Req-ID Status Description
Steps taken to satisfy the

requirement

General
Platform

Requirements

R.GP.1 Done

End-to-end connectivity
between the heterogeneous
IoT devices (at the field level)
and the heterogeneous IoT
Platforms (at the backend cloud
level)

The SSC implements
interfaces for providing best-
effort and QoS-constrained
service addition and thus
addresses the requirement for
end-to-end connectivity. Delay,
bandwidth, resilience
requirements be met by
implemented approach.

Use cases

Use Case 1

Use Case 3

Use Case 2

SEMIoTICS
IoT Field

GW

FIWARE
IIoT Field

GW

Legacy
IIoT Field

GW

Backend
Semantic
Validator

Recipe Cooker

Pattern
Orchestrator

GUI

Security Manager

Thing directory

Middleware

SDN modules

NFV modules

Semantic
Bootstrapping &
interoperability

modules

Pattern Engine
modules

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D3.11 Field-level middleware & networking toolbox (final)
Dissemination level: Confidential

9

R.GP.2 Done
Scalable infrastructure due to

the fast-paced growth of IoT
devices

Multiple SSC instances can
be deployed for purpose of
domain partitioning and thus
achieving higher scalability.
VNF scaling out operations
provide scalability to IIoT
apps.

R.GP.3 Done

High adaptation capability to
accommodate different QoS
connectivity needs (e.g. low
latency, reliable
communication)

The SSC's interface for
connectivity instantiation can be
used at runtime and it is
enabled to adapt the state of
reservations and implement
new flows without service
guarantee loss for existing
flows.

R.GP.4 Done

Detection of events requiring
a QoS change and triggering
network reconfiguration need
by SPDI pattern

SSC's Pattern Engine
aggregates connectivity and
QoS related inputs, triggering
reasoning and adaptation to
react to failures, reporting the
invalidated connectivity-
related pattern instances and
associated changes to the
backend (Pattern
Orchestrator).

R.GP.5 Done

Interaction between SDN
controller and IoT backend
cloud through a dedicated
interface (called northbound
software interface)

Northbound interface of the
SSC enables the
communication to backend
cloud via Pattern Orchestrator.
To that end, SDN Controller
exposes the REST interface
used to specify pattern rules in
Drools format.

R.GP.6 Done

Interaction between SDN
controller and network nodes
(e.g. switches, routers or IoT
Gateways) through dedicated
interface (called southbound
software interface)

The controller is capable of
interacting with switches using
OpenFlow southbound
protocol.

R.GP.7 Done

SDN controller giving
feedback for a future
generation of SPDI patterns to
avoid using the same pattern in
case of failure

SSC's Pattern Engine is
enabled to react to failures and
report the invalidated
connectivity-related pattern
instances to Pattern
Orchestrator

Backend/Cloud
Layer

Requirements

R.BC.1 Done
Controller Node requirement:

At least 6 CPU cores and 32 GB
RAM

All hardware and software
requirements have been met.
Controller and Hypervisor
hardware requirements (RAM,
HDD size, network interfaces)
were derived from the
requirements of the respective

R.BC.2 Done
Controller Node requirement:

At least 2 Network interfaces

R.BC.3 Done
Controller Node

Requirement: Linux OS

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D3.11 Field-level middleware & networking toolbox (final)
Dissemination level: Confidential

10

R.BC.4 Done
Controller Node

Requirement: Solid State Disk
(SSD) of at least 256 GB

MANO and OpeStack
management services.

R.BC.5 Done
Hypervisor Requirement: At

least 4 CPU cores and 8 GB
RAM

R.BC.6 Done
Hypervisor Requirement: At

least 2 Network interfaces

R.BC.7 Done

Hypervisor Requirement:
Virtualization Extensions (Intel
VT-x/AMD-V) must be
supported by the Hypervisor
CPU for hardware acceleration
of VMs.

R.BC.8 Done
Hypervisor Requirement:

KVM must be supported by the
Hypervisor Linux OS

R.BC.9 Done
Hypervisor Requirement:

Linux Containers (LXD) must
be supported by the Linux OS

R.BC.10 Done
Virtual Switch requirement:

Support for OpenFlow protocol

R.BC.11 Done

Virtual Network requirement:
Support for GRE, VLAN, and
VXLAN tunnels for virtual
tenant networking.

R.BC.12 Done

The VIM and Virtual Network
frameworks must support
Interfaces that enable VM
tenant networking

R.BC.13 Done
Interface between the VIM

and the SDN controller to allow
Tenant Network Slicing

Slicing module
implementation with OpenStack
Neutron APIs and verification
completed.

R.BC.14 Done

Interfaces among the MANO
entities (NFO, RO, NFVO) and
the VIM must ensure seamless
interoperability among different
entities of the Backend Cloud

Functionality provided by the
Pattern-driven NBI

R.BC.15 Done

Secure communication
among the various Backend
Cloud components (e.g., use of
dedicated management
network, appropriate Firewall
rules)

Current status uses Neutron
virtual firewall service, which
was integrated with the
SEMIoTICS Security manager

Network Layer
Requirements

R.NL.1 Done
Controller Node requirement:

At least 6 CPU cores and 32 GB
RAM All hardware requirements of

the SDN and NFV have been
provisioned.

R.NL.2 Done
Controller Node requirement:

At least 2 Network interfaces

R.NL.3 Done
Controller Node

Requirement: Linux OS

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D3.11 Field-level middleware & networking toolbox (final)
Dissemination level: Confidential

11

R.NL.4 Done
Yes Controller Node

Requirement: Solid State Disk
(SSD) of at least 1 TB

R.NL.5 Done

Data paths / Hypervisor
Nodes Requirement: At least 4
CPU cores and 8 GB RAM, at
least 2, 1Gbps Network
interfaces, Virtualization
Extensions (Intel VT-x/AMD-V)
must be supported by the
Hypervisor CPU for hardware
acceleration of VMs.

R.NL.6 Done

Data paths / Hypervisor
Nodes: KVM and Linux
Containers (LXD) must be
supported by the Hypervisor
Linux OS

R.NL.7 Done
Virtual Switch requirement:

Support for OpenFlow v1.3
protocol or greater

Virtual and Physical SDN
switches used in SEMIoTICS
support OpenFlow1.3
protocol, as well as the
developed SSC.

R.NL.8 Done

The VIM and Virtual Network
frameworks must support
Interfaces that enable VM
tenant networking

VM tenant networking is
enabled by the SDN controller
through its VTN Manager
implementation, allowing for
VTN realization and Layer 2
isolation of virtual network
participants.

R.NL.9 Done
Interface between the VIM

and the SDN controller to allow
VTN

VM tenant networking is
enabled by the SDN controller
through its VTN Manager
implementation, allowing for
VTN realization and Layer 2
isolation of virtual network
participants.

R.NL.10 Done

Interfaces among the MANO
and the VIM must ensure
seamless interoperability
among different entities of the
Backend Cloud

Functionality provided by the
Pattern-driven NBI, along with
standard interfacing capabilities
of selected SDN Controller
(ODL) and backend MANO
capabilities

R.NL.11 Done

Secure communication with
the various Backend Cloud
components (e.g., use of
dedicated management
network, appropriate Firewall
rules), as well as the
communication between VIM,
SDN Controller, and MANO,
with data paths acting as
computing nodes for VNF
spinoff.

Distributed compute nodes
are used for VNF spinoff that
enable data paths throughout
the platform. The capability is
enabled, its status is subject to
the integration and UC
implementation plans.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D3.11 Field-level middleware & networking toolbox (final)
Dissemination level: Confidential

12

IoT Security
and Privacy

Requirements

R.S.1 Done

The confidentiality of all
network communication MUST
be protected using state-of-the-
art mechanisms.

SEMIoTICS Security
manager leverages SoTA
mechanisms (e.g., SSL) under
the control of the security
manager.

R.S.2 Done

Authentication and
authorization of the
stakeholders MUST be
enforced by the Network
controller, e.g. through access
and role-based lists for different
levels of function granularities
(overlay, customized access to
service, QoS manipulation,
etc.)

Authentication and
authorization of stakeholders
is enforced through the
Security Manager component
of the SSC.

R.S.4 Done

All components from
gateway, via SDN Controller, to
cloud platforms and their users
MUST authenticate mutually.

Any interaction with the NFV
Component must be done by
an authorized party.
Tokens/credentials must be
distributed to other relevant
components (e.g. Pattern
Orchestrator) during
integration.

2.1.2 MIDDLEWARE FRAMEWORKS AND USE CASES

As already mentioned, the Middleware is responsible for implementing the IIoT policies (e.g., application
requirements in terms of delay, minimum throughput, packet error rate tolerances, etc.), defined with Patterns,
through its various technological building blocks. WP3 building blocks are designed and developed in separate
tasks, and their integration is performed in T3.5. The SEMIoTICS use cases leverage these frameworks via
their APIs to implement advanced functionalities; please refer to deliverable D2.5 for the full API diagram with
all supported APIs from SEMIoTICS architectural components and frameworks.

Figure 1 above shows these frameworks along with the respective use cases that leverage their
functionalities and APIs. In more detail, these include:

• The SDN framework is responsible for network programmability and network virtualization. Its APIs
allow the implementation of Virtual Tenant Networks (VTNs), traffic steering via SFCs and QoS
provisioning via traffic shaping and prioritization of critical services. The SDN APIs are leveraged in
Use Case 1 for QoS provisioning in critical infrastructure monitoring, in a wind park scenario.

• The NFV framework is responsible for the virtualization and orchestration of the Compute and Storage
infrastructure. IIoT applications are implemented as chains of VNFs that can be managed by the NFV
Orchestrator. NFV APIs allow individual VNFs can be scaled-out to meet increased demand via load
balancing, optimally placed and migrated at edge or cloud hypervisors to meet latency requirements.
NFV is leveraged in UC2 and UC3 to implement local/edge clouds at customer premises which can
host VNFs that implement latency critical functions, that have to be deployed on-site. Specifically, in
UC2 VNFs implement security functions (i.e., a virtualized firewall and a DPI) for the healthcare use-
case, while in UC3 VNFs are leveraged for sensor value aggregation, correlation and visualization.

• The network-level Semantic Interoperability provisions are leveraged across the board in
SEMIoTICS, and are present in all Use Cases. The corresponding APIs allow the automated discovery
and bootstrapping of SEMIoTICS field devices, greatly simplifying device commissioning.
Furthermore, brownfield (i.e., legacy) devices leverage the Semantic Mapping APIs for interoperability
with the SEMIoTICS infrastructure.

• Finally, the SPDI Pattern-driven reasoning, enabled by Pattern Engines deployed at all layers of the
IIoT infrastructure and which leverage the pattern language (see deliverables D4.1 and D4.8) to define

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D3.11 Field-level middleware & networking toolbox (final)
Dissemination level: Confidential

13

properties for the connection between the NFV Management and Orchestration components and the
NFV Infrastructure. With regard to network-level interfacing with SEMIoTICS, the pattern language
defines and enforces (via the Pattern Engine) mechanisms that guarantee the establishment of E2E
connectivity between different types of devices (e.g. SARA hubs, sensors, backend servers), actors
(e.g. human operators, applications) and interaction types (e.g. maintenance, medical staff, simple
user/patient), while monitoring that certain SPDI (and, additionally, QoS) properties are maintained.
Due to its central role in SEMIoTICS, Pattern Engines are deployed in all use cases.

All aforementioned frameworks and APIs are deployed at the SEMIoTICS integration testbed, which is

detailed in Section 5, to be tested and evaluated.

2.2 SEMIoTICS Implementation process

In SEMIoTICS, T3.5 is the main implementation task of WP3, which delivers the SEMIoTICS Middleware in
incremental releases. In the following sections, the software development and release processes are defined.

2.2.1 SEMIOTICS DEVELOPMENT AND RELEASE CYCLES

In the framework defined in T2.4, we have designed the SEMIoTICS architecture and defined the
architectural components of each layer. Each architectural component is associated with a respective software
module, and an owner is assigned. These software modules are implemented with an iterative process, which
follows the concept of Continuous Integration (CI). This iterative development process is performed in cycles,
with each cycle ending with a new software release. Each release cycle consists of the following phases, also
illustrated in Figure 2, and is expected to last approximately 4 months:

1. Feature planning: The consortium agrees on the features that will be implemented in the next release.

This might occur during a feature planning meeting. They compile all required mechanisms and interfaces
in a high-level specification document, which also includes the test cases which will be executed during
system verification. This phase requires approximately 1 month.

2. Development: With the specification document at hand, all required features are implemented by the
responsible developers. Each partner is responsible for a certain number of architectural components, as
defined in T2.4, and will have to implement all essential functionalities. Furthermore, appropriate testing will
ensure that the developed components and feature sets perform as specified. Development requires 2
months.

3. Integration: After completion of the development phase, changes are integrated to the main SEMIoTICS
codebase. Automated sanity tests are performed to rule-out regressions. The task requires 1-2 weeks.

4. System testing: The testing team deploys the new software release to the testbed and performs all the
required system tests to validate that it runs as specified, and new modules and features correctly
interoperate with the rest of the system. In cases of issues, they report back to the responsible developers,
and depending on the required effort further development might occur to fix the issue or move the issues
for resolution in upcoming releases. This phase requires 2-3 weeks.

5. System release: Eventually, the integrator generates all the release artifacts and documents and tags the
current version of the software. In addition, a system release review meeting takes place to identify and
discuss problems encountered during this release cycle.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D3.11 Field-level middleware & networking toolbox (final)
Dissemination level: Confidential

14

FIGURE 2: SEMIOTICS RELEASE CYCLE

The consortium decided on the following release schedule:

• On M17 we had the first software release, with the basic functionality of the SEMIoTICS NFV Cloud
and SSC implemented.

• On M23 the second software release incorporated semantic bootstrapping and NFV Orchestration
support, as well as advanced SSC functionalities with a Pattern Engine embedded into the ODL SDN
controller.

• On M28 the third release delivered the end-to-end SEMIoTICS architecture with support for pattern-
driven functionality across layers.

• On M32 the final stable release of the SEMIoTICS framework will be delivered.

2.3 SEMIoTICS development workflow

SEMIoTICS has adopted the Git Distributed Version Control System (DVCS) for source code and asset
management, as well as for monitoring the development process. We rely on a hosted solution from GitLab for
the central SEMIoTICS repo, which is located at gitlab.com. We will refer to this repo as the origin, which is
the standard Git terminology, and all SEMIoTICS partners have permissions to push and pull changes.
Furthermore, developers can directly pull changes from other peers to form sub-teams, e.g., to collaboratively
work on a new feature which will then be pushed to the to the origin repo.

2.3.1 SEMIOTICS GIT BRANCHES

https://gitlab.eurecom.fr/oai/openairinterface5g

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D3.11 Field-level middleware & networking toolbox (final)
Dissemination level: Confidential

15

FIGURE 3: SEMIOTICS GIT REPOSITORY BRANCHES

The central SEMIoTICS repository holds two main branches, the master branch, and the develop branch.
The master is generally considered to be the main branch, that reflects the latest stable software release. The
master branch integrates all delivered development changes for the next release, so it can also be considered
to be the “integration branch”. When the source code in the develop branch reaches a stable point and is
ready to be released, all the changes are merged back into master and then tagged with a release number.

The SEMIoTICS Continuous Delivery processes also include the following, which are also accomplished via
the GitLab system:

• A ticketing system to assign tasks and feature requests to partners

• A task planning system to assign features to future releases

2.3.2 CONTINUOUS INTEGRATION PIPELINE

The CI/CD pipeline was implemented via Jenkins, which manages the project builds and provides a Graphical
User Interface (GUI) which gives an easy to understand overview of the project development process. The CI
pipeline is part of the SEMIoTICS testing framework with all required unit tests and integration tests. Tests are
authored by the respective developers, or a separate testing team. Only if tests pass, the new code is
committed to the source code repository.

Furthermore, the system performs nightly builds and in case of build failure notifies the responsible
developers. SEMIoTICS modules have dedicated pipelines in Jenkins to facilitate the process of deployment.
Every pipeline fetches the code from GitLab repository (see section 2.3.1), and builds the docker image:

apiVersion: apps/v1

kind: Deployment
metadata:
 name: backend-semantic-validator
 namespace: semiotics
 labels:

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D3.11 Field-level middleware & networking toolbox (final)
Dissemination level: Confidential

16

 app: bsv
spec:
 replicas: 1
 selector:
 matchLabels:
 app: bsv
 template:
 metadata:
 labels:
 app: bsv
 spec:
 containers:
 - name: bsv
 image: registry.gitlab.com/semiotics/backend/semantic-mediator:latest resources:
 requests:
 memory: "230Mi"
 cpu: "100m"
 limits:
 memory: "460Mi"
 cpu: "200m"
 imagePullPolicy: Always
 ports:
 - containerPort: 8086
 imagePullSecrets:
 - name: blue-k8s

kind: Service
apiVersion: v1
metadata:
 name: bsv-svc
 namespace: semiotics
spec:
 ports:
 - nodePort: 31006
 port: 8086
 targetPort: 8086
 selector:
 app: bsv
 sessionAffinity: None

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D3.11 Field-level middleware & networking toolbox (final)
Dissemination level: Confidential

17

FIGURE 4 AN EXAMPLE OF A JENKINS PIPELINE

Docker images built with the aforementioned Jenkins pipelines were the primary mechanism to deploy
SEMIoTICS modules to use case testbeds. For example, to deploy a new version of the SEMIoTICS GUI
frontend to the UC3 testbed, the following commands are executed:

git pull # to upgrade code
docker stop frontend
docker rm frontend
docker run -p 8081:80 --env-file ./frontEnvUC3.list -d --network mynetwork --name
frontend registry.gitlab.com/semiotics/backend/gui/frontend:0.4

http://registry.gitlab.com/semiotics/backend/gui/frontend:0.4

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D3.11 Field-level middleware & networking toolbox (final)
Dissemination level: Confidential

18

3 SOFTWARE-DEFINED INTEGRATION OF IOT/IIOT DEVICES
This section describes the reference points between the NFV building blocks as well as the interfaces that

the NFV exposes to interact with the Middleware, and indirectly with the underlying IoT/IIoT devices. Herein,
the ETSI NFV architectural framework (ETSI, 2014a) is considered as a reference. Furthermore, it details the
components of the SEMIoTICS SDN controller, which are responsible for the network integration and
orchestration.

3.1 NFV MANO framework

In legacy networks Network Functions (NF), or Physical Network Functions (PNFs) are strictly related to the
hardware they operate on. That is, switching, routing, firewalls and other kinds of NF are provided by
specialized hardware that contains the appropriate compute, storage and network capabilities each NF uses.
NFV decouples NF from hardware, realizing one or many NF as software on top of commercial -off-the-shelf
(COTS) devices with sufficient compute, storage and network resources. The move towards NFV promises to
provide the dynamicity required to satisfy heterogenous application requirements, but also to take the most
advantage out of the infrastructure by satisfying each application’s constraint on top of a single, shared
hardware infrastructure.

