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1 INTRODUCTION 
This deliverable is the final output of Task 4.4 and tackles the semantic interoperability issues that arise in the 
Internet of Things (IoT) domain [1]. Semantic interoperability is the designed property where various systems 
can interact with each other and exchange data with unambiguous, shared meaning. This enables knowledge 
discovery, machine computable reasoning and federation of different information systems. 

Interoperability is materialized by including information regarding the data (metadata) and linking each element 
to a commonly agreed and shared vocabulary. Thus, the meaning of the data is exchanged along with the data 
itself in a self-describing information package. The shared vocabulary and the association to an ontology 
enable machine interoperation, logic, and inference. Ontology is an explicit specification of a conceptualisation 
and includes a formal representation of the properties and relations between the entities, concepts and data 
of a specific application domain. 

In general, technologies from the Semantic Web are adapted in order to capture the inherited properties of the 
IoT domain. They are widely-used and well-studied eXtensible Markup Language (XML) schemes, like the 
Resource Description Framework (RDF), RDF Schema (RDFS), and Web Ontology Language (OWL) for 
ontologies, and the Web Services Description Language (WSDL) for services [2]. Such technologies offer 
common description and representation of data and services, characterize things and their capabilities, and 
deal with the semantic annotation, resource discovery, access management, and knowledge extraction in a 
machine-readable and interoperable manner. 

More recently, World Wide Web Consortium (W3C) has launched a working group called Web of Things (WoT)1 
with the goal to counter the IoT fragmentation and enable interoperable IoT devices and services, thereby 
reducing the costs of their development. A notable feature of W3C WoT approach is Thing Description (TD)2, 
used to describe the metadata and interfaces of (physical) Things in a machine interpretable format. TD has 
been built upon the W3C's extensive work on RDF, Linked Data (LD)3 and JavaScript Object Notation (JSON) 
for Linking Data (JSON-LD)4. TD defines a domain agnostic vocabulary to describe any Thing in terms of its 
properties, events and actions. In order to give a semantic meaning to a set of properties, events and actions 
for a Thing, various semantic models can be used. One notable community effort to create a semantic schema 
for IoT applications is iot.schema.org5. Together, W3C WoT and iot.schema.org, provide a semantic 
interoperability layer that enables software to interact with the physical world. The interaction is abstracted in 
such a way that it simplifies the development of applications across diverse domains and IoT ecosystems.  
SEMIoTICS adopts this approach to establish its core semantics (see Chapter 4). 

The common interpretation of semantic information in a globally shared ontology could be quite useful. 
However, this is not always the case. Although several local systems may utilize popular or standardized 
ontologies, eventually they extend them and establish their own semantics and interfaces. The direct 
interaction between these systems is not feasible. Thus, the use of semantic interoperability mechanisms is 
proposed in this deliverable (see Chapter 5), which correlate the required information and enable the 
interoperability of systems with different semantics or cross-domain interaction. The integration of SEMIoTICS 
with the other IoT Platforms including the FIWARE is also presented in Chapter 6. 

Then, a common and generic Application Programming Interface (API) will be established in Task 4.6 between 
the different IoT middleware platforms. The API will ease the development of software services and 
applications for different platforms according to a well-defined architecture. Moreover, SEMIoTICS focuses on 
semantic interoperability in an attempt to establish interoperability patterns that will facilitate the modelling and 

 

1 https://www.w3.org/WoT/ 

2 https://w3c.github.io/wot-thing-description/ 

3 https://www.w3.org/standards/semanticweb/data 

4 https://www.w3.org/TR/2014/REC-json-ld-20140116/  

5 https://github.com/iot-schema-collab  & http://iotschema.org/ 

https://w3c.github.io/wot-thing-description/
https://www.w3.org/standards/semanticweb/data
https://www.w3.org/TR/2014/REC-json-ld-20140116/
https://github.com/iot-schema-collab
http://iotschema.org/
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real-time management of the underlying IoT ecosystem (see Deliverable 4.1 and its follow-up, D4.8) by 
incorporating the abovementioned mechanisms - i.e. semantics, Semantic Mediators (SMs) and common APIs. 
This will be based on the formal analysis of the RECIPE tool [3] and the five main interoperability settings 
suggested by the European Union (EU) funded project BigIoT [4] in order to address interoperability and 
compatibility issues for composing services from inter- to cross-domain topologies (see Chapter 7). In Chapter 
8, the first and the final proposed implementation for of semantic interoperability mechanisms is presented. 
Chapter 9 provides specific scenarios of the use of semantic interoperability mechanisms in each of the 
SEMIoTICS use cases. Finally, in Chapter 10 the validation of the project objectives, key performance and 
interoperability mechanisms are also presented. 

