

 780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

SEMIoTICS

Deliverable D3.8
Network Functions Virtualization

for IoT (final)

Deliverable release date 29.02.2020 (revised on 20.04.2021)

Authors

1. Jordi Serra, Luis Sanabria-Russo, David Pubill, Angelos
Antonopoulos, Christos Verikoukis (CTTC)

2. Nikolaos Petroulakis (FORTH)
3. Ermin Sakic (SAG)
4. Philip Wright, Domenico Presenza (ENG)
5. Tobias Marktscheffel, Felix Klement, Korbinian Spielvogel and

Henrich C. Pöhls (UP)

Responsible person Jordi Serra, Luis Sanabria-Russo (CTTC)

Reviewed by Ermin Sakic (SAG), Nikolaos Petroulakis (FORTH)

Approved by

PTC Members (Vivek Kulkarni, Nikolaos Petroulakis, Ermin Sakic, Mirko
Falchetto, Domenico Presenza, Verikoukis Christos)
PCC Members (Vivek Kulkarni, Ioannis Askoxylakis, Verikoukis Christos,
Georgios Spanoudakis, Domenico Presenza, Danilo Pau, Joachim
Posegga, Darek Dober, Kostas Ramantas, Ulrich Hansen)

Status of the Document Final

Version 1.0

Dissemination level Public

https://upload.wikimedia.org/wikipedia/commons/b/b7/Flag_of_Europe.svg

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D3.8 Network Functions Virtualization for IoT (final)
Dissemination level: public

2

Table of Contents
Executive Summary ... 6

1 Introduction .. 7

1.1 Motivation behind NFV .. 7

1.2 Functional blocks of an NFV platform ... 8

1.3 PERT chart of SEMIoTICS ..11

1.4 D3.8 updates respect to D3.2 ..12

2 Task objectives and links to SEMIoTICS’ requirements, KPIs and architecture13

2.1 Link with T2.3: SEMIoTICS’ requirements in NFV ...13

2.2 Link to project KPIs ..18

2.3 Link with T2.4: SEMIoTICS’ architecture ..19

2.4 Validation: Task objectives, KPIs and D3.8 ..20

3 VNFs and SFCs for security, privacy and dependability in SEMIoTICS ..21

3.1 VNFs for Security, Privacy and Dependability Mechanisms ...21

3.1.1 Security, privacy and dependability VNFs ...21

3.1.2 Proactive monitoring, incident detection and mitigation mechanisms ..23

3.2 SFC for Security, Privacy and Dependability Mechanisms ..24

3.2.1 SFC Background ..25

3.2.2 SFC for low latency, high reliability, security and privacy ...26

3.2.3 Reactive monitoring and network security incident mechanisms ..27

3.2.4 Dynamic Instantiation of VNFs based on SFC requests ...29

3.2.5 Dynamic SFC Instantiation in the Ambient Assisting Living Use Case31

4 NFV Management and Orchestration for SEMIoTICS ...35

4.1 NFV MANO functional blocks ..35

4.1.1 Virtualized Infrastructure Manager ...35

4.1.2 Functional Architecture of the NFV Orchestrator ...39

4.1.3 VNF lifecycle management ..40

4.2 NVF MANO implementation ..41

4.2.1 VIM: OpenStack ...41

4.2.2 NFVO and VNF Manager: OSM ...47

4.3 NFV MANO interaction with the Pattern Orchestrator..49

4.3.1 Pattern Orchestrator in the NFV context ...49

4.3.2 Sequence diagrams ..49

4.3.3 Interaction with the NFV MANO based on RESTFUL NBI. ...50

4.4 Orchestrating a generic Network Service ...68

4.4.1 A generic VNF-VM exposed through a routed network (OSM+OpenStack)68

4.4.2 A generic VNF-Docker exposed through a routed network (Docker+Kubernetes)74

4.4.3 VMs or Docker containers for SEMIoTICS ..75

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D3.8 Network Functions Virtualization for IoT (final)
Dissemination level: public

3

4.5 Dynamic management of the NFV resources ...77

4.5.1 SoA on NFV resource allocation ..77

4.5.2 Dynamic scale out of VNF instances: a threshold-based approach ..81

4.5.3 Load balancing ...83

4.6 NFV testing in SEMIoTICS ..89

4.7 NFV in the SEMIoTICS’ use cases ..90

5 NFV Interfaces within the SEMIoTICS framework...91

5.1 NFV MANO-NFVI ...91

5.2 NFV MANO-VNFs ..91

5.3 Between NFV MANO sub-blocks (Orchestrator, VNF manager, VIM). ..91

5.4 Interface between NFV MANO and service providers, users or external management units92

5.5 NFV MANO-SDN Controller ..92

5.6 NFV MANO-Pattern Engine and Pattern Orchestrator ...93

5.7 NFV-level intelligence through dynamic reconfiguration enablers ..93

6 Conclusions ...95

6.1 NFV Component implementation status ...95

6.2 Future work..96

6.3 Technical choices for SEMIoTICS, SoA and beyond SoA..96

7 References ..98

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D3.8 Network Functions Virtualization for IoT (final)
Dissemination level: public

4

ACRONYMS TABLE

Acronym Definition

ACL Access Control List

ASIC Application-Specific Integrated Circuit

API Application Programming Interfaces

CAPEX CAPital EXpenditure

CPU Central Processing Unit

DoS Denial of Service

DPI Deep Packet Inspection

EM Element Management

FPGA Field-Programmable Gate Array

FW Firewall

GW Gateway

HP Honeypots

IDS Intrusion Detection System

IoT Internet of Things

IIoT Industrial Internet of Things

IPS Intrusion Prevention System

KPI Key Performance Indicator

KVM Kernel-based Virtual Machine

LXD Linux Containers

JSON JavaScript Object Notation1

FW Firmware

MANO Management and Orchestration

M2M Machine-to-Machine

MQTT Message Queuing Telemetry Transport2

NBI Northbound Interface

NETCONF Network Configuration Protocol

NFV Network Functions Virtualization

NFVI Network Functions Virtualization Infrastructure

NFVI-RA Network Functions Virtualization Infrastructure Resource Allocation

NFVO NFV Orchestrator

NS Network Services

NSd Network Service descriptor

OFCONF OpenFlow Configuration

OPEX OPerational EXpenditure

OSM Open Source MANO

OUC OpenStack User Configuration

OVSDB Open vSwitch Database Management Protocol

PNF Physical Network Function

POP Point of Presence

QoS Quality of Service

REST Representational state transfer

RO Resource Orchestrator

SBI Southbound Interface

SDN Software-Defined Networking

SEMIoTICS Smart End-to-end Massive IoT Interoperability, Connectivity and Security

SFC Service Function Chaining

SoA State-of-the-Art

1 https://en.wikipedia.org/wiki/JSON
2 https://en.wikipedia.org/wiki/MQTT

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D3.8 Network Functions Virtualization for IoT (final)
Dissemination level: public

5

SPDI Security, Privacy, Dependability, and Interoperability

SSC SEMIoTICS SDN Controller

SSD Solid State Disk

UC Use Case

VIM Virtualized Infrastructure Manager

VLAN Virtual Local Area Network

VLd Virtual Link descriptor

VM Virtual Machine

VNF Virtual Network Function

VNFd Virtual Network Function descriptor

VNF-FG VNF Forwarding Graph

VNFFGd VNF Forwarding Graph descriptor

vSwitch Virtual Switch

VTN Virtual Tenant Networks

VXLAN Virtual eXtensible Local Area Network

WoT Web of Things

WP Work Package

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D3.8 Network Functions Virtualization for IoT (final)
Dissemination level: public

6

EXECUTIVE SUMMARY

This deliverable D3.8 is the final deliverable of the SEMIoTICS’ task 3.2, in work package 3. Moreover, this
deliverable consolidates the contents of deliverable D3.2. This task deals with the design, development and
incorporation of the Network Function Virtualization (NFV) component within the context of the SEMIoTICS
project.

In general terms, NFV relies on a new concept for networks’ management, which is inspired by the cloud
computing paradigm. Namely, in NFV generic servers are incorporated in the network with the aim of
substituting to a great extent vendor specific special-purpose nodes. The computing, storage and networking
resources of these generic purpose servers are virtualized yielding an NFV Infrastructure (NFVI). Thereby,
network functionalities can be deployed on top of this NFVI in the form of the so-called Virtual Network
Functions (VNF). The global management of the pool of virtual resources along with the lifecycle of VNFs is
responsibility of the so-called NFV Management and Orchestration entity (NFV MANO). Therefore, NFV yields
a flexible, dynamic and programmable network, which is the perfect match for the needs of SEMIoTICS.

Namely, SEMIoTICS considers a scenario that it is driven by the nature of Internet of Things (IoT), which
requires to address the next technical hurdles: dynamicity, scalability, heterogeneity, end-to-end security and
privacy. Thereby, from the networking perspective, NFV is a key ingredient to face those challenges. In effect,
thanks to the virtualization approach and the global management of the virtual resources, the NFV MANO is
able to scale dynamically resources to support the VNFs according to the heterogeneous quality of service
requirements of the IoT applications at hand. As an example, a VNF with a given functionality can be deployed
either at the network edge or at the backend cloud. The former guarantees lower latency, the latter more
resources for computationally intensive tasks. Moreover, end-to-end security or privacy are easier to be
delivered within the NFV approach, as the set of security functionalities are mapped to a set of VNFs and are
managed globally by the centralized NFV MANO.

Next, we present the organization of this deliverable, whose aim is to face the challenges posed by
SEMIoTICS, from the perspective of NFV. In section 1, NFV is introduced and it is motivated within the
SEMIoTICS framework. Then, in section 2, the links to the SEMIoTICS architecture, the requirements and the
Key Performance Indicators (KPI), where NFV is relevant, are highlighted. Also, the task objectives are
discussed. In section 3, we present relevant VNFs, and chains of VNFs, to address the security, privacy and
dependability functionalities of SEMIoTICS, along with their challenges. Section 4 deals with the global
management of the NFV resources and VNFs for SEMIoTICS, i.e. it treats the NFV MANO for SEMIoTICS. To
this end, we describe the practical implementation of the NFV MANO for SEMIoTICS by means of open source
tools such as Open Source MANO (OSM) and OpenStack. In this regard, we also describe how we enable
chains of VNFs. i.e. Service Function Chains (SFC) and how we enable measurements of the NFV resources.
This is of paramount importance for the dynamic management of NFV resources, VNFs and SFC. Then, we
present the interaction between the NFV component and other SEMIoTICS components such as the Pattern
Engine, the Pattern Orchestrator or SEMIoTICS’ components embedded in VNFs. To this end, we explain
dynamic sequence diagrams to exemplify the interaction between the NFV component and those other
SEMIoTICS components. We also present and develop northbound interfaces between the NFV MANO, and
external entities known as Operations Support Systems (OSS), e.g. the Pattern Orchestrator/Pattern Engine.
These interfaces are based on Representational state transfer (REST) Application Programming Interfaces
(API). Also, in section 4 we explain the dynamic resource management in NFV. More specifically, we present
experiments on dynamic scaling the processing rate in VNFs and we treat the load balancing among VNF
instances, which arise during the aforementioned scaling out operations of VNFs. Afterwards, section 5
describes the interfaces in the NFV ecosystem, i.e. between the NFV sub blocks as well as the interfaces
between the NFV component and other SEMIoTICS components such as the SDN controller and the Pattern
Engine. Finally, section 6 presents the conclusions. Also, in this section we present the technical choices of
the previous sections and whether they are state-of-the-art (SoA) or beyond SoA.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D3.8 Network Functions Virtualization for IoT (final)
Dissemination level: public

7

1 INTRODUCTION
Network Functions Virtualization (NFV) is the cornerstone behind new networking frameworks, whose aim is
to increase the flexibility, programmability, scalability and efficiency of communications networks by
leveraging the cloud computing philosophy. That is, by using general purpose equipment, rather than vendor-
specific hardware, which allow the virtualization of their computing, storage and communications resources.
Thus, network services are deployed in a flexible manner on top of this virtualized infrastructure. Therefore,
the aim of this deliverable is to discuss the benefits of the NFV technology for the SEMIoTICS project: support
network services with heterogeneous Quality of Service (QoS) guarantees such as low latency, reliability,
security and privacy; provide scalable, adaptable and dynamic network services to client IoT applications.
This document is the final deliverable of task 3.2. Moreover, it is worth mentioning that this task has interplays
with the other work packages (WPs) of the SEMIoTICS project. Namely, WP 2 is an input for task 3.2, and
task 3.2 produces outputs for WP 5 and 6. Finally, it interacts with WP 4 to leverage the pattern-driven
approach of WP 4 and with the tasks of WP 3 to provide a coherent networking approach.

1.1 Motivation behind NFV

The traditional approach in networking has relied on vendor specific special-purpose network nodes, where
hardware and software are tightly coupled. Thereby, the configuration of those nodes is rather costly and
leads to a rather rigid network. However, this traditional approach hardly holds nowadays. There are several
reasons for this issue. First, the number of devices requiring network connectivity and the data rate have
increased dramatically, mostly due to a huge number of IoT devices and mobile terminals. Second, the
appearance of IoT demand services with dynamic and heterogeneous (QoS) requirements. In this scenario,
the traditional networking approach, based on vendor specific special-purpose nodes, leads to dramatic
increases in Capital (CAPEX) and Operational (OPEX) Expenditures [1]. These issues are circumvented
thanks to a new networking approach based on NFV.

The aim of NFV is to provide a network that is dynamic, flexible, scalable, programmable and easy to
reconfigure. This paves the way to support a huge number of IoT devices and novel IoT services with
heterogeneous QoS requirements by allocating the necessary resources. All these features are desirable in
the SEMIoTICS project, where a massive amount of IoT devices must be connected with the IoT gateways
and the Backend cloud with different QoS constraints, e.g. in terms of latency, reliability, security and privacy.
These QoS measures must be guaranteed despite the impairments posed by the network, i.e. data flow paths
that guarantee the required QoS must be established dynamically. Moreover, due to latency, computational
and communication constraints the IoT data analytics is carried out either at the IoT Gateway or at the backend
cloud. Thereby, the network must be flexible and programmable so as to setup and to release the
computational and communication resources to convey the information to the appropriate computing
resources, and to allow a computation that guarantees the required QoS. For all these reasons, it is mandatory
to have a global view of the network state and a global control of the network resources. In NFV this is
accomplished thanks to a centralized orchestration in the so-called NFV Management and Orchestration (NFV
MANO).

To this end, NFV relies on the following pillars. First, it considers general-purpose hardware nodes, rather
than vendor-specific special-purpose ones, in specific parts of the network. Second, the compute, storage
and communication resources of the network nodes are virtualized and exposed as a Network Function
Virtualization Infrastructure (NFVI). Third, network services are envisaged as a chain of Virtual Network
Functions (VNFs) deployed on top of the NFVI by dynamically allocating the required resources demanded
by the service so as to guarantee the specified QoS. The coordination and control of the VNF, as well as the
NFVI to deploy them, require a specific functional block, the so-called NFV MANO. Further insights are given
in the upcoming sections of the deliverable. Namely, section 3 deals with the VNFs and chains of VNFs, so-
called SFC, that guarantee the deployment of network services with the QoS desired in SEMIoTICS. Section
4 deals with the NFV MANO. Thus, it discusses its functional architecture, it describes how it controls the
VNF deployment and the required NFVI resources as well as the relation between the NFV MANO and the
SEMIoTICS’ Pattern Orchestrator. Section 5 explains the interfaces between all the functional blocks of
sections 3 and 4. Finally, section 6 concludes the deliverable.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D3.8 Network Functions Virtualization for IoT (final)
Dissemination level: public

8

1.2 Functional blocks of an NFV platform

In Figure 1 the functional blocks of an NFV platform are displayed. This architecture is compliant with the one
proposed by ETSI in [2]. In this section each of the blocks are overviewed and thorough details on how they
are considered and implemented within the SEMIoTICS framework are given in the upcoming sections,
namely in sections 3, 4, and 5.

As it has been mentioned in the previous sections NFV offers flexible, programmable, dynamic, scalable and
easy ways to reconfigure network resources to provide the QoS demanded by SEMIoTICS IoT Use Cases
(UC). To this end, NFV follows the next approach. First, general purpose hardware devices are considered in
different parts of the network. In the SEMIoTICS architecture this corresponds to computing and storage
nodes within the IoT Gateway and the backend cloud. Moreover, it is assumed that these machines allow the
virtualization of their resources in terms of e.g. Virtual Machines (VM) or containers yielding a pool of virtual
computing, storage and communication resources available to deploy the network services. The virtualization
of the hardware resources is managed by a so-called virtualization layer. As it can be seen in Figure 1, the
set of physical hardware resources, the virtualization layer and the virtualized computing storage and
networking resources is so-called NFVI. Thereby, NFVI contains all the resources available in the network.
NFVI paves the way to obtain a flexible, programmable, dynamic and scalable network, as the virtual network
resources exposed to the network services can be dynamically assigned or released in different parts of the
infrastructure to meet the required QoS requirements.

FIGURE 1 FUNCTIONAL BLOCKS OF AN NFV PLATFORM

In an NFV, the network services are implemented as a chain of functional blocks, which are called VNF. A
VNF is a virtualization of a network function in a legacy non-virtualized network, referred to as Physical
Network Functions (PNF). Moreover, the chain of VNFs that implements a network service is called a SFC.
As it is displayed in Figure 1, each VNF is deployed on top of the NFVI. Namely, virtual computing, storage

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D3.8 Network Functions Virtualization for IoT (final)
Dissemination level: public

9

and network resources are assigned to run the VNF. This allocation of virtual resources is exemplified in
Figure 2. This figure highlights the flexibility, scalability and support for heterogeneous QoS requirements that
is provided by an NFV, as virtual resources can be assigned or released easily according to the QoS required
by the VNFs and the SFC. It is also worth mentioning that the Element Management (EM) in Figure 1 is the
responsible for the VNF management.

FIGURE 2 EXAMPLE OF VIRTUAL RESOURCES ALLOCATION TO A CHAIN OF VNFS

At this point, we have seen how network services are implemented in an NFV in terms of VNFs, or more in
general, SFC. Additionally, it is observed that each VNF requires a set of virtual resources from the NFVI.
Obviously, all these blocks, i.e. the network services and the network resources, require a global
management. In an NFV architecture, the responsible for this management is the NFV MANO, which is
introduced now.

The NFV MANO is composed of three main blocks:

• The NFV Orchestrator (NFVO).

• The VNF manager.

• The Virtualized Infrastructure Manager (VIM).

In fact, these NFV MANO blocks are organized in a hierarchical manner in terms of management
responsibility. That is, the orchestrator is the responsible of managing the overall NFV. Thus, it manages the
communication with the network service providers by exposing proper northbound interfaces. For instance,
the OSM, which is an ETSI-compliant open source implementation of the NFVO and VNF manager blocks,
provides open standard-based APIs such as NETCONF and REST, see section 4. Through these interfaces
the network service providers can specify the features of their services. Namely, in OSM they use the so-
called Network Service Descriptors (NSd) [3]. These NSd in turn refers to a set of VNF descriptors (VNFd),
which characterize the VNFs that the network service requires. The VNFs are connected through virtual links
that are defined properly through Virtual Link descriptors (VLd). Moreover, the VNF-FG descriptors (VNFFGd)
determine the traffic flows between the VNFs in the service chain associated to the network service. Thereby,
the NFVO is the responsible of the network service management lifecycle, which implies the next
responsibilities:

• Manage the global computing, storage and communication virtual resources.

• Authorize NFVI resources requests.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D3.8 Network Functions Virtualization for IoT (final)
Dissemination level: public

10

• Policy management related to scalability, to reliability, to high availability related to network services
instances.

• Manage the catalog of network services templates.

• Onboarding of new network services and VNFs packages.

As it is shown in Figure 1, the NFVO has southbound interfaces (specified via reference points [4]) with the
VNF manager and the VIM. Thereby, for a given network service request, the NFVO delegates the
management of the VNFs and virtual resources involved in the network service, to the VNF manager and to
the VIM, respectively. Moreover, the VIM and the VNF manager use these interfaces in a northbound direction
e.g. to send state information on their management and the state of the configurations requested by the
NFVO.

Another important block of the NFV MANO is the VNF manager. It is the responsible of the VNF lifecycle
management. This includes the next responsibilities:

• VNF instantiation or start, given its associated VNF descriptor.

• VNF monitoring by collecting parameters that determine the VNF health, e.g. CPU load or memory
usage.

• VNF scaling. That is, Key Performance Indicators (KPI) of the VNF are monitored and if they are
above a given threshold a scaling process is started, which implies the creation of new VM to deploy
the VNF.

• VNF termination.

The third sub-block that builds an NFV MANO is the VIM, which is the responsible for managing the overall
NFVI. Thereby, upon request of the VNF manager and the NFVO, the VIM must assign the necessary virtual
compute, storage and network resources to run properly the VNFs that form an SFC. The VIM has also the
next roles:

• It manages the inventory of the computing, storage and network resources related to the NFVI.

• The VIM manages the NFVI resources allocation. Thus, it facilitates the assignment, increase or
release of resources to VMs to run or to terminate a given VNF.

• It provides logs related to performance issues that arise in the NFVI.

• It has information on the infrastructure faults.

• It collects information to monitor the state of the NFVI and to allow the optimization of its resources.

At this point, it is worth mentioning that there are several alternatives to implement an NFV MANO. Herein,
on the one hand, the Open Source MANO (OSM release FIVE or newer) is considered. It provides an open
source ETSI compliant implementation of the NFV orchestrator and VNF manager. On the other hand, herein
OpenStack is considered as the VIM, as it is open source, compatible with OSM, and it is regarded as a stable
and consolidated VIM. Further details about these choices and their use for SEMIoTICS are given in section
4.

Last, but not least, observe that the interfaces between functional blocks are named according to the ETSI
NFV nomenclature [2], and further details on their role within the SEMIoTICS context are given in section 5.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D3.8 Network Functions Virtualization for IoT (final)
Dissemination level: public

11

1.3 PERT chart of SEMIoTICS

36 months Leader: SAG

31.12.202001.01.2018

WP1: Project Management

23 months Leader: ST-I

30.11.201901.01.2018

WP2: Requirements and Architecture for
Smart Sensing and Smart Actuation

24 months Leader: SAG

30.04.202001.05.2018

WP3: Smart objects and networks

25 months Leader: FORTH

30.06.202001.06.2018

WP4: Pattern-driven smart behavior of
IIoT with End-to-End Security and Privacy

24 months Leader: ENG

31.12.202001.01.2019

WP5: System Integration and Evaluation

36 months Leader: SAG

31.12.202001.01.2018

T1.1: Project coordination 36 months Leader: FORTH

31.12.202001.01.2018

T1.2: Project technical and innovation
management

36 months Leader: SAG

31.12.202001.01.2018

T1.3: Coordination with EU programme
level activities

3 months Leader: STS

31.03.201801.01.2018

T2.1: Analysis of emerging business and
technical IoT value drivers

4 months Leader: SAG

30.04.201801.01.2018

T2.2: Specification of use case scenarios
& applications and their requirements

4 months Leader: ST-I

30.06.201801.03.2018

T2.3: Specification of infrastructure
requirements

18 months Leader: BS

31.12.201901.07.2018

T2.4: SEMIoTICS architecture design

22 months Leader: SAG

29.02.202001.05.2018

T3.1: Software defined Aggregation,
Orchestration and cloud networks

22 months Leader: CTTC

29.02.202001.05.2018

T3.2: IIoT Network Function Virtualization

22 months Leader: SAG

29.02.202001.05.2018

T3.3: Semantics-based bootstrapping &
interfacing

22 months Leader: STS

29.02.202001.05.2018

T3.4: Network-level semantic
Interoperability

22 months Leader: IQU

30.04.202001.07.2018

T3.5: Implementation of Field-level
middleware & networking toolbox

23 months Leader: STS

30.04.202001.06.2018

T4.1:Architectural SPDI patterns

22 months Leader: ENG

30.04.202001.07.2018

T4.2: Monitoring, prediction and
diagnosis

22 months Leader: ST-I

30.04.202001.07.2018

T4.3: Embedded Intelligence and local
analytics

22 months Leader: FORTH

30.04.202001.07.2018

T4.4: End-to-End Semantic
Interoperability

22 months Leader: BS

30.06.202001.09.2018

T4.6: Implementation of SEMIoTICS
backend API

22 months Leader: UP

30.04.202001.07.2018

T4.5: End-to-End Security and Privacy

5 months Leader: UP

31.10.201901.06.2019

T5.1: KPIs and Evaluation Methodology

15 months Leader: BS

31.08.202001.06.2019

T5.2: Software system integration

20 months Leader: IQU

31.08.202001.01.2019

T5.3: IIoT Infrastructure set-up and
testing

13 months Leader: SAG

31.12.202001.12.2019

T5.4: Demonstration and validation of
IWPC- Energy scenario

13 months Leader: ENG

31.12.202001.12.2019

T5.5: Demonstration and validation of
SARA-Health scenario

13 months Leader: ST-I

31.12.202001.12.2019

T5.6: Demonstration and validation of
IHES-Generic IoT scenario

36 months Leader: CTTC

31.12.202001.01.2018

T6.1: Impact Creation and Dissemination 31 months Leader: ENG

31.12.202001.06.2018

T6.2: Exploitation of results

24 months Leader: SAG

31.12.202001.01.2019

T6.3: Standardization
36 months Leader: CTTC

31.12.202001.01.2018

WP6: Impact, Dissemination and
Standardization

Please note that the PERT chart is kept on task level for better readability.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D3.8 Network Functions Virtualization for IoT (final)
Dissemination level: public

12

1.4 D3.8 updates respect to D3.2

The present document D3.8 is the final deliverable of task 3.2. D3.8 builds upon D3.2, which is a draft
deliverable that has been previously delivered in the context of task 3.2. Therefore, it is important to highlight
the differences between D3.8 and D3.2. That is the aim of this section. Next, we provide a bullet list with those
differences:

• The executive summary has been updated to describe the new content and sections in D3.8.

• The table of acronyms has been updated.

• Section 2 has been updated, as in D3.2 was in a draft state.

• Sections 3.2.4 and 3.2.5 have been included in D3.8. These sections are new and deal with the
dynamic instantiation of VNFs upon requests of SFC. This dynamic VNF instantiation is put in the
context of the SEMIoTICS use case 2, i.e. ambient assisting living.

• A new section dealing with the NFV MANO implementation for SEMIoTICS has been included, this is
section 4.2. More specifically, we explain how the NFVO and VNF manager have been implemented
by means of the OSM. Also, how we implement the VIM by means of OpenStack. Moreover, we
describe how we enable the functionality of building SFC, leveraging the OpenStack ecosystem.
Finally, we explain how we gather metrics of the NFV resources. This requires telemetry services in
OpenStack and its integration with OSM. Observe that telemetry services are of paramount
importance to manage the NFV resources dynamically.