The introduction of VNF is strongly dependent on SDN technologies, which in a similar manner have also
achieved the decoupling of functionality from dedicated hardware by ways of separating the control and data
planes. SDN is a necessary tool in NFV, mainly for realizing the interconnection of several VNF via virtual
network overlays on top of a physical infrastructure. By leveraging SDN and NFV it is possible to interconnect
blocks of functionality, i.e. VNFs or PNF, into chains tailored to provide a given Network Service (NS)2, e.g.
enforce security while accessing a Data Base (DB), placing embedded intelligence closer to the
sensor/actuator, among others. Such NS are the result of VNF Forwarding Graphs (VNFFG), that when coupled
with VTN allow NFV to support many NS to applications with heterogeneous requirements, effectively reducing
OPEX/CAPEX relative to legacy networks.

The creation, instantiation, updating, and termination of NS is a new concept in networking, requiring the
definition of new reference points (interfaces), functionality and entities. Moreover, the management of existing
physical resources for virtualization, assignment of virtual resources to VNFs, lifecycle management of each
VNF, and the realization of NS across a distributed set of physical resources impose new challenges to
traditional networking. Efforts towards standardization in this regard have yielded ETSI’s NFV Infrastructure
(NFVI), which include the Virtualized Infrastructure Manager (VIM) and the NFV Orchestrator in the so-called
Management and Orchestration (MANO) Framework.

The aforementioned components of the NFVI are to be described in this section, as well as the interaction
among them to orchestrate NS and the role they play within the SEMIoTICS framework.

3.1.1 VIRTUALIZED INFRASTRUCTURE MANAGER

NFVI defines two Administrative Domains (ETSI, 2014b) namely the Infrastructure and Tenant domains. The
former contemplates the physical infrastructure upon which virtualization is performed, and therefore
application agnostic; while the latter makes use of virtualized resources to spawn VNFs and create NS. Unlike
resource allocation in other virtualized environments, in NFVI requests simultaneously ask for compute,
storage and network resources. Moreover, NS could be composed of VNFs with hardware affinity/anti-affinity
or require specific latency/bandwidth constrains in virtual links connecting VNFs. Such demands occur
dynamically, allocating or freeing resources that could then be used for other NS, e.g. scaling up VNF’s
compute.

A VIM lies in the Infrastructure Domain. It takes care of abstracting the physical resources of the NFVI and
making them available as virtual resources for VNFs. This is achieved through the reference point Nf-Vi, which
interconnects the VIM and NFVI (see Figure 5). It allows the VIM to acknowledge the physical infrastructure
(compute, storage) as well as enabling communication with network controllers (SDN Controllers) to provide
virtual network resources to NS. Even-though VIMs could well control all resources of the NFVI (compute,
storage and network), they could also be specialized in handling only a certain type of NFVI resource (e.g.
compute-only, storage-only, network-only) (ETSI, 2014b).

2 NS could also be composed of a single VNF.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D3.11 Field-level middleware & networking toolbox (final)
Dissemination level: Confidential

19

FIGURE 5: NFV REFERENCE ARCHITECTURAL FRAMEWORK

Beyond the already-mentioned functions carried on by the VIM, there are also the following:

• Orchestrate requests made to the NFVI from higher layers (NFVO), e.g.
allocation/update/release/reclamation of resources.

• Keep an inventory of allocated virtual resources to physical resources.

• Ensure network/traffic control by maintaining virtual network assets, e.g. virtual links, networks,
subnets, ports.

• Management of VNFFG by guaranteeing their compute, storage and network requirements.

• Management and reporting of virtualized resources utilization, capacity, and density (e.g. virtualized
to physical resources ratio).

• Management of software resources (such as hypervisors and images), as well as discovery of
capabilities of such resources.

As detailed in (ETSI, 2014b) other relevant VIM responsibilities within the NFVI network are:

• Provide “Network as a Service” northbound interface to the NFVO (realized via the Or-Vi reference
point, see Figure 5).

• Abstract the various southbound interfaces (SBI) and network overlays mechanisms exposed by the
NFVI network.

• Invoke SBI mechanisms of the underlying NFVI network.

• Establish connectivity by directly configuring forwarding instructions to network VNFs (e.g.
vSwitches), or other VNFs not in the domain of an external network controller.

The above compose the network controller part of the VIM. Nevertheless, and as mentioned previously, the

required network abstractions mechanisms and management may as well be left to an external network

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D3.11 Field-level middleware & networking toolbox (final)
Dissemination level: Confidential

20

controller, which feeds of NFVI information via the defined reference points (Nf-Vi, see Figure 5). It is
reasonable to assume the VIM as key part of the NFVI. Being the only NFV component interfacing with the
physical infrastructure it exposes open and comprehensible APIs to higher layers, i.e. NFVO, so functions
could trigger them to get relevant information from the physical as well as the virtualized infrastructure, and
trigger actions upon such information, e.g. create a NS with the necessary resources.

In the SEMIoTICS framework, the physical NFVI is able to support virtualization as realised by the VIM. This
allows the NFVO to instantiate VNFs subject to the available compute and storage resources, as well as
interconnect such VNFs together via an external SEMIoTICS SDN controller. The following subsections
describe relevant Northbound Interfaces (NBI) or APIs usually exposed by VIMs, i.e. OpenStack, which are
used by the Resource Orchestration function in the NFVO in order to create the NS satisfying the requirements
of the SEMIoTICS use cases (UC).

3.1.1.1 COMPUTE

Compute services at the VIM not only are in charge of creating virtual servers (or containers) on top of
physical machines, but also to provision bare metal nodes. In the case of OpenStack this is achieved by means
of projects such as Ironic (OpenStack 2018a). The compute API for OpenStack is provided through the project
Nova (OpenStack 2018b). It provides “scalable, on demand, self-service access to compute resources” through
RESTful HTTP endpoints that can be triggered by any authorized entity. All content sent or received from the
Compute API endpoints are in JavaScript Object Notation (JSON) format. As it is a text -based type, it allows
developers to employ a wide range of tools in order to reach such APIs, easing automation.

The following is a non-exhaustive list of concepts related to the Compute service as well as the information
they provide or actions they are able to execute through the corresponding API for SEMIoTICS UC (OpenStack
2018b):

• Hosts: physical machines that provide enough resources to spawn a Server. In SEMIoTICS, hosts
conform the set of field level, network, and backend devices that together compose the NFVI. For
instance, field level devices are assumed to provide enough compute resources to host VNFs realising
local smart behaviour. Similarly, network level devices support VNFs for forwarding/routing/firewalling
data to and from upper layers; and finally, backend/cloud servers have enough resources to host a
wide variety of VNFs, e.g.: SCADA, Web applications and servers.

• Server: a virtual machine (VM) instance. In NFV it is often assumed that VNFs reside inside VMs or
other type of virtualization container, such as LXC (Canonical, 2018). Some of the server status and
actions reachable through the Compute API (OpenStack 2018c):

o Status: ACTIVE, BUILD, DELETED, ERROR, SHUTOFF, SUSPENDED, among others.
o Actions: Start/Stop, Reboot, Resize, Pause/Unpause, Suspend/Resume, Snapshot,

Delete/Restore, Migrate/Live Migrate, among others.
▪ Migration and live migration relate to moving the Server to another Host. Live

Migration performs this action without powering off the Server, avoiding downtime.
The ability to read the current status of Server and modify it, opens the way for dynamic (re)allocation

of resources, specifically relevant as performance metrics from the underlying NFVI change in time.
For SEMIoTICS this is of paramount importance, as it paves the way to optimize the end-to-end
performance of network services in terms of e.g. latency or reliability.

• Hypervisor: the piece of computer software that creates and runs VMs. Hosts in each layer of the
SEMIoTICS framework run a Hypervisor, which can be queried via the Compute API in order to obtain
information regarding the Server, e.g. CPU, memory or other configuration.

• Flavour: virtual hardware configuration requested for a given Server, i.e. disk space, memory, vCPUs.
Such configurations are onboarded prior to deployment, quantising the scaling factor of Servers e.g.:
flavour small (1 vCPU), flavour medium (2 vCPUs), flavour big (4 vCPUs).

• Image: a collection of files used to create a Server, i.e. OS images. For SEMIoTICS, each UC
component is assumed to run a preconfigured image tailored to its role, i.e. VNF. Such images are
uploaded to the VIM for instantiation.

• Volume: a block storage device the Compute service could use as a permanent storage for a given
Server.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D3.11 Field-level middleware & networking toolbox (final)
Dissemination level: Confidential

21

• Quotas and Limits: upper bound on the resources a tenant could consume for the creation of Servers.
SEMIoTICS employs such functionality to enforce an efficient sharing of the NFVI resources among
the different UC.

• Availability zones: a grouping of host machines that can be used to control where a new server is
created. As different SEMIoTICS UC require the placement of Servers at specific Hosts, this VIM
capability allows the NFVO to instantiate VNFs at precisely the right locations in the NFVI.

3.1.1.2 NETWORKING

VIMs are responsible for building virtual network overlays connecting VNFs, but also should expose or relay
such information to other components. For instance, if an external network controller is assigned the task of
managing connectivity between virtual endpoints, as in the case with the SEMIoTICS SDN Controller, the VIM
should expose API endpoints where the necessary network information can be retrieved or modified.
Furthermore, in the presence of a NFVO, Network as a Service (NaaS) APIs are expected.

OpenStack Neutron Networking (Denton, 2018) is an SDN controller which is part of the OpenStack
networking project and provides the virtual networking resources expected in the SEMIoTICS Backend Cloud
infrastructure (or NFVI), such as L2/L3 networking, security, resource management, QoS, virtual private
networks (VPN), VTN, among others (OpenStack, 2018d). To configure such functionality or to retrieve logging
information, functions are exposed through a set of RESTful HTTP APIs in JSON format. The following shows
a non-exhaustive list providing a description of the functionality exposed through the Network ing API (as shown
in (OpenStack, 2018d):

• L2 Networking
o Networks: list, shows details for, creates, updates and deletes networks. It provides a wide

range of extensions capable of configuring several aspects of L2 networking, such as: network
availability zones, port security, definition of QoS policies, VLAN trunks, among others.

o Ports: list, shows details for, creates, updates and deletes ports. Ports are associated with
Servers (VMs). They expose a similar set of extensions than the “Networks” mentioned above.

• L3 Networking
o Addresses: list, shows details for, updates and deletes address scopes. Deals with the

reservation of IPv4 addresses for Servers (Floating IPs), port forwarding, among others.
o Routers: when enabled, it allows the forwarding of packets across internal subnets and

applying NAT, so they can reach external networks through the appropriate gateway. Routers
can be realized in a distributed manner (spanning all compute nodes of the NFVI) or using
Router availability zones.

o Subnets: lists, creates, shows details for, updates, and deletes subnet or subnet pools.

• Security
o Firewall as a Service (FWaaS): applies firewall rules to ingoing or outgoing traffic, creates and

manages an ordered collections of firewall rules.
o Security groups: lists, creates, shows information for, updates and deletes security groups.

Such groups are used to classify types of traffic, allowing or prohibiting certain kind of network
traffic through a set of predefined, but also user-defined rules.

o Virtual Tenant Networks (VTNs). Operators can create multiple private (or Virtual Tenant)
networks and can have control over the security policies, IP addresses, monitoring, and QoS.

o VPN as a Service (VPNaaS): enables tenants to extend their private networks across the
public network infrastructure. Provided functionality includes:

▪ Site-to-Site VPN.
▪ IPSec using several types of encryption algorithms.
▪ Tunnel or transport mode encapsulation.
▪ Dead Peer Detection (DPD).

• Others
o QoS bandwidth limiting rules.

▪ With the ability to distinguish between egress or ingress traffic.
o QoS Minimum bandwidth rules.
o QoS Differentiated Service Code Point (DSCP).
o Logging resources.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D3.11 Field-level middleware & networking toolbox (final)
Dissemination level: Confidential

22

o DHCP servers.

SEMIoTICS falls within the particular case where the delegation of NFVI networking control is relayed to an

external SEMIoTICS SDN Controller. For such cases, Neutron exposes control tools via the Modular Layer 2
(ML2) north-bound plug-in (OpenDaylight 2018). This way, external controllers can manage the network flows
traversing the NFVI via southbound interfaces, such as OVSDB.

3.1.1.3 STORAGE

Block storage is common place in virtual environments. Such type of storage can be though similar to USB
drives: you can attach one to a compute Server (VM), and then detach it when turning the Server off or
destroying it. Particularly interesting is the fact that in a NFVI the storage and compute Hosts are separate.
Despite such separation of physical hardware, VMs are exposed to users as if they were running on top of a
single Node thanks to the virtual networking resources used by the VIM; allowing the NFVI to grow to massive
scales, e.g. server farms.

VIMs such as OpenStack manage block storage through the Cinder project. As concisely put in (OpenStack,
2018e) “It virtualizes the management of block storage devices and provides end users with a self -service API
to request and consume those resources without requiring any knowledge of where their storage is actually
deployed or on what type of device”. A non-exhaustive list of functionalities realised through the Storage API
is shown below:

• Create, list, update, or delete volumes.

• Read volumes statuses:
o Among such statuses are: creating, available, reserved, attaching, detaching, in-use,

maintenance, deleting, error, backing-up, among others.

• Modify a volume:
o Extend size, reset statuses, set metadata, attach/detach.

• Management of volumes: create or list volumes.

• Volume snapshots: creates point-in-time copies of the data a volume may contain.

• Volume transfer: transfer a volume from one user to another.

• Backups: full copy of a volume to an external service, as well as the restoration from such backup.

• Snapshots and Group Snapshots.

• Quotas and Limits: per tenant quotas and limits on storage resource allocation.

Compute, Networking and Storage resources are then allocated by the VIM according to requests made

through the corresponding APIs. SEMIoTICS UC can be seen as NS, which in turn are the composition of a
set of VNF that run within VMs with specific compute and storage resources that are connected in a predefined
manner with network resources (SEMIoTICS SDN Controller) known to the VIM. Thereby, the proper allocation
of computing, communication and storage resources, to run the chain of VNFs at the corresponding VMs, is
fundamental to guarantee the desired performance of SEMIoTICS use cases. Namely, these performance
metrics are related to latency or reliability.

All in all, SEMIoTICS UC can be considered complex NS, mostly due to their specific requirements, e.g. Host
affinity/anti-affinity (e.g. smart device behaviour, embedded intelligence through patterns, VNFs at specific IoT
gateways), specific bandwidth/delay requirements between VNF links, firewalls at the backend/c loud, and/or
others. Such specifications are collected in NS descriptors (NSD), which in turn are composed of VNF
descriptors (VNFD), and VNFFG descriptors (VNFFGD) that realize SFC according to the specifications
contained in their respective descriptors. It is then the task of the NFVO to store/maintain such descriptors and
interface with the VIM to realise the NS/VNF/VNFFG therein.

3.1.1.4 TELEMETRY

To facilitate SEMIoTICS’ SPDI properties at NFV-component level, SEMIoTICS’ MANO framework provides
a set of endpoints where authorised external entities (e.g. Pattern Orchestrator) may collect telemetry
measures from diverse virtualised elements of the architecture, and trigger the orchestration of Network
Services (NS) with modified parameters (i.e. modify a specif ic NS descriptor by pushing additional supported
primitives at orchestration time). Figure 6 shows a summary of the NFV component’s API endpoints.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D3.11 Field-level middleware & networking toolbox (final)
Dissemination level: Confidential

23

FIGURE 6: SUMMARY OF SEMIOTICS NFV COMPONENT'S API ENDPOINTS

In Figure 6, the VIM API endpoint serves authorised clients with different capabilities and information related

to the NFVI. This endpoint is served by OpenStack services’ APIs (e.g.: Nova (compute), Neut ron (network),
Ceilometer (metrics polling engine), Gnocchi (metrics database), etc.). The so-called NFV API endpoint is the
one provided by the NFVO. As clarified at the bottom of Figure 6, this endpoint can be used for descriptor
onboarding, NS orchestrations, VNF manual scaling out operations, and VNF metrics’ collection (as specified
in the VNF descriptor).

Metrics and their values are served by the Telemetry service at the Virtualized Infrastructure Manager (VIM),
i.e. OpenStack. Such service is split across multiple projects, each one designed to provide a discrete service
in the telemetry space (e.g. element polling (metric value retrieval), alarms, storage, etc). In the SEMIoTICS’
VIM, the following services are active:

• Ceilometer: efficiently collects data (via a polling mechanism) of the OpenStack core components
and VNFs (which can be used e.g. for resource tracking). Furthermore, It normalizes and transforms
data produced by specified OpenStack services. Ceilometer is not a metric storage solution, but
instead it is able to push data to a wide range of so-called publishers, which can store telemetry data.
Gnocchi is one of such publishers.

• Gnocchi: is an externally managed project (non-OpenStack) whose goal is to provide a time-series
resource indexing and metric storage. It provides scalable means for storing both short - and long-
term data. Administrators may decide how long measures are stored, the reporting period, or other
data transformations (e.g. gauge, means, Boolean transformation, etc.) by declaring different archive-
policies for metrics.

SEMIoTICS-specific API endpoints are provided by an additional element inside the NFV component.
Termed NFV Proxy, it serves as middleware between the NFV/VIM API endpoints and other components of
the SEMIoTICS architecture. Its goal is to abstract the set of available APIs (e.g. NS orchestration, NS primitive
modification, pulling of VIM metrics, manual VNF scale out operations, etc.) into pre-defined procedures
tailored to satisfy SEMIoTICS’s SPDI requirements. Figure 7 below shows the summary of SEMIoTICS NFV
Component’s API Endpoints, including with the NFV Proxy.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D3.11 Field-level middleware & networking toolbox (final)
Dissemination level: Confidential

24

FIGURE 7: NFV PROXY

As can be observed in Figure 7, the NFV Proxy holds an Authentication (Auth.) module responsible for

authenticating petitions coming from the External endpoint. Furthermore, authorised parties (e.g. Pattern
Orchestrator) may trigger all the APIs provided by VIM and NFVO being redirected towards its Southbound
API module (authentication is then performed by the corresponding components, that is, VIM and NFVO).
Details on its implementation and functionality will be provided in Deliverable 3.8 as part of Task 3.2.

3.2 SEMIoTICS NFV Orchestration

Opensource MANO (OSM), adopted by SEMIoTICS for the implementation of the NFVO, is a project adopted
by ETSI, in an initiative to develop an Open Source NFV MANO software stack aligned with ETSI NFV. Two
of the key components of the ETSI NFV architectural framework are the NFV Orchestrator and VNF Manager,
known as NFV MANO. Additional layers, such as service orchestration are also required for operators to enable
true NFV services. Open Source software can facilitate the implementation of an ETSI aligned NFV
architecture, provide practical and essential feedback to the ETSI ISG NFV and increase the likelihood of
interoperability among NFV implementations. OSM supports descriptor files written in YAML, namely the VNFD
and the NSD. The former defines the needed VNF resources in terms of compute resources and logical network
connection points, the image that will be launched on the VM, as well as the auto-scale thresholds (e.g., scale-in,
scale-out and cooldown period, minimum or maximum number of VNFs) based on the metrics that are being collected
from the Telemetry service of the VIM. The latter is responsible for the connection point links, using virtual links,
among the interconnected VNFs, mapping them on the physical networks provided by the VIM. In what follows, we
detail how ETSI OSM is leveraged in SEMIoTICS to automate the initial VNF placement during Network Service
onboarding, as well as to automate VNF scheduling.

3.2.1 SERVICE ONBOARDING AND VNF PLACEMENT SUBSYSTEM

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D3.11 Field-level middleware & networking toolbox (final)
Dissemination level: Confidential

25

In a real-world IIoT infrastructure it is vital to optimize the placement of VNFs also taking into account the
networking perspective. This is essential for the efficient deployment of VNFs, such that their network-related
QoS constraints are met. However, the OpenStack VIM lacks support for Service Function Chains and is
agnostic of their underlying topology, hence placing VNFs individually, and risking the violation of their
networking requirements (e.g., saturating hypervisor network interfaces) or QoS constraints (e.g., deploying a
latency critical VNF at the cloud tier and not the edge tier). Thus, in SEMIoTICS VNF placement is implemented
with an optimized procedure during Network Service (NS) Onboarding. For OSM to onboard (i.e., instantiate
and configure) a network service (NS), its elements and runtime actions should be specified in the form of
descriptors following an agreed-upon information model (IM). Even-though there are tools for generating such
descriptors in a user-friendly manner3, the configuration required for some SEMIoTICS’ NS ask for manual
configuration.

OSM NS are composed of one or several VNFs. In turn, VNFs are composed of one or several Virtual
Deployment Units (VDU). Without loss of generality, one can think of VDUs as virtual machines (VM), requiring
an Operating System (OS) image, processor, storage and network connectivity. VNF descriptors, or VNFd,
should comply with the correspondent IM4, that is, the composer of the NS should fill out at least the required
elements of the VNFd/NSd in order for OSM to validate it and onboard it. The following Descriptor 1 shows an
example of a VNFd in which the VDU will scale-out if a metric called cpu_utilization surpasses the scale-out-
threshold threshold for threshold_time seconds. A scale-in operation is also considered, this time the
aforementioned metric should be below the scale-in-threshold during a cooldown-time. It is also easy to
spot the other relevant fields of the VNFd, such as image, vm-flavor, cloud-init-file (for day-0 configuration),
max-instance-count (maximum number of VDUs to scale out), etc.

Notice that the VNFd domain is solely the VNF and the composing VDUs. How such elements interact with
the rest of the infrastructure (e.g. network configuration) is detailed in the NSd. Descriptor 2 shows an example
NSd for the VNFd in Descriptor 1. The relevant fields are highlighted, in short, they include vnfd-id-ref (link to
a VNFd), vim-network-name (an actual network name defined at the VIM), vnfd-connection-point-ref
(unique connection point identifier per VNF specified at referenced VNFd).

During onboarding by ETSI OSM, where the NS VNFFG is supplied by the NSd, a VNFFG embedding
process is performed leveraging Neutron APIs, to assign VNFs to the core or edge tier based on their delay
constraints. The Edge hypervisors (or MEC hosts) have a higher operational expenditure (OPEX) than the core tier
hypervisors and hence a higher deployment cost which is reflected on a cost function. Thus, typically only a limited
number of edges VNFs is deployed at the MEC:
1. The VNFFG embedding process starts from the services with the highest QoS. All VNFs in the VNFFG are

traversed breadth-first, starting from the entry point where the UE connects.
2. If the latency constraints of the VNF links exceed the round-trip time to the Cloud tier, the VNF is assigned

to the MEC. Otherwise, it is assigned to the Cloud tier.
3. If the MEC resources are exhausted, further deployment of VNFs is blocked, unless they can tolerate the

increased latency associated with the Core tier deployment.

Template VNFd and NSd that are leveraged in the above procedure are generated using OSM’s DevOps

tools5. A descriptor verification tool (validate_descriptor.py) matches the content of a descriptor and the
corresponding IM, highlighting possible errors in the configuration. Once reviewed and fixed, VNFd/NSd are
packaged with the generate_descriptor_pkg.sh utility, and then onboarded to OSM using OSM client6 or the
GUI (see Figure 8).

3 RFIT VNF Onboarding tool: https://riftio.com/vnf-package-generator/
4 OSM Information Model: https://osm.etsi.org/wikipub/index.php/OSM_Information_Model
5 OSM DevOps tools: https://osm.etsi.org/gitweb/?p=osm/devops.git;a=summary
6 OSM Client: https://osm.etsi.org/wikipub/index.php/OSM_client

https://riftio.com/vnf-package-generator/
https://osm.etsi.org/wikipub/index.php/OSM_Information_Model
https://osm.etsi.org/gitweb/?p=osm/devops.git;a=summary
https://osm.etsi.org/wikipub/index.php/OSM_client

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D3.11 Field-level middleware & networking toolbox (final)
Dissemination level: Confidential

26

FIGURE 8: OSM ONBOARDED NSD EXAMPLE

vnfd:vnfd-catalog:
 vnfd:
 - id: scale-out-cpu_vnfd
 name: scale-out-cpu_vnfd
 short-name: scale-out-cpu_vnfd
 description: Generated by OSM package generator
 vendor: SEMIoTICS
 version: '1.0'
 mgmt-interface:
 cp: vnf-cp0
 vdu:
 - id: scale-out-cpu_vnfd-VM
 name: scale-out-cpu_vnfd-VM
 description: scale-out-cpu_vnfd-VM
 count: 1
 vm-flavor:
 vcpu-count: 1
 memory-mb: 1024
 storage-gb: 10
 image: 'ubuntu18-server'
 cloud-init-file: 'telemetry-user-data'
 interface:
 - name: eth0
 type: EXTERNAL
 virtual-interface:
 type: PARAVIRT
 external-connection-point-ref: vnf-cp0
 monitoring-param:
 - id: "metric_vdu1_memory"
 nfvi-metric: "average_memory_utilization"

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D3.11 Field-level middleware & networking toolbox (final)
Dissemination level: Confidential

27

 - id: "metric_vdu1_cpu_util"
 nfvi-metric: "cpu_utilization"
 scaling-group-descriptor:
 - name: "scale_vdu_autoscale"
 min-instance-count: 0
 max-instance-count: 10
 scaling-policy:
 - name: "scale_cpu_util_above_threshold"
 scaling-type: "automatic"
 threshold-time: 10
 cooldown-time: 180
 scaling-criteria:
 - name: "scale_cpu_util_above_threshold"
 scale-in-threshold: 20
 scale-in-relational-operation: "LT"
 scale-out-threshold: 60
 scale-out-relational-operation: "GT"
 vnf-monitoring-param-ref: "metric_vim_vnf1_cpu_util"
 vdu:
 - vdu-id-ref: scale-out-cpu_vnfd-VM
 count: 1
 monitoring-param:
 - id: "metric_vim_vnf1_memory"
 name: "metric_vim_vnf1_memory"
 aggregation-type: AVERAGE
 vdu-monitoring-param:
 vdu-ref: "scale-out-cpu_vnfd-VM"
 vdu-monitoring-param-ref: "metric_vdu1_memory"
 - id: "metric_vim_vnf1_cpu_util"
 name: "metric_vim_vnf1_cpu_util"
 aggregation-type: AVERAGE
 vdu-monitoring-param:
 vdu-ref: "scale-out-cpu_vnfd-VM"
 vdu-monitoring-param-ref: "metric_vdu1_cpu_util"
 connection-point:
 - name: vnf-cp0

DESCRIPTOR 1 VNFD FOR A SCALING OUT VNF

nsd:nsd-catalog:
 nsd:
 - id: scale-out-cpu_nsd
 name: scale-out-cpu_nsd
 short-name: scale-out-cpu_nsd
 description: Generated by OSM package generator
 vendor: SEMIoTICS
 version: '1.0'

 constituent-vnfd:
 - member-vnf-index: 1
 vnfd-id-ref: scale-out-cpu_vnfd

 vld:
 - id: scale-out-cpu_nsd_vld0

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D3.11 Field-level middleware & networking toolbox (final)
Dissemination level: Confidential

28

 name: management
 short-name: management
 type: ELAN
 mgmt-network: 'true'
 vim-network-name: 'externalNet'
 vnfd-connection-point-ref:
 - member-vnf-index-ref: 1
 vnfd-id-ref: scale-out-cpu_vnfd
 vnfd-connection-point-ref: vnf-cp0

DESCRIPTOR 2 NSD FOR A SCALING OUT VNF

3.2.2 VNF SCHEDULING SUBSYSTEM

In this section we discuss the role of the NFVO in the VNF lifecycle management, and detail the operation
of the VNF scheduling subsystem. Its deployment and performance evaluation at the Testbed is detailed in
section 5.3. In order to keep up in with the challenging cloud-native environments, where sub-second reaction
times are sometimes required, fast online algorithms are needed. More specifically VNF scheduling is split in
three phases, which are centrally controlled by the NFVO:

• The VNFFG embedding phase, detailed in Section 3.2.1, is executed once during service initialization
and onboarding, to allocate VNFs to the MEC or Cloud hypervisors based on delay constraints.

• Service scale-out is performed periodically based on a user-defined cooldown period7 and triggers a
scheduling operation for all scaled-out VNFs. A fast online algorithm is devised to handle this operation.

• Service scale-in is also a periodic process, which erases VNF instances when the user demand
decreases, to free up resources when they are not needed. We propose a live service migration step
to be performed after each scale-in operation to further optimize the VNF placement.

VNF scheduling is based on a cost function, which takes into account the hypervisor resources consumed

by the VNF (i.e., CPU, memory and disk size) as well as bandwidth costs to interconnect the VNFs in the
VNFFG. These are provided by the Telemetry system, presented in Section 3.1.1.4. In general, the minimum
scheduling cost is achieved when all VNFs of the same VNFFG are placed on the same hypervisor. It gradually
increases as VNFs are placed on different hypervisors occupying network links for communication, while MEC
hypervisors are generally assigned a higher cost than Cloud hypervisors.

VNF scheduling is an online problem, as VNFs are typically scaled-out and scaled-in within very fast time-
frames, in the order of seconds, based on current traffic. Although many works solve an offline version of the
problem, where the total number of VNFs is known during service bootstrapping, this assumption is not valid
in modern cloud infrastructures. Assuming that the VNF assignment to the core or edge tier has been
completed during the service bootstrapping phase (i.e., when the VNFs are onboarded at the NFVO and added
to its internal database), an online scheduling algorithm will assign the VNF at a Cloud or MEC hypervisor with
sufficient compute, memory and networking resources. We have implemented the following algorithm, which
tries to first accommodate the highest cost VNFs, starting from the hosts with the highest available resources.
The main algorithmic steps of the proposed Algorithm 1 (see below) for scheduling scaled-out VNFs are
explained as follows and they are generally performed after a predefined cooldown period has elapsed.
Furthermore, the algorithm tries to accommodate higher priority VNFs via live migration actions of lower priority
VNFs, while it tries to restore the balance of the system after a scale-in process.

Input:
HMECMax{N}: Total MEC capacity for each MEC hypervisor N
HCloudMax {M}: Total Cloud capacity for each Cloud hypervisor M
VNF{i,{{Type, Resources, Hypervisor}}} where Type in {HP,LP,LT},
Resources in {1..max(HCloudMax, HMECMax)},
Hypervisor in {MEC{N},Cloud{M}}

7 A cooldown period prevents excessive oscillation

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D3.11 Field-level middleware & networking toolbox (final)
Dissemination level: Confidential

29

HMEC{N}: Available resources on MEC 1..N
HCloud {M}: Available resources on Cloud 1..M
Sort MEC{N}VNFs descending based on resource allocation VNF{i,2}
Sort Cloud{M} VNFs based on Resource allocation in descending order
Triggering Event e, where e in {scale-in, scale-out}
VNF{e}
Output: Hypervisor for VNF placement

1: if e is scale-out of VNF{e}
2: if VNF{e, Hypervisor} is MEC{e}
3: do
4: if available resources on MEC{e}
5: allocate VNF{e} on MEC{e}
6: update MEC{e} resources
7: else if VNF{e,Type} is LP &&
 VNF{e,Resources}<= max(HCloud)
8: allocate incoming VNF{e} on max(HCloud)

9: update max(HCloud)
10: else if LP VNF exists on MEC{e}
11: if resources allocated for LP on MEC{e} <= max(HCloud)
12: live migrate the first LP MEC{e} on table VNF to
 max(HCloud)and flag it
13: update HMEC{e}
14: sort VNF table
15: end if
16: else
17: reject scale-out request
18: exit algorithm
19: end if
20: while (LP exist on MEC{e} && VNF{e} is not allocated)
21: else if VNF{e, Hypervisor} is Cloud{e}
22: if available resources on HCloud{e}
23: allocate incoming VNF on Cloud{e}
24: update HCloud{e} resources
25: else if available resources on max(HCloud)
26: allocate incoming VNF on max(HCloud)
27: update max(HCloud) resources
28: else
29: reject scale-out request
30: exit algorithm
31: end if
32: else if e is scale-in of VNF{e}
33: if VNF{e, Hypervisor} is MEC{e}
34: while flagged LP VNFs exist on Cloud &&
 HMEC{e}>=min(flagged VNF resources)
35: live migrate the flagged LP VNF with the lowest resources on
 MEC{e}
36: update HMEC{e}
37: end while
38: end if
39: end if

ALGORITHM 1. ONLINE VNF SCALE-OUT/SCALE-IN AND DYNAMIC LIVE-MIGRATION SCHEDULING.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D3.11 Field-level middleware & networking toolbox (final)
Dissemination level: Confidential

30

3.2.3 PATTERN ORCHESTRATOR IN THE NFV CONTEXT

This section details the role of the Pattern Orchestrator and the Pattern Engine in the instantiation and
onboarding of VNFs in the NFV context. Upon request of the Pattern Orchestrator, the Pattern Engine can ask
the NFV MANO (e.g. the VIM), to gather metrics about the state of the virtualized network, i.e. the NFVI. This
information can be processed locally, or it can be sent to the Pattern Orchestrator. After appropriate
processing, patterns related to the requirements of the network services are extracted. These patterns are
used to specify the descriptors of VNFs and NS. Namely, upon request of the Pattern Orchestrator, the Pattern
Engine updates and prepares such descriptors and communicates with the NFV MANO. In this section,
sequence diagrams associated to the interaction of the Pattern Orchestrator with NFV MANO are presented.
Specifically, in Figure 9 the sequence diagram related to the instantiation of an onboarded VNF, which is
already in the NFVO catalogue, is presented. The rest of the sequence diagrams, as well as further insights
on the involvement of the Global Patter Orchestrator in the NFV Orchestration process, were presented in the
final deliverable D3.8. As it is shown in Figure 9, the VNF instantiation starts upon request of a sender, i.e. the
entity that wants to deploy the VNF functionality in the NFVI. The sender communicates with the Pattern
Orchestrator, as the patterns associated with the VNF must be updated to configure properly the VNF
descriptor. Then, the Pattern Orchestrator communicates with the Pattern Engine, which has a direct link with
the NFV MANO (VIM) and thereby can ask to gather metrics on the state of the NFVI. Afterwards, with that
updated information, the Pattern Orchestrator can extract the patterns related to the VNF requirements or KPIs
and asks the local Pattern Engine to configure the corresponding VNF descriptor.

At this point the Pattern Engine communicates with the NFV orchestrator to start the VNF instantiation. Then,

owing to the NFV MANO hierarchical architecture, the NFV orchestrator asks the VNF manager to instantiate
the VNF. After validation by the VNF manager, a set of resources must be allocated to run properly the VNF.
As we can see, this is the responsibility of the VIM. And the instantiation finishes after a set of
acknowledgments messages among the different actors.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D3.11 Field-level middleware & networking toolbox (final)
Dissemination level: Confidential

31

FIGURE 9 SEQUENCE DIAGRAM FOR THE INSTANTIATION OF A VNF IN THE NFV FRAMEWORK.

From the NFV MANO viewpoint, the Pattern Orchestrator and the pattern engine can be regarded as OSS

entities. Thereby, the interface between the NFV MANO and the Pattern Orchestrator/Engine is well defined
through the Os-Ma-NFVO reference point, which is specified by the ETSI standards, see (ETSI, 2014a). In
practical terms, the Os-Ma-NFVO interface can be implemented through RESTful protocols, as suggested by
ETSI in the ETSI NFV-SOL specifications. This is the approach embraced in SEMIoTICS, as RESTful APIs
are a widely accepted means of communicating between software applications and computers in the Internet.
In general terms, D3.8 defines the RESTful protocols and the associated data models to implement the Os-
Ma-Nfvo reference point. Thereby, we can implement the operations related to the management of the NS
descriptor (NSD) or the NS lifecycle management. For instance, the creation of a NSD, upload the content of
a NSD, instantiate a NS or terminate a NS. To this end, the RESTful protocol detailed in D3.8 defines:

• The URI resource structure. For instance, the structure that identifies a NSD.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D3.11 Field-level middleware & networking toolbox (final)
Dissemination level: Confidential

32

• The HTTP methods that can be applied to the URI resources. For instance, a GET method to consult
the information of a given NSD.

• The data structure that we need to specify for a given HTTP method. For instance, a POST method
to instantiate a NS requires to specify the identification of the NSD to be instantiated. And this
corresponds to a data structure field called “nsdId”, which is specified in the body of the HTTP request.

3.3 SDN based integration and orchestration

SEMIoTICS SDN Controller is responsible for orchestration of field- and network-level switching devices.
We assume an OpenFlow model where SDN Controller computes the network paths used to deploy the
forwarding rules for both QoS-constrained and best-effort traffic. The SDN controller does so by parsing the
end-points and the service flow requirements (e.g., on bandwidth, delay, fault-tolerance/availability) from the
content of pattern specification message provided by the network administrator or higher-layer orchestration
element (i.e., the Pattern Orchestrator in the SEMIoTICS architecture).