• We have added a new section regarding the interaction between the NFV MANO and external
SEMIoTICS blocks such as the Pattern Orchestrator/Pattern Engine. This is section 4.3.3, and it
describes the implementation of a northbound interface for the NFV MANO based on the REST API
specified by ETSI in [5]. This northbound interface is of paramount importance, as permits the Pattern
Orchestrator to control remotely NFV operations such as the instantiation of VNFs. Thereby, the
Pattern Orchestrator can enforce patterns remotely.

• We have added a new section, which provides a real experiment on how to manage dynamically the
NFV resources. Namely, this is section 4.5.2 and deals with the dynamic scale out of VNF instances.

• Regarding the previous bullet, when a scale out process happens, multiple instances of a VNF are
available. Then, we need an entity that distributes the incoming traffic among the VNF instances. This
is the role of the load balancer and it is described in the new section 4.5.3.

• Section 6 was updated, as in D3.2 it contained draft material and references to the future work in
D3.8.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D3.8 Network Functions Virtualization for IoT (final)
Dissemination level: public

13

2 TASK OBJECTIVES AND LINKS TO SEMIOTICS’
REQUIREMENTS, KPIS AND ARCHITECTURE

2.1 Link with T2.3: SEMIoTICS’ requirements in NFV

SEMIoTICS deliverable D2.3 [6] describes a set of requirements associated to the main SEMIoTICS’s use
cases (UC), to the generic SEMIoTICS platform and its layers. The aim of this section is to depict the role that
an NFV platform has on achieving those requirements. Thereby, on the one hand in Table 1 we list the
requirements from D2.3 where NFV is relevant. On the other hand, we add a column describing the NFV role
associated to the corresponding requirements. Also, we add a column that specifies where these requirements
are covered in the present deliverable. Regarding the requirements related to SEMIoTICS’ use cases 2 and
3, the reader can find further information in deliverables D5.10 and D5.11, respectively.

TABLE 1 LINK TO SEMIOTICS' REQUIREMENTES DEFINED IN DELIVERABLE D2.3 [6]

Req-ID Description How
requirement
is addressed

Status of the
Implementation

Where to check the
requirement

General Platform Requirements

R.GP.2

Scalable
infrastructure due to
the fast-paced
growth of IoT
devices

Via VNF
scaling out
operations,
precise
placement and
network
slicing, NFV is
able to provide
flexibility in
face of such
requirements.

Completed. Sections 1, 4 and 5.

R.GP.3

High adaptation
capability to
accommodate
different QoS
connectivity needs
(e.g. low latency,
reliable
communication).

Via precise
placement
operations and
allocation of
virtual
resources,
NFV provides
considerably
lower delays
or reliable
communication
s e.g. by
placing
computation
agents closer
to where they
are needed.

Completed. Section 4.

Network layer and Backend/Cloud Layer Requirements

R.NL.1/R.BC.1

Controller Node
requirement: At least
6 CPU cores and 32
GB RAM

These nodes
satisfy the
hardware
requirements
of the NFV
components.

Completed.

Section 6.1.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D3.8 Network Functions Virtualization for IoT (final)
Dissemination level: public

14

R.NL.2/R.BC.2
Controller Node
requirement: At least
2 Network interfaces

These nodes
satisfy the
hardware
requirements
of the NFV
components.

Completed.

Section 6.1.

R.NL.3/R.BC.3
Controller Node
Requirement: Linux
OS

These nodes
satisfy the
hardware
requirements
of the NFV
components.

Completed.

Section 6.1.

R.NL.4/R.BC.4

Controller Node
Requirement: Solid
State Disk (SSD) of
at least 1 TB

These nodes
satisfy the
hardware
requirements
of the NFV
components.

Completed.

Section 6.1.

R.NL.5/R.BC.5/
R.BC.6/
R.BC.7

Data paths /
Hypervisor Nodes
Requirement: At
least 4 CPU cores
and 8 GB RAM, at
least 2, 1Gbps
Network interfaces,
Virtualization
Extensions (Intel VT-
x/AMD-V) must be
supported by the
Hypervisor CPU for
hardware
acceleration of VMs.

These nodes
satisfy the
hardware
requirements
of the NFV
components.

Completed.

Section 6.1.

R.NL.6/R.BC.8/
R.BC.9

Data paths /
Hypervisor Nodes:
KVM and Linux
Containers (LXD)
must be supported
by the Hypervisor
Linux OS

These nodes
satisfy the
hardware
requirements
of the NFV
components.

Completed.

Section 6.1.

R.NL.8/
R.BC.12

The VIM and Virtual
Network frameworks
must support
Interfaces that
enable VM tenant
networking

Delegation of
networking
functions to
SSC is
possible
through the
corresponding
interfaces
SEMIoTICS’
VIM (i.e.
OpenStack),
which has full
multitenancy
support.

Completed. Section 5, 6.

R.NL.9/
R.BC.13

Interface between
the VIM and the

Interfacing and
delegation of

Completed. Section 4 and 5.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D3.8 Network Functions Virtualization for IoT (final)
Dissemination level: public

15

SDN controller to
allow VTN

virtual
networking
operations to
external SDN
Controllers is
supported by
SEMIoTICS
VIM via the
ML2 plugin
interface.

R.NL.10/
R.BC.14

Interfaces among
the MANO and the
VIM must ensure
seamless
interoperability
among different
entities of the
Backend Cloud

MANO and
VIM provide
well-
documented
REST APIs,
which agents
trigger and
make fully
interoperable
(e.g. parse the
returned
values) with
entities in the
Backend.

Completed. Section 4.3.3, 5.

R.NL.11/
R.BC.15

Secure
communication with
the various Backend
Cloud components
(e.g., use of
dedicated
management
network, appropriate
Firewall rules), as
well as the
communication
between VIM, SDN
Controller, and
MANO, with data
paths acting as
computing nodes for
VNF spinoff.

Distributed
compute
nodes are
used for VNF
spinoff that
enable data
paths
throughout the
platform.

Completed. Section 3.

IoT Security and Privacy Requirements

R.S.4

All components from
gateway, via SDN
Controller, to cloud
platforms and their
users MUST
authenticate mutually.

Any interaction
with the NFV
Component
must be done
by an
authorized
party.
Tokens/creden
tials can be

Completed. Section 5.1.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D3.8 Network Functions Virtualization for IoT (final)
Dissemination level: public

16

distributed to
other relevant
components
(e.g. Global
Pattern
Orchestrator)
for this
purpose.

UC2 SARA

R.UC2.12

The SEMIoTICS
platform SHOULD
allow SARA
components to
delegate to the
platform the
computation of
complex functions
over the data
received by field
devices. These
computations may
result either in the
generation of higher-
level observation
events (e.g.
significant Patient
events abstracted
form sensor data)
towards the ACS or in
sensors configuration
parameters (including
actuators command).
The SARA
components MAY
specify computations
either as Dataflow or
as Finite State
Machine.

SEMIoTICS
NFV platform
is able to
instantiate
VNFs at
precise
locations of
the
SEMIoTICS
infrastructure.
Such VNFs
represent the
computation
resources
needed by this
UC.

Completed. Section 3 and 4.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D3.8 Network Functions Virtualization for IoT (final)
Dissemination level: public

17

UC3 Sensing

R.UC3.9

IoT Sensing gateway
shall support 1 to
many standard IP
based (i.e. TCP
transport) M2M
communication
protocol to interface a
number N of
connecting Sensing
units (e.g. broadcast
type).

The IoT
Sensing
gateway is
either a VM, or
a Docker
container.
Regardless,
SEMIoTICS
NFV
component is
able to
orchestrate/bui
ld such V/C-
NF (for Virtual
or Container
Network
Function,
respectively)
with the
specified
communication
requirements
assuming
network
connectivity to
the respective
IoT Gateway is
available from
the NFV layer.

Completed. Section 4 and 5.

R.UC3.12

IoT Sensing gateway
shall be capable to
run Linux (e.g.
Ubuntu OS) and
standard graphics
and browser libraries.

Similar to
R.UC3.9,
NFVO is able
to orchestrate
a VNF with
such
requirements.

Completed. Section 4.

R.UC3.13

IoT Sensing gateway
should be able to
support http and
standard protocols for
cloud interfacing.

The same
explanation for
R.UC3.12.

Completed.

Section 4.

R.UC3.14

The specific M2M
protocol adopted on
UC3 is based on
MQTT. A MQTT
broker service will be
available to dispatch
messages between
the coordinating

SEMIoTICS
NFV
component is
able to
orchestrate a
MQTT broker
on demand at
a precise

Completed.

Section 4.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D3.8 Network Functions Virtualization for IoT (final)
Dissemination level: public

18

Sensing gateway and
its associated
Sensing units.

location in the
infrastructure.

2.2 Link to project KPIs

KPI ID Project KPI NFV role

KPI-4.6
Development of new security
mechanisms/controls

From an NFV perspective, SFC
is leveraged to guarantee
security procedures for each kind
of traffic in UC2. This is done by
concatenating different security
enforcers (firewalls, Intrusion
Detection Systems, Honeypots)
and forcing traffic to travers
them. As each element is
configured with specific security
rules according to the expected
traffic, only authorized packets
are expected to go through to the
services’ endpoints.

KPI-5.2
Service Function Chaining (SFC)
of a minimum 3 VNFs

This KPI aims at the orchestration
of SFC able to provide security
by the chaining of at least 3
VNFs. That is, from a centralized
position in the SEMIoTICS
architecture, the SDN Controller
and the NFV components should
be able to build and configure the
SFC for each kind of traffic.
Evaluation is reflected in the
ability to provide different QoS
measures per tenant network (i.e.
traffic type) in UC2.

KPI-6.1

Reduce manual interventions
required for bootstrapping of
smart object in each use case
domain by at least 80%

The bootstrapping service
involves e.g. computation agents,
MQTT brokers, databases. An
implementation of these
functional blocks in the form of
VNFs automates the service
bootstrapping process.
For UC3, the reduction on
manual interventions is reflected
in scaling operations. That is,
when a specific VNF is
overloaded with tasks, the NFV
Orchestrator automatically
triggers the scaling out of such
component automatically.
Therefore, such operations are
expected to eliminate user
intervention completely.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D3.8 Network Functions Virtualization for IoT (final)
Dissemination level: public

19

2.3 Link with T2.4: SEMIoTICS’ architecture

Task T2.4 deals with the design of the overall SEMIoTICS architecture. This task describes all the SEMIoTICS
functional components as well as the interaction between them. Of course, the NFV platform, treated herein,
is among the SEMIoTICS components. Therefore, it is important to highlight what is the role of NFV within
the context of the SEMIoTICS architecture and what is the relation with other SEMIoTICS components.

The NFV component belongs, along with SDN component, to the so-called SDN/NFV orchestration layer. In
general terms, NFV and SDN, provide SEMIoTICS with a flexible, dynamical, programmable and
reconfigurable network. In terms of architecture, NFV is a vertical component that spans almost the whole
SEMIoTICS platform. Namely, recall that NFV is composed of two main blocks, the NFV MANO that is the
orchestrator of the whole NFV and the NFVI, which is the virtualized infrastructure that supports the virtualized
functions, i.e. VNFs, by providing virtual computing, storage and networking resources.

FIGURE 3 INTERACTION BETWEEN NFV AND THE SEMIoTICS COMPONENTS: VNF, SSC AND THE

PATTERN ORCHESTRATOR.

The NFV MANO is typically deployed at the backend cloud, and the virtualized infrastructure, i.e. the NFVI,
are compute nodes at the IoT GW, at the backend cloud or at the network that connects the IoT GW and the
backend cloud. To be more specific, the virtualization of the IoT GW resources allow to deploy in a flexible
and dynamical manner the functionalities of the SEMIoTICS IoT GW. E.g. VNFs can implement the
“monitoring”, “local thing directory” or “patter engine” at the IoT GW level as VNFs orchestrated by the NFV

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D3.8 Network Functions Virtualization for IoT (final)
Dissemination level: public

20

MANO. These VNFs obviously, receive data from the field devices through standard network interfaces. The
VNFs at the network between the IoT GW and the backend cloud can be virtual switches. Moreover, VNFs
can be deployed at the backend cloud level. For instance, the SEMIoTICS component “GUI” is a VNF in use
case 3. Therefore, NFV has an interface northbound with SEMIoTICS components, at the SEMIoTICS
application orchestration layer, which is implemented via the Os-Ma-Nfvo endpoint (refer to Figure 1). In fact,
in section 4.3.3 we provide the implementation of this northbound bound interface by means of REST APIs.
It permits the interaction between the NFV MANO and the Pattern Orchestrator. Last, but not least, NFV has
an interface westbound with the SEMIoTICS SDN Controller (SSC) through the “VIM connector” component.
This interaction allows to provide data flow paths with the required networking resources among different
points of presence, e.g. between the IoT GW, the backend cloud and the virtual switches that connect the IoT
GW and the backend cloud.

In order to exemplify more clearly the interaction, that we described above, between the NFV MANO and the
rest of NFV components we present Figure 3. Namely, on the one hand, we exemplify the interaction between
the SEMIoTICS Pattern Orchestrator and the NFV MANO. The former requests the latter to instantiate VNFs
in the NFVI with given KPIs. Moreover, we show how the NFV Orchestrator triggers the VIM to allocate virtual
resources for the VNF instantiation at the possible points of presence of the NFVI, e.g. at the IoT GW or at a
network node. In this regard, the VIM and SSC interact to allocate networking resources with the necessary
QoS requirements. Finally, the VNFs embedding SEMIoTICS components are deployed on top of the NFVI
leveraging virtual resources of it.

Also related to the last paragraph, in section 4.3 we provide a dynamic sequence diagram that exemplifies
how any of the above mentioned VNFs, consisting of SEMIoTICS components, are instantiated in the NFVI
upon the request of the Pattern Orchestrator. Moreover, the Pattern Orchestrator specifies, to the NFV MANO,
the KPIs associated to the VNFs.

2.4 Validation: Task objectives, KPIs and D3.8

The following Table describes SEMIoTICS’ objectives related to Task 3.2 and maps them to different
sections on this deliverable.

TABLE 2 TASK OBJECTIVES

T3.2 Objectives D3.8 Chapters and Observations

Orchestration Platform

• MANO platform guaranteeing low latency,
high reliability, security and privacy
properties to NS.

1,3,4,5,6.1

Allowing dynamic reconfiguration of services

• Appropriate interfaces to allow dynamic
adaptation of network services, compatible
with ETSI-NFV architecture.

4, 5

Implementation

• Deployment of NFV infrastructure.

• Realize virtual monitoring, caching, security
and privacy as network functions.

3, 4, 6.1

Via this task, this deliverable D3.8 contributes to the satisfaction of Objective 4 (Development of core
mechanisms for multi-layered embedded intelligence, IoT application adaptation, learning and evolution, and
end-to-end security, privacy, accountability and user control), 5 (Development of IoT-aware programmable
networking capabilities, based on adaptation and SDN orchestration), and 6 (Development of a reference
prototype of the SEMIoTICS open architecture, demonstrated and evaluated in both IIoT (renewable energy)
and IoT (healthcare), as well as in a horizontal use case bridging the two landscapes (smart sensing), and
delivery of the respective open API). More precisely, through KPI-4.6, 5.2 and 6.1.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D3.8 Network Functions Virtualization for IoT (final)
Dissemination level: public

21

3 VNFs AND SFCs FOR SECURITY, PRIVACY AND
DEPENDABILITY IN SEMIOTICS

One of the main purposes of SEMIoTICS is to provide a secure networking infrastructure, via the associated
proactive and reactive security mechanisms, such as the deployment of network security services and the
continuous monitoring and intrusion detection. In order to achieve this objective, SEMIoTICS contains network
monitoring functions, intrusion detection mechanisms for the identification of attacks, and run-time network
adaptation for attack response and mitigation mechanisms.

Security in SEMIoTICS propose the creation of a reactive security framework. The framework includes the
combination of various Security Functions, employing the flexibility of SDN/NFV and SFC. This reactive
security framework can offer continuous monitoring of incoming traffic and detecting and adapting to different
types of attacks.

Via this framework, security network functions such as Firewalls (FW), Intrusion Detection Systems (IDS),
Deep Packet Inspection Systems (DPI), Honeypots (HP), HoneyNets and Load Balancers (LB), can create a
number of function chains to forward traffic based on the type of running application. For the reason that these
security functions could be dynamically instantiated, automatically deployed, and transparently inserted into
the traffic flow, different security needs can be addressed for different profile types such as per tenant, per
traffic and per application. More details appear in the subsections below.

3.1 VNFs for Security, Privacy and Dependability Mechanisms

Security, privacy and dependability mechanisms implemented as security services themselves are typically
being deployed as monolithic platforms (often hardware-based), installed at fixed locations inside and/or at
the edge of trust domains, and being rigid and static, often lacking automatic reconfiguration and
customization capabilities. This approach, combined with the typical networks' architectural restrictions
mentioned above, increase operational complexity, prohibit dynamic updates and impose significant (and
often unnecessary) performance overheads, as each network packet must be processed by a series of
predefined service functions, even when these are redundant.

 The use of SDN/NFV and IoT in cross-domain setups can introduce new security, privacy and dependability
(SPD) risks since the increased openness of IoT infrastructures makes SPD considerations more critical than
ever before. The use of VNFs for SPD is an important aspect in SEMIoTICS, although the maintenance of
SPD is necessary to meet regulatory and compliance requirements. This is increasingly challenging and
potentially expensive in virtualized networks that can span across several locations, from data centers, remote
points of presence, mobile base stations to customer premise locations. However, not all virtual networks are
suitable to be centrally hosted for a variety of reasons, which can include latency, bandwidth and performance.
The resulting framework could be very effective and practical for hosting various types of VNFs and changes
the convention definition of a security perimeter.

3.1.1 SECURITY, PRIVACY AND DEPENDABILITY VNFs

VNFs can be used for various tasks related to security and privacy in secure industrial infrastructures, such
as the SEMIoTICS use cases, and deployed as virtualized network service functions as proactive mechanisms
able to provide SPD monitoring management.

A list of VNFs for proactive SPD property monitoring includes the following functions:

• Intrusion Detection System (IDS) / Intrusion Prevention System (IPS) - a service able to monitor
traffic/system activities for suspicious activities or attack violations and prevent malicious attacks

• Firewall - a service or appliance running within a virtualized environment providing packet filtering

• Deep Packet Inspection (DPI) - a function for advanced packet filtering (data and header) running
at the application layer of OSI reference model.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D3.8 Network Functions Virtualization for IoT (final)
Dissemination level: public

22

• Network Virtualization – services that can use of Virtual eXtensible Local Area Network (VXLAN) to
encapsulate MAC-based OSI layer 2 Ethernet frames within layer 4 UDP packets, brings the scalability
and isolation benefits needed in virtualised computing environments.

• Access Control Lists – are services to route traffic to the appropriate isolated virtual networks and
the corresponding security service functions.

• Packet inspectors – a service to detect malformed packets or malicious activity (IPFiX, DDoS).

• Load-balancer – is a service or a device that can distribute network or application traffic across
several paths or servers. It is used to increase the capacity, reliability and efficient of the applications.

• HoneyNet – a set of functions (HoneyPots) emulating a production network deployment, able to
attract and detect attacks, acting as a decoy or dummy target.

In addition to the inspection of packets using the DPI’s function, VNFs can also modify data packets. For
example, for protection of confidentiality of data, a VNF can implement an IPSec tunnel. The remote endpoint
of the tunnel can either be another VNF in the network, or the security manager in the backend (cf. also the
description of security manager in D2.4). Key distribution for IPSec is also facilitated by the security manager
in the network and backend layers.

VNFs can also be used for privacy purposes: A VNF can anonymise or pseudonymise a data stream coming
from a sensor. Thus, such VNFs requires information on the structure of the data stream to identify and to
label the sensors’ data. Based on this information, a VNF can replace the identifiers with pseudonyms. In
addition, a dedicated VNF can reduce the granularity of sensor data to avoid traffic analysis from passive
listening that can retrieve critical and private information structures. For instance, when a grid of sensors
provides temperature values every 10ms over a large area, the VNF could reduce this granularity to one
average hourly value over the whole area. Finally, other than the ones mentioned above, other SFCs could
be included in a real deployment, such as load balancers, HTTP header enrichment functions, TCP optimisers,
Resource Signalling, etc.

While most or all of these functionalities could also be achieved using traditional approaches towards network
architectures and software development, using VNFs has the following particular advantages in the context
of SEMIoTICS. Thus, VNFs in SDN/NFV, as important parts of 5G networking, provide promising combination
leading to programmable connectivity, rapid service provisioning and service chaining and thus can help to
reduce the CAPEX/OPEX in the control network infrastructure. Furthermore, by appropriately leveraging the
flexibility of SDN/NFV-enabled networks in the context of the adopted security mechanisms, industrial
infrastructures can not only match but also improve their security posture compared to the existing, traditional
networking environments3. More specifically, for the pattern language, as described in D4.1, it is essential
that properties for security and privacy can be monitored and enforced. In order to classify the SPD properties
that each service function chain can satisfy, Table 3 depicts this correlation properties and functions. Thus, a
pattern can check whether an information flow includes, e.g. a required VNF for anonymization. In addition, if
a pattern determines that a certain property needs to be enforced, it can add a VNF for this purpose to the
respective information flow.

3 N. Petroulakis, T. Mahmoodi, V. Kulkarni, A. Roos, P. Vizarreta, K. Abbasik, X. Vilajosana, S. Spirou, A. Matsiuk, and
E. Sakic. Virtuwind: Virtual and programmable industrial network prototype deployed in operational wind park, 2016.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D3.8 Network Functions Virtualization for IoT (final)
Dissemination level: public

23

TABLE 3 SPD PROPERTIES IN SERVICE FUNCTIONS

 Privacy Security Dependability

Functions Access
Control

Confidentiality Integrity Availability Reliability

Firewall o o

IDS/IPS o o o

DPI o o

IPSec o o o

Load-
balancer

 o o

HoneyPot/Net o o o

3.1.2 PROACTIVE MONITORING, INCIDENT DETECTION AND MITIGATION MECHANISMS

The preparation of an incident detection and response for the SEMIoTICS infrastructure contains a generic
incident handling of a security framework for cyber-physical system. Additionally, the incident response,
vulnerability and artefact handling include analysis, support and coordination. In the same way, the protection
detection and response are a combination of monitoring and incident detection, mitigation and trace-back and
audit mechanisms. Based on that, within the SEMIoTICS context, we investigate the insertion of specific VNFs
for proactive monitoring, incident detection and mitigation. The SEMIoTICS security mechanisms can include
continuous network monitoring and intrusion detection for identification of attacks and run-time network
adaptation for attack response and mitigation mechanisms. That includes the implementation of the following
proactive service functions:

• Firewall as a service or appliance runs within a virtualised environment providing packet filtering.
Legacy firewalls (e.g. actual hardware appliances) can be also supported and can easily be integrated
into the architecture. A software or hardware firewall (legacy firewall appliance already present in the
industrial network) instance can be deployed on the SEMIoTICS framework to implement network
perimeter security. The type of firewall, as well as its placement, is irrelevant in the context as it allows
the use of any type of firewall, and for its placement in any place on an SDN network deployment.

• IDS/IPS can monitor traffic or system activities for suspicious activities or attack violations, also able
to prevent malicious attacks if needed (in the case of IPS). More specifically, IDS/IPS instances should
ensure that the most up-to-date rules are constantly active. A database for event monitoring is
presented, while provisions are made to allow for future extensions to transmit relevant information to
security backend (e.g. for more sophisticated pattern matching), complex configuration and scaling-
out (a consequence of topological dependencies, especially when trying to ensure consistent ordering
of service functions and/or when symmetric traffic flows are needed; this complexity also hinders
scaling out the infrastructure).

• DPI can match the packet payloads against a set of predefined patterns. Extracting the DPI
functionality and providing it as a common service function to various applications (combining and
matching DPI patterns from different sources) can result in significant performance gains. SEMIoTICS
employs the DPI function for monitor the unknown incoming traffic and assign it to the (sub-)set of
security service functions intended for the corresponding traffic type.

• HoneyPot can react as a service to attract and detect attacks acting as a decoy or dummy target.
Network-based honeypots can be used to detect attacks and malware because they can decoy
deployment that can fool attackers into thinking they are hitting a real network whereas in the same
time it is used to collect information about the attacker and attack method. HoneyNet can deploy a
set of functions (Honeypots), emulating a production network deployment, able to attract and to detect
attacks, acting as a decoy or dummy target.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D3.8 Network Functions Virtualization for IoT (final)
Dissemination level: public

24

The placement of exemplary security VNFs in the NFV architecture is depicted in Figure 4.

FIGURE 4 EXEMPLARY SECURITY FUNCTIONS IN NFV ARCHITECTURE

3.2 SFC for Security, Privacy and Dependability Mechanisms

In typical network deployments, the end-to-end traffic of various applications typically should go through
several network services (e.g. firewalls, load-balancers, WAN accelerators). Furthermore, it can be referred
to as Service Functions (SF) (or L4-L7 Services, or Network Functions, depending on the source/organisation)
which are placed along its path. This traditional networking concept and the associated service deployments
are characterised by a number of constraints and inefficiencies [7]:

• Topology constraints (network services are highly dependent on a specific network topology, which is
hard to update).

• Complex configuration and scaling-out (a consequence of topological dependencies, especially when
trying to ensure consistent ordering of service functions and/or when symmetric traffic flows are
needed; this complexity also hinders scaling out the infrastructure).

• Constrained high availability (as alternative and/or redundant service functions must typically be
placed on the same network location as the primary one).

• Inconsistent or inelastic service chains (network administrators have no consistent way to impose and
verify the ordering of individual service functions, other than using strict topologies - on the other
hand, these topology constraints necessitate that traffic goes through a rigid set of services functions,
often imposing unnecessary capacity and latency costs, while changes to this service chain can
introduce a significant administrative burden).

• Coarse policy enforcement (classification capabilities and the associated policy enforcements
mechanisms are of coarse nature, e.g. using topology information).

• Coarse traffic selection criteria (as all traffic in a particular network segment typically has to traverse
all the service functions along its path).

All the previous are exacerbated nowadays, with the ubiquitous use of virtual platforms, which necessitates
the use of dynamic and flexible service environments. This is even more pronounced in service provider s
and/or cloud environments, with infrastructures spanning different domains and serving numerous tenants,
each with their own requirements. Said tenants share a subset of the providers' service functions and require
dynamic changes to traffic and service function routing, to follow updates to their policies (e.g. security) or
Service Level Agreements.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D3.8 Network Functions Virtualization for IoT (final)
Dissemination level: public

25

SFC aims to address these issues via a service-specific overlay that creates a service-oriented topology, on
top of the existing network topology, thus providing service function interoperability [8]. An SDN-based SFC
Architecture, such as the one defined by the Open Networking Foundation [9], can extend this concept,
exploiting the flexibility and advanced capabilities of software defined networks, to provide innovative and
comprehensive solutions for the above-stated presented weaknesses of the legacy networks.