FIGURE 10: INITIAL VERSION OF THE SSC DEMONSTRATOR

The initial release of SEMIoTICS SDN Controller includes all controller components planned and described in
D3.6 and D3.7. The SSC was derived from the VirtuWind controller. The extension of the VirtuWind controller
to support faster and more resilient bootstrapping as well as tolerate Byzantine controller failures is also
detailed in D3.7. In what follows we omit the detailed description of the components and summarize their
implementation level here instead. In specific cases, existing open-source software was modified and extended
for the purpose of Use Case / Demonstrator implementations. The current release of the SEMIoTICS SDN
Controller was demonstrated in the mid-term review, with the physical setup depicted in Figure 10 above. The
per-component details are presented below, with exhaustive algorithmic and design decisions contained in
D3.7:

▪ Network Pattern Engine: A component for evaluation, monitoring and adaptation of pattern instances

(see deliverables D4.1 and D4.8) related to SPDI and QoS properties. In the initial implementation cycles,
connectivity patterns providing for liveness of point-to-point network connections, bandwidth guarantees
as well as active enforcement of QoS-constrained paths are supported by its Pattern Engine sub-
component. Specifically, on acceptance of a QoS-constrained enforcement request, Pattern Engine
interacts with the VTN Manager to evaluate the mapping of end-points that are to be connected, to the
underlying VTN. If the end-points were, indeed specified in scope of the same VTN, Path Manager
proceeds to evaluate the path request and embeds the path. The status of the pattern instance evaluates
to True if the path was detected and has been configured successfully in the network, alternatively, the

https://cordis.europa.eu/project/id/671648/results

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D3.11 Field-level middleware & networking toolbox (final)
Dissemination level: Confidential

33

pattern instance evaluates to False. At the backend, the Pattern Orchestrator is correspondingly notified
of the result of the implementation.

FIGURE 11: AN EXEMPLARY VIRTUAL TENANT NETWORK ENCOMPASSING THREE END-DEVICES

▪ VTN Manager: Responsible for assignment of virtual tenants and their admission in the existing

infrastructure during network deployment time. I.e., a network administrator is in charge of specifying the
tenants of its network, as well as the set of end-points / network ports behind which that tenant's devices
are to be attached. The tenants are isolated and limited to communicating only with the end-points
partaking in the same VTN. To this end, at runtime, VTN Manager proceeds with resource assignment
for network requests only if the mapping of end-points is compatible with an existing admitted VTN. It
ensures a separation of L2 traffic (i.e., ARP request broadcast propagation to ports assigned) in scope
of a virtual tenant network. In initial implementation cycles, VTN Manager was adapted to support for
enablement of best-effort traffic flows between any end-points connected dynamically during the runtime
at network ports specified as end-points during the VTN specification. Thus, the manual effort of explicit
pattern instance specifications for each basic infrastructural service can be omitted (e.g., communication
between field and backend semantic components). Figure 11 depicts one such exemplary VTN
established for the purpose of execution of mid-term demo demonstrator on Programmable SDN
Connectivity Layer in IoT. The VTN encompasses three devices, of which one is the router gateway to
public internet, used for field devices-backend cloud connectivity.

▪ Path Manager: Main network path computation engine of the SDN Controller, responsible for
identification of nodes and ports combined into a path that fulfils the pattern requirements (e.g., on fault-
tolerance or bandwidth/delay constraints). The module was unchanged during the initial implementation
cycles of SEMIoTICS.

▪ Resource Manager: Provides Path Manager with a resource view of the network (i.e., the available
topology resources, port speed, no. of queues metrics etc.). Compared to the existing VirtuWind open-
source solution, the module was unchanged during the initial implementation cycles of SEMIoTICS.

▪ Security Manager: The security component of the controller responsible for administration of tenants.
The module was unchanged during the initial implementation cycles of SEMIoTICS.

▪ SFC Manager: Used in enforcement of Service Function Chains for overlaying VIM, given the ordering
and IP addresses of nodes that are to be traversed by a tenant’s traffic. The module was unchanged
during the initial implementation cycles of SEMIoTICS.

▪ Registry Handler (a component of the Clustering Manager): Used in state-keeping of other
component’s knowledge base, as well as for its strong consistent replication across the SDN controller
instances for the purpose of fault-tolerance and high-availability. Registry Handler is used without
changes in SEMIoTICS. Additionally, Byzantine Fault Tolerant operation for multi-controller decision-
making was enabled to allow for tolerating Byzantine faults (e.g, malicious controller decisions or
transient/bug issues i.e., due to software aging). Support for BFT was, however, not implemented in
OpenDaylight-based SEMIoTICS controller, but is evaluated in a separate python-based implementation,

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D3.11 Field-level middleware & networking toolbox (final)
Dissemination level: Confidential

34

due to an extreme effort of related necessary changes in OpenDaylight-based controllers, if BFT support
was to be provided there. Additional details on the design and evaluation of the prototypical BFT design
are provided in deliverable D3.7.

▪ Bootstrapping Manager: Used in initial flow configuration of just-connected switches, so to allow for
seamless interaction with IoT devices (i.e., to enable flow rules for propagation of unmatched application
packets up to the controller for the purposes of ARP-based end-device discovery).
Bootstrapping Manager was additionally extended to support for automated establishment of in-band
control plane in iterative manner. While the automated in-band functionality was already provided by the
OSS VirtuWind controller version, it was extended with a more efficient approach that does not rely on
Spanning Tree protocol and thus offers more robust and less complex realization. The design and
evaluation aspects of the approach are contained in deliverable D3.7.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D3.11 Field-level middleware & networking toolbox (final)
Dissemination level: Confidential

35

4 SEMANTIC BOOTSTRAPPING AND INTEROPERABILITY

In this section, standardized semantic models for IIoT applications and SPDI pattern-driven mechanisms that

guarantee network-level semantic interoperability are detailed, that are developed in tasks T3.3 and T3.4
respectively. These mechanisms form the basis of the semantic bootstrapping and Interoperability framework,
i.e., a significant part of the SEMIoTICS field-level middleware.

4.1 Semantic bootstrapping and interoperability framework

As detailed in Deliverable D3.9, SEMIoTICS provides standardized semantic models for IIoT applications,
that form the basis of the semantic bootstrapping and interoperability framework. These models harmonize
data models from existing automation systems and integrate them with standard IIoT information models. In
this context, deliverable D3.9 provides semantics that aims to make field devices interoperable with new IoT
devices. Second, it helps to expose capabilities of field devices in a uniform manner by an IIoT gateway.
Semantics at this level is thus a key enabler for bootstrapping and easier integration of devices in an IIoT
system, as well as a facilitator for creation of new applications. Current automation systems are fully integrated
vertical systems. They are efficient, but inflexible. Once engineered and operational, they cannot be changed
easily. For example, it is not straightforward to plug a new device into a running system and expect to be
functional with respect to an already engineered system. Or it is not effortless to develop an added value
service for an existing automation system. In both cases the reason is a know-how contained by experts, but
not explicitly represented in machine-interpretable form.

In order to enable creation of new IIoT applications we need to explicitly represent this knowledge, thereby
expressing capabilities of field devices in machine-interpretable form. The following use case describes
problems found in the current vertically integrated automation systems and sketches the role of semantics in
IIoT in order to amend these problems.

FIGURE 12: SEMANTIC-BASED ENGINEERING AND NETWORKING

Figure 12 depicts an example industrial application, which processes data from Field Device 1 and Field

Device 2. In addition, the application imposes certain QoS requirements, which are here expressed as a
network constraint rule (NCR). Based on this example application we will explain the role of semantics for
interfacing SEMIoTICS field level devices (as the scope of Deliverable 3.9). Let us suppose that Field Device
1 and Field Device 2 are heterogeneous in terms of protocol they communicate, and data they exchange. In
order to enable an application to process data from these two devices, we first need to enable a common
application protocol. Second, we need to provide a common data model. Finally, we need to provide a common
semantic model, which will describe interaction patterns and capabilities of device. Only then, it will be possible

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D3.11 Field-level middleware & networking toolbox (final)
Dissemination level: Confidential

36

for an application developer to discover field devices based on their capabilities they provide, and to put them
into a semantically-correct interaction. Further, this enables the developer, as well as machines to understand
the data that is produced or consumed by devices. It allows semantic validation of this data or automatically
match-make the devices capabilities with the requirements of an application. All these features are useful when
a new device is plugged into an existing IIoT system and needs to support an old or a new application, or a
malfunctioning device needs to be replaced with the new device etc.

There are two approaches that are most prominent: the first is based on W3C Web of Things Thing
Description8; he second is based on a prominent industrial standard OPC-UA9. In the scope of the first version
of Deliverable 3.9 our focus is on the first approach.

In general, the mission of W3C Web of Thing (WoT) is to counter the fragmentation of the IoT. That is, device
from different ecosystems become interoperable under a common application layer, provided by WoTs. This
should be achieved similar to Web, which has provided a unified application layer to Internet. To this end, W3C
WoT standardization group has identified four building blocks:

• First, the Thing Description (TD) describes the metadata and interfaces of Things, where a Thing is
an abstraction of a physical or virtual entity.

• Second, the accompanying Protocol Binding Templates10 enable a TD to be adapted to the specific
protocol usage across the different standards.

• Third, the Scripting API11 describes a programming interface representing the WoT Interface that
allows scripts run on a Thing. These scripts can be used to discover and consume other Things (via
their TDs), and to expose Things characterized by their capabilities (WoT Interaction Patterns).

• Finally, Security and Privacy Considerations12 is the fourth building block, which provides guidance
for the design and deployment of a secure WoT system.

In the scope of the work in SEMIoTICS, we mainly focus on the first building block, while the second and the

third building blocks will be used in our implementation as well.
The WoT TD can be considered as the “index.html” page for Things. It contains semantic metadata describing

the Thing itself (e.g. name, location, application context, and software and hardware versions); the offered
interface in the form of interaction patterns (i.e., Properties, Actions, and Events); the data model used in
messages; and relations to other Things expressed through annotated Web Links [RFC8288]. In the following,
we provide a short description of TD basic interaction patterns.

TD Properties expose internal state of a Thing that can be directly read or (optionally) written. Typical
examples of Properties are configuration parameters, sensor readings, and set-points that control actuators
through Thing-internal logic (e.g., a set-point for the temperature of a thermostat). TD Properties may also be
observable. In this case they push the new state to registered subscribers, following best effort mechanisms
(e.g. CoAP Observe).

TD Actions enable invocation of Thing’s functions. These functions manipulate the internal state of Thing in
a way different from setting Properties. Examples are changing internal state that is hidden, i.e., not exposed
as a Property; changing multiple Properties with a single Action; or changing long-running processes (i.e., time
is needed to complete the process, and a Property can be used to check the process, e.g., check the state or
cancel it during the execution). Actions interaction pattern can also be used to abstract RPC-like calls of
existing platforms.

TD Events are raised in order to notify state changes, alarms or streams of values that are sent
asynchronously to the subscriber. Unlike Properties, which can be called, TD Events are pushed to
subscribers. Events may be triggered as result of conditioned state changes in a Thing. Events are different
from observable Properties in that their data cannot be accessed at any time, but only when a notification is
emitted by the Thing.

The TD with its presented interaction model is typically enriched with external semantic models (ontologies).
TD imports additional Linked Data vocabularies in order to give semantic meaning to its constructs. For
example, a TD may have a Property. In order to specify what is the type of that Property, what data it produces,

8 https://w3c.github.io/wot-thing-description/
9 https://opcfoundation.org/about/opc-technologies/opc-ua/
10 https://www.w3.org/TR/wot-binding-templates/
11 https://www.w3.org/TR/wot-scripting-api/
12 https://www.w3.org/TR/wot-security/

https://w3c.github.io/wot-thing-description/
https://opcfoundation.org/about/opc-technologies/opc-ua/
https://www.w3.org/TR/wot-binding-templates/
https://www.w3.org/TR/wot-scripting-api/
https://www.w3.org/TR/wot-security/

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D3.11 Field-level middleware & networking toolbox (final)
Dissemination level: Confidential

37

in which range the data is, what is the measurement unit, what Thing’s capability this Property belongs, and
so forth, we use external semantic models. A common semantic model to be used with TD is iot.schema.org.

iot.schema.org is an extension of well-known schema.org that is used to annotate Web pages. iot.schema.org
provides similar concept for annotations of IoT Things. iot.schema.org features three levels for semantic
annotations: Capabilities, Interactions, and Data. A Capability represents a Thing’s trait. It usually consists of
a set of Interactions. Interactions are semantically aligned to Interaction Patterns from W3C WoT TD. Finally ,
Data specifies all information about the data that a Thing provides or consumes via its Interactions.

4.2 Network-level Semantic Interoperability framework

The SEMIoTICS framework facilitates the deployment of network services and provide seamless connectivity
with all its layers and IoT applications, and this is the main focus of Task 3.4 efforts. To achieve that, the
project employs pattern-driven network interfaces with provisions to guarantee network level semantic
interoperability from all layers of SEMIoTICS, as well as with external platforms.

Specifically, the following considerations are made (for a more detailed list, please refer to deliverable D3.4
and its follow up D3.10):

1. Regarding the interfacing of IT & Cloud infrastructures, to support Nf-Vi, Os-Ma-Nfvo and interfaces

for NS management, the NFV reference architectural framework along with the Nf -Vi, and Os-Ma-
Nfvo points;

2. Regarding the IoT Platforms, to support semantic and organisational interoperability, through the
integration of the relevant mediators and brokers (e.g., Semantic Mediator, Publish/Subscribe Context
Broker, Context Producer, Context Consumer), thus ensuring communication with external IoT
platforms (e.g., FIWARE);

3. Regarding the network level of SEMIoTICS itself, to support the network interfacing needs of the 3
major use cases covered within the project.

4. Finally, regarding IoT applications, to support flows between multiple IoT applications, distributed on
multiple devices (e.g. between applications of a wind turbine).

In tandem with the above, the network interfacing capabilities must facilitate complex interactions, such as:

• Cross-Platform: This covers applications or services access resources from multiple platforms
though common interfaces. Further, it includes different instances of SEMIoTICS platform and/or
SEMIoTICS to 3rd party IoT platforms (e.g. FIWARE, MindSphere), enabling an application deployed
on one platform (e.g., an IIoT wind turbine status monitoring application aggregating information from
pertinent sensors) to collect data from other platforms that process related data.

• Cross-Layer: This includes communication between entities that are deployed at different-non-
adjacent layers of the SEMIoTICS framework, such as cloud to edge or application to network.

• Cross-Application: This includes communication between applications or services with applications
of different domains or verticals. Such a communication means that an application could potentially
gather data about environmental conditions and traffic, to propose the least polluted routes to patients
with breathing issues.

• Higher-level services: These services, are enabled by exposed interfaces, to orchestrate existing
deployments, applications, and the associated services, to provide value-added services, such as
providing wind turbine failure predictions or energy demand predictions (to fine-tune energy output)
from data aggregated across associated services, enabling effective predictions even for
stakeholders/deployments that do not have the breadth of historical data or computational capabilities
to extract this knowledge. (e.g. provide specific services to third party entit ies).

To support the above, two basic properties have been ensured across the deployment that also affected the

design of then networking interfaces:

• Platform-scale independence, allowing the integration of resources from platforms at different scale.
More specifically: at the Cloud/IoT backend level, platforms can host high volumes of data from a vast

http://iotschema.org/docs/full.html
http://iotschema.org/docs/full.html
http://iotschema.org/docs/full.html

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D3.11 Field-level middleware & networking toolbox (final)
Dissemination level: Confidential

38

number of devices; field-level deployments (e.g., fog) interact with nearby devices in the field and
maintain information in a constraint spatial scope; device level platforms (e.g. at the IoT gateway
level) have direct communication with the things, managing small amounts of data. In this context, in
the SEMIoTICS framework an application should be able to uniformly aggregate information for the
different scale platforms (e.g. collect wind turbine status values for a specific area via cloud or
minimally processed data via a platform at field).

• Platform independence, allowing the integration of distinct platforms that implement the same
functionality, like an IIoT wind turbine status monitoring in different wind parks. The platforms may
utilize different equipment and techniques to monitor the wind turbines (e.g. legacy wired sensors
attached to smart gateway or newer wireless sensors); a single application at the backend should be
able to interface with all instances in a uniform manner without requiring any changes.

In all of the above cases, the ability to specify the desired Security, Property, Dependability and

Interoperability properties should be provided, in order to additionally enable the SEMIoTICS SPDI pattern -
driven approach that is at the core of the framework. Additional provisions have been decided to be included
for the definition of QoS properties.

These aspects are described in detail in the final output of Task 3.4, deliverable D3.10 (“Network-level
Semantic Interoperability (final)”). In said deliverable, the network interface is specified for the SEMIoTICS
SDN controllers (SSC), exposed through the Pattern Engine module integrated into the controller. This
interface allows the specification of such required SPDI and QOS properties through the purpose-defined
SEMIoTICS pattern language. The design and specification of said language is detailed in the final output of
Task 4.1, deliverable D4.8 (“SEMIoTICS SPDI Patterns (final)”).

Through this pattern-driven approach, enabled via the deployment of Pattern Engines at the network (but
also its interaction with Pattern Engines deployed at the field and backend layers), IT & Cloud infrastructures
can leverage the pattern language to define properties for the essential connection between the NFV
Management and Orchestration components and the NFV Infrastructure. Additionally, the Pattern Engine
facilitates the communication with the North Bound Interface via the Os-Ma-Nfvo endpoint.

Considering the IoT Platforms, Network interoperability with other platforms was considered in the design
phase of the Pattern Engine as it is an essential part of SEMIoTICS. Activities in the context of Task 3.4
included provisions that network-level semantics of the Pattern Engine are compatible with different IoT
frameworks/platforms (e.g. FIWARE), their Context Brokers and Producers (e.g. sensors) and Consumers (e.g.
a context-based application).

With regard to network-level interfacing with SEMIoTICS, the pattern language defines and enforces (via
the Pattern Engine) mechanisms that guarantee the establishment of E2E connectivity between different types
of devices (e.g. SARA hubs, sensors, backend servers), actors (e.g. human operators, applications) and
interaction types (e.g. maintenance, medical staff, simple user/patient), while monitoring that certain SPDI and
QoS properties are maintained.

Additionally, as mentioned, the pattern-driven network interface enables various more complex interactions
such as cross platform (e.g. cloud apps <-> private cloud), cross layer interactions (e.g. field devices <-
>backend), cross application (e.g. SDN controller <-> remote management service) or interactions with higher
level services (e.g. Third-party entities). To support this functionality, interoperability mechanisms (e.g., the
semantic brokers already present in the SEMIoTICS framework, semantic mediators, context brokers) need to
ensure that all the devices support the required protocols and communications technologies for bootstrapping,
discovery and registration operations and that they fulfil these actions also in different layers of the framework.
(e.g. cloud interfacing with the IoT sensing gateway).

As to the IoT applications, the pattern language enables the specification (and guarantees via the Pattern
Engine) the communication between various IoT devices through their interfaces. The interaction with edge
devices is further assured. Finally, using pattern-based operations SEMIoTICS translates high-level application
QoS constraints to network-level QoS constraints.

For more information on the pattern-driven NBI in the context of the end-to-end semantic interoperability
provided by SEMIoTICS please refer to deliverable D3.10, while more details are also presented in D4.11
(“Semantic Interoperability Mechanisms for IoT (final)”, as part of the Task 4.4 (“End-to-End Semantic
Interoperability) efforts, where said interface is a key enabler.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D3.11 Field-level middleware & networking toolbox (final)
Dissemination level: Confidential

39

4.2.1 IMPLEMENTATION ASPECTS

4.2.1.1 ADOPTED TECHNOLOGIES
In the context of implementing the network-level semantic interoperability, an identification and description

of key enabling technologies that further advance the interoperability of SEMIoTICS, such as network protocols
and data formats that can be used for the communication from field devices to the backend cloud, was carried
out. As a result, the following established protocols have been adopted:

• Hypertext Transfer Protocol (HTTP) – Representational State Transfer (REST):
o HTTP/1.1. (i.e. the most commonly accepted version of this protocol) is the fundamental client-

server protocol used for the Web.
o REST is a distinguished architecture style used for developing of web services. With the rapid

success of IoT the combination of HTTP & REST offers very easy ways to create, read, update
and delete data, making it essential for SEMIoTICS.

• Yet Another Next Generation (YANG) is a data modeling language used to model configuration and
state data manipulated by the Network Configuration Protocol (NETCONF), NETCONF remote
procedure calls, and NETCONF notifications. A YANG module defines a hierarchy of data that can be
used for NETCONF-based operations, including configuration, state data, Remote Procedure Calls
(RPCs), and notifications. This allows a complete description of all data sent between a NETCONF
client and server.

• Advanced Message Queuing Protocol (AMQP), is an open standard protocol following the publish-
subscribe paradigm, aimed to offer interoperability between a large diverse set of applications and
systems, regardless of their internal designs.

• Constrained Application Protocol (CoAP), is designed by the Constrained RESTful Environments
(CoRE) with recent versions using a like publish-subscribe approach, to provide HTTP REST
capabilities for constrained devices with limited processing resources, such as IoT devices.

• and Message Queuing Telemetry Transport (MQTT), is another protocol that follows the publish-
subscribe paradigm. It is especially efficient and lightweight, designed for constrained devices and
non-optimal connectivity conditions, such as low bandwidth and high latency.

Employed data formats involve:

• Extensible Markup Language (XML), is markup language made for encoding data in a format that
is both human-readable and machine-readable.

• JavaScript Object Notation (JSON), is a lightweight open-standard file format based on a portion of
JavaScript, made to transmit data objects using human-readable text (that can be easily parsed and
produced by a machine).

• Google Protocol Buffers, is a flexible, efficient, automated mechanism for serializing structured data.

Finally, as is the case with all pattern engines, and as detailed in the T4.1 deliverables, the network -level

reasoning on SPDI properties in a machine-processable manner is achieved through the adoption of the
Drools13 production rules, and the associated rule engine, by applying and extending the Rete algorithm14.

4.2.1.2 NETWORK INTERFACING

As per SEMIoTICS architecture definition (Figure 13), most interactions at the SSC’s exposed NBI are
consumed by the overarching Pattern Orchestrator. In the controller YANG is used as a general -purpose
modelling language. In order to be compatible with the OpenDaylight controller that already supports YANG,
we implement the aforementioned NBIs as REST-based RPCs defined in YANG. In addition, the YANG
language, being protocol independent, can be converted into any encoding format, e.g. XML or JSON that the
network configuration protocol supports. In order to be flexible in terms of using a variety of network
management tools it is considered beneficial to use YANG for modelling.

13 Drools Business Rules Management System (BRMS) (2019). Available at: https://www.drools.org
14 Science, C. (1982) ‘Rete: A Fast Algorithm for the Many Pattern / Many Object Pattern Match Problem *’, Artificial

Intelligence, 19(3597), pp. 17–37. doi: 10.1016/0004-3702(82)90020-0

https://www.drools.org/

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D3.11 Field-level middleware & networking toolbox (final)
Dissemination level: Confidential

40

FIGURE 13. PATTERN-DRIVEN NBI ENABLING COMPONENTS IN THE SEMIOTICS ARCHITECTURE

To facilitate the use of the SPDI-driven network services, the Pattern Engine embedded into the ODL SDN

controller (see Figure 14) exposes a rich REST-based interface which devices, services and applications
across layers can consume. Moreover, the pattern-driven network APIs (refer to Task 3.1 deliverables for SDN
Controller architecture details) define and monitor the operation of different SPDI properties of the applications
that interact with the API. Doing so it is guaranteed that the said interactions are in line with the SPDI
requirements. When that is not the case, appropriate adaptations are triggered. The corresponding information,
in this case, is relayed to the Pattern Engine at the SEMIoTICS backend since this is the entity responsible for
SPDI reasoning at the application level.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D3.11 Field-level middleware & networking toolbox (final)
Dissemination level: Confidential

41

FIGURE 14: THE PATTERN-DRIVEN NBI (IN ORANGE) WITHIN THE SEMIOTICS SDN CONTROLLER’S

PATTERN MODULE

4.2.1.2.1 INTERFACE SPECIFICATION OVERVIEW

While details about the semantics of the network patterns, the definition of network-level properties and the
associated interface specification can be found in the final outputs of T3.4 and T4.1, namely deliverables D3.10
(“Network-level Semantic Interoperability (final)”) and D4.8 (“SEMIoTICS SPDI Patterns (final)”) , this
subsection will provide an overview of some key relevant elements. We defer the reader to the abovementioned
deliverables for more details.

The main web services exposed from the pattern-driven NBI are shown in Figure 15.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D3.11 Field-level middleware & networking toolbox (final)
Dissemination level: Confidential

42

FIGURE 15. PATTERN-DRIVEN NBI API

The above correspond to the creation, retrieval, deletion of facts and creation and deletion of rules. In more
detail, the addFact REST service is used by the Pattern Orchestrator for the communication of new Drools
facts of a new IoT Service orchestration.

Moreover, the factRemove is used for deleting facts from the Drools Memory of the SSC Pattern Engine. The
factUpdate is used again by the Pattern Orchestrator in case some changes need to be applied to a Drools
Fact. The factStatus REST service returns the current status of a special type of Drools facts, the instances of
Property class. These instances are used to describe SPDI and QoS properties for the components of an IoT
Service orchestrator. The requirements REST service can be used for the visualization of the SPDI properties
of an orchestration. Finally, the insertRule REST service is used only by the Pattern Orchestrator to
communicate Drools Rules to the pattern-driven NBI for the reasoning of the SPDI and QoS properties

Regarding pattern semantics used by said interface, these are show in Table 2, which depicts the core
network semantics supported within the pattern rules. Different network topology facts such as Nodes, Links
and Flows are included in the list. Moreover, the Requirement represents the constraints of the topology and the
required property. In the RHS, the pattern provides the solution by inserting, modifying, updating or retracting
facts from the knowledge base which will also update the inventory list in the controller . Each component is
converted through the respective Java class to an understandable format to the SDN controller.

TABLE 2. NETWORK PATTERN RULE CONSTRUCTS

Type Syntax Description

rule rule "name" name of the rule

Left Hand Side (LSH)

when

Network Pattern Elements (Facts)

Node (address, ports,

txPackets, rxPackets)

match network nodes such as switches and

hosts

Link (srcId, srcPort,

destId, destPort)

match links between source and destination

nodes

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D3.11 Field-level middleware & networking toolbox (final)
Dissemination level: Confidential

43

Path (srcId, destId)
match paths between source node intermediate

links and destination node

Flow (switchId, inPort,

outPort, priority)
match flow rules between nodes

Requirement (src, dest,

category, satisfied)

match requirements of pattern such as source,

destination, property category and satisfied

Conditional Elements

== match conditions

contains contains object (logical)

not not match (logical)

!= not match (arithmetic)

Right Hand Side (RSH)

then

Actions

modify

(\$fact)\{pro=pro'\}
modify knowledge base fact

retract (\$fact) retract knowledge base fact

insert (new Fact ()) insert knowledge base fact

update (\$fact) update knowledge base fact

Java commands other Java language syntax

The above LSH Network Pattern Elements are, moreover, expanded to support matching requirements with

more detailed specification of the QoS-encompassing patterns specific to SEMIoTICS use cases; namely:

– Application structure: structure that contains application-related information and consists of the following
fields

o Application Identifier: A unique identified for the specific application
o Application Tenant: identifier for different tenant contexts of each application

– Service structure: Structure that contains information about a running or a requested service
Service: substructure that groups connectivity, QoS and time requirements for a requested service

o Service Identifier: A unique service identifier.
o List of Flows: the application defines the flows that requests to be established and the QoS

requirement for each flow. The default connectivity type that this design enables is unidirectional
point-to-point. This is considered as a single flow that can have specific QoS requirements.
However, the design is also made in a way that allows establishing bidirectional flows by also
providing the reverse flow information as well as point-to-multipoint connectivity by defining a
number of flows which share the same source identifier. Note that this scheme allows each
requested flow in a bidirectional or a point-to-multipoint scenario (or even in a scenario that
combines them) to have different QoS requirements. In more detail, each industrial flow entry
consists of, i) Flow Requirement Structure and ii) Flow QoS structure.
o Flow Requirement structure: Structure that defines the information of the end hosts for each

required E2E connection request
- Endpoint structure (src, dst): structure that specifies different options for expressing

end host information:

• Host: host identifier information (i.e., a generic node ID/name)

• Host MAC: MAC address and VLAN identifier information

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D3.11 Field-level middleware & networking toolbox (final)
Dissemination level: Confidential

44

• Host IP: IP address information

• Host IP+port number: IP address and port information
o Flow QoS structure: Structure that groups QoS requirements for each end-to-end connection

- Bandwidth: measured in kbit/s, default value 0 – no bandwidth guarantees.
- Burst: maximum burst size of a flow, measured in Bytes, default value 0 – no burst

size guarantees.
- Delay: measured in milliseconds, default value 0 – no delay guarantees. O
- Resilience: integer identifier of a resilience class – values:

• 0 (default value) – no protection

• 1 – OpenFlow standard protection (using OpenFlow Fast-Failover Groups)

• 2 – rapid path protection (using a data-plane-based end-to-end custom
protection mechanism that addresses the limitations of the OpenFlow Fast-
Failover Groups – to be developed in a later phase of the project)

4.2.2 PATTERNS FOR NETWORK-LEVEL SEMANTIC INTEROPERABILITY

To fully exploit the above pattern-driven networking features and provide an E2E provision for interoperability
throughout the SEMIoTICS framework, a set of Interoperability-focused patterns have been defined in
SEMIoTICS, as presented in deliverables D3.10 (“Network-level Semantic Interoperability (final)”) and D4.8
(“SEMIoTICS SPDI Patterns (final)”).

An overview of these patterns and their coverage in terms of type, data state and platform connectivity are
presented in Table 3.

TABLE 3. SUMMARY OF INTEROPERABILITY PATTERNS AND THEIR COVERAGE

Pattern Interoperability Type Data State Coverage
Platform

Connectivity

Name Technical Syntactic Semantic Organisational
In

Transit
At

Rest
In

Processing
Within Across

1 Technical

2 Syntactic

3 Semantic

4 Organisational

5 E2E Within

6 E2E Across

Elaborating on Table 3, and as discussed in deliverable D4.8 (see Section 2), four levels of interoperability

are considered in SEMIoTICS: technical, syntactic, semantic and organizational. In more detail, from bottom
up, the following types of interoperability can be distinguished and will be covered by SEMIoTICS:

• Technical interoperability – enables seamless operation and cooperation of heterogeneous devices
that utilize different communication protocols on the transmission layer

• Syntactic interoperability – establishes clearly defined formats for data, interfaces and encoding

• Semantic interoperability – settles commonly agreed information models and ontologies for the used
terms that are processed by the interfaces or are included in exchanged data

• Organizational interoperability – cross-domain and cross-platform service integration and
orchestration, through common semantic and programming interfaces

The above correspond to the “Interoperability Type” column of Table 3, while the different patterns necessary
to ensure the above are presented as lines in said table, with their definitions being presented in the
aforementioned deliverables.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D3.11 Field-level middleware & networking toolbox (final)
Dissemination level: Confidential

45

4.2.3 ENABLING IOT ORCHESTRATIONS WITH END-TO-END SEMANTIC INTEROPERABILITY, SPDI
AND QOS GUARANTEES

The Pattern-driven NBI and associated mechanisms developed in the context of Task 3.4 and presented
above are essential enablers in the implementation of a number of key features in SEMIoTICS. These include
the provision of E2E semantic interoperability, while also allowing the specification and runtime verification of
SPDI and QoS properties required of IoT applications and their orchestrations, and the use of the SEMIoTICS
network features from external entities (e.g., other IoT platforms).

To achieve the above, four levels of abstraction and accordingly three steps of transformation between them
are leveraged, as shown in Figure 16.

FIGURE 16. TRANSLATIONS FROM RECIPES TO EXECUTABLE FACTS

More specifically, the steps include:

• Step 1: From Recipes (the semantically rich and user-friendly approach to IoT workflow composition
adopted in SEMIoTICS) to a semantically-rich network model.

• Step 2: From the above network model to workflow-based definitions leveraging the SEMIoTICS
Pattern Language.

• Step 3: From the SEMIoTICS Pattern Language workflows to Drools executable rules and facts.

The key components involved on implementing on this End-to-End Interoperability concept are depicted in

Figure 17 (semantic components in red, pattern ones in green).

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D3.11 Field-level middleware & networking toolbox (final)
Dissemination level: Confidential

46

FIGURE 17. PATTERN-DRIVEN NBI AS AN ENABLER OF END-TO-END SEMANTIC

INTEROPERABILITY

From an IoT Orchestration definition perspective, and as shown in Figure 18, the user defines the recipe
(i.e., the application flow) and specifies the expected capabilities of ingredients, such as input and output data
types. The Recipe Cooker tool is utilized for this specification. After this step the instantiation of the recipe
takes place. “Instantiation” refers to the replacement of abstract components with concrete available
components. The recipe is then deployed. The recipe deployment triggers the transmission of the recipe
instance to the Pattern Translation Middleware, which is used for the translation of the network configuration
and details into SPDI patterns. It converts the network configuration defined in N3 into the Extended Backus -
Naur Form (EBNF) grammar defined in the ANTLR15 format. What follows is the description of the recipe
instance in terms of the pattern language. Translation from the JSON format into the pattern language is
realized through a series of graph transformation steps, where nodes f rom the recipe are collapsed into an
orchestration of the pattern language (Sequence, Merge, etc.), until the graph has only a single node left.

15 https://www.antlr.org/

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D3.11 Field-level middleware & networking toolbox (final)
Dissemination level: Confidential

47

FIGURE 18. PATTERN-DRIVEN IOT ORCHESTRATIONS – KEY INTERFACES AND COMPONENT

INTERACTIONS

In sequence, the recipe expressed as the pattern is transmitted to Pattern Orchestrator. For that purpose, a
POST service request has been developed named insertRecipe. Pattern Orchestrator receives a request from
Recipe Cooker, which includes a recipe description in JSON format. Such a request is depicted in Figure 19.
Under “recipeID” a unique string that acts as an identifier is provided, while under “recipe” label lays the recipe
description itself. The recipe instance depicted in Figure 19 is very simple and consists of two software
components that are placed in sequence, which means that the output of the former is consumed as input by
the latter.

FIGURE 19. INSERT RECIPE REQUEST

Additional implementation details and the specifics of each step of the process sketched in Figure 16 are

presented in D4.8 (“SEMIoTICS SPDI Patterns (final)”), while more network-level details are provided in D3.10
(“Network-level Semantic Interoperability (final)”), and the positioning of the above in the context of the
SEMIoTICS end-to-end interoperability provisions can be found in D4.11 (“Semantic Interoperability
Mechanisms for IoT (final)”, as part of the Task 4.4 (“End-to-End Semantic Interoperability) efforts.

4.2.3.1 USE CASE EXAMPLE

An indicative demonstration scenario that relies on the SEMIoTICS pattern-driven network interface and its

capabilities was designed and developed around Use Case 1, i.e. industrial IoT environments, and more
specifically oil leakage detection in wind turbines through video monitoring. This was also demonstrated during
the Mid-Term Review. The overarching aim of the scenario is to distribute a complex application (composed
of multiple tasks) to a network of IoT/Edge device and specify constraints (through patterns) on the network /
orchestration. In this context, the developed scenario also leverages user-friendly design and deployment of

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D3.11 Field-level middleware & networking toolbox (final)
Dissemination level: Confidential

48

IoT orchestrations through a custom-built, distributed version of Node-RED16. The two key research innovation
of the scenario and associated demonstration relate to: 1) True distribution of application flows over multiple
devices and representing the network perspective in Node-RED, and; 2) Automated enforcement of network /
orchestration constraints by defining them as SEMIoTICS patterns.

In terms of the actual setup, it involves transmission of video between two Raspberry Pi credit-card sized

embedded devices (from “piA” to “piB”), coordinated by Node-RED running on a Nanobox (industrial PC), while
monitoring of QoS constraints with patterns. This setup is depicted in Figure 20.

FIGURE 20: PATTERN-ENABLED IOT ORCHESTRATIONS LEVERAGING THE PATTERN-DRIVEN

NETWORK INTERFACE

In the above, other than the user-friendly, graphical interface and distributed nature of defining the IoT

orchestrations involved (including where / on which devices parts of a flow are deployed), we also want to
define SPDI and QOS between these deployments (see Figure 21 and Figure 22).

FIGURE 21. GRAPHICAL IOT ORCHESTRATION DEFINITION

16 https://nodered.org/

Bandwidth >= 128 kB/s

https://nodered.org/

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D3.11 Field-level middleware & networking toolbox (final)
Dissemination level: Confidential

49

FIGURE 22: THE CUSTOMISED NODE-RED GUI AND SCENARIO ORCHESTRATION DEFINITION

Focusing on the network aspects, while maintaining the high level abstractions needed for user-friendliness,

a “Network Link” node enables direct communication between distributed Node-RED instances. Said “Network
Link” node enables definition of QoS constraints (e.g., minimum bandwidth, latency) and the whole
orchestration specification (a “Recipe”) and the QoS constraints are translated into the SEMIoTICS pattern
language and sent to Pattern Orchestrator. From the latter, the information is relayed to the network (SDN)
Pattern Engine. A high-level view of this process is shown in Figure 23.