3.2.1 SFC BACKGROUND

3.2.1.1 TERMS AND DEFINITIONS
The definitions of SFC terms are described in IETF [10]. Based on these descriptions, the used terms and
definitions are listed below:

Network Service Function: A function that is responsible for specific treatment of received packets.

Service Function Chaining: A service function chain defines an ordered set of abstract service functions
and ordering constraints that must be applied to packets and/or frames and/or flows selected as a
result of classification.

Service Function Forwarder: A service function forwarder is responsible for forwarding traffic to one or
more connected service functions according to information carried in the SFC encapsulation, as well
as handling traffic coming back from the service function (legacy or virtual).

Service Function Path: The service function path is a constrained specification of where packets assigned
to a certain route must go. Any overlay or underlay technology can be used to create service paths
(VLAN, ECMP, GRE, VXLAN, etc.).

Service Function Classifier: An entity that classifies traffic flows for service chaining according to
classification rules. The Classifier is responsible to classify and mark packets, based on the predefined
ACL, with the corresponding SF Chain Identifier. It can be placed on a data path or run as an application
on top of a network controller.

SFC Header: A header that is embedded into the flow packet by the SFC Classifier to facilitate the
forwarding of flow packets along the service function chain path. This header also allows the transport
of metadata to support various service chain related functionality.

Tenant: A tenant is one organization that is using SFC. A tenant uses SFC on one's own private
infrastructure or on an infrastructure shared with other tenants.

Tenant's User Data Plane: The tenant uses SFC to provide service to its customers or users.

3.2.1.2 CONTROLLER COMPONENTS AND TEMPLATES
OpenDaylight (ODL) supports SFC4 via the use of suitable templates (Service Functions, Service Function
Forwarders, Service Function Classifiers, Service Function Chains and Access Control Lists) in the controller
in JSON formats. The templates of SFC components as provide in the controller is defined in Table 4:

TABLE 4 SFC COMPONENTS AND JSON TEMPLATES

Service-nodes Syntax

Service Function (SF)

"service-function": [{"name","ip-mgmt-address",
"rest-uri","type", "nsh-aware", "sf-data-plane-
locator": [{"name","port","ip","transport", "service-
function-forwarder"}] }]

Service Function Forwarder (SFF) "service-function-forwarder": [{"name","service-
node", "service-function-forwarder-ovs:ovs-bridge":
{"bridge-name"}, "sf-data-plane-locator": [
{"name","port","ip","transport", "service-function-
forwarder"}] }], "service-function-dictionary": [

4 https://docs.opendaylight.org/en/stable-fluorine/user-guide/service-function-chaining.html

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D3.8 Network Functions Virtualization for IoT (final)
Dissemination level: public

26

{"name", "sff-sf-data-plane-locator": {"sf-dpl-name",
"sff-dpl-name" }}]

Classifier "service-function-classifier": [{"name","scl-service-
function-forwarder": [{"name", "interface"}],
"acl":{"name","type"}]

Service Function Chain "service-function-chain": [
{"name", "symmetric", "sfc-service-function": [
{"name", "type"}, {"name", "type"}]

Service Function Path "service-function-path": [{"name","service-chain-
name","starting-index", "symmetric","context-
metadata", "service-path-hop": [
{"hop-number", "service-function-name" }]

3.2.2 SFC FOR LOW LATENCY, HIGH RELIABILITY, SECURITY AND PRIVACY

Security services are a prime example of traditional network service functions that can benefit from the
adoption of SFC, especially in the context of SDN networks. Indeed, security functions such as Access Control
List (ACL), Segment, Edge and Application Firewalls, Intrusion Detection and/or Intrusion Prevention systems
IDS/IPS and DPI are some of the principal service functions considered by IETF when presenting SFC use
cases pertaining to Data Centers [10] and Mobile Networks [11]. Said IETF studies consider several SFC use
cases and highlight the numerous drawbacks of using traditional service provision methods when applying,
among others, the security functions. The security services themselves are typically been deployed as
monolithic platforms (often hardware-based), installed at fixed locations inside and/or at the edge of trust
domains, and being rigid and static, often lacking automatic reconfiguration and customization capabilities.
This approach, combined with the typical networks’ architectural restrictions mentioned above, increase
operational complexity, prohibit dynamic updates and impose significant (and often unnecessary)
performance overheads, as each network packet must be processed by a series of predefined service
functions, even when these are redundant [12].

A typical example of an important, and also ubiquitous, security-related function is DPI, whereby packet
payloads are matched against a set of predefined patterns. DPI imposes a significant performance overhead,
because of the pattern matching mechanisms that are at the core its operation, and thus largely unavoidable
(motivating a wealth of research efforts focusing on improving their performance [13] [14]). Nevertheless, DPI,
in one form or another, is part of many network (hardware or software) appliances and middleboxes; some
examples can be seen in [15]. Thus, leveraging the benefits of SDN-based SFC deployments involves
reversing this trend for monolithic, "all- in-one", security services, which are now commonplace. This is an
approach, brought forward in part because of the advancements in hardware performance, which meant that
a single, relatively affordable, hardware platform had enough resources to accomplish multiple tasks
simultaneously. Instead, in the context of SFC, the focus is on breaking-up these complex services into
dedicated service functions, each providing a single task.

Another SFC example, which is interesting for the SEMIoTICS purposes, is the one where low latency and
reliability is needed. In this case, in the SARA UC, the humanoid robot (Pepper), from the SARA UC, needs
to send a reliable live video stream with low latency to the SARA Web App located at the backend cloud.
Thereby, the NFV network must support a chain of VNFs that forward the data flow from end-to-end with low
latency regardless of the network impairments. To this end, the NFV MANO allocates the necessary
communication and computing resources to guarantee the required QoS, i.e. it provides a network slice with
low latency and reliability guarantees. This is possible thanks to the programmability and flexibility provided
by the NFV framework.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D3.8 Network Functions Virtualization for IoT (final)
Dissemination level: public

27

FIGURE 5 SFC EXAMPLE INVOLVING LIVE VIDEO STREAMING FOR SARA UC.

3.2.3 REACTIVE MONITORING AND NETWORK SECURITY INCIDENT MECHANISMS

Different from the proactive deployment of specific security mechanisms, that are setup and deployed before
an attack takes place (typically at the network’s design phase), the reactive mechanisms employed are able
to react in real time to changes in the network as well as the traffic traversing said network, e.g. to
automatically mitigate attacks, block malicious entities, route them to specific, dummy network components
to allow for enhanced monitoring of their actions or even trigger the deployment of new security functions to
help alleviate the effects of an ongoing attack.

The core part of the reactive security monitoring is based on the SFC framework and the previous described
components and templates. That includes the definition of the service functions, the placement of functions
in the forwarders and the classifiers that can classify the traffic (Figure 6). Moreover, the final stage of the
definition includes the creation of the service function chains related also with the predefined ACLs (Figure
7).

FIGURE 6 SFC SERVICE NODES

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D3.8 Network Functions Virtualization for IoT (final)
Dissemination level: public

28

FIGURE 7 PREDEFINED SERVICE CHAINS OF SERVICE FUNCTIONS

By leveraging the flexibility of SDN-based deployments and the concept of SFC, a service-specific overlay
creates a service-oriented topology, on top of the existing network topology, thus providing service function
interoperability. The SFC provides the ability to define an ordered list of network services. The framework’s
SFs include the security functions proactively deployed. Whether the underlying network and the service
functions are virtualised or not, is irrelevant from the perspective of the SFC. These services are then
"stitched" together in the network to create a service chain allowing us to route unknown/suspicious traffic via
the IDS and the DPI SFs, to classify it (as either legitimate or malicious) and to forward it accordingly. With
this mechanism, malicious traffic can be isolated in the honeypot, allowing us to track the attacker, identify
her purpose and keep her occupied. Using this scheme, the honeynet's effectiveness is enhanced, taking
advantage of the SDN capabilities of dynamic network reconfigurations and traffic forwarding, and this is
something that is exploited in the context of SEMIoTICS reactive security framework, to reroute malicious
traffic to honeypots/honeynets instances. A typical example of the reactive security framework for the Wind
Park use case is depicted in Figure 8. In this example, three different SFCs are defined to classify traffic in
three different types, a legitimate, malicious and unknown one.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D3.8 Network Functions Virtualization for IoT (final)
Dissemination level: public

29

FIGURE 8 SFC EXAMPLE INVOLVING WIND PARK TRAFFIC CLASSIFICATION

3.2.4 DYNAMIC INSTANTIATION OF VNFS BASED ON SFC REQUESTS

In order to enhance the dynamic SFC instantiation in a network, the principles of NFV MANO can be combined
with the framework presented here. The expanded architecture can be aligned to the approach described in
ETSI GS NFV 002 [2]. This enhances the proposed framework with flexible deployment and instantiation of
network functions and the automated preparation of service functions chains. For that reason, the SFC
Manager can be enhanced to handle the interactions between the SDN controller and the MANO, to
receive networking information about instantiated VNFs, as well as to provide information about possible
service function chains.

One of the innovative approaches supported by this work, is the dynamic instantiation of SFCs based on the
predefined SFC patterns. This can be applied based on the patterns as will be presented in D4.8. When there
is a request for an SFC instantiation containing service functions, the depicted in Figure 9 procedure should
be followed. If the SFC does not exist, the instantiation of the respective SFC is deployed through the
identification of the requested VNFs. If the VNFs exist in the service nodes, the SFC is updated including
these VNFs. If the VNFs do not exist, the service node with the available resources is requested to instantiate
the respective VNFs. The procedure is ended when all the requested VNFs are included in the SFC.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D3.8 Network Functions Virtualization for IoT (final)
Dissemination level: public

30

FIGURE 9 VNF INSTANTIATION BASED ON SFC REQUEST

The procedure of instantiation and the identification of the respective SFCs and the VNFs based on the
patterns is depicted in the Figure 9. That can be based on the actual interaction between the components of
the SEMIoTICS architecture. Pattern Orchestrator forwards a specific chain request to the Pattern Engine for
forwarding the traffic between entities through a specific chain of functions. Pattern Engine forwards this
request to the SFC manager which is located in the SDN controller responding to the Pattern Engine whether
the chain exists or not. If the chain exists, then a respond of the chain satisfaction is returned to the Pattern
Orchestrator. If the chain does not exist, then a requested is forwarded from the MANO requesting whether
the service functions exist or not. If functions exist in the VIM, then the chain can be instantiated in the SFC
Manager and a respond of the chain satisfaction is returned to the Pattern Orchestrator. If functions do not
exist in the VIM then, a function instantiation request is forwarded to the NFV Orchestrator, which is
responsible to instantiate them in the VIM. Then, the chain can be instantiated in the SFC Manager and a
respond of the chain satisfaction is returned to the Pattern Orchestrator.

As initially described in D2.5 and in D5.2, in order to fulfil SFC request (chain{vnf1,vnf2,..}) the

following procedures and abstract rest calls are presented. It is a four steps approach get or post chain and

get or post vnfs as presented below.

Request: chain{vnf1,vnf2,..}

1) Get service chains stored in the SDN controller.

chains: GET(SDN_CONTROLLER_IP, 8181, “/restconf/config/service-function-

chain:service-function-chains/”)

2) Verify if service chain(vnf1,vnf2,…) is included in the instantiated chains.

This can be done by use of the SFC pattern rules as enforced through the Pattern Orchestrator and the
Pattern Engine at the backend. The following rules can be extended to patterns to support such
verification.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D3.8 Network Functions Virtualization for IoT (final)
Dissemination level: public

31

a) When the chain exists,

then the SFC request is satisfied.

b) When the chain is not included in the chains,

then the existing vnfs should be gathered (next steps).

3) Get network service instances (vnfs) that are running in the VIM.

NFV Mano can get the required information regarding the up and running network service instance.

vnfs: GET(MANO_IP, 9999, “/osm/nslcm/v1/ns_instances/”)

4) Verify if network services {vnf1,vnf2,…} of the chain are included in the vnfs.

a) When {vnf1, vnf2,…} are included in the vnfs,

then a new chain can be instantiated and inserted in the SDN controller

chain: POST(SDN_CONTROLLER_IP, 8181, “/restconf/config/service-function-

chain:service-function-chains/”, chain)

b)

When {vnf1, vnf2,..} are not included in the vnfs,

then all the requested {vnf1, vnf2,..} should be instantiated based on the existence of the

vnf_descriptions {nsdId,nsName, nsDescriptions,vimAccountId}

i) Get Network Service Descriptors (nsds)

The first step includes the search on the available service descriptors.

nsds: GET(MANO_IP, 9999, “/osm/nslcm/v1/ns_ descriptors/”)

ii) Create network service resource (nsdID)

The second step includes the creation of the network service.

nsdID: POST(MANO_IP, 9999, “/osm/nslcm/v1/ns_ instances/”, vnf_instance)

iii) Instantiate network service instance (nsi)

The third step includes the actual instantiation of the network service as a vnf to be included in the
chain.

nsi: POST(MANO_IP, 9999, “/osm/nslcm/v1/ns_instances/nsdId/instantiate/”,

vnf_description)

And since the required {vnf1, vnf2,..} will exist, the chain can be instantiated (step 4a).

3.2.5 DYNAMIC SFC INSTANTIATION IN THE AMBIENT ASSISTING LIVING USE CASE

The second use case of SEMIoTICS focuses on an ambient-assisted living scenario in a smart home
environment, for the well-being and independent living of the elderly. In this context, a full implementation of
the SFC-based security framework is presented featuring various services and operational security service
functions in the following:

i. Body Area Network (BAN). Short-range network of wearables (e.g. sensors and identification tags carried
or worn on the patient’s person) for fall detection, fall risk assessment, and other mobility-related data.

ii. Robotic Rollator. A powered, wheeled walking frame, primarily used for physical support, but also equipped
with various sensors and computational units, and capable of identifying a patient (the user of the rollator)
and monitoring their behavior (e.g. gait & posture).

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D3.8 Network Functions Virtualization for IoT (final)
Dissemination level: public

32

iii. Mobile Phone. User’s mobile phone that acts a gateway for the BAN devices, as well as the Robotic Rollator
devices (but only in case of outdoors use).

iv. Smart Home Infrastructure. Sensors, actuators, lighting, climate control, and other smart devices, as well
as the corresponding gateway(s), that comprise a smart living environment.

v. Robotic Assistant. A robotic component (in our case a Humanoid Robot) for monitoring a patient’s activities
(ADL data), health status, and treatment/training progress, as well as for supporting cognitive skills training,
notifying/reminding the patient of upcoming treatments (e.g. medication & training schedules) and visits.

vi. Backend. The backend system providing an assortment of assistance services for the elderly and being
monitored by caregivers and healthcare professionals.

Considering the above, there is significant motivation to leverage the flexibility provided by SFC to define
specific service chains for each type of traffic. By applying the previous described procedure of chain
instantiation, the legacy SARA use case can be extended to support traffic forwarding through specific service
functions. That includes the traffic forwarding for the different type of traffic exchanged between the different
actors as following:

▪ Chain 1 – Mobile Phone: Firewall -> DPI -> IDS -> Output.
▪ Chain 2 – Robotic Rolator: Firewall -> IDS -> Load Balancer -> Output.
▪ Chain 3 – Smart Home: Firewall -> IDS -> Output.
▪ Chain 4 – Robotic Assistant: Firewall -> Load Balancer -> Output.
▪ Chain 5 - Malicious: Firewall -> Honeypot.

The above scenario sketches a complex environment, requiring support for integration of heterogeneous
devices and communication protocols, high degrees of interoperability, and support for distributed services
and applications (each with its own set of intrinsic requirements), while guaranteeing the safety of the patient
and the security and privacy of her patient data. This use case is visualized in Figure 10, which depicts the
various types of devices, their interactions, and the involved communication technologies.

FIGURE 10 AMBIENT-ASSISTED LIVIND SCENARIO AND TRAFFIC CLASSIFICATION

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D3.8 Network Functions Virtualization for IoT (final)
Dissemination level: public

33

The instantiation of a sequence of functions can constitute a service chain. Similar to the insertion of service
functions in the SFC manager through the exposed service function REST interface, service chains can be
inserted. In the list of the service functions, the firewall, the DPI, the IDS and the Load Balancer have been
defined as the most crucial ones to enable the SPDI properties required by each chain to guarantee. Each
VNF has a unique IP address which is required for the configuration and integration with the other functions
interacting also with the use case devices and apps. Pattern Orchestrator is responsible to forward the SFC
request to the Pattern Engine in order to verify or instantiate SFC requests and insert them in the SFC
Manager as presented in Figure 11.

FIGURE 11 INSTANTIATION OF VNFS AND SFC

Following the procedure presented in the previous subsection, the request for the SFC1=chain{firewall,

dpi, ids) includes the instantiation of the chains and the respective VNFs in the SFC Manager by the

use of the NFV Orchestrator. The JSON output for the insertion of the chain in the SFC manager is presented
in Figure 12.

FIGURE 12 JSON OF THE SERVICE FUNCTION CHAIN CONTAINING FIREWALL, DPI AND IDS

Following the procedure and SFC requests (presented in Figure 9), the topology and the configuration of the
assisting living use case can be based on the dynamic instantiation and insertion of service functions and
chains. Compared to the statically configuration of wind park use case presented in Figure 8, the instantiation
of the ambient assisting living aims to be completed dynamically as presented in Figure 13.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D3.8 Network Functions Virtualization for IoT (final)
Dissemination level: public

34

FIGURE 13 SFC EXAMPLE INVOLVING SARA USE CASE TRAFFIC CLASSIFICATION

A more detailed technical description of the network descriptor instantiation will be presented in the next
section.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D3.8 Network Functions Virtualization for IoT (final)
Dissemination level: public

35

4 NFV MANAGEMENT AND ORCHESTRATION FOR SEMIoTICS

In legacy networks, Network Functions (NF) implementations are tightly related to the hardware they run on
top of it. That is, NF such as routing or switching are implemented by routers or switches, respectively, and
so forth. NFV breaks such coupling via virtualization technologies [4]. That is, by implementing NF as software
on top of a pool of fairly generic hardware resources (i.e. data center), it is possible to provide VNF which
could be effectively re-instantiated, scaled or replaced in a very short time and reduce CAPEX/OPEX when
compared with PNF.

Virtualization carries new challenges to the traditional network management as well as new entities and
relationships among them. For instance, a virtual Network Service (NS) is usually composed of various
VNF/PNF connected together in what is referred to as an SFC, specified in Virtual Network Function
Forwarding Graphs (VNFFG) descriptors. The emergence of these new software elements, namely, VNFs,
Virtual Links (VL), VNFFG, and their relationship with PNFs in a decoupled NFVI is handled by the NFV MANO
framework.

4.1 NFV MANO functional blocks

The creation, instantiation, updating, and termination of NS is a new concept in networking, requiring the
definition of new reference points (e.g. interfaces), functionality and entities. Moreover, the management of
existing physical resources for virtualization, assignment of virtual resources to VNFs, lifecycle management
of each VNF, and the realization of NS across a distributed set of physical resources impose new challenges
to traditional networking. Efforts towards standardization in this regard have yielded ETSI’s NFVI, which
include the VIM and the NFV MANO framework (see Figure 1).

The aforementioned components of the NFVI are to be described here, as well as the interaction among them
to orchestrate NS and the role they play within the SEMIoTICS framework.

4.1.1 VIRTUALIZED INFRASTRUCTURE MANAGER

NFVI defines two Administrative Domains [4] namely the Infrastructure and Tenant domains. The former
contemplates the physical infrastructure upon which virtualization is performed, and therefore application
agnostic; while the latter makes use of virtualized resources to spawn VNFs and create NS. Unlike resource
allocation in other virtualized environments, in NFVI requests simultaneously ask for compute, storage and
network resources. Moreover, NS could be composed of VNFs with hardware affinity/anti-affinity or require
specific latency/bandwidth constraints in virtual links connecting VNFs. Such demands occur dynamically,
allocating or freeing resources that could then be used for other NS, e.g. scaling up VNF’s computing rate.

A VIM lies in the Infrastructure Domain. It takes care of abstracting the physical resources of the NFVI and
making them available as virtual resources for VNFs. This is achieved through the reference point Nf-Vi,
which interconnects the VIM and NFVI (see Figure 1). It allows the VIM to acknowledge the physical
infrastructure (compute, storage) as well as enabling communication with network controllers (e.g. SDN
Controllers) to provide virtual network resources to NS. Even-though VIMs could well control all resources of
the NFVI (compute, storage and network), they could also be specialized in handling only a certain type of
NFVI resource (e.g. compute-only, storage-only, network-only) [4].

Beyond the already-mentioned, functions carried on by the VIM are the following:

• Orchestrate requests made to the NFVI from higher layers (NFVO), e.g.
allocation/update/release/reclamation of resources.

• Keep an inventory of allocated virtual resources to physical resources.

• Ensure network/traffic control by maintaining virtual network assets, e.g. virtual links, networks,
subnets, ports.

• Management of VNF-FG by guaranteeing their compute, storage and network requirements.

• Management and reporting of virtualized resources utilization, capacity, and density (e.g. virtualized
to physical resources ratio).

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D3.8 Network Functions Virtualization for IoT (final)
Dissemination level: public

36

• Management of software resources (such as hypervisors and images), as well as discovery of
capabilities of such resources.

As detailed in [4] other relevant VIM responsibilities within the NFVI network are:

• Provide “Network as a Service” northbound interface to the NFVO (realized via the Or-Vi reference
point, see Figure 1).

• Abstract the various southbound interfaces (SBI) and network overlays mechanisms exposed by the
NFVI network.

• Invoke SBI mechanisms of the underlying NFVI network.

• Establish connectivity by directly configuring forwarding instructions to network VNFs (e.g.
vSwitches), or other VNFs not in the domain of an external network controller.

These compose the network controller part of the VIM. Nevertheless, and as mentioned previously, the
required network abstractions mechanisms and management can be left to an external network controller,
which feeds of NFVI information via the defined reference points (Nf-Vi, see Figure 1). It is reasonable to
assume the VIM as key part of the NFVI. Being the only NFV component interfacing with the physical
infrastructure it exposes open and comprehensible APIs to higher layers, i.e. NFVO, so functions could trigger
them to get relevant information from the physical as well as the virtualized infrastructure, and trigger actions
upon such information, e.g. create a NS with the necessary resources.

In the SEMIoTICS framework, the physical NFVI is able to support virtualization as realised by the VIM. This
allows the NFVO to instantiate VNFs subject to the available compute and storage resources, as well as
interconnect such VNFs together via an external SEMIoTICS SDN controller. The following subsections
describe relevant Northbound Interfaces (NBI) or APIs usually exposed by VIMs, i.e. OpenStack, which are
used by the Resource Orchestration (RO) function in the NFVO in order to assist the creation of NS by
satisfying the requirements of the SEMIoTICS use cases (UC).

4.1.1.1 COMPUTE
Compute services at the VIM not only are in charge of creating virtual servers (or containers) on top of physical
machines, but also to provision bare metal nodes. In the case of OpenStack this is achieved by means of
projects such as Ironic [16]. The compute API for OpenStack is provided through the project Nova [17]. It
provides “scalable, on demand, self-service access to compute resources” through RESTful HTTP endpoints
that can be triggered by any authorized entity. All content sent or received from the Compute API endpoints
are in JavaScript Object Notation (JSON) format. As it is a text-based type, it allows developers to employ a
wide range of tools to reach such APIs, easing automation.

The following is a non-exhaustive list of concepts related to the Compute service as well as the information
they provide or actions they are able to execute through the corresponding API for SEMIoTICS [17]:

• Hosts: physical machines that provide enough resources to spawn a Server. In SEMIoTICS, hosts
conform the set of field level, network, and backend devices that together compose the NFVI. For
instance, IoT Gateways at field level are assumed to provide enough compute resources to host VNFs
realising local smart behaviour. Similarly, network level devices support VNFs for
forwarding/routing/firewalling data to and from upper layers; and finally, backend/cloud servers have
enough resources to host a wide variety of VNFs, e.g.: SCADA, Web applications and servers.

• Server: a virtual machine (VM) instance. In NFV it is often assumed that VNFs reside inside VMs or
other type of virtualization container, such as LXC [18]. Some of the server status and actions
reachable through the Compute API [19]:

o Status: ACTIVE, BUILD, DELETED, ERROR, SHUTOFF, SUSPENDED, among others.
o Actions: Start/Stop, Reboot, Resize, Pause/Unpause, Suspend/Resume, Snapshot,

Delete/Restore, Migrate/Live Migrate, among others.
▪ Migration and live migration relate to moving the Server to another Host. Live

Migration performs this action without powering off the Server, avoiding downtime.
The ability to read the current status of Server and modify it, opens the way for dynamic (re)allocation
of resources, specifically relevant as performance metrics from the underlying NFVI change in time.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D3.8 Network Functions Virtualization for IoT (final)
Dissemination level: public

37

For SEMIoTICS this is of paramount importance, as it paves the way to optimize the end-to-end
performance of network services in terms of e.g. latency or reliability.

• Hypervisor: the piece of computer software that creates and runs VMs. Hosts in each layer of the
SEMIoTICS framework run a Hypervisor, which can be queried via the Compute API in order to obtain
information regarding the Server, e.g. CPU, memory or other configuration.

• Flavour: virtual hardware configuration requested for a given Server, i.e. disk space, memory, vCPUs.
Such configurations are onboarded prior to deployment, quantising the scaling factor of Servers e.g.:
flavour small (1 vCPU), flavour medium (2 vCPUs), flavour big (4 vCPUs).

• Image: a collection of files used to create a Server, i.e. OS images. For SEMIoTICS, each UC
component is assumed to run a preconfigured image tailored to its role, i.e. VNF. Such images are
uploaded to the VIM for instantiation or passed as parameters to NFVO at orchestration time.

• Volume: a block storage device the Compute service could use as a permanent storage for a given
Server.

• Quotas and Limits: upper bound on the resources a tenant could consume for the creation of Servers.
SEMIoTICS employs such functionality to enforce an efficient sharing of the NFVI resources among
the different UC.

• Availability zones: a grouping of host machines that can be used to control where a new server is
created. As different SEMIoTICS UC require the placement of Servers at specific Hosts, this VIM
capability allows the NFVO to orchestrate VNFs at precisely the right physical locations in the NFVI.

4.1.1.2 NETWORKING
VIMs are responsible for building virtual network overlays connecting VNFs, but also should expose or relay
such information to other components. For instance, if an external network controller is assigned the task of
managing connectivity between virtual endpoints, as in the case with the SEMIoTICS SDN Controller (SSC),
the VIM should expose API endpoints where the necessary network information can be retrieved or modified.
Furthermore, in the presence of a NFVO, Network as a Service (NaaS) APIs are expected.

OpenStack Neutron Networking [20] provides the virtual networking resources commonly expected in NFVI,
such as L2/L3 networking, security, resource management, QoS, virtual private networks (VPN), virtual tenant
networks (VTN), among others [21]. To configure such functionality or to retrieve logging information,
functions are exposed through a set of RESTful HTTP APIs in JSON format. The following shows a non-
exhaustive list providing a description of the functionality exposed through the Networking API (as shown in
[21]).

• L2 Networking
o Networks: list, shows details for, creates, updates and deletes networks. It provides a wide

range of extensions capable of configuring several aspects of L2 networking, such as: network
availability zones, port security, definition of QoS policies, VLAN trunks, among others.

o Ports: list, shows details for, creates, updates and deletes ports. Ports are associated with
Servers (VMs). They expose a similar set of extensions than the “Networks” ment ioned above.

• L3 Networking
o Addresses: list, shows details for, updates and deletes address scopes. Deals with the

reservation of IPv4 addresses for Servers (Floating IPs), port forwarding, among others.
o Routers: when enabled, it allows the forwarding of packets across internal subnets and

applying NAT, so they can reach external networks through the appropriate gateway. Routers
can be realized in a distributed manner (spanning all compute nodes of the NFVI) or using
Router availability zones.

o Subnets: lists, creates, shows details for, updates, and deletes subnet or subnet pools.

• Security
o Firewall as a Service (FWaaS): applies firewall rules to ingoing or outgoing traffic, creates and

manages an ordered collections of firewall rules.
o Security groups: lists, creates, shows information for, updates and deletes security groups.

Such groups are used to classify types of traffic, allowing or prohibiting certain kind of network
traffic through a set of predefined, but also user-defined rules.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D3.8 Network Functions Virtualization for IoT (final)
Dissemination level: public

38

o VPN as a Service (VPNaaS): enables tenants to extend their private networks across the
public network infrastructure. Provided functionality includes:

▪ Site-to-Site VPN.
▪ IPSec using several types of encryption algorithms.
▪ Tunnel or transport mode encapsulation.
▪ Dead Peer Detection (DPD).

• Others
o QoS bandwidth limiting rules.

▪ With the ability to distinguish between egress or ingress traffic.
o QoS Minimum bandwidth rules.
o QoS Differentiated Service Code Point (DSCP).
o Logging resources.
o DHCP servers.

SEMIoTICS falls within the particular case where the delegation of NFVI networking control may be relayed
to an external SEMIoTICS SDN Controller. For such cases, Neutron exposes control tools via the Modular
Layer 2 (ML2) north-bound plug-in [22]. This way, external controllers could manage the network flows
traversing the NFVI via southbound interfaces, such as OVSDB.

4.1.1.3 STORAGE
Block storage is common place in virtual environments. Such type of storage can be though similar to USB
drives: you can attach one to a compute Server (VM), and then detach it when turning the Server off or
destroying it. Particularly interesting is the fact that in a NFVI the storage and compute Hosts are separate.
Despite such separation of physical hardware, VMs are exposed to users as if they were running on top of a
single Node thanks to the virtual networking resources used by the VIM; allowing the NFVI to grow to massive
scales, e.g. server farms.

VIMs such as OpenStack manage block storage through the Cinder project. As concisely put in [23]: “It
virtualizes the management of block storage devices and provides end users with a self-service API to request
and consume those resources without requiring any knowledge of where their storage is actually deployed or
on what type of device”. A non-exhaustive list of functionalities realised through the Storage API is shown
below:

• Create, list, update, or delete volumes.

• Read volumes statuses:
o Among such statuses are: creating, available, reserved, attaching, detaching, in-use,

maintenance, deleting, error, backing-up, among others [23].

• Modify a volume:
o Extend size, reset statuses, set metadata, attach/detach.

• Management of volumes: create or list volumes.

• Volume snapshots: creates point-in-time copies of the data.

• Volume transfer: transfer a volume from one user to another.

• Backups: full copy of a volume to an external service, as well as the restoration from such backup.

• Snapshots and Group Snapshots.

• Quotas and Limits: per tenant quotas and limits on storage resource allocation.

In general, the SEMIoTICS UC require an NS, as the data generated by the field devices is transmitted to the
IoT Gateways or the backend cloud, where they are consumed by the IoT applications. Each NS is the
composition of a set of VNFs, which run within VMs with specific compute and storage resources and are
connected in a predefined manner with network resources. Thereby, the proper allocation of computing,
communication and storage resources, to run the chain of VNFs at the corresponding VMs is fundamental to
guarantee the desired performance of SEMIoTICS use cases. Namely, these performance metrics are related
to e.g. latency or reliability. Therefore, compute, networking and storage resources are allocated by the VIM
to deploy the chain of VNFs that compose the NS according to the requests made through the corresponding
APIs.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D3.8 Network Functions Virtualization for IoT (final)
Dissemination level: public

39

All in all, SEMIoTICS UC can be considered complex NS, mostly due to their specific requirements, e.g. Host
affinity/anti-affinity (e.g. smart behaviour VNFs at specific IoT gateways), specific bandwidth/delay
requirements between VNF links, firewalls at the backend/cloud, and/or others. Such specifications are
collected in NS descriptors (NSd), which in turn are composed of VNF descriptors (VNFd), and VNFFG
descriptors (VNFFGd) that realize Service Function Chains (SFC) according to the specifications contained
in their respective descriptors. It is then the task of the NFVO to store/maintain such descriptors and interface
with the VIM to realise the NS/VNF/VNF-FG therein.

4.1.2 FUNCTIONAL ARCHITECTURE OF THE NFV ORCHESTRATOR

SEMIoTICS NFV MANO framework is composed of a VIM, VNF Manager (VNFM), and NFVO (see Figure 1).
This section deals with the functional description of the NFVO, particularly, the Network Service and Resource
Orchestration functions, and the related Information Models (IM) that help spawn NS.

Management and Orchestration of VNF relates to providing each VNF with the NFVI resources they need5.
But also, other aspects such as registering available VNFs or NS, scaling in/out each VNF according to
policies or load, lifecycle management, snapshots, modifying the network interconnection among VNFs,
modifying the VNFs in a VNFFG, creation and termination of NS. These are potentially complex tasks,
primarily because VNF’s NFVI resource requirements and constrains need to be satisfied simultaneously on
top of a very dynamic environment (VNFs are instantiated or terminated, changing the pool of available
resources). To leverage this, the NFV MANO (VIM+VNFM+NFVO) should expose services that support
accessing these resources, preferably using standard APIs [4]. The NFVO performs two main functions, called
Network Service and Resource Orchestration functions (NSO and RO, respectively). Capabilities of each
function are exposed via standard interfaces consumed by other elements of the NFV MANO.

4.1.2.1 NETWORK SERVICE AND RESOURCE ORCHESTRATION FUNCTIONS
As suggested by its name, NSO function handles the registration (onboarding), creation, modification and
termination of network services. The following non-exhaustive list gathers some of the functionality performed
by the NFVO employing the NSO function:

• Checks that VNF or NS descriptors include all mandatory information for onboarding.

• Through VIM’s exposed services, NSO checks that the software images specified in the descriptors
are available at the targeted VIM.

• NS lifecycle management, that is: instantiation, update, scaling, event collection and correlation, and
termination.

• Collects performance metrics from NS.

• Management of the instantiation of VNFs (alongside VNFM).

• Validation and authorization of NFVI requests from VNFM.

• Management of the relationship between NS instances and VNF instances.

• NS automation management based on triggers specified in the NS descriptors.

On the other hand, the RSO function interfaces with the NFVI to make sure resources are available for the
instantiation of VNF/NS. The following non-exhaustive list gathers some of the services provided by the RSO
function:

• Validation and authorization of NFVI requests from VNFM.

• NFVI resource management (distribution, reservation and allocation) by maintaining a NFVI
repository.

• Leverages resource utilization information gathered from VIMs to manage the relationship between
VNF instances and NFVI resources.

• Policy management and enforcement, e.g.: NFVI resource access control, affinity/anti -affinity rules,
resource usage, among others.

• Collects usage information of NFVI resources by VNF instances.

5 NFVI resources are those that can be consumed by virtualization containers, such as compute (CPU, virtual
machines, bare metal hosts, memory), storage (volumes of storage), and network (networks, subnets, ports, addresses,
forwarding rules, links).

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D3.8 Network Functions Virtualization for IoT (final)
Dissemination level: public

40

4.1.2.2 NFVO DESCRIPTORS, NS ONBOARDING AND INSTANTIATION
Apart from APIs exposed by VIMs (which are triggered through the Or-Vi reference point, see Figure 1),

descriptors are a main element in the instantiation of NS. In them, administrators specify details about VNFs,
as well as VL, VNFFG, and the NS as a whole (even PNFs). All descriptors should be onboarded to the NFVO
in order for the NSO function to verify them (e.g.: checking the validity of all fields, checking availability of
software images at VIMs, among others). The following is a list of descriptors and a short description of their
functionality:

• NS descriptor (NSd): used by the NFVO to instantiate a NS, which would be formed by one or several
VNFFG, VNF, PNF, and VL. It also specifies deployment flavors of NS.

• VNF descriptor (VNFd): describes a VNF in terms of deployment and operation behavior. It includes
network connectivity, interfaces and KPIs requirements that can be used by NFV-MANO functional
blocks to establish appropriate VL within the NFVI.

• VL descriptor (VLd): provides information of each virtual link. It is used by NFVO to determine the
appropriate placement of a VNF instance, and by the VIM to select a host with adequate network
infrastructure. The VIM or external SDN controller uses this information to establish the appropriate
paths and VLANs.

• VNFFG descriptor (VNFFGd): it includes metadata about the VNFFG itself, that is, VL, VNFs, PNFs,
and policies (e.g.: MAC forwarding rules, routing entries, firewall rules, etc.).

• PNF descriptor (PNFd): is used by NFVO to create links between VNFs and PNFs. It includes
information about connection points exposed by the PNF, and VLs that such physical connection
points should be attached to.

4.1.3 VNF LIFECYCLE MANAGEMENT

VNF lifecycle management refers to the creation and lifecycle management of the needed virtualized
resources for the VNF [4], as well as the traditional Fault Management, Configuration Management,
Accounting Management, Performance Management and Security Management (FCAPS).

By making use of the information stored in a VNFd during onboarding, VNF Management functions make sure
such requirements are met at the moment of instantiation. Furthermore, VNFd also contain information
relevant for the lifecycle management (e.g.: constrains, KPIs, scale factor, policies, etc.). Such lifecycle
management information is used for scaling operations, adding a new virtualized resource, shutting down an
instance, or terminating it.

VNF Management maintains the virtualized resources that support the VNF functionality, without interfering
with the VNFs’ logical functions. Like NFVO, its functions are exposed through APIs as services to other
functions. Each VNF instance is assumed to have an associated VNF Manager, and a VNF Manager could
handle several VNFs. The following non-exhaustive list gathers the functions implemented by the VNF
Manager [4]:

• VNF instantiation (based on onboarded VNFd).

• VNF instantiation feasibility checking.

• Scale VNFs (increase or decrease the resources of a VNF).

• Software Update/Upgrade on VNFs.

• Correlation between NFVI measurement results and faults/events, and the VNF instances.

• VNF instance assisted or automated healing.

• Terminate VNF (releasing the VNF-associated NFVI resources).

• Management of the VNF instance’s integrity during its lifecycle.

From the information presented above, it is fair to conclude that any attempt to deploy an NFV NS must count
with a NFVI, but also the specification of such NS via descriptors. For SEMIoTICS, VNFs related to networking
might be available out-of-the-box, but other network elements such as gateways, smart elements and so forth,

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D3.8 Network Functions Virtualization for IoT (final)
Dissemination level: public

41

must be specified as NFV descriptors for onboarding in the NFVO6. Otherwise instantiation would not be
possible via NFV MANO, forsaking desired functionality such as dynamic scaling of VNFs, policy
management/enforcement, and automation.

4.2 NVF MANO implementation

This section deals with the configuration of an ETSI-based NFV MANO infrastructure. It covers most of the
details involved in the configuration of a Virtualized Infrastructure Manager (VIM) (i.e. OpenStack) with an
SDN data plane, telemetry services and Service Function Chain (SFC) capability. It also describes the
integration of an NFV Orchestrator (i.e. OSM), descriptor onboarding leveraging default clients or triggering
NFV SOL-005 APIs [5] from the Os-Ma-nfvo reference point.

4.2.1 VIM: OPENSTACK

OpenStack is the industry default VIM for NFV leveraging virtual machines as virtualization technology. It
provides all required reference points and interfaces detailed by ETSI in the specification of the NFV MANO
platform, as well as strong security and High Available (HA) configurations, which makes it suitable for
production environments.

In order to enable SEMIoTICS functionality, such as dynamic traffic stirring though software network overlays,
or monitoring/management interfaces accessible to SEMIoTICS Global Pattern Orchestrator or responsible
Pattern Engine; the default configuration of this VIM needs to be adapted.

4.2.1.1 ENABLING SFC
Service Function Chains (SFC) as the name suggests refers to the interconnection in chain-form of several
service functions or VNFs. Traditionally, this technique allowed a sort of networking pipeline by forcing traffic
to traverse different services (e.g. firewall, load balancers, IDS/IPS, etc.) before arriving to its final destination
(e.g. Web server). The advent of SDN and control plane protocols such as OpenFlow (refer to D3.1 or D3.7
for more details) opened the way to more flexible and agile methods for either stirring traffic or building the
SFC. With a compatible network fabric (i.e. OpenFlow-supporting data path), an SDN Controller (e.g.
OpenStack Neutron, or SSC) could then reconfigure the data plane instantly. Moreover, NFV help realize
network functions as virtual machines, therefore allowing SFC that do not need to be physically close (i.e.
could be hosted on different NFVI under the same management domain), or physical at all.

There are three critical configuration changes needed for SEMIoTICS NFV Component to support SFC at the
VIM. First, each compute node of the NFVI must reserve a dedicated network interface for connecting VNFs
to VLAN provider networks7. Second, VXLAN are the only supported network technology for SFC data planes.
And thirdly, the data plane interconnecting VNFs in the SFC must support OpenFlow. From the last
requirement stems the first one, as Linux bridges do not support OpenFlow and it cannot share physical
interfaces with other software switches (i.e. Open vSwitch).

SEMIoTICS VIM is composed of a manager, referred to as Infrastructure node, and several Compute nodes.
The Infrastructure node hosts all VIM services managers, while Compute nodes host the virtual services
instantiated on top as virtual machines and network overlays. Following the SFC requirements above, all
Compute nodes have an OpenFlow-compatible data plane for VLAN and VXLAN networks with a dedicated
network interface for VLAN provider networks. The following Configuration 1 shows an example network
configuration of a Compute node in the SEMIoTICS NFVI.

In Configuration 1 several bridges and interfaces are defined. These are:

• eno1: physical interface leveraged for the creation of sub-interfaces on distinct VLAN segments.

• eno1.1: sub-interface in the VLAN id 1. This is used for node management purposes.

6 As these other elements are considered VNFs, software (cloud) images should be created for each one of them.
7 Networks to reach outside the NFVI are referred to as provider networks.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D3.8 Network Functions Virtualization for IoT (final)
Dissemination level: public

42

• br-semiotics: switch connected to the eno1.1 interface, therefore handles all device management
traffic. Not used for SEMIoTICS data.

• eno1.110: sub-interface in the VLAN id 110. This is the VLAN where the VIM Infrastructure node
resides. It is used for OpenStack services’ communication.

• br-mgmt: Linux bridge for VIM Infrastructure traffic.

• provider-veth: one of the extremes of a Virtual Ethernet (veth) pair (the other is eth101). provider-
veth is connected to the OpenFlow-ready br-vlan.

• eth101: Interface connecting br-vlan to any OpenStack VLAN provider network switch (which could
be created dynamically during runtime).

• enx000ec6c9d385: physical interface.

• br-vlan: VLAN provider networks data plane switch with OpenFlow support. Open vSwitch (OVS)
2.11.0 is used.

• eno1.130: sub-interface in VLAN id 130. Used for VXLAN traffic.

• br-vxlan: VXLAN networks data plane switch with OpenFlow support. Open vSwitch (OVS) 2.11.0 is
used.

Once the above network configuration is done, next is the deployment of the VIM (i.e. OpenStack) with SFC
support. There are several methods for deploying OpenStack, such as DevStack [24] or OpenStack Ansible
(OSA) [25]. For SEMIoTICS, OpenStack Ansible is used on the basis of ease of use and previous experience.

OSA requires an external Deployment node. This node will be in the same LAN segment and have the required
authentication and authorization credentials for managing the future Infrastructure and Compute nodes (see
Figure 14). Following the OSA Deployment Guide [26], after applying the network configuration the next step
is related to the desired OpenStack configuration (which can be based on different OSA examples [27]).

FIGURE 14 EXAMPLE OSA DEPLOYMENT TOPOLOGY

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D3.8 Network Functions Virtualization for IoT (final)
Dissemination level: public

43

Physical interface
auto eno1

iface eno1 inet manual

Configuring SEMIoTICS access
auto eno1.1
iface eno1.1 inet manual

 vlan-raw-device eno1

auto br-semiotics
iface br-semiotics inet static
 bridge_stp off

 bridge_waitport 0
 bridge_fd 0
 bridge_ports eno1.1

 address 10.1.14.11
 netmask 255.255.255.0

 gateway 10.1.14.246
 dns-nameserver 8.8.8.8

Container/Host management VLAN interface
auto eno1.110

iface eno1.110 inet manual
 vlan-raw-device eno1

Container/Host management bridge

auto br-mgmt

iface br-mgmt inet static
 bridge_stp off

 bridge_waitport 0

 bridge_fd 0
 bridge_ports eno1.110

 address 172.112.10.4

 netmask 255.255.255.0
 dns-nameservers 8.8.8.8 8.8.4.4

compute1 Network VLAN OVS

Creating veth pair to connect to br-vlan
auto provider-veth

allow-br-vlan provider-veth
iface provider-veth inet manual

 pre-up /sbin/ip link add provider-veth type veth peer name eth101
 pre-up /sbin/ip link set provider-veth up

 pre-up /sbin/ip link set eth101 up

 ovs_bridge br-vlan

 ovs_type OVSPort

 pre-down /sbin/ip link delete provider-veth
 pre-down /sbin/ip link delete eth101

auto enx000ec6c9d385

allow-br-vlan enx000ec6c9d385
iface enx000ec6c9d385 inet manual
 ovs_bridge br-vlan

 ovs_type OVSPort

auto br-vlan
allow-ovs br-vlan
iface br-vlan inet manual

 ovs_type OVSBridge
 ovs_ports enx000ec6c9d385 provider-veth

OpenStack Networking VXLAN (tunnel) OVS bridge
auto eno1.130

allow-br-vxlan eno1.130
iface eno1.130 inet manual

 vlan-raw-device eno1

 ovs_bridge br-vxlan

 ovs_type OVSPort

 mtu 9000

auto br-vxlan

allow-ovs br-vxlan

iface br-vxlan inet static

 ovs_type OVSBridge
 ovs_ports eno1.130

 address 172.112.30.3/24
CONFIGURATION 1 SEMIOTICS NFVI COMPUTE NODE NETWORK CONFIGURATION EXAMPLE

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D3.8 Network Functions Virtualization for IoT (final)
Dissemination level: public

44

The SEMIoTICS OSA OpenStack User Configuration file (OUC) is written in a data serialization language
called YAML [28]. The OUC specifies everything related to the OpenStack deployment, including reserved IP
addresses, networks, and OpenStack services to be deployed (e.g. Neutron, Nova, Cinder, etc.).
Configuration 2 shows an example segment of an OUC that specifies what OpenStack services to install and
where.

As can be seen in Configuration 2, all the OpenStack services required by SEMIoTICS are installed, these
are: Nova (virtualization), Neutron (networking), Cinder (storage), Ceilometer (telemetry collection), Gnocchi
(telemetry storage), Glance (software images), Horizon (GUI), and Keystone (authentication and
authorization). With the exception of Nova Hypervisors, Cinder storage host, and Ceilometer compute agents,
all services run in the Infrastructure node.

The last step towards configuring SFC is to install the Networking-SFC Neutron plugin [29]. This plugin
provides APIs and implementation to support SFC directly from OpenStack Networking (i.e. Neutron). With
OSA, this step simply requires the definition of specific variables that tell Ansible to install and configure the
required SFC packages for Neutron. Configuration 3 gathers the required variable definitions that tell OSA to
download and install the Networking-SFC Neutron plugin.

Figure 16 shows the NFVO’s graphical representation of an SFC as a network service. VNFs are represented
as purple squares, connection points as small blue squares, while networks are represented by green
triangles. In summary, the SFC is composed of three VNFs, referred to as a) 1-sfc-generic-endpoint, b) 2-sfc-
generic-endpoint, and c) 3-sfc-mpls. The one-way asymmetrical chain shown in the figure guarantees
matched traffic flows in the following direction: a→c→b. That is, in this specific example all HTTP traffic with
TCP port 80 in the a→b direction (i.e. matched traffic) should traverse c. The three Terminal windows in
Figure 15 show: VNF b in the top right, VNF a in the bottom right, while the whole left is dedicated to displaying
live Tcpdump [30] captures of the matched traffic in VNF c. In the latter it is possible to see the flow of HTTP
traffic on port 80 traversing c on their way from a to b.

The specification of VNFs composing the SFC, as well as the forwarding instructions and matched traffic are
all contained in the SFC NSd. Configuration 5 shows a relevant segment included in the NSd, specifically
under the VNF Forwarding Graph (VNFFG) descriptor that defines the traffic characteristics to match and stir
into the SFC. In this example, member-vnf-index: 1 (VNF a) data plane switch is instructed to match TCP
traffic (ip-proto: 6) with destination port 80 and IP 13.0.1.102, and forward it to member-vnf-index: 3 (VNF
c)8.

8 According to the Rendered Service Path (RSP) specification (i.e. rsp1).

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D3.8 Network Functions Virtualization for IoT (final)
Dissemination level: public

45

Infrastructure

galera, memcache, rabbitmq, utility
shared-infra_hosts:

 infra1:
 ip: 172.112.10.10

repository (apt cache, python packages, etc)

repo-infra_hosts:

 infra1:
 ip: 172.112.10.10

load balancer
haproxy_hosts:

 infra1:
 ip: 172.112.10.10

OpenStack

keystone
identity_hosts:
 infra1:
 ip: 172.112.10.10

cinder api services
storage-infra_hosts:
 infra1:
 ip: 172.112.10.10

glance
image_hosts:
 infra1:
 ip: 172.112.10.10

nova api, conductor, etc services
compute-infra_hosts:
 infra1:
 ip: 172.112.10.10

horizon

dashboard_hosts:
 infra1:
 ip: 172.112.10.10

neutron server, agents (L3, etc)
network_hosts:

 infra1:
 ip: 172.112.10.10

nova hypervisors
compute_hosts:

 compute1:
 ip: 172.112.10.12

ceilometer (telemetry data collection)
metering-infra_hosts:

 infra1:

 ip: 172.112.10.10

ceilometer compute agent (telemetry data collection)
metering-compute_hosts:

 compute1:
 ip: 172.112.10.12

gnocchi (telemetry metrics storage)
metrics_hosts:

 infra1:
 ip: 172.112.10.10

cinder storage host (LVM-backed)
storage_hosts:

 storage1:
 ip: 172.112.10.7
 container_vars:

 cinder_backends:
 limit_container_ty pes: cinder_volume

 lvm:
 volume_group: cinder-volumes
 volume_driver: cinder.volume.drivers.lvm.LVMVolumeDriver

 volume_backend_name: LVM_iSCSI

 iscsi_ip_address: "172.112.20.3"
CONFIGURATION 2 OUC SPECIFYING OPENSTACK SERVICES AND THE CORRESPONDING NODE

HOSTING IT

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D3.8 Network Functions Virtualization for IoT (final)
Dissemination level: public

46

Ensure the openvswitch kernel module is loaded
openstack_host_specific_kernel_modules:
 - name: "openvswitch"
 pattern: "CONFIG_OPENVSWITCH"

neutron specific config
neutron_plugin_type: ml2.ovs
neutron_ml2_driv ers_type: "vlan,vxlan"

neutron_plugin_base:

 - router

 - metering
 - flow_classifier
 - sfc

neutron_ml2_conf_ini_overrides:

 agent:
 extensions: sfc
neutron_vxlan_enabled: true

CONFIGURATION 3 OSA OUC USER VARIABLES ENABLING NEUTRON SFC

FIGURE 15 SNIFFING TRAFFIC TRAVERSING THE MIDDLE VNF IN AN SFC

4.2.1.2 TELEMETRY SERVICES FOR MONITORING NFVI
OpenStack telemetry services query and store specific metrics from both NFVI and VNFs. Ceilometer,
OpenStack de facto telemetry service, deploys agents at compute nodes that periodically poll components for
different metrics. Such metrics are then gathered by a central Ceilometer agent which later transmits them to
a telemetry storage service for processing and exposure.

In SEMIoTICS we have adopted the Ceilometer and Gnocchi combination for polling and storage solutions,
respectively. This has been the most used configuration by the open source community and enjoys ample
support from deployment tools (such as OSA). Gnocchi is a Time Series Database as a Service (TSDaaS)
project completely compatible with Ceilometer. Moreover, is provides RESTful APIs for metrics monitoring (e.g.
which may be realized via the Nf-Vi, Vi-Vnfm, or Or-Vi reference points of the NFV MANO architecture). One
example of Gnocchi API usage is the one performed by the NFVO to trigger dynamic VNF scaling operations.

Configuration 6 shows the definition of OSA user variables enabling the monitoring of Compute nodes’
performance, as well as a pointer for Ceilometer to the Gnocchi TSDaaS endpoint.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D3.8 Network Functions Virtualization for IoT (final)
Dissemination level: public

47

FIGURE 16 NFVO DIAGRAM OF AN SFC

4.2.2 NFVO AND VNF MANAGER: OSM

SEMIoTICS adopts ETSI Open Source MANO (OSM) as its NFVO. OSM is an ETSI NFV compliant NFVO
capable of supporting a wide range of VIMs, offers standard northbound REST APIs (i.e. SOL 005) for the
onboarding of descriptors, orchestration and termination of network services, among others.

OSM can be deployed as a VNF, PNF or as a set of microservices in a Container Orchestration Engine (COE9)
cluster. In SEMIoTICS, OSM release 6 is deployed as a Virtual Machine inside the NFVI, but out of the domain
of the VIM. Furthermore, OSM requires IP connectivity to the VIM’s endpoints (e.g. authentication,
instantiation, networking, etc).

osm vim-create --name semiotics_playground_queens_001 \
 --account_type openstack \
 --auth_url http://172.112.10.1:5000/v3 \
 --user smartech \

 --password smartech \
 --tenant playground \
 --description "SEMIoTICS VIM @ playground" \
 --config='{insecure: 'True', security_groups: 'default', keypair: 'lsanabria',
use_internal_endp oint: 'True', APIversion: 'v3.3', project_domain_id: 'default', project_domain_name:
'Default', user_domain_id: 'default', user_domain_name: 'Default'}'

CONFIGURATION 4 ADDING A VIM ACCOUNT TO OSM NFVO

Configuration 4 shows an example of how to add a VIM account to OSM NFVO for the orchestration of VNFs.
The example uses the OSM Command Line Interface (CLI) client for performing this task, even though a GUI
is also available.