FIGURE 23: HIGH LEVEL VIEW OF SCENARIO IMPLEMENTATION SEQUENCE AND INVOLVED

COMPONENTS

Define on which

device (piA or piB)

a node is executed.

Node represents

the communication

link between.

Network can be

configured here.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D3.11 Field-level middleware & networking toolbox (final)
Dissemination level: Confidential

50

For more details on the abovementioned scenario, as well as the usage of the pattern-driven SEMIoTICS
approach in the context of other use cases, we defer the use to section 6 of deliverable D4.8.

4.3 Integration of Brownfield devices

During the bootstrapping process a new device is registered and integrated in the SEMIoTICS platform.
Moreover, the functionality of the device is semantically described and made discoverable, a scenario that was
demonstrated during the Mid-term review. The device is also exposed throughout a common interface. All
these steps are handled by SEMIoTICS IoT Gateway, and known as the process of semantics-based
bootstrapping and interfacing of field devices. Figure 24 depicts this process graphically. The figure
distinguishes this process for brown-field devices (left-hand side) and green-field devices (right-hand side).
Green-field devices are devices that already have a Web-based RESTful interface, and are described by W3C
Thing Description (TD). The brown-field class of devices comprise of all other devices that yet need to be made
accessible over a Web-based RESTful interface and described by TD.

As Figure 24 shows, the focus until Mid-Term Review was on the right-hand side. This part has been
implemented. In a demonstrated scenario a new device (an IP camera) has been plugged into a network where
SEMIoTICS IoT Gateway operates. The gateway scans the network, discovers the new device, stores its TD
in the Knowledge Repository (Local Thing Description Directory in Figure 25) and provide a common interface
for the device. So bootstrapped device is than ready to be used for new applications.

FIGURE 24: SEMANTICS-BASED BOOTSTRAPPING AND INTERFACING OF FIELD DEVICES

Figure 25 shows SEMIoTICS IoT Gateway with all its components. In comparison to the previous version of

this gateway (as reported in Deliverable D3.3), Figure 25 introduces one additional component “Semantic Edge
Platform”.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D3.11 Field-level middleware & networking toolbox (final)
Dissemination level: Confidential

51

FIGURE 25: SEMIOTICS IOT GATEWAY

Semantic Edge Platform (SME), shown in Figure 26, has multiple purposes in the SEMIoTICS architecture.

It provides a convenient user interface for configuring SEMIoTICS IoT Gateway. Further, SME enables a
convenient development environment for creating new Apps with a newly bootstrapped device. Finally, it
provides a mechanism to semantically annotate brownfield devices. The implementation of SME is based on
Node-RED17 tool.

On the right-hand side of Figure 26 we have extended Node-RED tool so that it enables the bootstrapping
process in SEMIoTICS. In this implementation, one can define an IP network range, which the gateway will
use when scanning for new devices. Further on, a device that is supposed to be bootstrapped can be selected
and the process of bootstrapping can be initiated. Once the process if completed, nodes that can be used to
interact with the device will appear on the left-hand side of the tool, see Figure 26. Each node represents one
function of the device (an interaction pattern in the device’s interface). Such nodes represent a convenient way
to interface a device, and to be used later on in Recipe-based applications. Figure 26 shows a test flow for a
newly bootstrapped camera. Similar flows can be instantiated from Recipes in order to speed up the process
of creating new applications.

FIGURE 26: SEMANTIC EDGE PLATFORM: DEVICE- SCANNING, CONFIGURATION, AND EXPOSURE

FOR APPS

17 https://nodered.org/

https://nodered.org/

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D3.11 Field-level middleware & networking toolbox (final)
Dissemination level: Confidential

52

Figure 27 depicts Local Thing Directory, which runs in SEMIoTICS IoT Gateway. As already mentioned, the
gateway stores a Thing Description of each bootstrapped device in this directory. The directory provides a
sematic query interface for discovering all present devices. Using this interface, it is possible to search for
devices that have certain capabilities. It is assumed that both Thing Descriptions and semantic queries are
annotated with iotschema.org18.

FIGURE 27: DEVICE DISCOVERY VIA SEMANTIC SEARCH IN LOCAL THING DESCRIPTION

DIRECTORY

So far, in this section we have described the current state of the implementation of SEMIoTICS IoT Gateway

and the process of bootstrapping a device. After the Mid-Term project review, we are continuing with the
implementation related to the brown-field integration, see Figure 24.

18 http://iotschema.org/docs/full.html

http://iotschema.org/docs/full.html

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D3.11 Field-level middleware & networking toolbox (final)
Dissemination level: Confidential

53

5 DEPLOYMENT AND EVALUATION OF THE MIDDLEWARE AT
THE SEMIOTICS TESTBED

5.1 SEMIoTICS Integration testbed

In this section we present the architecture and physical infrastructure of the SEMIoTICS integration testbed,
which is used for the deployment and validation of the SEMIoTICS Middleware and its frameworks (see Section
2.1). These are deployed in the SDN/NFV Orchestration layer, detailed in Section 5.1.1, and the Field layer,
detailed in 5.1.2, which are addressed by WP3 in the SEMIoTICS architecture. Use-cases will build their own
testbeds and showcase more advanced scenarios, using a subset of the Middleware (Section 2.1.2). In what
follows, the term “NFV Cloud” (or just Cloud) is used to refer to the virtualized infrastructure (or NFVI) which
includes the VIM, as well as the Cloud and Edge hypervisors. The latter, also termed as MEC hosts, are
typically deployed in closer proximity to the Field layer as shown in Figure 28 to minimize latency, following
the MEC paradigm19. A preliminary version of this testbed was demonstrated at the EUCNC 2018 exhibition
and its upgraded version at EuCNC 2019. The physical infrastructure of the SEMIoTICS integration testbed
currently includes the following hardware components and is constantly upgraded:

• One 6-core 64-bit server with 32 GB RAM hosts the OpenStack Controller and Network services,
related to Management, Orchestration and SDN control.

• One 4-core 64-bit server with 32 GB RAM hosts the ETSI OSM NFVO management services.

• Two 6-core 64-bit servers with 32 GB RAM act as the Compute Nodes, or Cloud hypervisors, that host
all IIoT services and VNFs in dedicated Virtual Machines (VMs).

• One 4-core 64-bit server with 8 GB RAM acts as a resource constrained MEC node that hosts Edge
VNFs.

• One Odroid C2 Single-Board Computer (SBCs) acts as the Field layer Virtualized IoT gateway. An
802.15.4 radio module is employed to interconnect Field devices (smart sensors) with the gateway.

• Field layer smart sensors that transmit temperature, humidity, light intensity and vibration values
wirelessly over 802.15.4 and BLE. Smart Light actuators are also used for demonstration purposes.

• SDN access switches are employed at the Network layer, to implement the SDN Data plane.

FIGURE 28: SEMIOTICS TESTBED PHYSICAL INFRASTRUCTURE

5.1.1 SDN/NFV ORCHESTRATION LAYER

19 https://www.etsi.org/technologies/multi-access-edge-computing

https://www.etsi.org/technologies/multi-access-edge-computing

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D3.11 Field-level middleware & networking toolbox (final)
Dissemination level: Confidential

54

The SEMIoTICS integration testbed leverages the OpenStack ecosystem (see section 3.1.2) as well as an
ETSI MANO stack. OpenStack is a complex software framework with multiple components that handle security
and authentication, VM image storage, VM instantiation and termination, etc. In our testbed, a Controller node
hosts all OpenStack services in Linux Containers. Linux Containers (LXD) is an emerging virtualization solution
which allows services to run almost to the "bare metal" with minimal performance penalties, but with the
requirement that they share the same kernel with the host (in this case the Controller node). The following
OpenStack services are deployed in our Controller:

• Glance stores the VNF (or VM) images in its local filesystem

• Keystone acts as the identity service, keeping track of OpenStack users and their respective
permissions (e.g., admin, user, etc.)

• MySQL stores configuration options in a master database

• Neutron is the OpenStack networking layer, which handles connectivity among VMs and
applications. It is responsible for deploying end-to-end slices and virtual networks among VNFs
that can physically reside in different physical servers

• openstack-dashboard implements the OpenStack Horizon GUI which allows us to manage our
network and VMs with an easy to use GUI.

• Nova is the OpenStack hypervisor service. OpenStack Nova employs KVM (i.e., Kernel-based
Virtual Machine) technology to natively execute multiple VMs at a host operating system.

• RabbitMQ-server implements a fast message bus that allows individual OpenStack services to
communicate and exchange information.

FIGURE 29: IIOT SERVICES AND VIRTUAL TENANT NETWORKS EXAMPLE

IIoT services related to smart monitoring and actuation are implemented in the form of VNFs, that are

managed by an ETSI compliant MANO stack, which is detailed in Sections 3.1 and 3.2. An example scenario
with two such services, each in their own VTN, is shown in Figure 29. The MANO stack, whose central element
is ETSI OSM, i.e., the NFVO, handles the automatic deployment and lifecycle management of services, based
on performance KPIs from the Telemetry system (detailed in Section 3.1.2.4), without requiring a system
administrator’s input. Moreover, VNFs can be individually scaled, i.e., multiple instances can be deployed to
meet user demand and migrated to a different hypervisor for optimization purposes. For example, to meet
service KPIs, a VNF may have to be moved to a hypervisor with a lower CPU load, or higher networking
capacity. VNF migration is a relatively complex procedure and care should be taken not to cause downtime.
Specifically, there are two modes of operation for VNF migration:

• Legacy mode involves shutting down and then restarting the VM that hosts the VNF in a different
hypervisor.

• Live migration mode involves running both instances (in the old and new hypervisor) in parallel while
the migration is performed, and only migrating RAM contents as a final step. This mode causes
minimal service disruption.

Environmental Sensing VTN

Vibration Sensing VTN

Environmental Sensing VNF (cloud)

Filtering VNF (gateway)

Fi
el

d
 L

ay
er

 D
ev

ic
es Vibration Sensing VNF (cloud)

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D3.11 Field-level middleware & networking toolbox (final)
Dissemination level: Confidential

55

5.1.2 FIELD LAYER

Our testbed Field layer includes a virtualized IIoT gateway that interconnects a set of sensors and actuators
with the backend cloud. Our IoT gateway supports KVM virtualization, enabling us to push VNFs down to the
gateway tier. This allows services with ultra-low latency requirements to be pushed in very close proximity to
the IIoT devices, hence minimizing latency. The relatively modest resources available at the gateway, which
is implemented with a Odroid 64-bit ARM-based Single-Board Computer (SBC), means that it must be used
for a minimum number of VNFs with low processing needs. Furthermore, ARM64 support is still in its early
stages at the OpenStack ecosystem and is only reliably supported in a small set of 64-bit SBCs. Hence,
significant effort was required to deploy the OpenStack Nova hypervisor to our Odroid C2 SBC:

• We had to compile and install the Open vSwitch Kernel module, which was missing from the Odroid
Kernel, after appropriate modifications for compatibility purposes.

• We had to manually modify the OpenStack installation scripts, which failed due to missing features in
the ARM platform (e.g., due the lack of a PCI bus)

• We had to remove GRE tunneling support from OpenStack (and restrict it to VLAN and VXLAN
tunnels) as the respective GRE Kernel module was missing from the Odroid C2 Kernel

• We had to add a second Ethernet interface via a Gigabit USB-to-Ethernet adapter which serves as
the provider network, and is capped to ~300 Mbps as Odroid lacks support for USB 3.

Nevertheless, after the successful deployment of OpenStack Nova at the Odroid C2, it has worked very

reliably and allows the virtualization of even low cost IIoT gateways, with the same MANO stack also leveraged
by the SEMIoTICS Orchestration layer.

FIGURE 30: ARM-BASED IIOT GATEWAY AND FIELD DEVICES

For the field-layer smart sensors, we employ custom-designed battery operated 802.15.4 and BLE devices

that perform periodic measurement of CO2, Temperature, Vibration and Light (Lux) values. Sensor values are
encapsulated in IPv6 packets and transmitted to the IIoT gateway via MQTT. The actuators are commercial
Philips Hue Smart Lights that are connected to the IIoT gateway via a Hue bridge. The Sensors and Actuators
are communicating with the respective VNFs, that are hosted at the Cloud or IIoT gateway hypervisors.

Furthermore, the integration testbed leverages Semantic models, presented in Section 4.1, to annotate data
that is exchanged between things, as well as to describe capabil ities of things in a machine interpretable
format. Our gateway serves as a semantic mediator in the task of integrating semantics of brownfield industrial
devices and IoT things, as detailed in Section 4.2. More specifically, at the input, the gateway accepts data
from diverse field devices. At the output, it provides an API to access semantically-annotaded data along with
descriptions of capabilities of connected devices. The API is based on the W3C WoT upcoming standard, and
things are specified in the WoT TD format. TD is semantically annotated with iot.schema.org, as it has been
thoroughly described in Deliverable 3.3 and Section 4.1.

{
 "@context": ["http://www.w3.org/ns/td",
 {"iot": "http://iotschema.org/"}],
 "@type" : [
 "Thing", "iot:LightControl", "iot:BinarySwitchControl"

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D3.11 Field-level middleware & networking toolbox (final)
Dissemination level: Confidential

56

],
 "id": "urn:dev:wot:lamp",
 "name": "WirelessLamp",
 "description" : "WirelessLamp uses JSON-LD 1.1 serialization",
 "securityDefinitions": {
 "basic_sc": {"scheme": "basic", "in":"header"}
 },
 "security": ["basic_sc"],
 "properties": {
 "status" : {
 "@type" : "iot:SwitchStatus",
 "type": "string",
 "forms": [{
 "href": mqtt://192.168.1.11:1883/house/lamp/status,
 "mediaType": "application/json"}]
 }
 },
 "actions": {
 "toggle" : {
 "@type" : "iot:ToggleAction",
 "forms": [{
 "href": mqtt://192.168.1.11:1883/house/lamp/toggle,
 "mediaType": "application/json"}]
 }
 },
 "events":{
 "overheating":{
 "@type" : "iot:TemperatureAlarm",
 "data": {"type": "string"},
 "forms": [{
 "href": "mqtt://192.168.1.11:1883/house/lamp/oh",
 "subprotocol": "longpoll"
 }]
 }
 }
}

Figure 31 THING DESCRIPTION ANNOTATED WITH IOT.SCHEMA.ORG

For verification purposes, in our testbed, we deployed the Smart Light as a Thing that is automatically

registered in the database with the reception of an MQTT availability message, as soon as it connects to the
network. In detail, a listener at the IIoT gateway receives the availability MQTT message “ON” and retrieves
the thing description from the local database, as seen in Figure 31. The result of the discovery is shown in the
Thingweb Directory immediately, as seen in Figure 32. Thus, the TD is registered at the thing directory that
allows searching for a Thing based on its metadata, properties, actions or events. In Figure 33, we show the
JSON format of the TD and the address that it has been given to the thing by the Thingweb directory. Through
this platform is also possible to update the TD and even generate a servient based on a discovered thing.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D3.11 Field-level middleware & networking toolbox (final)
Dissemination level: Confidential

57

FIGURE 32: THING DISCOVERY

FIGURE 33: TD OF THE WIRELESS SMART LIGHT

5.1.3 OPENHAB INTEGRATION

The SEMIoTICS platform components are able to expose dedicated APIs which are visible outside the
platform thanks to a router functionality embedded in the backend platform itself. Each component is able to
interact with any other component through the provided API but also with outside components exposed by third
party APIs. OpenHAB is one of the third party platforms supported by OpenHab, as part of the Generic IoT
use-case. OpenHab is an Open Source IoT platform, which mainly targets smart home and smart buildings
environments. Its unique value is in the support of many off-the-shelf Smart Sensors already present in building

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D3.11 Field-level middleware & networking toolbox (final)
Dissemination level: Confidential

58

environments, and its ability to be extended though “add-ons” that handle the interaction with external sensors,
data storage backends and chart libraries for sensor value visualization. Furthermore, OpenHab supports a
scripting language to implement automation “if-this-then-that” scenarios. OpenHab relies on a JSON-LD
message bus20 and offers a REST API powered by the Jetty HTTP server. The RESTful service offered by
OpenHab, gives access to Things, Channels and Items, represented via the Eclipse Smarthome data model:

• Things are entities that can be physically added to a system. They may provide more than one function
(for example, a Z-Wave multi-sensor may provide a motion detector and also measure room
temperature). Things do not have to be physical devices; they can also represent a web service or any
other manageable source of information and functionality. From a user perspective, they are relevant
for the setup and configuration process, but not for the operation. Things can have configuration
properties, which can be optional or mandatory. Such properties can be basic information like an IP
address, an access token for a web service or a device specific configuration that alters its behaviour.
Things expose their capabilities through Channels.

• Channels represent the different functions the Thing provides. Where the Thing is the physical entity
or source of information, the Channel is a concrete function from this Thing. A physical light bulb might
have a colour temperature Channel and a colour Channel, both providing functionality of the one light
bulb Thing to the system. For sources of information the Thing might be the local weather with
information from a web service with different Channels like temperature, pressure and humidity.
Channels are linked to Items, where such links are the glue between the virtual and the physical layer.
Once such a link is established, a Thing reacts to events sent for an item that is l inked to one of its
Channels. Likewise, it actively sends out events for Items linked to its Channels. Whether an
installation takes advantage of a particular capability reflected by a Channel depends on whether it
has been configured to do so. When you configure your system, you do not necessarily have to use
every capability offered by a Thing. You can find out what Channels are available for a Thing by looking
at the documentation of the Thing's Binding.

• Bindings can be thought of as software adapters, making Things available to the system. They are
add-ons that provide a way to link Items to physical devices. They also abstract away the specific
communications requirements of that device so that it may be treated more generically by the
framework.

• Items represent capabilities that can be used by applications, either in user interfaces or in automation
logic. Items have a State which may store sensor values and they may receive commands (e.g., for
actuation purposes).

The OpenHab support of REST and JSON-LD protocols offers a simple integration path with the SEMIoTICS
protocol suite without the need of any additional parsers. This is simply achieved with OpenHab Transformation
Services21 that map the SEMIoTICS WoT TDs to the OpenHab’s Eclipse Smarthome Data Model.