9 Only from OSM Release 7 on.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D3.8 Network Functions Virtualization for IoT (final)
Dissemination level: public

48

…
vld:
- id: sfc_lan

 name: sfc_lan

 short-name: sfc_lan

 ip-profile-ref: sfc_generic_ip_profile
 type: ELAN
 vim-network-name: "sfc"

 vnfd-connection-point-ref:
 - member-vnf-index-ref: 1

 vnfd-id-ref: sfc_generic_endpoint_vnfd
 vnfd-connection-point-ref: vnf-cp1
 ip-address: 13.0.1.101

 - member-vnf-index-ref: 2
 vnfd-id-ref: sfc_generic_endp oint_vnfd
 vnfd-connection-point-ref: vnf-cp1

 ip-address: 13.0.1.102
 - member-vnf-index-ref: 3

 vnfd-id-ref: sfc_mpls_vnfd
 vnfd-connection-point-ref: vnf-cp1

vnffgd:
- id: vnffg1

 name: vnffg1
 description: vnffg1
 short-name: vnffg1

 vendor: vnffg1

 version: '1.0'

 rsp:
 - id: rsp1
 name: rsp1

 vnfd-connection-point-ref:
 - member-vnf-index-ref: 3

 order: 0
 vnfd-egress-connection-point-ref: vnf-cp1
 vnfd-id-ref: sfc_mpls_vnfd

 vnfd-ingress-connection-point-ref: vnf-cp1
 classifier:

 - id: class1
 name: class1
 member-vnf-index-ref: 1

 rsp-id-ref: rsp1
 vnfd-connection-point-ref: vnf-cp1
 vnfd-id-ref: sfc_generic_endpoint_vnfd

 match-attributes:
 - id: HTTP

 destination-ip-address: 13.0.1.102
 destination-port: 80
 ip-proto: 6

 source-ip-address: 13.0.1.101

 source-port: 0
CONFIGURATION 5 VNFFG DESCRIPTOR FLOW CLASSIFIER

Nova conf Overrides
nova_ceilometer_enabled: True
nova_nova_conf_overrides:
 DEFAULT:

 compute_monitors: cpu.virt_driver
 force_config_driv e: true
 resume_guests_state_on_host_boot: true

Ceilometer user variables

ceilometer_sample_interval: 10
ceilometer_gnocchi_enabled: True

ceilometer_ceilometer_conf_overrides:
 dispatcher_gnocchi:
 archive_policy: high

 url: http://172.114.10.10:8041
CONFIGURATION 6 OSA USER VARIABLES TO CONFIGURE TELEMETRY WITH CEILOMETER AND

GNOCCHI
Descriptor onboarding is another procedure that needs to be performed before doing any network service
orchestration. Users can either use the GUI, the OSM CLI client, or the NBI REST API for this task. The latter
is often preferred when integrating orchestration functions in other software (e.g. Pattern Orchestrator).

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D3.8 Network Functions Virtualization for IoT (final)
Dissemination level: public

49

4.3 NFV MANO interaction with the Pattern Orchestrator

4.3.1 PATTERN ORCHESTRATOR IN THE NFV CONTEXT

The SEMIoTICS project relies on a pattern-driven approach, which allows the network operators to enforce
patterns that reflect the requirements of the corresponding network services in terms of e.g. latency, reliability,
security or privacy. To this end, they gather metrics of the network to extract the patterns that shed light on
such patterns and requirements. In the context of the NFV framework, this pattern-driven approach is
contemplated as follows.

On the one hand, a Pattern Engine is considered locally, i.e. this is an entity that has a direct link with the NFV
MANO. Moreover, there is the Pattern Orchestrator at the backend cloud. Upon request of the Pattern
Orchestrator, the Pattern Engine can ask the NFV MANO (e.g. the VIM), to gather metrics about the state of
the virtualized network, i.e. the NFVI. This information can be processed locally, or it can be sent to the Pattern
Orchestrator.

After that processing, patterns related to the requirements of the network services are extracted. These
patterns are used to specify the descriptors of VNFs and NS. Namely, upon request of the Pattern Orchestrator,
the Pattern Engine updates and prepares such descriptors and communicates with the NFV MANO. Recall
that, as it was explained above, in the NFV MANO context, all the network services require an associated
network service descriptor to be deployed.

An example on the role of the Pattern Orchestrator and the Pattern Engine in the NFV context is given in the
next section. Namely, the sequence diagram to instantiate an onboarded VNF is considered and the role of
the Pattern Orchestrator and Pattern Engine is illustrated.

4.3.2 SEQUENCE DIAGRAMS

In this section, a dynamic view of the NFV operation is illustrated. To this end, sequence diagrams associated
to the NFV MANO procedure are presented. Thereby, in Figure 17 the sequence diagram related to the
instantiation of an onboarded VNF is presented, i.e. the instantiation of a VNF that is already in the NFV MANO
catalogue. The rest of the sequence diagrams, as well as further insights on the involvement of the Global
Patter Orchestrator in the NFV Orchestration process, will be presented in the final deliverable D3.8.

As it is shown in Figure 17, the VNF instantiation starts upon request of a sender, i.e. the entity that wants to
deploy the VNF functionality in the NFVI. The sender communicates with the Pattern Orchestrator, as the
patterns associated with the VNF must be updated to configure properly the VNF descriptor. Then, the Pattern
Orchestrator communicates with the Pattern Engine, which has a direct link with the NFV MANO (VIM) and
thereby can ask to gather metrics on the state of the NFVI. Afterwards, with that updated information, the
Pattern Orchestrator can extract the patterns related to the VNF requirements or KPIs and asks the local
Pattern Engine to configure the corresponding VNF descriptor.

At this point the Pattern Engine communicates with the NFV orchestrator to start the VNF instantiation. Then,
owing to the NFV MANO hierarchical architecture, the NFV orchestrator asks the VNF manager to instantiate
the VNF. After validation by the VNF manager, a set of resources must be allocated to run properly the VNF.
As we can see, this is the responsibility of the VIM. And the instantiation finishes after a set of
acknowledgments messages among the different actors.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D3.8 Network Functions Virtualization for IoT (final)
Dissemination level: public

50

FIGURE 17 SEQUENCE DIAGRAM FOR THE INSTANTIATION OF A VNF IN THE NFV FRAMEWORK.

4.3.3 INTERACTION WITH THE NFV MANO BASED ON RESTFUL NBI.

The previous sections highlight that the Pattern Orchestrator needs to interact with the NFV MANO to enforce
patterns in the NS. In fact, from the NFV MANO viewpoint, the Pattern Orchestrator and the pattern engine
can be regarded as OSS entities. Thereby, the interface between the NFV MANO and the Pattern
Orchestrator/Engine is well defined through the Os-Ma-NFVO reference point, which is specified by the ETSI
standards, see [2] [4]. In practical terms, the Os-Ma-NFVO interface can be implemented through RESTful
protocols, as suggested by ETSI in the ETSI NFV-SOL specification [5]. This is the approach embraced
herein, as RESTful APIs are a widely accepted means of communicating between software applications and
computers in the Internet. Therefore, in this section we explain the RESTful protocols that enable the
interaction between the NFV MANO and external OSS such as the Pattern Orchestrator. Also, in this regard,
we provide practical examples on the RESTful commands needed to onboard NS packages or manage the

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D3.8 Network Functions Virtualization for IoT (final)
Dissemination level: public

51

lifecycle of NS instances. Note that these operations are mandatory to enable the remote control of the Pattern
Orchestrator on specific NS.

In general terms, [5] defines the RESTful protocols and the associated data models to implement the Os-Ma-
Nfvo reference point. Thereby, we can implement the operations related to the management of the NS
descriptor (NSD) or the NS lifecycle management. For instance, the creation of a NSD, upload the content of
a NSD, instantiate a NS or terminate a NS. To this end, the RESTful protocol defines:

• The URI resource structure. For instance, the structure that identifies a NSD.

• The HTTP methods that can be applied to the URI resources. For instance, a GET method to consult
the information of a given NSD.

• The data structure that we need to specify for a given HTTP method. For instance, a POST method
to instantiate a NS requires to specify the identification of the NSD to be instantiated. And this
corresponds to a data structure field called “nsdId”, which is specified in the body of the HTTP request.

Next, we give more details on these RESTful protocols for the operations involving the interface between the
NFV MANO and OSS/BSS such as the Pattern Orchestrator/Pattern Engine. These operations are illustrative
examples for the SEMIoTICS purposes.

4.3.3.1 OPERATIONS RELATED TO THE VNF PACKAGE MANAGEMENT INTERFACE

This interface permits the OSS (in our case the Pattern Orchestrator/Pattern Engine) to carry out operations
related to the VNF packages such as:

• Create a VNF package resource.

• Upload the content of a VNF package.

• Query the VNF package information, e.g. the VNF descriptor.

• Delete a VNF package.

A simplified structure of the URI resource for the VNF package management interface is displayed in Figure
18. Where {apiRoot} indicates the scheme ("http" or "https"), the host name and optional port, and an opt ional
prefix path. For instance, in the CTTC testbed, the OSM that implements the NFV MANO has the IP
10.1.14.248, which is accessible through the port 9999. Thereby, the {apiRoot} in our case has the following
expression:

• https://10.1.14.248:9999/osm

FIGURE 18 SIMPLIFIED VIEW OF THE URI RESOURCE STRUCTURE FOR THE VNF PACKAGE

INTERFACE MANAGEMENT [5].

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D3.8 Network Functions Virtualization for IoT (final)
Dissemination level: public

52

Then, the RESTful protocol to perform management operations on the VNF package interface consists of
applying HTTP methods to the URI resources depicted in Figure 18. The HTTP methods that can be applied
to each individual VNF package resource are thoroughly explained in table 9.2-1 of [5]. In Table 5 we provide
a summary of relevant HTTP methods applicable to the URI resource and its meaning.

TABLE 5 RESOURCES AND HTTP METHODS FOR THE VNF PACKAGE MANAGEMENT INTERFACE

Resource URI HTTP method Meaning

/vnf_packages GET Obtain information on all VNF
packages that are onboarded in
the NFV MANO, i.e. the OSM.

POST Create a VNF package resource.
This creates like a placeholder,
and afterwards with a PUT
method we upload the VNF
package content.

/vnf_packages/{vnfPkgId}/package_content PUT Upload the content of a VNF
package.

We have implemented the RESTful protocols just described above in the CTTC testbed, which implements
the NFV MANO by means of OSM and the VIM through OpenStack, as it was described in previous sections.
Namely, we emulate an external OSS by means of the postman software tool10, which allows RESTful API
testing. Next, we give details on the experiments that we carry out to implement the RESTful API described
in Table 5.

GET method applied to the /vnf_packages resource

We applied a GET method to the /vnf_packages resource to get the information of all the onboarded VNF
packages. The RESTful query and the result are displayed in Figure 19. Observe that the complete URI
resource reads “https://10.1.14.248:9999/osm/vnfpkgm/v1/vnf_packages”, which corresponds to the
specification of Figure 18. Also, for the sake of completeness we provide the curl code:

curl -X GET \
 https://10.1.14.248:9999/osm/vnfpkgm/v1/vnf_packages \
 -H 'Accept: */*' \
 -H 'Accept-Encoding: gzip, deflate' \
 -H 'Authorization: Bearer dYzzv3pZzYPIXFmnVFGOJxHF1sBDpiG6' \
 -H 'Cache-Control: no-cache' \
 -H 'Connection: keep-alive' \
 -H 'Content-Type: application/x-www-form-urlencoded' \
 -H 'Host: 10.1.14.248:9999' \
 -H 'Postman-Token: 3f2b5a61-dcde-4157-a405-fd83eda5d252,9d361317-9b7b-4995-9bd5-1a7351402adb' \
 -H 'User-Agent: PostmanRuntime/7.20.1' \
 -H 'cache-control: no-cache'

10 www.postman.com

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D3.8 Network Functions Virtualization for IoT (final)
Dissemination level: public

53

FIGURE 19 USING POSTMAN TO APPLY A GET METHOD ON THE /VNF_PACKAGES RESOURCE.

POST method applied to the /vnf_packages resource

In order to create a new VNF package resource at the NFV MANO, i.e. the OSM, we need to apply a POST
method on the URI resource /vnf_packages. Namely, the complete URI structure for the CTTC testbed is
“https://10.1.14.248:9999/osm/vnfpkgm/v1/vnf_packages”. As in the previous RESTful API, we used postman
to emulate the OSS and to send the request to the OSM. In Figure 20 we display the postman interface that
shows the POST query. Observe that it returns an “id” parameter, which corresponds to the identification for
the VNF package resource that the OSM has created. Figure 20 also shows the web interface of the OSM,
where we can observe that effectively a VNF package resource has been created with the id mentioned above.
Observe that the VNF package resource is void, as we need to upload the VNF package content. This
operation will be presented below. The curl code associated to the REST API in Figure 20 is displayed next:

curl -X POST \
 https://10.1.14.248:9999/osm/vnfpkgm/v1/vnf_packages \
 -H 'Accept: */*' \
 -H 'Accept-Encoding: gzip, deflate' \
 -H 'Authorization: Bearer jB9X82hWidTqB4ZfxblN9gM7fwzh82sQ' \
 -H 'Cache-Control: no-cache' \
 -H 'Connection: keep-alive' \
 -H 'Content-Length: 0' \
 -H 'Cookie: session_id=c274a7fde7058c47202c08e6b793471136ca1887' \
 -H 'Host: 10.1.14.248:9999' \

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D3.8 Network Functions Virtualization for IoT (final)
Dissemination level: public

54

 -H 'Postman-Token: 59a225ee-de4f-4259-a72c-dfe328fc9aa4,1e6880e4-f56c-4ba6-8447-296116818026' \
 -H 'User-Agent: PostmanRuntime/7.20.1' \
 -H 'cache-control: no-cache'

FIGURE 20 POSTMAN TO APPLY A POST METHOD ON THE /VNF_PACKAGES RESOURCE AND

RESULT IN THE OSM.

PUT method applied to the /vnf_packages/{vnfPkgId}/package_content resource

This operation permits to upload the content related to a VNF package, i.e. its VNF descriptor. Thereby, this
RESTful API requires first to carry out the previous POST request described above, which creates the VNF
resource at the OSM. In fact, the {vnfPkgId} placeholder in the URI resource must be substituted by the
identification obtained by the POST operation. Observe that according to Figure 20 this identification reads
“618b6f75-b679-45b3-941e-7434fcdca0a3”. Therefore, the complete URI resource for the CTTC testbed reads
https://10.1.14.248:9999/osm/vnfpkgm/v1/vnf_packages/618b6f75-b679-45b3-941e-7434fcdca0a3/package_content.

Also, it is important to note that in the body of the RESTful command we attach the .yaml file that represents
the VNF package descriptor, i.e. the content of the VNF package, which will be used by OSM. And another
important detail is that in the headers of the RESTful command we must specify that we are sending a .yaml
file. We do by setting the “Content-Type” and the “Accept” keys to the “application/x-yaml” value. Thereby,
bearing in mind all these considerations, we present in Figure 21 the complete RESTful command that we
need to run to upload a VNF package content to OSM. As in the previous cases, we did the implementation
using postman. In Figure 22 we show the effect that this PUT REST API has on the OSM. Comparing this
figure to Figure 20 we can see that now we have content for the VNF package. Next, we provide the curl code
associated to the PUT command that we have just described.

curl -X PUT \
 https://10.1.14.248:9999/osm/vnfpkgm/v1/vnf_packages/618b6f75-b679-45b3-941e-7434fcdca0a3/package_content \
 -H 'Accept: application/x-yaml' \
 -H 'Accept-Encoding: gzip, deflate' \

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D3.8 Network Functions Virtualization for IoT (final)
Dissemination level: public

55

 -H 'Authorization: Bearer jKPEEepXUQ3yIGUS6fSygXBmANFykIyL' \
 -H 'Cache-Control: no-cache' \
 -H 'Connection: keep-alive' \
 -H 'Content-Length: 860' \
 -H 'Content-Type: application/x-yaml' \
 -H 'Cookie: session_id=c274a7fde7058c47202c08e6b793471136ca1887' \
 -H 'Host: 10.1.14.248:9999' \
 -H 'Postman-Token: 2154db23-fcd6-4079-91a0-ce50e6773e71,34681427-815c-4fe6-8d2b-988a304f86a7' \
 -H 'User-Agent: PostmanRuntime/7.20.1' \
 -H 'cache-control: no-cache'

FIGURE 21 PUT METHOD IN POSTMAN TO UPLOAD THE CONTENT OF A VNF PACKAGE.

FIGURE 22 EFFECT OF THE PUT METHOD IN OSM.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D3.8 Network Functions Virtualization for IoT (final)
Dissemination level: public

56

4.3.3.2 OPERATIONS RELATED TO THE NSD MANAGEMENT INTERFACE

This interface allows OSS to control externally the operations related to the NS descriptors in the NFV MANO,
i.e. the OSM. More specifically, we can perform operations like:

• Query the information of the available NS descriptors at the NFV MANO.

• Create a NS package resource.

• Upload the content of a NS package, i.e. a NS descriptor.

The simplified URI resource structure is shown in Figure 23. Moreover, in Table 6 we present the HTTP
methods that can be applied to the URI resources to manage the NSD interface. Below we give complete
details on how we implemented all these HTTP REST APIs in the CTTC testbed.

FIGURE 23 SIMPLIFIED VIEW OF THE URI RESOURCE STRUCTURE FOR THE NSD MANAGEMENT

INTERFACE [5].

TABLE 6 RESOURCES AND HTTP METHODS FOR THE NSD MANAGEMENT INTERFACE

Resource URI HTTP method Meaning

/ns_descriptors GET Obtain information on all NS
descriptors onboarded in the
NFV MANO, i.e. the OSM.

POST Create a NS descriptor resource.
This creates like a placeholder,
and afterwards with a PUT
method we upload the NS
descriptor content.

/ns_descriptors/{nsdInfoId}/nsd_content PUT Upload the content of a NS
descriptor.

GET method applied to the /ns_descriptors resource

This method allows to obtain information on all the NS onboarded in the NFV MANO, i.e. in our case in the
OSM. We have implemented this REST API using postman, as it is shown in Figure 24. To this end, an
important observation is that the complete URI resource in the CTTC testbed reads:

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D3.8 Network Functions Virtualization for IoT (final)
Dissemination level: public

57

• “https://10.1.14.248:9999/osm/nsd/v1/ns_descriptors”.

Figure 24 shows the result of running the GET method, i.e. it effectively displays the NS descriptors. For the
sake of completeness, we also provide the curl code associated to this request:

curl -X GET \
 https://10.1.14.248:9999/osm/nsd/v1/ns_descriptors \
 -H 'Accept: */*' \
 -H 'Accept-Encoding: gzip, deflate' \
 -H 'Authorization: Bearer bLX8XE1VpdwbwleJNyeNz1OPkFn3OoBP' \
 -H 'Cache-Control: no-cache' \
 -H 'Connection: keep-alive' \
 -H 'Cookie: session_id=fee5827f5ac9c0a85cd3bd26976dc3b57ffc3c4b' \
 -H 'Host: 10.1.14.248:9999' \
 -H 'Postman-Token: 253e7095-4898-45b9-adab-8fbea67c1461,54dc58fd-6776-4e41-b92d-7d383d5e551f' \
 -H 'User-Agent: PostmanRuntime/7.20.1' \
 -H 'cache-control: no-cache'

FIGURE 24 GET REQUEST TO OBTAIN NSD INFORMATION, IMPLEMENTED IN POSTMAN.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D3.8 Network Functions Virtualization for IoT (final)
Dissemination level: public

58

POST method applied to the /ns_descriptors resource

This REST operation allows the OSS to create externally a NS package resource in the NFV MANO. To this
end, the complete URI resource in the CTTC testbed is https://10.1.14.248:9999/osm//nsd/v1/ns_descriptors.

Thereby, we applied the POST method to this URI resource using postman as an emulation of the OSS. This
is shown in Figure 25. Observe that this request produces an “id”, which identifies the new NS package. Also,
observe in the OSM web interface, that the NS resource with that “id” is void. With the PUT method of the next
section we will upload the NS content. We also provide the curl code associated to this NS creation:

curl -X POST \
 https://10.1.14.248:9999/osm//nsd/v1/ns_descriptors \
 -H 'Accept: */*' \
 -H 'Accept-Encoding: gzip, deflate' \
 -H 'Authorization: Bearer VKHja3XKGvH37Oia0OUIlnnHiqNVrzVa' \
 -H 'Cache-Control: no-cache' \
 -H 'Connection: keep-alive' \
 -H 'Content-Length: 0' \
 -H 'Cookie: session_id=fee5827f5ac9c0a85cd3bd26976dc3b57ffc3c4b' \
 -H 'Host: 10.1.14.248:9999' \
 -H 'Postman-Token: 8c446a90-26f4-4833-b339-11f39d1a8fce,acd86f84-4861-4ad4-8dc4-cb555fa1d40e' \
 -H 'User-Agent: PostmanRuntime/7.20.1' \
 -H 'cache-control: no-cache'

FIGURE 25 POST REQUEST TO CREATE A NS PACKAGE RESOURCE.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D3.8 Network Functions Virtualization for IoT (final)
Dissemination level: public

59

PUT method applied to the /ns_descriptors/{nsdInfoId}/nsd_content resource

This operation is used to upload the content of a NS from the OSS to the NFV MANO (the OSM). This operation
requires first to execute the POST operation introduced above, which creates a new NS resource. In fact, we
need the “id” produced by that POST operation. More specifically, the partial URI resource to upload the NS
content reads /ns_descriptors/{nsdInfoId}/nsd_content and we need to substitute the /{nsdInfoId}
placeholder by the “id” produced by the POST operation. Therefore, considering the “id” of Figure 25, the
complete URI resource to upload the NS content in the NFV MANO has the next structure:

• https://10.1.14.248:9999/osm/nsd/v1/ns_descriptors/45a070fb-f716-4dc1-b932-42a7a52a540a/nsd_content

We have execute the PUT method applied to this URI resource using postman, the result is displayed in Figure
26. It is important to put in the body that we want to send a binary file, which is the .yaml file with the NS
content, i.e. the NS descriptor. Also, we must specify in the headers that the keys “Content” and “Accept” have
associated values “application/x-yaml”. Figure 26, also shows the web page of the NFV MANO, where we can
see that effectively the NS resource has now an associated content. Finally, the curl code associated to this
PUT RESTful request is as follows:

curl -X PUT \
 https://10.1.14.248:9999/osm//nsd/v1/ns_descriptors/45a070fb-f716-4dc1-b932-42a7a52a540a/nsd_content \
 -H 'Accept: application/x-yaml' \
 -H 'Accept-Encoding: gzip, deflate' \
 -H 'Authorization: Bearer 1dYtscCemxPDsdEgpxLstPpVy993XZWK' \
 -H 'Cache-Control: no-cache' \
 -H 'Connection: keep-alive' \
 -H 'Content-Length: 710' \
 -H 'Content-Type: application/x-yaml' \
 -H 'Cookie: session_id=fee5827f5ac9c0a85cd3bd26976dc3b57ffc3c4b' \
 -H 'Host: 10.1.14.248:9999' \
 -H 'Postman-Token: a25a044c-3c6e-4992-b1e7-1ad7f7bf969c,c3c62157-b336-471c-8a0f-a934e3c924a3' \
 -H 'User-Agent: PostmanRuntime/7.20.1' \
 -H 'cache-control: no-cache'

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D3.8 Network Functions Virtualization for IoT (final)
Dissemination level: public

60

FIGURE 26 PUT REQUEST TO UPLOAD A NS CONTENT.

4.3.3.3 OPERATIONS RELATED TO THE NS LIFECYCLE MANAGEMENT INTERFACE

This interface permits an external OSS to execute operations in the NFV MANO related to the NS lifecycle
management. This is a list of some of the possible operations:

• Query information on the NS that are instantiated at the NFV MANO.

• Create a NS instance resource.

• Instantiate a NS.

• Terminate a NS.

In order to perform these operations, we need the specification of the URI resources and the HTTP methods.
These are specified in [5] and we show them in Table 7. As in the previous cases, the {apiRoot} for the CTTC
testbed reads https://10.1.14.248:9999/osm.

TABLE 7 URI RESOURCES AND HTTP METHODS FOR THE NS LIFECYCLE MANAGEMENT
INTERFACE [5]

Resource URI HTTP method Meaning

{apiRoot}/nslcm/v1/ns_instances GET Obtain information on all NS
instances in the NFV MANO, i.e.
the OSM.

POST Create a NS instance resource.
This schedules a resource, and
afterwards with a POST method
we perform the instantiation
associated to this NS instance
resource.

{apiRoot}/nslcm/v1/ns_instances/{nsInstanceId}/i
nstantiate

POST Instantiate a NS.

{apiRoot}/nslcm/v1/ns_instances/{nsInstanceId}/t
erminate

POST Terminate a NS instance.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D3.8 Network Functions Virtualization for IoT (final)
Dissemination level: public

61

GET method applied to the {apiRoot}/nslcm/v1/ns_instances resource

The GET method applied to this URI resource allows the external OSS to obtain the information on the NS
instances available in the NFV MANO. The complete URI resource has the next structure in the CTTC testbed
https://10.1.14.248:9999/osm/nslcm/v1/ns_instances. Therefore, we applied the GET HTTP method to this URI
resources, using postman as the external OSS. We can see the result in Figure 27. The curl code associated
to this GET request is displayed next:

curl -X GET \
 https://10.1.14.248:9999/osm/nslcm/v1/ns_instances \
 -H 'Accept: */*' \
 -H 'Accept-Encoding: gzip, deflate' \
 -H 'Authorization: Bearer TNm6zBAcozoFQDy9NJcWw9eHwQdglHUI' \
 -H 'Cache-Control: no-cache' \
 -H 'Connection: keep-alive' \
 -H 'Host: 10.1.14.248:9999' \
 -H 'Postman-Token: 9aad5014-3370-4c7e-b155-27926d267b5f,95cc00a6-ae55-49fd-af58-d61f04b5cdec' \
 -H 'User-Agent: PostmanRuntime/7.20.1' \
 -H 'cache-control: no-cache'

FIGURE 27 GET REQUEST TO OBTAIN THE INFORMATION ON THE NS INSTANCES AT THE OSM.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D3.8 Network Functions Virtualization for IoT (final)
Dissemination level: public

62

POST method applied to the {apiRoot}/nslcm/v1/ns_instances resource

This RESTful command allows an external OSS to create a new NS instance resource in the NFV MANO.
Figure 28 shows how we have to configure postman to perform this operation. First, observe that the complete
URI resource is:

• https://10.1.14.248:9999/osm/nslcm/v1/ns_instances

Then, we must apply the POST method to that URI resource. Moreover, it is very important to note that we
have to specify the value of a set of key parameters in the body, as it is indicated in [5]:

• "nsdId". This key indicates the identification of the NS package that we want to use to create a new
NS instance resource. In our case, it is “4734f40b-85de-4005-94fb-259dd6f15a43”.