20 https://www.eclipse.org/smarthome/rest/index.html
21 https://www.openhab.org/docs/configuration/transformations.html

https://www.eclipse.org/smarthome/rest/index.html
https://www.openhab.org/docs/configuration/transformations.html

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D3.11 Field-level middleware & networking toolbox (final)
Dissemination level: Confidential

59

5.1.4 MID-TERM REVIEW DEMO

Part of the SEMIoTICS testbed was demonstrated during the Mid-Term review, showcasing NFV
functionality. In this scenario, a sensing VNF was performing real-time vibration analysis on a mini rack, with
an on-board cooling fan. The vibration analysis was performed with a field device using a LIS2DH 3-axis
“femto” accelerometer supplied by ST (the same is used in Use Case 3). This scenario emulates a real-world
data center with multiple rack-mounted servers and mission critical ventilation systems that have to be
monitored in real time, and excess vibration is an indication of impeding malfunction. A second filtering VNF,
deployed at the virtualized IoT gateway, was responsible for implementing a moving average filter on the
vibration measurement, suppressing noise and therefore compressing the information that had to be
transmitted from the gateway to the cloud layer. This demonstrated the capabilities of the SEMIoTICS
architecture in relying on local analytics functions to remove some of the burden from the cloud hypervisors,
and prevent bottlenecks at the network layer. The following figure shows the testbed setup used during the
MTR. Finally, an actuation VNF was responsible for controlling a (virtual) smart light, based on the readings of
a field layer light sensor. This VNF was also deployed at the IoT gateway, to benefit from a reduced latency

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D3.11 Field-level middleware & networking toolbox (final)
Dissemination level: Confidential

60

and hence we were able to demonstrate instantaneous reaction of the smart light, as a response to changes
to the measured Lux value.

FIGURE 34: MID-TERM REVIEW DEMO PLATFORM AND MEASUREMENTS

5.2 Slicing implementation and verification

Network slicing (P. Mekikis, 2019) is a typical SDN use case, which involves reserving resources for critical
applications (e.g., critical infrastructure monitoring) such that they are offered performance guarantees related
to throughput, latency, and packet error rate.

5.2.1 SLICING IMPLEMENTATION

The SEMIoTICS reference architecture includes SDN switches at its Network layer, that interconnect Field
Layer IIoT gateways. SDN switches in SEMIoTICS are implemented with Open vSwitch (OvS), a production
quality, multilayer virtual switch licensed under the open source Apache 2.0 license. The OvS switches are
controlled by Neutron, which exposes control APIs via the Modular Layer 2 (ML2) north-bound plug-in and
supports a wide variety of Layer 2 technologies, including OvS (see Section 3.1.2.2). End-to-end slicing is
implemented by leveraging the ML2 API to communicate QoS requirements to the relevant SDN switches that
lie at the VTN data path. QoS rules are stored at the OvS database and applied to the OvS switch ports.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D3.11 Field-level middleware & networking toolbox (final)
Dissemination level: Confidential

61

Specifically, the QoS model supported by OvS, shown in Figure 35, includes three QoS rules, that are used to
manage the network ports' priority queues, and implement traffic shaping:

• DSCP marking of packets for traffic prioritization

• Bandwidth limits to prevent interface saturation

• Minimum bandwidth guarantees for bandwidth reservation

FIGURE 35: NETWORKING LAYER QOS

From the 3 QoS policies supported, bandwidth guarantee is the most critical for Industrial IoT networks that

often need strict delay and throughput assurances (e.g., for infrastructure monitoring and smart actuation use
cases). Furthermore, it is important to ensure that hypervisor interfaces and not just OvS interfaces are not
over-subscribed and saturated when new VNFs are deployed. This is currently ensured by an additional
Verification and Live Migration step. Overall, service deployment involves the following steps:

1. A VNFD file is supplied to the VNF Manager with service metadata and requirements.
2. The VNF Manager instantiates the VNF, which is automatically placed at a Cloud hypervisor.
3. A verification step checks if the hypervisor interface was over-subscribed
4. If the verification fails, perform a Live Migration of the VNF to a cloud hypervisor with sufficient

networking resources and go to step 3.
5. An end-to-end slice is deployed based on service requirements leveraging Neutron APIs.

5.2.2 SLICING VERIFICATION AND EXPERIMENTAL RESULTS

In this section, the testbed is evaluated in terms of its ability to guarantee bandwidth reservations in Tenant
Networks with slicing, as well as the effectiveness of Live Migration in optimizing VM placement. Finally, the
suitability of a virtualized IIoT gateway, which is capable of hosting VNFs, for industrial and haptic applications
is also evaluated. In all our experiments, the traffic was generated with the D-ITG traffic generator which can
generate TCP traffic with various profiles, e.g., Pareto, Exponential, etc., as well as write trace files. Moreover,
a Smart Sensing and an Actuation VNF were deployed, each in a dedicated Tenant Network, that compete for
testbed resources.

5.2.2.1 TENANT NETWORK SLICING

In this experiment, we measured the maximum throughput that could be sustained between the two VNFs,
both hosted at the Cloud hypervisors, and a client device which was connected at the Field layer. At first, the
link capacity, which is 1 Gbps, is equally shared by the two VNFs, as shown in Figure 36. At time t=11s the
Neutron API is employed to setup an end-to-end Network Slice for VNF2, with a dedicated throughput of 700
Mbps. Figure 36 shows that the measured throughput of both VNFs changes instantaneously to 700 Mbps for
VNF2 and 300 Mbps for VNF1. This was achieved with successful bandwidth reservation at the hypervisor
network interface, as well as at the SDN switch output port where the client device is connected.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D3.11 Field-level middleware & networking toolbox (final)
Dissemination level: Confidential

62

FIGURE 36: THROUGHPUT MEASUREMENT VS. TIME FOR VNF1, VNF2

5.2.2.2 VNF PACKET DELAY

In terms of resource usage, slicing is a relatively expensive solution, and hence often reserved only for the
most critical services. An alternative solution to afford low latencies to delay-sensitive services is to place them
directly at the IIoT gateway. This way, they bypass the Network Layer and its potential bottleneck, and can
directly communicate with Field Layer devices. In the following experiment, the Round-Trip Time (RTT) of
packets transmitted from the actuation VNF to the Hue bridge is measured, when it is placed at a Cloud
hypervisor, or directly at the virtualized IIoT gateway. The RTT of the local cloud is also compared to the cloud
service provided by the smart light vendor. In both cases background traffic with an Exponential traffic profil e
is also generated, with a Load that varies from 0 (no background traffic) to 0.8 (severe congestion). The
measured packet delay of the actuation VNF, when hosted at the Local or Remote cloud or at the Gateway is

plotted in Figure 37. We conclude that sub-millisecond latencies are achievable for services hosted directly at
the IIoT Gateway, which are unaffected by network congestion. Therefore, given that uRLLC is crucial for the
manufacturing process, we show that our platform can attain sub-millisecond end-to-end communication,
proving the suitability of our platform for tactile internet industrial applications. This is also possible for local
cloud services, as long as the link load is less than 0.5, which can be achieved with dedicated slices. However,

as shown in Figure 37, even when slicing is employed, queueing delay of Exponential traffic increases
noticeably when input load exceeds 50%. Hence, a dedicated slice typically uses up twice the bandwidth
required on average and is therefore considered an expensive solution. Finally, Remote Cloud so lutions should
be avoided for delay sensitive services, as they are subject to significantly higher latencies.

0

100

200

300

400

500

600

700

800

-2 3 8 13 18 23 28

Th
ro

u
gh

p
u

t
(M

b
p

s)

Time (s)

VNF1 (Sensing)

VNF2 (Actuation)

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D3.11 Field-level middleware & networking toolbox (final)
Dissemination level: Confidential

63

FIGURE 37: PACKET DELAY VS. LOAD FOR DIFFERENT VNF PLACEMENT OPTIONS

5.2.2.3 VM MIGRATION

In our last experiment, we explore whether VM migration is an efficient mechanism for the optimal placement
of VNFs. Specifically, we test the service disruption caused when VMs are migrated to a different hypervisor
at the NFV Cloud. Figure 38 shows how the throughput measurement of the two VNFs in 0.1 second intervals,
when measured from a Field layer client device. The migration time was found comparable is both cases, as
in our testbed it is dominated by the copying of Virtual Hard Disk of the VMs. However, in the case of Legacy
migration a service disruption of around 8.5 seconds was measured, while services and TCP connections
would terminate and need to be restarted. On the other hand, Live Migration caused no service disruption and
was only noticeable by a small drop in the measured throughput, which dropped by 40% for a duration of less
than 0.5 seconds.

FIGURE 38: THROUGHPUT VS. TIME FOR LIVE AND LEGACY MIGRATION

5.3 Experimental evaluation of the NFV Orchestration subsystems

In order to demonstrate the potential of NFV Orchestration introduced in Section 3.2, we implemented an
experimental setup, as detailed in (I. Sargiannis, 2019), leveraging the SEMIoTICS integration testbed

0

10

20

30

40

50

60

70

80

90

100

0,3 0,4 0,5 0,6 0,7 0,8

P
ac

ke
t

D
e

la
y

(m
s)

Link Load

Local cloud

Remote Cloud

IoT Gateway

0

100

200

300

400

500

600

700

800

900

1000

0,0 5,0 10,0 15,0 20,0

Th
ro

u
gh

p
u

t
(M

b
p

s)

Time (s)

VNF1:Live Migration

VNF2:Legacy Migration

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D3.11 Field-level middleware & networking toolbox (final)
Dissemination level: Confidential

64

described in Section 5.1. In the following, we first provide an experimental setup and, then, we evaluate the
performance of the NFV Orchestration subsystems, presented in Section 3.2. In our testbed setup the
MEC/Edge hypervisor has a maximum capacity of HMECMax=3 and one Cloud hypervisor with HCloudMax=6,
and VNFi{Resources}=1. We distinguish 3 VNF types, based on delay constraints: Latency-critical VNFs
(LCVNFs), which are sensitive to latency, and latency-tolerant VNFs (LTVNFs) that can tolerate a higher
degree of delay. Accordingly, the IIoT applications can be classified intro three categories: i) Real-time
applications, consisting of high priority LCVNFs (HP LCVNFs), ii) Near real-time applications, consisting of low
priority LCVNFs (LP LCVNFs), and iii) Non real-time applications that consist of LTVNFs. In terms of QoS, the
SLA for the HP LCVNF is set at 100ms, for the LP LCVNF at 200ms while for the LTVNF the latency is irrelevant
as the transmission is asynchronous. The scale-out threshold is set at 90% CPU utilization, the scale-in at
30% and the cooldown period at 180 seconds. Since we assume exponential service time on the LCVNF
service, as soon as the CPU utilization exceeds the 91% threshold, the response time violates the SLA, so the
scale-out process will take place prior to this violation.

5.3.1 SERVICE ONBOARDING & AUTOSCALING

On the first experiment, illustrated in Figure 38, we validate and demonstrate the Network Service (NS)
onboarding process detailed in Section 3.2.1, with the goal to provide an optimal placement which results in
maximizing the served requests. More specifically, we assume two chained VNFs, one HP LCVNF and one
LTVNF and we show that there are three VNF placement methods: i) all VNFs deployed to the Cloud (Figure
38-a), ii) the LCVNFs deployed on the MEC and the LTVNFs on the Cloud (Figure 38-b), and iii) all VNFs
deployed to the MEC (Figure 38-c). We reject the first solution as the Service Level Agreement (SLA) is being
violated, because the HP LCVNF cannot tolerate the increased latency imposed by the MEC-Cloud link.
According to the onboarding algorithm, the initial placement is performed based on latency constrains, i.e., the
HP LCVNFs are allocated on the Edge tier, while the LTVNFS are allocated on the Core tier. After the initial
placement, the HP LCVNF is hosted on the MEC (VNF1{HP,1, MEC}), while the LTVNF is hosted on the Cloud
(VNF2{LT,1, Cloud}). This is the optimal solution as, in case of increased traffic, the HP LCVNF can scale-out
twice until the MEC resources are depleted (HMEC=0) and serve more request (Figure 38-e). Finally, in the
third deployment method, where everything is deployed on the Edge tier, the HP LCVNF can scale-out only

FIGURE 39: VNF INITIAL PLACEMENT (LEFT) AND PLACEMENT AFTER AUTO-SCALE

FUNCTIONALITY (RIGHT)

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D3.11 Field-level middleware & networking toolbox (final)
Dissemination level: Confidential

65

once (Figure 38-f) and the MEC resources are depleted (HMEC=0), since there is one LTVNF deployed on the
MEC (VNF2{LT,1,MEC}).

 To illustrate, Figure 39 shows the scale-out process. We start with one VNF and, as the traffic increases the

CPU utilization of the VNF increases accordingly. When it reaches the CPU utilization threshold at 90%, it is
scaled-out and a second VNF is being instantiated. In order to equally distribute the traffic between the two
VNFs, we deploy a load balancer VM with a round robin balancing policy. Hence, each VNF has approximately
45% CPU utilization when the new VNF is instantiated. While the traffic is further increased, another scale-out

FIGURE 40: SCALE-OUT PROCESS TO ACCOMMODATE INCREASED INCOMING TRAFFIC

FIGURE 41: RESPONSE TIME OVER TRAFFIC FOR THE DIFFERENT DEPLOYMENT

SCENARIOS

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D3.11 Field-level middleware & networking toolbox (final)
Dissemination level: Confidential

66

event is triggered and a third VNF is instantiated, with the load balancer distributing the incoming requests to
three VNFs. This results in a 60% CPU utilization by the time the third VNF is instantiated. With the autoscaling
feature, we can accommodate more requests, compared with the legacy monolithic deployments that do not
support such feature.

In Figure 40, the response time of the VNFs is depicted depending on their placement. From this figure, we
can observe that if all the VNFs are deployed on the Cloud, no further investigation is performed as this
deployment method violates the SLA (over 100 ms). For the MEC-Cloud placement method. i.e., VNFs are
placed between the MEC and the Cloud, the system will be able to support up to 3 LCVNFs on the MEC in
order to serve up to 270 requests/second without violation of the SLA. Finally, while the third deployment
method has improved response time due to the elimination of the link for the communication of the HP LCVNF
with the LTVNF (they are hosted on the same hypervisor), the total requests/second that can serve are limited
up to 180, due to the fact that the MEC resources quota has been reached.

5.3.2 ONLINE VNF SCHEDULING

In the second experiment, depicted in Figure 41, we demonstrate how the scheduling subsystem with live
migration support can be employed to support more requests when LCVNFs with different priorities are
competing for the same MEC resources, without disrupting the low priority latency critical service availability.
In this scenario, the Network service onboarding subsystem allocates both VNFs on the MEC side (Figure 41-
a) (VNF1{HP,1, MEC}, VNF2{LP,1, MEC}). While the requests for the VNF1 are increasing, the CPU utilization
increases as well, resulting in VNF1 scale-out (VNF3{HP,1, MEC}). When a second scale-out
(VNF4{HP,1,MEC}) takes place, the MEC resources have been depleted (HMEC=0), triggering the scheduling
algorithm to: i) live migrate the LP LCVNF to the Cloud (VNF2{LP,1,Cloud}), as depicted in Figure 41-b, and
ii) place the scaled-out HP LCVNF (VNF4) on the MEC (Figure 41-c). When the traffic on the HP LCVNF is
decreased, a scale-in (erasure of VNF4) occurs and the LP LCVNF (VNF2) is migrated back to its original
hypervisor (Figure 41-d).

FIGURE 42: LIVE MIGRATION TO ACCOMMODATE MORE HP LCVNF ON THE EDGE

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D3.11 Field-level middleware & networking toolbox (final)
Dissemination level: Confidential

67

In Figure 42, we evaluate the response time versus the time in minutes. As it can be observed, the requests
for the HP LCVNF are increased over time while the requests for the LP LCVNF are stable. As the HP needs
to scale-out at minute 85, the script commands the VIM to live migrate the LP LCVNF from the MEC to the
cloud, thus freeing up resources for the scale-out of the HP LCVNF. The live migration process, at the minute
85, lasts 28 seconds, for a VM with 1 vCPU, 512MB RAM and 3GB local storage, while no service interruption
was observed. It can be noticed that during the live migration process, we notice a slightly increased response
time for the LP LCV NF that is not violating the SLA neither during nor after the migration has been completed.
Finally, when the scale-in action occurs at the minute 145, the LP LCV NF is migrated back to its original
hypervisor.

5.4 Deployment and Evaluation of Service Function Chaining ιν the SEMIoTICS testbed

This section will demonstrate the interaction between the Pattern Engine and SDN Controller, emulating a real-
world e-health scenario at the SEMIoTICS testbed. The main objective is setting-up Service-Function Chains
(SFCs) among different elements of this scenario under the control of the SDN Controller and the SEMIoTICS
pattern engine.

5.4.1 DEMO STORYLINE

E-health monitoring systems situated at homes can facilitate the monitoring o f patients’ activities and enable
the remote provision of healthcare services. They improve the quality of elder population well -being in a non-
obtrusive way, allowing greater independence, maintaining good health, preventing social isolation for
individuals and delay their placement in institutions such as nursing homes and hospitals. In this context, the
second use case of SEMIoTICS focuses on an ambient assisted living scenario, whereby a smart home
environment as presented in Figure 44.

FIGURE 43: RESPONSE TIME PRE AND POST MIGRATION

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D3.11 Field-level middleware & networking toolbox (final)
Dissemination level: Confidential

68

FIGURE 44. AMBIENT ASSISTED LIVING LEGACY SCENARIO

Investigating this use case, and considering the different types of traffic reaching the backend where the
chaining of services will take place, the following intricacies are observed: traffic originating from the mobile
phone is of low trust and low priority, as the mobile device is not trusted (e.g., can be easily targeted by
malicious software) and the reporting from the BAN devices has low bandwidth and latency requirements;
traffic from the Robotic Rolator are of medium trust (relatively restricted devices) but high priority, as messages
need to arrive in a timely fashion (e.g., in case a patient fall is detected); the smart home traffic is of medium
trust (commercial devices which may be vulnerable to, e.g., incorrect configuration) and of low priority , and
finally; traffic from the robot are of high trust (closed/restricted device) and high priority, as low latency and
relatively high bandwidth is required to enable seamless interactions with the robot.

The main focus of this demo is to provide an extension of the current SARA use case where the SEMIoTICS
framework can be applied in order to support the following:

1) Control flow: security and dependability based on the defined Security, Privacy, Dependability and
Interoperability (SPDI) patterns instantiating the required i) Virtual Network Functions (VNFs) and ii)
SFC for assuring the SPDI requirements (KPI 2.1).

2) Data flow: Traffic classification based on the predefined SFC for providing secure chains to forward
the different kind of traffic of this use case (KPI 5.2).