• "nsName". This is related to the “nsdId”, as it is the name of the NS descriptor that we want to use to
create the NS instance resource. In our case it has the value "generic-vnf_nsd2".

• "nsDescription": This is just the description of the NS described in the previous bullets. In our case we
just set it to "This is a generic ns instance".

• "vimAccountId". This is the identifier of the VIM account. The OSM will use this VIM to instantiate the
NS on top of a NFVI. In our case its value is "3c4b3555-7489-457d-9c35-1616483d6915".

Also observe that we must indicate that the data in the body is in JSON format. We do that by setting “content -
type” and “accept” header keys to the “application/json” value. Finally, running this POST RESTful command
yields a new NS instance resource in the OSM, as it is shown in Figure 29. Observe that OSM created the
new instance resource, though the status is “scheduled”. This means that it is not actually instantiated in the
NFVI controlled by the VIM. That is to say, we have just created the NS instance resource. The actual
instantiation will be explained in the next RESTful operation. However, note that we need to run this operation
because it yields an “id” that is needed when trying to do the instantiation operation. Next, we display the curl
code associated to the NS instance resource creation that we have just described:

curl -X POST \
 https://10.1.14.248:9999/osm/nslcm/v1/ns_instances \
 -H 'Accept: application/json' \
 -H 'Accept-Encoding: gzip, deflate' \
 -H 'Authorization: Bearer TNm6zBAcozoFQDy9NJcWw9eHwQdglHUI' \
 -H 'Cache-Control: no-cache' \
 -H 'Connection: keep-alive' \
 -H 'Content-Length: 191' \
 -H 'Content-Type: application/json' \
 -H 'Cookie: session_id=c8bc3a82f22cc258ad7da63eb09af9dbc69c5ea3' \
 -H 'Host: 10.1.14.248:9999' \
 -H 'Postman-Token: 5a6f0eb0-1958-4728-a854-d46e265fbfeb,2a6c15ae-e45a-480c-9021-8a7a1f9c2748' \
 -H 'User-Agent: PostmanRuntime/7.20.1' \
 -H 'cache-control: no-cache' \
 -d '{
 "nsdId": "4734f40b-85de-4005-94fb-259dd6f15a43",
 "nsName": "generic-vnf_nsd2",
 "nsDescription": "This is a generic ns instance",
 "vimAccountId": "3c4b3555-7489-457d-9c35-1616483d6915"
}'

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D3.8 Network Functions Virtualization for IoT (final)
Dissemination level: public

63

FIGURE 28 POSTMAN CONFIGURATION TO REQUEST THE CREATION OF A NEW NS INSTANCE

RESOURCE.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D3.8 Network Functions Virtualization for IoT (final)
Dissemination level: public

64

FIGURE 29 CREATION OF A NEW NS INSTANCE RESOURCE IN OSM.

POST method applied to the {apiRoot}/nslcm/v1/ns_instances/{nsInstanceId}/instantiate resource

This operation allows the OSS to order the OSM to trigger the instantiation of a NS. To this end, we need the
previous operation, i.e. the one that created the NS instance resource, as it returns the identification of the
NS instance resource. This “id” is substituted in the placeholder /{nsInstanceId} of the URI. Therefore,
considering the “id” of Figure 28, the complete URI resource to instantiate the NS is:

• https://10.1.14.248:9999/osm/nslcm/v1/ns_instances/5533d890-1411-4543-af46-21615db62eef/instantiate

In Figure 30 we show how we used postman to execute the RESTful command that allows to instantiate the
NS. Observe that we applied the POST method on the URI resource that we have just described. Also note,
that we have to specify a key/value pair in the body. Their meaning is the same than in the previous POST
operation. The only difference is that now “nsdid” is set to the NS instance resource obtained in Figure 28. In
Figure 31, it is shown that the NS is effectively instantiated. Namely, what is happening in background is that
the OSM triggers the instantiation by contacting with the OpenStack VIM, which is the one that manages the
NFVI. Then the OpenStack performs the instantiation of the NS on top of the NFVI. Finally, next we display
the curl code to perform this NS instance operation:

curl -X POST \
 https://10.1.14.248:9999/osm/nslcm/v1/ns_instances/5533d890-1411-4543-af46-21615db62eef/instantiate \
 -H 'Accept: application/json' \
 -H 'Accept-Encoding: gzip, deflate' \
 -H 'Authorization: Bearer TNm6zBAcozoFQDy9NJcWw9eHwQdglHUI' \
 -H 'Cache-Control: no-cache' \
 -H 'Connection: keep-alive' \
 -H 'Content-Length: 190' \
 -H 'Content-Type: application/json' \
 -H 'Cookie: session_id=b54d889744ac37495b344224d040026c0be9aec2' \
 -H 'Host: 10.1.14.248:9999' \
 -H 'Postman-Token: 5d2600fb-cb4a-451f-9270-379713976412,26b38190-2d0e-4ed7-ad53-d17d51b72af7' \
 -H 'User-Agent: PostmanRuntime/7.20.1' \
 -H 'cache-control: no-cache' \
 -d '{
 "nsdId": "5533d890-1411-4543-af46-21615db62eef",
 "nsName": "generic-vnf_nsd",
 "nsDescription": "This is a generic ns instance",
 "vimAccountId": "67df5758-f484-40e2-9573-7f85fba46ea5"
}'

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D3.8 Network Functions Virtualization for IoT (final)
Dissemination level: public

65

FIGURE 30 CONFIGURATION OF POSTMAN FOR THE INSTANTIATION OF A NS INSTANCE.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D3.8 Network Functions Virtualization for IoT (final)
Dissemination level: public

66

FIGURE 31 CONFIRMATION OF THE NS INSTANTIATION IN OSM AND OPENSTACK.

POST method applied to the {apiRoot}/nslcm/v1/ns_instances/{nsInstanceId}/terminate resource

This operation allows the OSS to terminate a NS instance that is running in OpenStack, through OSM. The
“id” that we have to use in the /{nsInstanceId} placeholder is the same than in the previous NS instantiation
operation. That is the one that identifies the NS instance resource that had been instantiated. Therefore, the
complete URI resource has this expression:

• https://10.1.14.248:9999/osm/nslcm/v1/ns_instances/5533d890-1411-4543-af46-21615db62eef/terminate

In Figure 32 we show how we configured postman to execute the NS instance termination operation. Note
that we applied the POST method on the above described URI. Also, we specified in the body a set of JSON
key/value pairs. Actually, they have almost the same value than in the previous NS instantiation operation
above. Only we have a new key “DateTime”, which indicates when we want to terminate the NS. By setting it
to “0” we are indicating that we want to terminate at this precise moment the NS instance. By executing this
operation we can see how the NS has been effectively terminated, see Figure 33. Next, for the sake of
completeness we display the curl code to perform the NS termination operation:

curl -X POST \
 https://10.1.14.248:9999/osm/nslcm/v1/ns_instances/5533d890-1411-4543-af46-21615db62eef/terminate \
 -H 'Accept: application/json' \
 -H 'Accept-Encoding: gzip, deflate' \
 -H 'Authorization: Bearer K1Z3XBAP0a8Nf0PQT39LYwlGsSJHiVYQ' \
 -H 'Cache-Control: no-cache' \
 -H 'Connection: keep-alive' \
 -H 'Content-Length: 157' \
 -H 'Content-Type: application/json' \
 -H 'Cookie: session_id=0deeebd5e81046d600e55705e2eb5a547b241d33' \
 -H 'Host: 10.1.14.248:9999' \
 -H 'Postman-Token: 312e0eec-40d9-4dd1-b8c2-efe290df437f,de481c0e-e3a5-4c65-9f89-c9bd80fd43f0' \
 -H 'User-Agent: PostmanRuntime/7.20.1' \
 -H 'cache-control: no-cache' \
 -d '{

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D3.8 Network Functions Virtualization for IoT (final)
Dissemination level: public

67

 "nsdId": "5533d890-1411-4543-af46-21615db62eef",
 "nsName": "generic-vnf_nsd",
 "DateTime": "0",
 "vimAccountId": "67df5758-f484-40e2-9573-7f85fba46ea5"
}'

FIGURE 32 CONFIGURATION OF POSTMAN FOR THE TERMINATION OF A NS INSTANCE.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D3.8 Network Functions Virtualization for IoT (final)
Dissemination level: public

68

FIGURE 33 CONFIRMATION OF THE NS INSTANCE TERMINATION IN OSM.

4.4 Orchestrating a generic Network Service

The NFV Orchestrator leverages a set of software endpoints (or interfaces) in the form of RESTful APIs to
realize Network Services (NS). Such interfaces enable the registration of (a) VIM(s) and SDN Controllers into
the Orchestrator, as well as the specification of the software images which form the basis of the resulting
Virtual Network Functions (VNF).

In order to spawn a NS, first, NFVI administrators should specify Network Service descriptors (NSd), which
are in turn composed of Virtual Network Function and Virtual Links descriptors (VNFd and VLd, respectively).
These descriptors are static YAML files following an ETSI-compliant Information Model (IM) for each of the
elements in the NS [3, 4]. For each of the SEMIoTICS use cases, VNFd and VLd should be described and
summarized in a NSd. In the following, the process of VIM (OpenStack) registration, and VNF/NS onboarding
is described for ETSI’s Opensource MANO (OSM). Later, a similar NS is built using lightweight virtualization,
that is, Docker containers employing Kubernetes as Orchestrator and VIM. Finally, the benefit and tradeoffs
of both approaches with respect to SEMIoTICS are discussed.

4.4.1 A GENERIC VNF-VM EXPOSED THROUGH A ROUTED NETWORK (OSM+OPENSTACK)

The adjective “generic” is conferred to this example because the VNF does effectively nothing. Instead, these
sections aim at describing the onboarding and instantiation of a NS.

4.4.1.1 PHYSICAL NETWORK TOPOLOGY AND NFVI
As specified in OSM documentation, the orchestrator should have IP connectivity with both the VIM and the
resulting VNFs, while OSM management is realized via a graphical user interface or OSM CLI client as
northbound interfaces, as shown in Figure 35.

Assuming a successful installation of OpenStack (VIM) and OSM (NFVO+VNFM) (as shown in Figure 34),
the next step is to detail the specifics of each VM composing the NS.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D3.8 Network Functions Virtualization for IoT (final)
Dissemination level: public

69

FIGURE 34 ONBOARDED VIM ACCOUNT: IOTWORLD_OPENSTACK

4.4.1.2 DESCRIPTORS AND ONBOARDING TO OSM

In this generic example, a single default Ubuntu cloud image called ubuntu is used. The corresponding VNFd

for a semiotics_generic_vnfd-VM is shown in Descriptor 1 below.

The VNF should be exposed to the network via a NS. If the VIM was registered to OSM using admin privileges,
then the NSd could include arbitrary network names and IPv4 ranges. In the example Descriptor 2 below
though, previously mentioned VNF is exposed using an already existing VIM network called internalNet.

This is particularly relevant when the NFVI owner is not interested in yielding complete control of network
resources to tenants, instead it just exposes a set of predefined networks where NS could be spawned.

FIGURE 35 OSM TOPOLOGY [31]

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D3.8 Network Functions Virtualization for IoT (final)
Dissemination level: public

70

Once the descriptors are filled with the required information, they should be verified and onboarded to OSM.
For this purpose, OSM provides a set of scripts [32] to handle this process and encapsulate the resulting
bundle of files for onboarding. The following Figure 36 and Figure 37 show the onboarded VNF and NS
descriptors, respectively, through OSM northbound API using a Web browser.

FIGURE 36 VNFD FOR SEMIOTICS_GENERIC_VNFD

FIGURE 37 NSD EXPOSING SEMIOTICS_GENERIC_VNFD-VM

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D3.8 Network Functions Virtualization for IoT (final)
Dissemination level: public

71

4.4.1.3 NS INSTANTIATION
One of the key functionalities of the orchestrator is its ability to re-create/instantiate an onboarded NSd on
every registered VIM. In this case, the already-onboarded Descriptor 2 will be instantiated one time on
iotworld_openstack VIM, as shown in Figure 38.

FIGURE 38 NS INSTANTIATION ON VIM

Once the instantiation instruction is executed, OSM will trigger VIM endpoints to relay the information
contained in the descriptors (VM specifics, networking, storage). The instantiation process takes
approximately 10 seconds, and results could be visualized at OSM GUI, via OSM CLI client, or at the VIM;
these are shown by Figure 39, Figure 40, and Figure 41, respectively.

FIGURE 39 OSM GUI: SUCCESSFUL NS INSTANTIATION

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D3.8 Network Functions Virtualization for IoT (final)
Dissemination level: public

72

FIGURE 40 OSM CLI CLIENT: SUCCESSFUL NS INSTANTIATION

FIGURE 41 OPENSTACK VIM: SUCCESSFUL NS INSTANTIATED ON VIM-REGISTERED NETWORK

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D3.8 Network Functions Virtualization for IoT (final)
Dissemination level: public

73

vnfd:vnfd-catalog:

 vnfd:

 - id: semiotics_generic_vnfd

 name: semiotics_generic_vnfd

 short-name: semiotics_generic_vnfd

 description: Generated by OSM package generator

 vendor: OSM

 version: '1.0'

 # Management interface

 mgmt-interface:

 cp: vnf-cp0

 # Atleast one VDU need to be specified

 vdu:

 # Additional VDUs can be created by copying the

 # VDU descriptor below

 - id: semiotics_generic_vnfd-VM

 name: semiotics_generic_vnfd-VM

 description: semiotics_generic_vnfd-VM

 count: 1

 # Flavour of the VM to be instantiated

 vm-flavor:

 vcpu-count: 2

 memory-mb: 4096

 storage-gb: 10

 # Image including the full path

 # This image should exist at the VIM

 image: 'ubuntu'

 interface:

 # Specify the external interfaces

 # There can be multiple interfaces defined

 - name: eth0

 type: EXTERNAL

 virtual-interface:

 type: VIRTIO

 external-connection-point-ref: vnf-cp0

 connection-point:

 - name: vnf-cp0

 type: VPORT
DESCRIPTOR 1 VNFD OF A GENERIC VNF FROM AN UBUNTU CLOUD IMAGE

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D3.8 Network Functions Virtualization for IoT (final)
Dissemination level: public

74

nsd:nsd-catalog:

 nsd:

 - id: semiotics_generic_nsd

 name: semiotics_generic_nsd

 short-name: semiotics_generic_nsd

 description: Generated by OSM package generator

 vendor: OSM

 version: '1.0'

 # Specify the VNFDs that are part of this NSD

 constituent-vnfd:

 # The member-vnf-index needs to be unique

 # vnfd-id-ref is the id of the VNFD

 # Multiple constituent VNFDs can be specified

 - member-vnf-index: 1

 vnfd-id-ref: semiotics_generic_vnfd

 vld:

 # Networks for the VNFs

 - id: semiotics_generic_nsd_vld0

 name: internalNet

 short-name: internal

 type: ELAN

 mgmt-network: 'true'

 vim-network-name: internalNet

 vnfd-connection-point-ref:

 # Specify the constituent VNFs

 # member-vnf-index-ref - entry from constituent vnf

 # vnfd-id-ref - VNFD id

 # vnfd-connection-point-ref

 - member-vnf-index-ref: 1

 vnfd-id-ref: semiotics_generic_vnfd

 vnfd-connection-point-ref: vnf-cp0
DESCRIPTOR 2 NSD EXPOSING SEMIOTICS_GENERIC_VNFD-VM VIA AN EXISTING VIM NETWORK

4.4.2 A GENERIC VNF-DOCKER EXPOSED THROUGH A ROUTED NETWORK
(DOCKER+KUBERNETES)

As opposed to the example shown above, this VNF is not a VM but a Docker container. Containers provide
much of the desired isolation of VMs but with faster boot time, mostly due to the use of namespace isolation
(based on chroot) which bypasses the requirement of spawning a new Kernel for each container (VNF).

This fundamental difference between VMs and containers (Docker) imply different application/VNF design
considerations. For instance, a VM is a complete OS environment, whereas a Docker container only includes
what the script/applications within it requires, making it very lightweight and fast to orchestrate. There are
several alternatives for Docker container orchestration, namely Docker Swarm [33], OpenShift [34],
OpenStack Magnum [35], Kubernetes [36], among others. In this section Docker container orchestration will
be performed with Kubernetes.

Based on ETSI’s NFVI (see Figure 1), it is safe to assume Kubernetes as the complete set of NFV
Management and Orchestration components. That is, it takes care of managing the virtualized infrastructure
(compute and storage), networking, and VNF lifecycle management. Furthermore, similar endpoints are
exposed so external entities (such as OSS/BSS) could collect information from VNFs and the resources being
used.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D3.8 Network Functions Virtualization for IoT (final)
Dissemination level: public

75

4.4.2.1 PHYSICAL NETWORK TOPOLOGY AND NFVI
Orchestration with Kubernetes simplifies the physical topology’s minimum requirements. The NFV I will be
composed of a single Master and a collection of Minion nodes. The Master takes the role of a VIM, VNFM
and NFVO; while Minions work as Hardware Resources, i.e. NFVI, refer to Figure 1. The analogy goes a long
way, for instance, gathering container information must be done by triggering the Master’s corresponding
endpoints (RESTful APIs), and Docker containers are spawned on top of Minions. Networking among
containers (or pods) within Kubernetes is also software-defined, often dubbed Cluster Networking [37].

4.4.2.2 DEPLOYMENTS AND SERVICES AS DESCRIPTORS
Contrary to OSM, the instructions on how to build a container from an image and how to expose it to the
network, do not need to be previously onboarded to the NFVO. Instead, in Kubernetes the analogous to
descriptors are YAML files that follow specific Kubernetes APIs. There are APIs for every aspect concerning
an application/VNF deployment, e.g.: deployment (pods, containers), services (networking exposure),
volumes (storage), volume claims, labels, and much more [38].

The following Descriptor 3 shows a Docker file. This file is used to build a Docker image11 called
semiotics/restAPI:v0.1. Then, Descriptor 4 shows a Kubernetes deployment file, and Descriptor 5

shows a Kubernetes service file.

#Use an official Python runtime as a parent image

FROM python:2.7-slim

Set the working directory to /app

WORKDIR /app

Copy the current directory contents into the container at /app

COPY test.py requirements.txt /app/

Install any needed packages specified in requirements.txt

RUN pip install --trusted-host pypi.python.org -r requirements.txt

Make port 5200 available to the world outside this container

EXPOSE 5200

Run test.py when the container launches

CMD ["python", "test.py"]

DESCRIPTOR 3 DOCKERFILE TO CREATE AN IMAGE. WHEN RUN, THE CONTAINER WILL BOOT

EXECUTING "TEST.PY"

As can be read in Descriptor 4, it specifies labels, anti-affinity rules (even-though empty in this example), as
well as a cap in the amount of resources requested during execution. Similar control over the VNF resources
can be obtained with OSM+OpenStack. Furthermore, Descriptor 5 details the networking aspects of the VNF,
that is, how could it be reached from outside the cluster (this is specified as NodePort type, but administrators
could also expose ClusterIPs which are only reachable by pods within the cluster). The aforementioned
descriptors are used for orchestrating a Docker container on Minion nodes.

4.4.3 VMs OR DOCKER CONTAINERS FOR SEMIOTICS

SEMIoTICS seeks to provide optimization at various levels of a NFVI (at field, network and cloud layers). That
is, better networking routes, VNF scaling, and the concatenation of VNFs at different layers to form Service
Function Chains (SFC) as NS. Focusing on the latter, SFC require close cooperation among compute, storage
and networking controllers in order to route traffic to the specific VNFs composing the SFC.

11 Docker containers are the runtime version of Docker images.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D3.8 Network Functions Virtualization for IoT (final)
Dissemination level: public

76

Despite the apparent benefits provided by the fast instantiation of Docker containers, the concept of
networking VNFs and SFC is not thoroughly supported in Kubernetes. Let networking VNFs refer to
containerized routers, switches, or another customized virtual network element. If such a type of VNF would
require specific kernel modules, it could only be orchestrated on top of Minion nodes whose kernel is modified
in the same manner. This is due to the nature of Docker containers, i.e. containers run a subset of the host’s
Kernel. This fact imposes a limitation for NS, unnecessarily tying VNFs to specific nodes12 and hindering the
flexibility of the NFVI.

apiVersion: apps/v1beta2

kind: Deployment

metadata:

 name: semiotics

spec:

 selector:

 matchLabels:

 run: semiotics

 replicas: 1

 template:

 metadata:

 labels:

 run: semiotics

 spec:

 affinity:

 nodeAffinity:

 requiredDuringSchedulingIgnoredDuringExecution:

 nodeSelectorTerms:

 - matchExpressions:

 - key: "kubernetes.io/hostname"

 operator: NotIn

 values: [""]

 containers:

 - name: semiotics

 image: semiotics/restAPI:v0.1

 imagePullPolicy: IfNotPresent

 ports:

 - containerPort: 5200

 name: flask-port

 resources:

 limits:

 memory: "100Mi"

 cpu: "2"

 requests:

 memory: "50Mi"

 cpu: "1"

DESCRIPTOR 4 KUBERNETES DEPLOYMENT FILE. SPECIFYING NODE ANTI-AFFINITY FIELD AND

RESOURCE LIMITATIONS AS EXAMPLES

12 There are cases where VNFs are spawned at specific nodes, e.g.: when using specific hardware, or for reducing
delay by placing the VNF physically closer to where it is needed.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D3.8 Network Functions Virtualization for IoT (final)
Dissemination level: public

77

apiVersion: v1

kind: Service

metadata:

 name: semiotics

spec:

 type: NodePort

 ports:

 - port: 5200

 targetPort: 5200

 protocol: TCP

 name: flask-port

 selector:

 run: semiotics

 externalIPs: ["192.168.2.102"]
DESCRIPTOR 5 KUBERNETES SERVICE FILE. IT EXPOSES THE DEPLOYMENT "SEMIOTICS" VIA AN

SPECIFIC IP AND TCP PORT

On the other hand, VMs as VNF do not suffer from such limitation. Moreover, network controllers for
OpenStack (Neutron), external SDN Controllers (such as OpenDaylight and the SSC), and OSM have
extensive support for SFC and other 5G technologies such as network slicing. Therefore, it is recommended
to continue development of the SEMIoTICS architecture employing the ETSI-compliant combination of
OpenStack+OSM.

Having clarified the above, it is also valid to highlight the possible benefits offered by Kubernetes as a
backend/cloud application orchestrator. It offers similar virtualization capabilities and management tools and
has been widely adopted as an agile platform for constantly improve and constantly develop (CI/CD) web
applications on top of a virtual environment (e.g.: Docker containers). Moreover, it provides tools for live
updating the characteristics of a deployment (e.g.: scale up/down) with virtually no down-time; a feature that
is still to be implemented in OSM13. In the end, NFV-MANO as proposed for SEMIoTICS could support
Kubernetes at the backend/cloud level as several VNFs belonging to the same tenant network.

4.5 Dynamic management of the NFV resources

4.5.1 SoA ON NFV RESOURCE ALLOCATION

As it has been mentioned above, NS are deployed in NFV as a chain of network functions or VNFs. That chain
is so-called SFC. Moreover, VNFs are deployed on top of the NFVI. This means that each VNF is executed
within a VM, or other type of virtual environments such as containers, that provide virtual computing, storage
and communications resources to execute the VNF properly. Thereby, this section deals with two fundamental
questions from an NVF resource management viewpoint [39] [40] [41].

The first one, is where it is more convenient to deploy the VNF from a QoS point of view. Or in other words,
in which VM is better to place a given VNF. Thereby, this problem is so-called VNF placement. This VM can
be physically located in any part of the network that allows virtualization of its resources. For instance, in
SEMIoTICS the VM could be placed at the edge of the network, i.e. at the IoT Gateway, or at the backend
cloud.

The second problem treated herein is explained as follows in the form of two statements. First, to determine
how many virtual computing resources are assigned to the VM to execute the VNFs. Second, to decide how
many virtual communication resources are assigned for the communication between VMs. The VNF
placement along with the allocation of virtual computing and storage resources determine the QoS that the
NFV provides to a network service. Thereby, in the sequel we deal with optimal allocation of the NFV resource
from a network service QoS point of view. In SEMIoTICS, this QoS is determined for instance by a low latency
and a reliable communication. Next, the SoA on NFV resource allocation is reviewed.

13 OSM release FIVE.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D3.8 Network Functions Virtualization for IoT (final)
Dissemination level: public

78

First, there are several works that consider geographically distributed clouds to deploy the VMs [42] [43] [44].
The aim of those works is to minimize the operational resource cost to run the service while satisfying QoS
constraints related to the service level agreement (SLA), e.g. the maximum delay between the data center
and the user. These works only consider that the VMs are deployed in the backend cloud. However,
SEMIoTICS considers a two-tier cloud architecture where VMs can be deployed either at the backend cloud
or at the network edge, i.e. at the IoT Gateway.

Several works consider this two-tier cloud architecture, e.g. [40] [45]. The most interesting for our purposes
is [40]. Namely, [40] treats the problem of placing the VNFs either at the backend cloud or at the cloudlet, i.e.
at the edge. Also, they deal with the allocation of computing resources to the VMs that run the VNFs. To this
end, they decide the number of CPU cores allocated to the VM running the VNF. In order to decide the VNF
placement and the allocation of computing resources they consider an optimization problem that has the next
terms in the objective function:

• Minimize the maximum utilization of computing resources of the cloudlet.

• Minimize the amount of computing resources allocated in the backend cloud.

• Minimize the QoS violations. Namely, they consider a QoS model based on the maximum delay
acceptable for different traffic types. And consider that a QoS violation occurs when a function of the
VNF processing delay exceeds that maximum delay.

In the constraints of their optimization problem, it is worth mentioning a bound on the VNF processing delay
related to the SLA agreement. Finally, they show that their optimization problem belongs to the class of Mixed
Integer Linear Programming (MILP) problems. Therefore, [40] is interesting but has several drawbacks. First,
they do not decide the allocation of virtual communication resources that are needed in the interplay between
different VMs of an SFC. Second, they obtain an analytic expression to quantify the delay due to VNF
processing, which is based on just an average response time. Namely, it is obtained by modeling the VM as
an M/M/1 queue. Also, in this regard, they obtain VNF placement and allocation decisions that are static. That
is, the optimization problem is solved without taking into account any kind of temporal or random variations
due to the state of the network resources, the state of the computing resources or the services requests.
Third, the complexity of a MILP grows quickly as the problem size increases, namely it is an NP-complete
problem. Thereby, a MILP problem is not scalable, which is a severe issue for SEMIoTICS, as the optimization
problem can have a high dimension due to the massive amount of IoT devices. Last but not least, they do not
consider past data to take the resource allocation decisions. This past data can be related to the rate of
services request or the state of the network resources. They determine past allocation decisions from which
the algorithm could learn the optimal allocation decisions in future time slots.