3) Integration: integration of existing Use Case under the SEMIoTICS architecture based on the above
mechanisms (KPI 6.1)

5.4.2 SERVICE FUNCTION CHAINS

Considering the above, there is significant motivation to leverage the flexibility provided by Service Function
Chaining (SFC; as detailed in deliverable D3.8), to define specific service chains for each type of traffic. Such
a definition, as visualised in the top part of Figure 44, and with the functionality of each individual service
functions in the chains being in line with the details presented in deliverable D3.8 (Section 2, in specific), could
be as follows:

• Chain 1 – Mobile Phone traffic is of low trust and low priority
o SFC1 – Phone: FW -> DPI -> IDS -> output

• Chain 2 – Robotic Rolator traffic is of medium trust but high priority
o SFC2 – Rolator: FW -> Load balance -> output

• Chain 3 – Smart home traffic is of medium trust and low priority
o SFC3 – Robot Smart Home: FW -> IDS -> output

• Chain 4 – Robot traffic is of high trust and high priority
o SFC4 – Robot: FW -> Load Balancer -> output

• Chain 5 - Malicious:
o SFC5 – Firewall -> Honeypot

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D3.11 Field-level middleware & networking toolbox (final)
Dissemination level: Confidential

69

FIGURE 45. AMBIENT ASSISTED LIVING SCENARIO AND TRAFFIC CLASSIFICATION

5.4.3 DEMO WORKFLOW AND SETUP

To establish the scenario described in in Figure 44, the following components are involved in the data and
control flow of the demo.

The components involved in this data flow of this demo are the following:

• Mobile Phone: User’s mobile phone that acts a gateway for the BAN devices, as well as the Robotic
Rolator devices (but only in case of outdoors use).

• Smart Home Infrastructure: Sensors, actuators, lighting, climate control and other smart devices,
as well as the corresponding gateway(s), that comprise a smart living environment.

• Robotic Assistant: A robotic component for monitoring a patient’s activities (ADL data), health
status and treatment/training progress, as well as for supporting cognitive skills training,
notifying/reminding the patient of upcoming treatments (e.g. medication & training schedules) and
visits.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D3.11 Field-level middleware & networking toolbox (final)
Dissemination level: Confidential

70

• Body Area Network (BAN): Short range network of wearables (e.g. sensors and identification tags
carried or worn on the patient’s person) for fall detection, fall risk assessment and other mobility
related data.

• Robotic Rolator: A powered, wheeled walking frame, primarily used for physical support, but also
equipped with various sensors and computational units, and capable of identifying a patient (the user
of the rollator), and monitoring their behaviour (e.g. gait & posture).

• Backend: The backend system providing an assortment of assistance services for the elderly, and
being monitored by caregivers and healthcare professionals.

The procedure of instantiation and the identification of the respective SFCs and the VNFs based on the patterns
is depicted in the Figure below:

FIGURE 46 INSTANTIATION OF VNFS AND SFC

The components related to the SFC and network part of this demo are the following:

• Open Virtual Switches (OVS): are programmable switches supporting OpenFlow rules able to
interact with the SDN Controller. Two main roles of OVS switches are considered in this demo: the
classifiers (to classify the traffic) and the forwarder (to forward the traffic to the respective VNF). An
OVS switch can be Virtual (ie. as a Virtual or Physical).

• Virtual Network Functions (VNFs): Virtual network functions are responsible to manage the traffic.
That may include a firewall, IDS, Load-Balancer, Deep Packet Inspection (DPI) or a honeypot.

• SDN Controller: is responsible to interact with the switches and the VNFs together with the pattern
engine and the SFC manager.

• NFV MANO: able to instantiate VNFs.

The components developed and integrated in the SEMIoTICS architecture:

• Pattern Engine: able to interact with the NFV Mano to instantiate VNFs and instantiate SFCs that
interact with the OVS switches through the SFC Manager.

• Pattern Orchestrator: to forward pattern rules to the respective pattern engine.

• SFC Manager: a component able to receive SFC configurations.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D3.11 Field-level middleware & networking toolbox (final)
Dissemination level: Confidential

71

FIGURE 47 SEMIOTICS DIAGRAM SFC INTERACTION

5.4.4 SDN/NFV-ENABLED SFC

The demo demonstrates the use case including the following steps to enable SFC deployment from the
legacy SARA use case 2 as a starting point to enable the SFC in SARA use case and the SEMIoTICS
framework. The interaction between the described components, the related SFC related components and the
SEMIoTICS is also envisioned in Figure 48.

FIGURE 48 SFC COMPONENTS INTERACTION IN USE CASE AND SEMIOTICS COMPONENTS

Switches

Network
Function
Services

Sensors
Actuators

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D3.11 Field-level middleware & networking toolbox (final)
Dissemination level: Confidential

72

To demonstrate this use case, a GUI is also developed to present the status of the topology, the components
status (Forwarders and Functions), the chains required to fulfil the pattern requirement. Initially, the legacy use
case includes the following components such as:

1- Patient that is monitored his health condition
2- Mobile Phone which is hold by the patient
3- Access point where all home devices are connected
4- Robot able to aid patient
5- Home Gateway able to offer smart capabilities to home
6- Smarthome, able to turn on or off the lights
7- Server able to hold different applications
8- AI Service for localization
9- AREAS for assistive communication
10- Doctor connected with a call center
11- Network able to connect the intra (home) and the inter network

More specifically, the deployment of the above components of the topology in the developed GUI is presented

in Figure 49. In the figure, only the deployment of the components is presented since all the other SFC related
components such as Forwarders, Functions, Chains and Pattern Requirements are not inserted in the GUI.

FIGURE 49 LEGACY SARA USE CASE

To demonstrated this use case, a three-step approach is followed, enabled also by the developed bash

scrips, as shown in Figure 50. The three-steps approach includes the following:
1) Insert/instantiate the network components and chains in the GUI as retrieve by the SDN controller.
2) Insert Pattern requirements to verify the existence of a chain, to instantiate a new one or to

instantiate a function required by the under instantiation SFC. This requirement is use by the pattern
engine to identify and/or instantiate VNFs (virtually or physically) attached to the respective switches
through the Pattern Engine in the Backend. Moreover, instantiate SFCs based on the respective
VNFs through the Pattern Engine

3) Finally, the last step includes the active demonstration of the proactive control flow instantiation and
data traffic classification in the developed network emulator.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D3.11 Field-level middleware & networking toolbox (final)
Dissemination level: Confidential

73

FIGURE 50 THREE-STEP DEPLOYMENT OF SFC-ENABLED SARA USE CASE

5.4.4.1 NETWORK AND CHAIN INSTANTIATION
The network and function instantiation option includes the proactive network instantiation, forwarders

instantiation, functions instantiation and chains instantiation by the use of the tool as presented in Figure 51.

FIGURE 51 NETWORK AND CHAIN INSTANTIATION

5.4.4.1.1 INSTANTIATE AND CONFIGURE FORWARDING DEVICES

When the first option is pressed, the configuration of the OpenVirtual Switches (OVS) is applied. In addition,
the configuration of the classifiers and forwarders is also applied by the selection of the second option as
depicted in the following Figure.

FIGURE 52 FORWARDING DEVICES INSTANTIATION

5.4.4.1.2 INSTANTIATIATE AND CONFIGURE VIRTUAL NEWORK FUNCTIONS AND CHAIN

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D3.11 Field-level middleware & networking toolbox (final)
Dissemination level: Confidential

74

The third option defined the instantiation and the configuration of the service functions. The demonstration
included the instantiation of three network functions, a firewall, an IDS and a DPI. In addition, the instantiation
of the chain 1 is triggered by the fourth selection. That includes a chain with the instantiated functions three
functions. Finally, all the above are also presented in the Figure 53.

FIGURE 53 FUNCTIONS AND CHAIN INSTANTIATION

5.4.4.2 PATTERN REQUIREMENTS ON SERVICE CHAINING REQUEST
The service chaining requests can be expressed as a pattern requirement in order to verify its satisfaction.

Four different requests are defined in the script as presented also in Figure 54.

FIGURE 54 PATTERN REQUIREMENT SFC REQUEST AS PATTERN REQUIREMENT

5.4.4.2.1 VERIFY SERVICE FUNCTION CHAIN BASED ON SFC REQUEST

The first request includes the verification of traffic forwarding from Patient to Call Center and Doctor via a
Firewall, a DPI and an IDS. The Pattern aims to verify the existence of a chain including these functions. In
this case, since SFC1 is already instantiated the requirement is satisfied and value is changed from false to
true as presented in the Figure 55.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D3.11 Field-level middleware & networking toolbox (final)
Dissemination level: Confidential

75

FIGURE 55 CHAIN 1 VERIFICATION STEPS ON SFC REQUEST

5.4.4.2.2 INSTANTIATE SERVICE FUNCTION CHAIN ON SFC REQUEST

The second option includes the traffic forwarding from Robot to AI services via a Firewall and an IDS. In this

case, the chain does not exist in the chain list. Therefore, an SFC should be instantiated. However, this is
related to the instantiated functions and whether these functions are the required by the chain functions. Since
a firewall and an IDS are already instantiated, the chain SFC2 can be instantiated. Finally, the requirement for
SFC request is satisfied, changed to true. The procedure is depicted in Figure 56.

FIGURE 56 CHAIN 2 INSTANTIATION STEPS ON SFC REQUEST

5.4.4.2.3 INSTANTIATE SERVICE FUNCTION CHAIN AND INSTANTIATE FUNCTIONS ON PATTERN
SFC REQUEST

The third option includes the instantiation of a chain when not all the functions are instantiated. In the specific
case, there is a request to forward traffic from doctor to robot via a firewall and a load-balancer. However, the
load balancer is not instantiated although the image exists. Therefore, the procedure described also in Figure
57 includes the instantiation of a function such as a load-balancer, since this does not exist in the function list.
When the function is instantiated, the SFC3 can be instantiated and so the pattern requirement can be satisfied.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D3.11 Field-level middleware & networking toolbox (final)
Dissemination level: Confidential

76

FIGURE 57 CHAIN 3 AND FUNCTION (LOAD BALANCER) INSTANTIATION STEPS ON SFC REQUEST

5.4.4.2.4 UNABLE TO INSTANTIATE SERVICE FUNCTION CHAIN ON PATTERN SFC REQUEST

Finally, the last SFC defines the instantiation of a chain to forward traffic from Doctor to a Patient via a firewall
and an IPS. However, the IPS is not included not only in the function list, but also in the VNF descriptors.
Therefore, in this case the chain cannot be instantiated as presented also in Figure 58 and the pattern
requirement cannot satisfied.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D3.11 Field-level middleware & networking toolbox (final)
Dissemination level: Confidential

77

FIGURE 58 NON INSTANTIATION OF CHAIN 4 ON SFC REQUEST

5.4.4.3 TRAFFIC CLASSIFICATION
The last step of this demonstration includes the traffic forwarding between the actors of the use case via the

different instantiated service functions and chains. The different options for creation of traffic are presented in
Figure 59.

FIGURE 59 TRAFFIC CLASSIFICATION

5.4.4.3.1 CHAIN 1: SEND TRAFFIC FROM PATIENT TO DOCTOR
The first demonstration includes the transmission of data between the patient and the doctor. In addition, the

local transmission of a fall alarm in the robot is also enabled in this case. The traffic forwarding between Patient
and Doctor via Firewall – DPI – IDS is enabled as the respective chain is instantiated and the SFC request is
satisfied. The developed bash tool can send traffic by the use of ping in order to verify the end to end
connectivity through chain SFC1 as presented in Figure 60.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D3.11 Field-level middleware & networking toolbox (final)
Dissemination level: Confidential

78

FIGURE 60 TESTING TRAFFIC BETWEEN PATIENT AND DOCTOR

5.4.4.3.2 CHAIN 2: SEND TRAFFIC FROM ROBOT TO AI SERVICES FROM FIREWALL – LOAD-
BALANCER FUNCTIONS

The second demonstration includes the transmission of data between the robot and the AI services to enable

the localization. The traffic forwarding between Robot and AI services via firewall -IDS is enabled as the
respective chain (SFC2) is already instantiated and the SFC request is satisfied. The developed bash tool can
send traffic by the use of ping in order to verify the end to end connectivity through chain SFC2 as presented
in Figure 61. The arrows in the figure can also show the runtime traffic forwarding.

FIGURE 61 PATIENT TRAFFIC PATIENT TO ROBOT AND DOCTORSSIFICATION

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D3.11 Field-level middleware & networking toolbox (final)
Dissemination level: Confidential

79

5.4.4.3.3 CHAIN 3: SEND TRAFFIC FROM DOCTOR TO ROBOT FROM FIREWALL - IDS FUNCTIONS
The third evaluation includes the transmission of data between the robot and the AI services to enable the

localization. The traffic forwarding between Doctor and Robot via firewall-LB is enabled as the respective chain
(SFC3) is already instantiated and the SFC request is satisfied. The developed bash tool can send traffic by
the use of ping in order to verify the end to end connectivity through chain SFC3 as presented in Figure 62.
The arrows in the figure can also show the runtime traffic forwarding.

FIGURE 62 PATIENT TRAFFIC FROM DOCTOR TO ROBOT

5.4.4.3.4 UNABLE TO SEND TRAFFIC FROM DOCTOR TO PATIENT FROM FIREWALL - IPS
FUNCTIONS

Finally, the traffic between the doctor and patient is not enabled since the SFC request to instantiate a chain
with firewall and IPS is not satisfied. The ping cannot send traffic between Doctor and Patient as can be seen
in Figure 63.

FIGURE 63 UNABLE TO SEND TRAFFIC FROM DOCTOR TO PATIENT

5.4.5 SUMMARY

The evaluation of the SFC approach in the SARA use case was presented in this section. The SDN/NFV-
enabled test-bed setup for service function chaining was tested initially as a semi dynamic chain instantiation
and VNFs in Proxmox and SEMIoTICS SDN controller. However, the NFV-enable is also applied through the

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D3.11 Field-level middleware & networking toolbox (final)
Dissemination level: Confidential

80

dynamic VNF instantiation enabling the interaction between the pattern engine to instantiate VNF through the
OpenSource MANO (OSM) and OpenStack. All the related patterns to enable this dynamic instantiation are
presented extensively in D4.9. In the final system integration and use case evaluation in the related WP5
deliverables, the complete deployment of the SFC in the Use case 2 will also be demonstrated.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D3.11 Field-level middleware & networking toolbox (final)
Dissemination level: Confidential

81

6 CONCLUSIONS AND FUTURE WORK

This deliverable, being the final output of Task 3.5, provides an update on the design and implementation of
the Field-level middleware and networking toolbox of SEMIoTICS, for giving access to sensor data via
semantically annotated interfaces over multiple messaging protocols.

In this deliverable we detailed technologies and mechanisms related to NFV, SDN, semantic bootstrapping
and interoperability to increase the reliability, flexibility, and performance of IIoT networks. Furthermore, we
contributed the architectural design of the SEMIoTICS field-level middleware and explained how it is used in
the use cases. The SEMIoTICS integration testbed was also presented, which implements an end-to-end IIoT
SDN/NFV architecture, complete with the local cloud, SDN networking, a Pattern engine and Field layers that
demonstrate smart actuation, monitoring and analytics functionalities. Standardized semantic models for IIoT
applications and SPDI pattern-driven mechanisms that guarantee network-level semantic interoperability were
detailed. These form the basis of the semantic bootstrapping and Interoperability framework, which is a
significant part of the SEMIoTICS field-level middleware. Finally, we contributed experimental results regarding
the deployment of IIoT applications on top of virtualized infrastructure. In one scenario we achieved sub-
millisecond latencies for services hosted directly at the IIoT Gateway, which are unaffected by network
congestion. And we showed how the Orchestration subsystems can adapt to user demand, automating service
placement, migration, scale-out and load balancing.

This deliverable also focused on the interconnection of the NFV Management and Orchestration components
via the Os-Ma-Nfvo endpoint with the Pattern Orchestrator, which acts as an OSS/BSS component, and the
SDN Controller. Hence, we were able to showcase policy-driven adaptation of the SDN and NFV Infrastructure
via a real-world demonstrator scenario inspired by the healthcare domain. Furthermore, the semantics,
patterns and specifications of network-level properties, which are part of the Pattern-driven NBI in the Field-
Level Middleware, are also detailed in this deliverable. The pattern-driven NBIs among MANO entities will
ensure seamless interoperability among different entities of the Backend Cloud. After validation of the above
at the integration testbed, each new feature implemented in the Field-layer Middleware will be made available
to use cases in WP5, to implement their advanced scenarios and functionalities.

The next step is the deployment of the aforementioned Field-level middleware and networking toolbox in use-
cases. Docker images of the Middleware modules, which are built through the aforementioned CI/CD
processes, are the primary mechanism which will be leveraged to deploy SEMIoTICS modules to use case
testbeds. After preliminary functional tests to validate their correct operation in the testbed, the middleware
modules will be integrated with the use-case applications via their API endpoints. Then, their performance will
be evaluated in real-world applications in the industrial, health, and Generic IoT domain.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017
Deliverable D3.11 Field-level middleware & networking toolbox (final)
Dissemination level: Confidential

82

7 REFERENCES

ETSI, 2014a Architectural Framework (ETSI GS NFV 002 V1.2.1). Available:
https://www.etsi.org/deliver/etsi_gs/NFV/001_099/002/01.02.01_60/gs_NFV002v010201p.pdf. [Accessed
November 2018].

ETSI, 2014b Management and Orchestration (ETSI GS NFV-MAN 001), December 2014b. [Online].
Available: https://www.etsi.org/deliver/etsi_gs/NFV-MAN/001_099/001/01.01.01_60/gs_NFV-
MAN001v010101p.pdf. [Accessed November 2018].

ETSI OSM. Available: https://www.etsi.org/technologies/nfv/open-source-mano. [Accessed October 2019]
P. Mekikis et al., 2019, NFV-enabled Experimental Platform for 5G Tactile Internet Support in Industrial

Environments, IEEE Transactions on Industrial Informatics
OpenStack 2018a, OpenStack Ironic Project: Bare metal provisioning. Available:

https://wiki.openstack.org/wiki/Ironic
OpenStack 2018b, Compute API. Available: https://developer.openstack.org/api-guide/compute/.
Canonical, 2018, Linux Containers. Available: https://linuxcontainers.org/.
OpenStack 2018c, OpenStack Docs: Server concepts. Available: https://developer.openstack.org/api-

guide/compute/server_concepts.html.
I. Sariggiannis et al., 2019, Online VNF Lifecycle Management in a MEC-enabled 5G IoT Architecture, IEEE

Internet of Things Journal
J. Denton, 2018, Learning OpenStack Networking (Neutron), Second Edition, Birmingham: Packt Publishing

Ltd.
OpenStack, 2018d, OpenStack Docs: Networking API v2. Available: https://developer.openstack.org/api-

ref/network/v2/.
OpenDaylight 2018, OpenStack and OpenDaylight. Available:

https://wiki.opendaylight.org/view/OpenStack_and_OpenDaylight.

https://www.etsi.org/technologies/nfv/open-source-mano
https://developer.openstack.org/api-guide/compute/server_concepts.html
https://developer.openstack.org/api-guide/compute/server_concepts.html