Another interesting approach for NFV resource allocation is proposed in [41] [46]. This approach solves the
drawbacks of [40] as we will see next. The approach proposed in [41] [46] considers time slots to perform the
resource allocation task. That is, at each time slot they decide the VNF placement along with the amount of
virtual computing and communication resources allocated to the VMs that run the VNFs. Moreover, they
consider that there are sources of randomness that affect the resource allocation decision:

• They assume that the virtual computing and communication resources have a time-varying cost, which
is parameterized by random parameters that can vary at each time slot. For instance, this is the case
when the SFC is deployed in an external cloud and the cloud provider charges a cost for the use of
its resources.

• Furthermore, they also consider that another source of randomness is the arrival rate of new services
requests at each time slot.

All these sources of randomness are stacked in a state vector. This approach based on carrying out the
resource allocation decisions at each time-slot is interesting for the SEMIoTICS purposes. The reason is that
we are adapting the allocation decisions to the state of the network and to new network services requests at
each time slot, rather than just a static decision as e.g. in [40]. This is particularly, interesting because the IoT
data has a streaming and dynamic nature.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D3.8 Network Functions Virtualization for IoT (final)
Dissemination level: public

79

Following with the approach in [46] [41], it is important to explain the system model that they consider. Namely,
as it is shown in Figure 42 they assume that each VM runs a given VNF. Also, they model the network services,
i.e. the SFC, as a permuted sequence of VNFs, e.g. one service may require {𝑓1, 𝑓2 , 𝑓3} , whereas another one
{𝑓2 , 𝑓3 , 𝑓1}, being 𝑓𝑘 the k-th VNF. Furthermore, at the VM there are two types of queues:

• Incoming queues that store the sequence of VNFs to be processed or routed to other VM because
they cannot process any of the VNFs in the sequence.

• Outgoing queue that stores the VNF that has been processed along with the other VNFs of the SFC
that have to be processed by other VMs. That is, this queue will route the VNF sequence to other VMs
to process the remaining VNFs.

FIGURE 42 MODEL FOR VNF PROCESSING AT THE VMS

These queues follow a recursion model that varies at each time slot. In the case of the incoming queue the
terms of the recursion are:

• The state of the queue in the previous time slot.

• The processing rate assigned to process a given VNF at the current VM, which leads to diminish the
queue length.

• The communication rate assigned to route the services that cannot be processed at the current VM,
which leads to diminish the queue length.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D3.8 Network Functions Virtualization for IoT (final)
Dissemination level: public

80

• The communication rate assigned to the neighboring VMs to route the services that have been
partially processed and that may require further processing at the current VM. This leads to increase
the queue length.

• The rate of new service arrivals. This leads to increase the queue length.

• The communication rate assigned to the neighboring VMs to route the services that could not be
processed. This leads to increase the queue length.

In the case of the outgoing queue, the terms of the recursion are:

• The state of the queue in the previous time slot.

• The processing rate assigned to process a given VNF at the current VM, which leads to increase the
queue length.

• The communication rate assigned to route the services that have been partially processed at the
current VM and that may require further processing at the neighboring VMs. This leads to decrease
the queue length.

Thereby, given the system model described above, [41] [46] pose the NFV resource allocation in terms of a
stochastic network optimization problem [47]. This class of optimization problems considers stochastic
objective functions and constraints. Moreover, their aim is to minimize a time average objective function for
all the time slots subject to time average constraints related to the stability of the network queues [47].
Thereby, in [41] [46] the aim is to find the VNF placements and the allocation of virtual resources that minimize
the time-average cost of running the requested SFC in the NFV platform subject to the next constraints:

• Stability of the network queues, which is a time average constraint.

• The queue recursion model explained above.

• Constraints on the processing rates and the communication rates.

This optimization problem has the next generic mathematical expression:

min
{𝑥𝑡,∀𝑡}

lim
𝑇→∞

1/𝑇 ∑ 𝐸[𝜑𝑡 (𝑥𝑡)]
𝑇

𝑡=1

𝑠. 𝑡. 0 ≤ 𝑥𝑡 ≤ 𝑥𝑚𝑎𝑥

𝑞𝑡+1 = [𝑞𝑡 + 𝑓(𝑥𝑡) − 𝑔(𝑥𝑡)]+

lim
𝑇→∞

1/𝑇 ∑ 𝐸[𝑞𝑡]
𝑇

𝑡=1
< ∞.

 (1)

Where 𝑥𝑡 stacks the VNF placement variable and the virtual computing and storage resources. The function
𝜑𝑡(𝑥𝑡) is the cost that the platform provider charges for using its resources. The vector 𝑞𝑡 stacks the incoming
and outgoing queue lengths of the VMs. 𝑓(𝑥𝑡) and 𝑔(𝑥𝑡) are generic function accounting for the increment or
decrement of the queue lengths, see above. And the last line of the optimization problem accounts for the
stability of the network queues. Last but not least, in order to solve the optimization problem in (1), the authors
in [41] [46] follow a data-driven online learning approach. Namely, they are able to solve the problem at each
time slot by resorting to the Lagrange dual problem and then, they learn the Lagrange multipliers by using
past samples from the state vector. Thereby, rather than in [40] the approach proposed in [41] [46] is data-
driven, i.e. it uses past data on the state of the network to decide the allocation of resources. Also another
important property of [41] [46] for the SEMIoTICS purposes is that it is a scalable algorithm. That is, to solve
the optimization problem they consider that the problem can be high-dimensional, and they employ a type of
stochastic gradient average method called SAGA to solve iteratively the problem. The SAGA algorithm has
been precisely designed to cope with high dimensional optimization problems [48]. The data-driven online
learning approach for NFV resource allocation proposed in [41] [46] is very interesting for the SEMIoTICS
purposes. This is because it provides dynamic allocation decisions per time slot, thereby it can adapt to the
network state and new network services requirements. This is particularly important due to the heterogeneous
and dynamic nature of IoT data. It also learns from the past information on the state of the network. And it
takes into account that the problem is high-dimensional, which is another feature of IoT. However, it has an
important drawback for SEMIoTICS, because it does not incorporate QoS such as low latency requirements

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D3.8 Network Functions Virtualization for IoT (final)
Dissemination level: public

81

in the optimization problem. In other words, for SEMIoTICS it makes more sense to try to optimize a functional
related to the QoS rather than the cost that the infrastructure provider charges for the use of their resources.
Or alternatively, to have QoS constraints in the optimization problem.

A more practical approach to deal with the dynamic resource allocation problem in NFV is introduced next
and developed in detail in section 4.5.2. This is actually the current SoA to manage dynamically the NFV
resources in the implementation of the NFV MANO based on OSM [49]. Thereby, this is the approach that
will be considered herein, see section 4.5.2. First, it is worth mentioning that the NFV MANO provides
internally a mechanism to manage the virtual resources exposed by the NFVI through the VIM. That is the
instantiation, scaling or release of virtual resources assigned to run a NS and the corresponding chain of
VNFs, see [4]. The NFV MANO permits to configure or set parameters to control this internal behavior. For
instance, it considers threshold parameters that trigger the scaling of virtual computing resources. The NFV
MANO allows the users to set up these thresholds through northbound APIs that are so-called descriptors,
e.g. network service descriptors.

Last, but not least, it is worth mentioning that the NFV MANO contemplates the possibility that an authorized
external entity controls the network service lifecycle management, which includes the proper resource
management to run the network service such as the scaling of resources, see [4]. Namely, according to
section 7.1.2 in [4], this corresponds to one of the NFV MANO interfaces that is so-called Network Service
Lifecycle Management interface. This interface uses the Os-Ma-nfvo reference point described in Figure 1
and permits an external OSS to manage the NFV resources. That is, first the OSS will ask the NFV MANO to
obtain metrics about the network service state and the network resources state. Then, the OSS will send
control actions to manage the virtual resources that are used to run the network service.

4.5.2 DYNAMIC SCALE OUT OF VNF INSTANCES: A THRESHOLD-BASED APPROACH

Scaling out operations refer to the creation of replicas of a determined VNF. These operations are of particular
use when implemented on servers behind a load balancer, or to complement any computation operation with
additional workers. In SEMIoTICS, scale out operations are orchestrated by the NFVO, which is instructed
before-hand via VNF descriptors the manner of the scaling. That is, which are the available metrics to look at
from the VIM telemetry services, and what are the corresponding thresholds that would unleash a scale out,
or a scale in14.

Configuration 7 shows a section of a VNF descriptor that specifies the scaling out criteria, as well as the
monitoring parameter that is being watched by the NFVO to comply with such criteria. In summary, the scaling
out operation is triggered when the metric_vim_vnf1_cpu_util is greater than (GT) scale-out-

threshold (70%) during threshold-time (10) seconds. Conversely, a scale in operation is performed on

a replica VNF when the aforementioned metric is detected to be lower than (LT) scale-in-threshold

(20%) for cooldown-time (20) seconds.

Figure 43 shows a sample OSM metrics dashboard containing panels measuring VNF’s CPU and Memory
usage (as defined in Configuration 7). It can be seen in the figure how the semiotics_scale_out_1_fast-

scale-out-cpu_vnfd-VM-1 CPU utilization metric is maxed out for a period of time, which according to

the scaling out rules should trigger the creation of a replica VNF. VM-2 and VM-3 are then created
automatically and their respective metrics also appear in the figure15. After the scale out operation, the
resulting network service topology is shown in Figure 44. Replica VNFs will be scaled in once the observed
metric goes below the corresponding threshold during cooldown-time seconds.

14 As scale out creates replicas of a VNF, scale in removes such duplicates according to thresholds and a so-called
‘cool down’ period.
15 Even though VM-2 and VM-3 metrics appear in the dashboard at the same time, this does not mean the VMs were in
fact created simultaneously.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D3.8 Network Functions Virtualization for IoT (final)
Dissemination level: public

82

scaling-group-descriptor:
- name: "scale_vdu_autoscale"

 min-instance-count: 0
 max-instance-count: 2

 scaling-policy:
 - name: "scale_cp u_util_above_threshold"
 scaling-type: "automatic"

 threshold-time: 10
 cooldown-time: 20
 scaling-criteria:

 - name: "scale_cpu_util_above_threshold"
 scale-in-threshold: 20

 scale-in-relational-operation: "LT"
 scale-out-threshold: 70
 scale-out-relational-operation: "GT"

 vnf-monitoring-param-ref: "metric_vim_vnf1_cpu_util"

 vdu:

 - vdu-id-ref: fast-scale-out-cpu_vnfd-VM
 count: 1
monitoring-param:
- id: "metric_vim_vnf1_memory"

 name: "metric_vim_vnf1_memory"

 aggregation-type: AVERAGE
 vdu-monitoring-param:
 vdu-ref: "fast-scale-out-cpu_vnfd-VM"

 vdu-monitoring-param-ref: "metric_vdu1_memory"
- id: "metric_vim_vnf1_cpu_util"

 name: "metric_vim_vnf1_cpu_util"
 aggregation-type: AVERAGE
 vdu-monitoring-param:

 vdu-ref: "fast-scale-out-cpu_vnfd-VM"
 vdu-monitoring-param-ref: "metric_vdu1_cpu_util"

CONFIGURATION 7 MONITORING AND SCALING PARAMETERS INSIDE VNFD

FIGURE 43 SCALED OUT VNF METRICS AS SEEN BY NFVO

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D3.8 Network Functions Virtualization for IoT (final)
Dissemination level: public

83

FIGURE 44 TOPOLOGY AFTER SCALE OUT

4.5.3 LOAD BALANCING

The previous sections highlight that the dynamic management of NFV resources, e.g. the computing
processing rate, implies the scaling out of VNF instances. This means that the underlying application
embedded in a VNF may require dynamically more computing resources. To face this challenge multiple VNF
instances, each with the same underlying application, are deployed. However, this scenario poses the next
question. How do we distribute the incoming traffic among the VNF instances? This question is solved by the
so-called load balancer functional block, whose role is precisely to take that decision.

In Figure 45, we show the role of the load balancer within the NVF ecosystem. The load balancer can be
deployed as the functionality of a VNF. It just accepts incoming traffic and decides how to split it among a set
of N VNF instances. All these VNFs run on top of an NFVI, which is controlled by a VIM e.g. OpenStack. Also,
the lifecycle management of the VNFs and the scaling operations are controlled through the NFV MANO, e.g.
the OSM.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D3.8 Network Functions Virtualization for IoT (final)
Dissemination level: public

84

FIGURE 45 LOAD BALANCER TO DISTRIBUTE THE TRAFFIC AMONG THE VNF INSTANCES.

There are several open source implementations of load balancers, e.g. Nginx or HAProxy are among the most
popular ones [50]. It is important to point out that load balancers are within the context of the OSI layers 4
and 7. Next, for illustration purposes, we will show a load balancing experiment that uses Nginx [51] as the
load balancer.

In this experiment, Nginx implements several functionalities. It is a web server, a load balancer and a reverse
proxy server. Namely, it accepts http requests on the port 8080 from web browser clients. Then, to process
these requests it distributes the incoming traffic to several backend web app servers. Each backend server
has the same functionality, i.e. they are just instances. The backend servers process the traffic and send the
response to the Nginx, i.e. the web server. And finally, the Nginx sends the response to the client, i.e. the
web browser client. For illustration purposes, we consider that the backend instances receive the traffic on
the port 3000. And these backend servers run a node.js code that just returns a “hello world” type message
to the client.
For illustration purposes, to carry out this experiment we used docker and docker-compose. More specifically,
in a docker container we deployed a Nginx image and we exposed the port 8080. The Docker file reads:

Use the standard Nginx image from Docker Hub
FROM nginx

Copy custom configuration file from the current directory
COPY nginx.conf /etc/nginx/nginx.conf

EXPOSE 8080

Start Nginx when the container has provisioned.
CMD ["nginx", "-g", "daemon off;"]

Moreover, to implement the load balancing scenario described above, we have to write a configuration file to
control how the Nginx works. This configuration file is so-called Nginx.conf:

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D3.8 Network Functions Virtualization for IoT (final)
Dissemination level: public

85

events { worker_connections 1024; }

http {

 resolver 127.0.0.11 valid=10s;

 server {
 listen 8080;

 server_name localhost;

 location / {
 set $web_var webapp;
 proxy_pass http://$web_var:3000;
 proxy_set_header Host $host;
 }
 }
}

The proxy_pass directive indicates the host direction of the upstream or backend servers, i.e. the multiple
instances that implement the web app and that permit to balance the load. It is important to define it as a
variable, because in this way Nginx updates dynamically the list of upstream servers. Otherwise, it won’t
discover a server that joined dynamically the net [52]. Also note that we have to use the same network alias
for all the upstream servers. In this case “webapp”, otherwise it is not possible to implement the dynamic load
balancer, as we cannot discover new servers.

Also, it is mandatory to specify a DNS server through the resolver directive. Nginx will ping this DNS server
to resolve the hosts’ names of the upstream servers [52]. Note that 127.0.0.11 is the Docker embedded DNS
server. In this regard, it is worth mentioning that in a load balancing experiment using OpenStack we should
substitute this DNS server by the one provided by OpenStack, e.g. OpenStack Designate that is a DNS as a
service component for OpenStack [53]. Finally, in the Nginx.conf file above, the flag valid=10s specifies the
refresh rate to rediscover new hosts [52].

Following with the experiment setup, each backend server instance that implements the same web app, is
implemented as a docker container. To this end, we used the next docker file to implement an instance of the
web app server within the container:

Use a standard Node.js image from Docker Hub
FROM node:boron

Create a directory in the container where the code will be placed
RUN mkdir -p /backend-dir-inside-container

Set this as the default, working directory.
We'll land here when we SSH into the container.
WORKDIR /backend-dir-inside-container

Copy all the node.js code inside src to our directory in the container
ADD ./src /backend-dir-inside-container

Our Nginx container will forward HTTP traffic to containers of
this image via port 3000.
EXPOSE 3000

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D3.8 Network Functions Virtualization for IoT (final)
Dissemination level: public

86

This executes the node.js code that implements the web app
CMD ["node", "index.js"]

Note that the docker container for the load balancer (Nginx) and the instances of the backend servers can be
implemented as VNFs as well, the concept is the same. At this point, in order to deploy and configure the
docker containers that implement our load balancing experiment, we used docker-compose. More specifically,
the docker-compose yaml file reads as follows:

version: '3.5'

services:

 backend:

 build:

 context: ./backend

 dockerfile: Dockerfile

 tty: true

 networks:

 load_balancer:

 aliases:

 - webapp

 volumes:

 - './backend/src:/backend-dir-inside-container'

 loadbalancer:

 build:

 context: ./load-balancer

 dockerfile: Dockerfile

 tty: true

 links:

 - backend

 ports:

 - '8080:8080'

 networks:

 load_balancer:

 volumes:

 - './load-balancer:/load-balancer-inside-container'

volumes:

 backend:

networks:

 load_balancer:

 name: LB_net

 driver: bridge

We can see that this docker-compose file is basically setting up two type of services, i.e. docker containers.
On the one hand the Nginx that implements the web server and the load balancer. On the other hand, the
backend server that implement the web app. Following with the description of this docker-compose file, in the
backend services we must specify the same alias for all the backend services. In this case it is called webapp.
Note, that we will run several backend services with the same alias webapp when we run the docker -compose,
through the –scale option. E.g., “docker-compose up --scale backend=5 –build” builds and runs 5 backend
services.

Also, it is important to mention that both the backend services and the nginx belong to the same docker
network. In this case, they will belong to the LB_net network. Note that we can specify the name of the
network, but we have to be careful to put in the beginning of the document version: ‘3.5’, since in previous
versions this option was not available [54].

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D3.8 Network Functions Virtualization for IoT (final)
Dissemination level: public

87

FIGURE 46 DEPLOYING THE NGINX WEBSERVER/LOAD BALANCER ALONG WITH THE BACKEND

SERVER INSTANCES.

At this point, we are ready to deploy the docker containing the Ningx, i.e. the webserver along with the load
balancer, and 5 docker containers that are 5 instances of the backend web app servers. We use the docker-
compose file described above, and in a new bash terminal we run this docker-compose command:

• docker-compose up --scale backend=5 –build

The result can be observed in Figure 46. We can see that effectively the nginx was deployed successfully,
this is the label “loadbalancer_1”. Also, we can see that we have deployed 5 backend server instances, which
have the label “backend_x”, where x belong to the set {1,…,5}. Also, we can see that the backend server
instances are effectively waiting for traffic on port 3000.

Then, we open a web browser client, we point to this direction http://localhost:8080/, and we refresh the web
browser. This is the incoming traffic and the Nginx serves this traffic by hearing on port 8080 and then by
balancing the load among the backend servers. In we can see that effectively the requests are balanced
among the backend server instances, i.e. we are balancing the traffic load as we wanted.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D3.8 Network Functions Virtualization for IoT (final)
Dissemination level: public

88

FIGURE 47 NGINX PERFORMS THE LOAD BALANCING AMONG THE BACKEND SERVER

INSTANCES.

Next, we want to demonstrate that we can balance the load dynamically. That is, if more traffic arrives or a
new backend server instance is created, then the Nginx is capable of taking into account the new instance
and send traffic to it. To this end, we created a new docker-compose file that deploys a docker container with
the new backend server instance. It also allows this docker to join the existing network “LB_net”, where the
Nginx and the other backend servers lie. The docker-compose file has the following content:

version: '3.5'

services:

 backend_new:

 build:

 context: ./backend

 dockerfile: Dockerfile

 tty: true

 networks:

 load_balancer:

 aliases:

 - webapp

 volumes:

 - './backend/src:/backend-dir-inside-container'

volumes:

 backend_new:

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D3.8 Network Functions Virtualization for IoT (final)
Dissemination level: public

89

networks:

 load_balancer:

 external:

 name: LB_net

Therefore, to deploy the new backend instance, we run this docker-compose command:

• docker-compose -f docker-compose_addcont.yml up –build

Then, we keep sending new traffic requests to the Nginx, by refreshing the web browser client. In Figure 48
we can see that the Nginx discovers the new backend server instance and that sends some traffic requests
to it. Obviously, the rest of the traffic requests are balanced among the former backend server instances.
Therefore, we attained our objective consisting of balancing the traffic load dynamically.

FIGURE 48 NGINX PERFORMS DYNAMIC LOAD BALANCING DISCOVERING A NEW BACKEND

SERVER INSTANCE.

4.6 NFV testing in SEMIoTICS

The aim of this section is to clarify how the NFV component is tested in the context of the SEMIoTICS project.
Thereby, we indicate in which sections of this deliverable the NFV is tested. Also, we explain that the NFV
component is also tested in the context of the use cases 2 and 3. Thus, we indicate in which deliverables it is
tested and explain which functionalities are tested.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D3.8 Network Functions Virtualization for IoT (final)
Dissemination level: public

90

• Section 4.3 describes the northbound interface (NBI) of the NFV MANO and how it enables Operation
Support Systems (OSS) to take control of the whole NFV MANO functionalities. We present tests to
validate the interface and to show that effectively an external entity can control the lifecycle of the
VNFs and NS as it was the NFV MANO. This interface is leveraged in SEMIoTICS use case 2, in the
context of automated trustworthy healthcare connectivity. The NBI allows the pattern orchestrator to
control and to automate the lifecycle management of NS, VNFs and SFC. Thus, it reduces the manual
intervention by embracing the zero-touch paradigm and it reduces the latency compared to manual
configuration in a security and privacy use case. In fact, the use case 2 SEMIoTICS’ deliverable D5.10
contains, in Appendix A, thorough tests of the NFV functionality in terms of NS, SFC and VNF lifecycle
management. Also, it describes how it effectively interacts with external entities to enable traffic
forwarding through the SFC for use case 2. In D5.10 Appendix A we also test how cloud-init files can
be incorporated in the VNF descriptors to define the initial behavior of VNFs, in terms of e.g. software
packages installations, configurations or software executions. This automates the initial configuration
of the VNFs and reduces initial setup latencies.

• Also, it is worth mentioning that in D3.8 section 4.5, the dynamic scaling of NFV resources is tested
based on an automatic threshold-based scaling. This reduces the latency compared to a manual
resource management.

• NFV component has been tested also within the context of UC 3, in SEMIoT ICS’ deliverable D5.11,
where we show how the NFV component is used to virtualize resources at the cloud level and to
instantiate on top of it a VNF that contains the MQTT communication chain for UC3. The cloud init
within the VNF allows to deploy within the VNF a dockerized MQTT chain that emulates the end-to-
end MQTT communication between the sensing units and the backend cloud. This paves the way to
test a reliable communication through MQTT by publishing and subscribing to emulated MQTT
messages of the sensing units.

4.7 NFV in the SEMIoTICS’ use cases

The aim of this section is to describe how the NFV component is considered in the SEMIoTICS ’ use cases.

• In use case 2, as described in deliverable D5.10, the NFV component interacts through the NBI with
the SEMIoTICS’ pattern orchestrator and the pattern engine. Thereby, the pattern orchestrator and
pattern engine can take control of the whole lifecycle of VNFs, NS and SFC by communicating through
the NBI with the NFV MANO and by sending standardized REST commands, according to ETSI’s NFV
SOL 00516. Thereby, NFV has been used in use case 2 in the context of automated trustworthy
healthcare connectivity. Namely, the integration between the Pattern orchestrator and the NFV allows
to automate and control the instantiation and whole lifecycle of different SFC stemming from the use
case 2. These SFC are related to the traffic heterogeneity features of the IoT devices involved in the
use case and have different requirements in terms of priority and trust levels.

• In use case 3, as it is described in deliverable D5.11, the NFV component is leveraged to virtualize
the resources at the IoT gateway level and at the IoT backend cloud. This allows the flexible
instantiation of the IoT GW functionalities, in terms of e.g. the IHES supervisor service or local data
base. In the same manner, at the backend cloud it paves the way to instantiate the use case 3 apps.
The NFV component also allows software isolation features, e.g. to avoid version conflicts or to
improve the security and reliability, as the VNF can be terminated, restored or analyzed in an isolated
environment.

16 ETSI, "ETSI GS NFV-SOL 005. Network Functions Virtualisation (NFV) Release 2.," ETSI, 2018.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D3.8 Network Functions Virtualization for IoT (final)
Dissemination level: public

91

5 NFV INTERFACES WITHIN THE SEMIoTICS FRAMEWORK

This section deals with the description of interfaces among the blocks of an NFV platform. To this end, and in
the line of the approach proposed in the previous sections, the ETSI NFV specification is taken into account
[4] [2]. Thereby, these interfaces are the ones that were mentioned in section 1.2 and that are described in
detail now in this section. Also, the interface between the NFV MANO and the SDN controller is specified.

5.1 NFV MANO-NFVI

This interface in the ETSI nomenclature is denoted as the Nf-Vi reference point. It is the responsible to
establish the communication between the NFVI and the VIM. That is, it connects all the virtualized network
with the block that manages the resources of this infrastructure. The Nf-Vi reference point must support the
next capabilities [4] [2]:

• Assignment of virtualized resources after an allocation request.

• Forwarding of virtualized resources state information.

• Hardware resources configuration, information exchange and events capture.

• Information exchange with external SDN Controllers.

5.2 NFV MANO-VNFs

This interface corresponds to the communication between the VNF manager sub-block of the NFV-MANO (see
section 4), the VNFs that are deployed on top of the NFVI and the Element Management System (EM). Recall
that the EM provides the VNF with several management functionalities, such as configuration or fault
management for the network function provided by the VNF. The EM may be aware of virtualization and
collaborate with the VNF Manager to perform those functions that require exchanges of information regarding
the NFVI Resources associated with the VNF.

Thereby, the interface of this section allows the VNF manager to control, deploy and configure the VNFs. In
the ETSI NFV nomenclature, the interface between the VNF manager (or the NFV-MANO) and the VNFs is
called Ve-Vnfm reference point. And it is divided in two reference points. The Ve-Vnfm-em reference point
connects the VNF manager with the EM, whereas the Ve-Vnfm-vnf connects the VNF manager with the VNF.
The Ve-Vnfm-em is the interface to support the next functionalities [4] [2]:

• VNF instantiation.

• VNF instance query, to retrieve any run-time information.

• VNF update, to update the configuration.

• VNF instance scaling, to scale up or down the virtual resources allocated to the VNF.

• VNF instance termination.

• Forwarding of configuration and events from the EM to the VNF manager and from the VNF manager
to the EM.

It is important to mention that the Ve-Vnfm-em is only used when the EM is aware of the virtualization. On the
other hand, the Ve-Vnfm-vnf interface supports the same first five functionalities than the Ve-Vnfm-em plus
these other ones:

• Forwarding of configuration and events from the VNF to the VNF manager and vice versa.

• Verification that the VNF is still alive or functional.

5.3 Between NFV MANO sub-blocks (Orchestrator, VNF manager, VIM).

Recall that the NFV MANO has three sub-blocks: the orchestrator, the VNF manager and the VIM, see section
4. Thereby, this section describes the interfaces between these blocks. First, the interface between the

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D3.8 Network Functions Virtualization for IoT (final)
Dissemination level: public

92

orchestrator and the VIM is called Or-Vi in the ETSI-NFV nomenclature. The Or-Vi reference point supports
the next functionalities [4] [2]:

• Orchestrator requests for NFVI resource reservation.

• Orchestrator requests for NFVI resource allocation, release or update.

• Forwarding from the VIM to the orchestrator of the next information. NFVI resources configuration,
events and state information.

The interface between the orchestrator and the VNF manager is called Or-Vnfm in the ESTI NFV nomenclature
and supports the next functionalities [4] [2]:

• Allocation, authorization, validation, reservation or release of NFVI resources for a given VNF.

• VNF instantiation.

• VNF instance query, update, scaling or termination.

• Forwarding of VNF events or state information that may impact the network service.

Finally, it remains the interface between the VNF manager and the VIM. This is called Vi-Vnfm in the ETSI
NFV nomenclature and it supports the next functionalities [4] [2]:

• Information retrieval regarding the NFVI resources reservation.

• NFVI resources allocation or release.

• Exchanges of information regarding the configuration, events or state of NFVI resources used by a
VNF.

5.4 Interface between NFV MANO and service providers, users or external management
units

It is important to have an interface between the orchestration block of the NFV platform, i.e. the NFV-MANO,
and the users, service providers or even external units that manage the needs of the network service. For
instance, in SEMIoTICS this interface can connect the NFV-MANO with the SEMIoTICS Pattern Engines to
gather information of the NFVI and trigger the creation/modification of a NS. Additionally, it can also connect
the NFV-MANO with an external block that computes automatically and dynamically the virtual resource of the
NFVI that network service instance needs to run with an optimal QoS, i.e. it could implement the algorithms of
section 4.5. These external blocks are known in the ETSI-NFV specification as OSS/BSS, whereas the
interface that connects the ETSI-NFV with the OSS/BSS is known as Os-Ma-Nfvo reference point [4] [2].
Thereby, the Os-Ma-Nfvo reference point supports the next functionalities [4] [2]:

• Request for network service (NS) lifecycle management: NS instantiation; update; query (retrieving
information on NFVI resources related to the NS); NS instance scaling (e.g. increase, decrease
allocation of resources); NS instance termination.

• Requests for VNF lifecycle management.

• Forwarding of NFV related state information. For instance, NS instance performance measurements,
usages of NFVI resources, number of VMs assigned to a NS instance.

• Policy management exchanges. That is, authorization, access control or resource allocation
information related to the NS instances and the NFVI.

5.5 NFV MANO-SDN Controller

Service Function Chains deployment can require traffic traversal and thus a service deployment across virtually
or physically dislocated VNFs. In deliverable D3.1, we discuss the SFC Manager component that is able to
handle service function chaining of network functions by collecting information about the placement and IP
addresses of the VNFs assigned to the SFC, as well as its traversal order.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D3.8 Network Functions Virtualization for IoT (final)
Dissemination level: public

93

We foresee the interaction between the SEMIoTICS SDN Controller (SSC) and the NFV MANO, required for
population of the expected VNF information to feed that input. Following a spin-up of a number of VMs assigned
to the chain, the MANO will provide the controller with the necessary addressing data and the order information
and confirm the successful establishment of network flows by the SSC.

The SSC’s SFC Manager exposes a number of interfaces that various components, including MANO, can use
to provide and receive information about service chains that need to be built: e.g., which tenants want to use
them, which destinations are being accessed, what applications the traffic pertains to and, as mentioned above,
about the service instances of the network functions. The functions of the chain can be physical appliances or
virtual machines running in NFV Infrastructure.

Having the SFC Manager as a logical component in the SSC (separate from MANO) offers the advantages of
having one interface to business applications, and the application does not need to be aware of the underlying
SFC.

Internally, the SFC manager invokes the VTN Manager (also, ref. D3.1) in order to register external ports of
the SDN transport network (which is being used for SFC) and to declare and associate service instances to
those external ports. The service instances in chains required by our use cases are expected to include
Firewalls, IDS, DPI, and HoneyPot VNFs.

5.6 NFV MANO-Pattern Engine and Pattern Orchestrator

This section describes the interfaces between the NFV MANO and the blocks that are responsible to extract
network patterns that drive the proper configuration of the VNF and NS requirements. These are the Pattern
Engine and the Pattern Orchestrator.

As it has been mentioned in the previous sections, the Pattern Engine has a direct link with the NFV MANO.
Its role is to ask for updated network state metrics and to configure the VNF and NS descriptors taking into
account the extracted patterns, i.e. with the information that provides the Pattern Orchestrator. Thereby, the
interface between the Pattern Engine and the NFV MANO that we consider is the one that the NFV platform
provides for external controllers and services, i.e. for OSS. This corresponds to an Os-Ma-Nfvo reference
point according to the ETSI NFV argot and supports all the functionalities that we need for the Pattern Engine,
as it is described above in section 5.4.

Moreover, we consider that the Pattern Orchestrator has not a direct link with the NFV MANO. That is, it
communicates with the Pattern Engine, which then communicates with the NFV MANO. Moreover, the
interface between the Pattern Orchestrator and the Pattern Engine is based on RESTful HTTP APIs.

5.7 NFV-level intelligence through dynamic reconfiguration enablers

As previously covered in Section 1.2, Network Services (NS) are composed of virtual and physical network
functions (VNFs, and PNFs, respectively) connected together via virtual or physical links. The specification of
the properties of each element within a NS, i.e. VNFs and virtual links, are collected in ETSI -standardized
Network Service Descriptors (NSd), which in turn are composed of VNF descriptors (VNFd) and Virtual Link
descriptors (VLd). Such descriptors are then onboarded to the NFV Orchestrator (NFVO), which then uses it
as blueprint for realising the NS via API calls to the Virtualised Infrastructure Manager (VIM).

SEMIoTICS envisions two types of NS reconfiguration: 1) descriptor-based, and 2) live NS reconfiguration.
The following provides insight into these two types, as well as their caveats and enablers.

• Descriptor-based NS reconfiguration: it implies the update of an onboarded or yet-to-onboard
descriptor. Any authorised party interested on a modification of a service (e.g. based on a pattern)
should perform the modification in the descriptor itself (written in YAML), and then onboard/update it

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D3.8 Network Functions Virtualization for IoT (final)
Dissemination level: public

94

at the NFVO previous orchestration. This type of reconfiguration is far reaching, meaning that it is
virtually possible to modify all the elements of the NS.

o A specific example of this type of reconfiguration relates to the adjustment of scale-out
operations’ thresholds. An external entity can decide to change the scale-out trigger from 80%
of vCPU usage to 70%, or determine that the maximum number of scaled-out instances should
be 4 instead of 3.

• Live NS reconfiguration: this assumes a NS is already running on top of the NFV infrastructure.
Updating a running NS via NFVO is limited to the change of collected metrics (this implies updating
the corresponding VNFd). Nevertheless, leveraging VIM’s APIs it is possible to change network -level
QoS policies in real time17. Live modification of NS is limited to the available APIs at NFVO and VIM.

The SEMIoTICS NFV component deals with VNFs and their properties (e.g. vCPU, images, storage,
placement, etc.) rather than with network properties (which are delegated to SEMIoTICS SDN Controller, see
D3.1). In SEMIoTICS, it is expected that any reconfiguration of NS (be it descriptor-based or live) would be
performed by the Global Pattern Orchestrator (or any other authorised Pattern enforcement engine) via the
NFV Management and Orchestration (MANO) Operations/Business Support System endpoint (refer to Figure
1)18.

All in all, intelligence at the NFV level tightly correlates with allowing authorized external elements to interact
with NSd and in some specific instances with VIM’s APIs. Therefore, requirements encompass connectivity
among NFV MANO elements, as well as the exposure of endpoints to other authorised SEMIoTICS
components. From D2.3 (and Section 2.1 in this deliverable), the specific requirements for this functionality
are: R.NL.8, R.NL.9, R.NL.10 (OSS/BSS operations through Os-Ma-Nfvo endpoint in Figure 1), and R.NL.11.

17 There are operations that would inevitably incur in down time (e.g. VM scale up/down), although some of these
issues can be leveraged at the application level (e.g. using load balancers, replicas, etc.).
18 It is also possible for authorized components to reach the VIM APIs for a greater set of operations, nevertheless,
these should be carefully specified and managed in order to avoid security risks (e.g. misconfiguration of VIM,
mismanagement of resources, etc.).

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D3.8 Network Functions Virtualization for IoT (final)
Dissemination level: public

95

6 CONCLUSIONS
This deliverable has presented the NFV technology as a cornerstone to face the networking challenges posed
by the SEMIoTICS project. These are the network scalability, dynamicity and flexibility demanded by IoT
devices and applications along with the support for network services that require different QoS needs in terms
of latency, reliability, security or privacy.

To this end, the NFV technology has been introduced in section 1 to motivate its use in SEMIoTICS. Also, the
main NFV building blocks have been described. In section 2 the link with the requirements of SEMIoTICS,
presented in deliverable D2.3, have been established. In that section we also present the link with the
SEMIoTICS KPIs and its architecture. In NFV, communication, computing and storage resources stemming
from the network are virtualized. Network services are deployed on top of them in the form of a chain of
virtualized network functions, thereby they are so called SFC and VNF, respectively. Therefore, section 3 has
described VNFs and SFCs that are relevant for SEMIoTICS in terms of security, privacy and dependability,
which includes both latency and reliability.

The virtualized network services, i.e. SFC, need a manager entity that guarantees their services requests, their
deployment on top of the NFV virtual resources, the monitoring of their performance and the management of
their lifecycle. The above-mentioned management entity is so called NFV MANO and it has been presented in
section 4. Namely, the main functional blocks of an ETSI compliant NFV MANO have been explained. Then,
its practical implementation based on OSM and OpenStack has been thoroughly explained. Also, in this regard,
we have described how to enable SFC and the monitoring of NFV resources, in the ecosystem based on OSM
and OpenStack. Afterwards, section 4 has presented the interaction between the NFV MANO and other
components of SEMIoTICS, such as the Pattern Orchestrator. In this regard, we presented the implementation
of northbound interfaces based on REST APIs. Also, two alternatives to implement the NFV MANO have been
discussed, one based on OSM plus OpenStack and the other based on Kubernetes. In this regard, we have
concluded that the OSM plus OpenStack is more suitable to support the networking functionalities demanded
by the virtualized network services. Section 4 has also treated the problem of managing NFV resources
dynamically. To this end, we have presented the SoA and a practical implementation based on monitoring the
NFVI metrics and evaluating thresholds on these metrics that trigger the scaling out process. Last, but not
least, section 4 presents how to balance the traffic load among VNF instances, which arise in scaling out
processes. Finally, section 5 has presented the ETSI compliant interfaces between all the building blocks of
an NFV platform and the SDN controller.

6.1 NFV Component implementation status

The deployment of the NFV Component entails several procedures. First, network-level requirements need
to be satisfied (R.NL.1-4, refer to D2.3 for more details). Then, virtualization-ready nodes, or compute nodes,
should be placed throughout the SEMIoTICS architecture, particularly where VNFs are to be orchestrated.
Lastly, VIM controller and NFVO should have network connectivity to the compute nodes (R.NL.11). All of
these elements conform SEMIoTICS NFV Component.

Following SEMIoTICS implementation cycles, the following actions were taken and successfully completed at
the current stage of the project:

1. Deploy VIM instance and NFVI
Compute nodes were setup to emulate the Field and Network Layers of the SEMIoTICS architecture.
Therefore, it is possible to instantiate VNFs at the Field layer (emulating virtual gateways in UC3, for
example), and at the network layer (using VNFs as software SDN switches). An extensive step-by-
step guide was developed and uploaded to the project’s Gitlab repository19 so other partners could
replicate this work if needed. It uses a simple, single layer topology as example for deploying the VIM
component. The above-mentioned compute nodes make up the NFVI, as they admit the virtualization

19 The VIM deployment guide can be found at SEMIoTICS’ Gitlab repo under the following path: SEMIoTICS/NFV
Orchestration/VIM.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D3.8 Network Functions Virtualization for IoT (final)
Dissemination level: public

96

of their resources. Moreover, the orchestrator of the NFVI, i.e. the VIM was deployed. This VIM is the
OpenStack, see section 4 for further details.

2. Attach NFVO (OSM) to VIM
From a centralized position, the NFVO is now able to orchestrate complete NS or network slices
traversing the different layers of the SEMIoTICS architecture.

3. Share access to NFV component with integrator
A VPN server was setup in order to grant access to the NFV Component to other members of the
consortium. This is specially tailored to the integrator20.

Last, but not least, it is important to stress that the NFV MANO implementation based OSM and OpenStack
has been thoroughly described in section 4.2.

6.2 Future work

This deliverable D3.8 is the last of task 3.2. However, it is interesting to highlight the future work in the rest of
SEMIoTICS project related to NFV.
One of the next steps involving the NFV component relates to the integration with other SEMIoTICS
components and network services for use cases, this is task 3.5 and work package 5. In this document, API
definitions of the NVF component and the information/functionality they provide were described. Next, these
API need to be consumed by other components of SEMIoTICS, such as the SEMIoTICS SDN Controller and
Pattern Orchestrator, to relay network-related management and enable SPDI Patterns implementation,
respectively.

To achieve the aforementioned, the following set of actions need to be performed:

• Define what are the requirements of other SEMIoTICS components related to NFV. Such as:
o Telemetry.
o Onboarding.
o Orchestration.
o NFV descriptor updates.

• Specify what are the endpoints involved in satisfying such requirements.
o Based on Figure 1.

• Perform integration tests.

6.3 Technical choices for SEMIoTICS, SoA and beyond SoA

The aim of this subsection is to highlight which of the technical content, presented above, is related work,
SoA or beyond SoA. Also, we stress which technical content is considered for the implementation of the
SEMIoTICS project.

Section 3.1 proposes security, privacy and dependability functionalities in terms of VNFs for SEMIoTICS. This
yields flexibility, programmability and dynamicity, which are distinguishing features of SEMIoTICS rather than
using traditional approaches in networking based on static, monolithic and rigid approaches. Section 3.2 is
related to 3.1 as it leverages chains of VNFs to build SFC that provide security, privacy and dependability
services for SEMIoTICS. We use some existing VNFs and SFC implementations applying the appropriate
adaptations to satisfy the needs of the specific use case (use case 2). This is actually part of the incoming
work package 5.

The content presented in section 4.1.1 and also section 4.2.1 describes the VIM functionality and the VIM
APIs for computing, storage and networking purposes, bearing in mind the SEMIoTICS framework. To this

20 Information about the topology of such tunnel can be found at the project ’s Gitlab repository. Specifically, under the
following path: SEMIoTICS/NFV Orchestration/CTTC-tunnel.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D3.8 Network Functions Virtualization for IoT (final)
Dissemination level: public

97

end, the OpenStack VIM is used. OpenStack is a SoA orchestrator to manage virtualized infrastructures and
it is the one that will be used in SEMIoTICS to manage the NFVI.

The content presented in sections 4.1.2 and 4.1.3 deals with the NFV orchestrator and VNF manager sub
blocks of the NFV MANO. They are described according to the ETSI standard specifications and they are
implemented in the SEMIoTICS project using the OSM open source software, as it is described in section
4.2.2. OSM is SoA and it is ETSI standard compliant, as it implements the technical content described in
sections 4.1.2 and 4.1.3.

Regarding the NFV MANO implementation aforementioned, we have implemented the ability to gather real -
time metrics of the NFVI, i.e. telemetry services, and we have enabled the possibility of forming SFC. This
requires enabling optional functionalities of both OpenStack and OSM. This is explained in section 4.2 and
can be considered in the intersection between SoA and beyond SoA, as these are not options that can be
found by default in the OSM and OpenStack.

Section 4.3 describes the interaction between the NFV MANO and the Pattern Engine, which in turn interacts
with the Pattern Orchestrator. The two latter are two important SEMIoTICS components mainly developed in
other tasks and implement the intelligence and pattern-driven automation of SEMIoTICS. They are among the
key contributions of SEMIoTICS project. Therefore, this material can be considered as beyond SoA, as the
interfaces and the integration are novel.

The material presented in section 4.4 presents a real experiment comparing two alternatives to implement the
NFV MANO for SEMIoTICS. One of them relies on OSM and OpenStack, whereas the other uses Kubernetes
and Docker. This comparative can be considered as beyond SoA, as compares SoA options to implement the
NFV MANO and selects the most adequate bearing in mind the SEMIoTICS characteristics . Section 4.5
describes the dynamic resource management in NFV. The threshold-based approach can be considered as
SoA.

Finally, section 5 presents the interfaces between the NFV sub blocks and between NFV and other
SEMIoTICS components. Namely, sections 5.1 to 5.4 present the ETSI compliant interfaces between NFV
sub blocks. Thereby, this is SoA and it is used within the SEMIoTICS framework. Section 5.5 is the interface
between the NFV MANO and the SDN controller and it is SoA that is being used in SEMIoTICS. Section 5.6
is the interface between the NFV MANO and the Pattern Engine, which is an innovative SEMIoTICS
component. The implementation of this interface is described in section 4.3 and can be considered beyond
SoA.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D3.8 Network Functions Virtualization for IoT (final)
Dissemination level: public

98

7 REFERENCES

[1] F. Yousaf, M. Bredel, S. Schaller and F. Schneider, "NFV and SDN, key technologie enablers
for 5G networks," IEEE Journal on Selected Areas in Communications, vol. 35, no. 11, 2017.

[2] ETSI, "ETSI.org: Network Functions Virtualisation (NFV); Architectural Framework," 10 2013.
 [Online]. Available: https://www.etsi.org/deliver/etsi_gs/nfv/001_099/002/01.01.01_60/gs_nfv
002v010101p.pdf. [Accessed 23 October 2018].

[3] ETSI OSM, "OSM Information Models," 2019. [Online]. Available:
https://osm.etsi.org/gitweb/?p=osm/IM.git;a=tree;f=models/yang;
h=ac67adaec00123ef4a68911ff0082fb35556b03a;hb=HEAD. [Accessed January 2019].

[4] ETSI, "ETSI.org: Network Functions Virtualisation (NFV); Management and Orchestration
 (ETSI GS NFV-MAN 001)," December 2014. [Online]. Available:
https://www.etsi.org/deliver/etsi_gs/NFV-MAN/001_099/001/01.01.01_60/gs_NFV-
MAN001v010101p.pdf. [Accessed November 2018].

[5] ETSI, "ETSI GS NFV-SOL 005. Network Functions Virtualisation (NFV) Release 2.," ETSI, 2018.

[6] M. Falchetto and others, "Requirements specification of SEMIoTICS framework," SEMIoTICS
deliverable D2.3, 2018.

[7] Netflix, "Github Repository: Netflix/FIDO," [Online]. Available: https://github.com/Netflix/Fido.

[8] T. Koulouris, M. C. Mont and S. Arnell, "SDN4S: Software Defined Networking for Security," 2017.
[Online]. Available: https://www.labs.hpe.com/techreports/2017/HPE-2017-07.pdf.

[9] P. Quinn and T. Nadeau, "Problem Statement for Service Function Chaining," 2015. [Online].
Available: https://tools.ietf.org/html/rfc7498.

[10] S. Kumar, M. Tufail, S. Majee, C. Captari and S. Homma, "Service Function Chaining use cases in
data centers," IETF SFC WG, 2015.

[11] W. Haeffner, J. Napper, M. Stiemerling, D. Lopez and J. Uttaro, "Service Function Chaining use
cases in mobile networks," Internet Engineering Task Force, 2015.

[12] W. John, K. Pentikousis, G. Agapiou, E. Jacob, M. Kind, A. Manzalini, F. Risso, D. Staessens, R.
Steinert and C. Meirosu, "Research directions in network service chaining," in IEEE SDN for Future
Networks and Services (SDN4FNS), Trento, Italy, 2013.

[13] H.-J. Liao, C.-H. R. Lin, Y.-C. Lin and K.-Y. Tung, "Intrusion detection system: A comprehensive
review," Journal of Network and Computer Applications, vol. 36, no. 1, pp. 16-24, 2013.

[14] L. Vokorokos, M. Ennert, J. Radušovský and others, "A survey of parallel intrusion detection on
graphical processors," Open Computer Science, vol. 4, no. 4, pp. 222-230, 2014.

[15] A. Bremler-Barr, Y. Harchol, D. Hay and Y. Koral, "Deep packet inspection as a service," in
Proceedings of the 10th ACM International on Conference on emerging Networking Experiments and
Technologies, Sydney, Australia, 2014.

[16] OpenStack, "OpenStack Ironic Project: Bare metal provisioning," [Online]. Available:
https://wiki.openstack.org/wiki/Ironic.

[17] OpenStack, "Compute API," [Online]. Available: https://developer.openstack.org/api-guide/compute/.

[18] Canonical Ltd., "Linux Containers," [Online]. Available: https://linuxcontainers.org/.

[19] OpenStack, "OpenStack Docs: Server concepts," [Online]. Available:
https://developer.openstack.org/api-guide/compute/server_concepts.html.

[20] J. Denton, Learning OpenStack Networking (Neutron) Second Edition, Birmingham, UK: Packt
Publishing Ltd., 2015.

[21] OpenStack, "OpenStack Docs: Networking API v2," [Online]. Available:
https://developer.openstack.org/api-ref/network/v2/.

[22] OpenDaylight, "OpenStack and OpenDaylight," [Online]. Available:
https://wiki.opendaylight.org/view/OpenStack_and_OpenDaylight.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D3.8 Network Functions Virtualization for IoT (final)
Dissemination level: public

99

[23] OpenStack, "OpenStack Docs: Block Storage," [Online]. Available:
https://developer.openstack.org/api-ref/block-storage/v3/.

[24] DevStack. [Online]. Available: https://docs.openstack.org/devstack/latest/. [Accessed February 2020].

[25] "OpenStack Ansible (OSA).," [Online]. Available: https://docs.openstack.org/openstack-ansible/latest/.
[Accessed February 2020].

[26] "OSA Deployment Guide.," [Online]. Available: https://docs.openstack.org/project -deploy-
guide/openstack-ansible/stein/. [Accessed February 2020].

[27] "OSA User Guide.," [Online]. Available: https://docs.openstack.org/openstack-
ansible/stein/user/index.html. [Accessed February 2020].

[28] "YAML," [Online]. Available: https://yaml.org. [Accessed February 2020].

[29] "Service Function Chaining Extension for OpenStack Networking.," [Online]. Available:
https://docs.openstack.org/networking-sfc/latest/. [Accessed February 2020].

[30] "Tcpdump," [Online]. Available: https://www.tcpdump.org. [Accessed February 2020].

[31] ETSI OSM, "Assumptions about interaction with VIMs and VNFs," [Online]. Available:
https://osm.etsi.org/wikipub/index.php/OSM_Release_FIVE. [Accessed January 2019].

[32] ETSI OSM, "Creating your own VNF package," [Online]. Available:
https://osm.etsi.org/wikipub/index.php/Creating_your_own_VNF_package. [Accessed January 2019].

[33] Docker, "Swarm mode overview," [Online]. Available: https://docs.docker.com/engine/swarm/.
[Accessed January 2019].

[34] Red Hat OpenShift, "OpenShift," [Online]. Available: https://www.openshift.com/. [Accessed January
2019].

[35] OpenStack, "Magnum," [Online]. Available: https://wiki.openstack.org/wiki/Magnum. [Accessed
January 2019].

[36] Kubernetes, "Kubernetes," [Online]. Available: https://kubernetes.io/. [Accessed January 2019].

[37] Kubernetes, "Cluster Networking," [Online]. Available: https://kubernetes.io/docs/concepts/cluster-
administration/networking/. [Accessed January 2019].

[38] Kubernetes, "Kubernetes Reference," [Online]. Available: https://kubernetes.io/docs/reference/#api-
reference. [Accessed January 2019].

[39] J. G. Herrera and J. Botero, "Resource allocation in NFV: A comprehensive survey," IEEE
Transactions on Network and Service Management, vol. 13, no. 3, 2016.

[40] F. B. Jemaa, G. Pujolle and M. Pariente, "QoS-aware VNF placement optimization in edge-central
cloud architecture," in IEEE Global Communications Conference (GLOBECOM), Washington DC,
USA, December 4-8, 2016.

[41] X. Chen, W. Ni, T. Chen, I. B. Collings, X. Wang, R. P. Liu and G. B. Giannakis, "Multi -timescale
online optimization of network function virtualization for service chaining," arXiv:1804.07051.

[42] S. Son, G. Jung and S. C. Jun, "An SLA-based cloud computing that facilitates resource allocation in
the distributed data centers of a cloud provider," Journal of Supercomputing, vol. 64, no. 2, pp. 606-
637, 2013.

[43] Q. Zhang, Q. Zhu, M. F. Zhani, R. Boutaba and J. L. Hellerstein, "Dynamic service placement in
geographically distributed clouds," IEEE JSAC, vol. 31, no. 12, pp. 762-772, 2013.

[44] M. Alicherry and T. Lakshman, "Network aware resource allocation in distributed clouds," in
INFOCOM, Orlando, FL, USA, 2012.

[45] J. Altmann and M. M. Kashef, "Cost model based service placement in federated hybrid clouds,"
Future Generation Computer Systems, vol. 41, pp. 79-90, 2014.

[46] X. Chen, W. Ni, T. Chen, I. B. Collings, X. Wang, R. P. Liu and G. B. Giannakis, "Distributed stochastic
optimization of network function virtualization," in IEEE Global Communications Conference
(GLOBECOM), Singapore, 2017.

[47] M. J. Neely, Stochastic network optimization with application to communication and queueing systems,
Morgan and Claypool publishers, 2010.

780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017

Deliverable D3.8 Network Functions Virtualization for IoT (final)
Dissemination level: public

100

[48] A. Defazio, F. Bach and S. Lacoste-Julien, "SAGA: a fast incremental gradient method with support for
non-strongly convex composite objectives," in NIPS, Montreal, Canada, 2014.

[49] "Scaling out OSM," [Online]. Available: https://osm.etsi.org/wikipub/index.php/OSM_Autoscaling.
[Accessed February 2020].

[50] [Online]. Available: https://geekflare.com/open-source-load-balancer. [Accessed February 2020].

[51] [Online]. Available: www.nginx.com. [Accessed February 2020].

[52] "nginx," [Online]. Available: https://www.nginx.com/blog/dns-service-discovery-nginx-plus/. [Accessed
February 2020].

[53] "OpenStack Designate," [Online]. Available: https://docs.openstack.org/designate/latest/. [Accessed
February 2020].

[54] "Docker networking," [Online]. Available: https://docs.docker.com/compose/networking/. [Accessed
February 2020].