In this context and considering the delta to the previous version of the deliverable, i.e. D4.4 - “Semantic 
Interoperability Mechanisms for IoT (first draft)”, the latest developments presented within this final Task 4.4 
deliverable include: 

• A brief overview of the TDs for the main types of smart objects in SEMIoTICS (see subsection 4.3) 

• A full set of Adaptor Nodes in semantic validation mechanisms (see subsection 5.1.3) 

• The final SEMIoTICS integration approach with other IoT platforms (FIWARE, MindSphere, openHAB) 
(see section 6) 

• Final definition and specification of the semantic interoperability Patterns (see subsection 7.2) 

• Analysis of the role of the Backend Semantic Validator - the core component of Task 4.4 (see 
subsection 8.1) 

• Final implementation of the semantic validation mechanisms (see subsection 8.3) 

• Details on the role of the semantic validation mechanisms in the SEMIoTICS UCs (see section 9) 

 

More specifically, the rest of this deliverable is structured as follows: 

• Chapters 2 and 3 provide the motivation, background and related work for the interoperable solutions 
in the IoT domain. 

• Chapter 4 describes the datatype mapping approach that is adopted for SEMIoTICS, the semantic 
ontologies and the Thing Descriptions of the different types of smart objects in SEMIoTICS. 

• Chapter 5 defines the implementation of the concrete semantic interoperability mechanism and the 
structure of Adaptor Nodes that are developed for the SEMIoTICS requirements. 

• Chapter 6 provides the integration of the SEMIoTICS framework with other IoT external platforms 
(FIWARE, MindSphere, openHAB). 

• Chapter 7 details the verification mechanisms that ensure the end-to-end interoperability and the final 
definition of semantic interoperability Patterns. 

• Chapter 8 outlines the final development of semantic interoperability/validation mechanisms. 

• Chapter 9 presents specific scenarios of the use of semantic interoperability mechanisms in each of 
the SEMIoTICS Use Cases. 

• Chapter 10 refers to the initial validation approach (verification and guarantee) of the semantic 
interoperability features and the fulfilment of the SEMIoTICS’s objectives and architectural 
requirements. 

• Finally, Chapter 11 provides the concluding remarks. 
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communication from Task 4.4.  
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 Architecture diagram of SEMIoTICS 

Considering Task 4.4 aspects, the components that are involved and participate are both at backend and field 
layer, as they are highlighted in the following Figure 1. Namely, the Backend Semantic Validator which is 
responsible for semantic validation mechanisms; the Thing Directory component that are the repository of 
knowledge containing the necessary Thing models; the Recipe Cooker component, which is responsible for 
cooking (creating) recipes reflecting user requirements on different layers (cloud, edge, network) as well as 
transforming recipes into understandable rules for each layer. It uses the Thing Directory with all the models 
required to create these rules; Pattern Orchestrator for the automated configuration, coordination, and 
management of different patterns and Pattern Engine of Backend for the enforcement of the interoperability 
pattern rules. At the field layer, the GW Semantic Mediator component for the semantic mapping between 
different data models and the translation from one semantic model into another one; the Semantic API & 
Protocol Binding component for field integration with brownfield and greenfield devices, implementation of 
protocol bindings for field devices, and unified semantic interface for field devices; Local Thing Directory, which 
stores locally the semantic description of Things in the IoT Gateway. 

 

FIGURE 1 SEMIOTICS ARCHITECTURE 
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2 MOTIVATION  
Interoperability is the ability of components in a system or between systems to work together using common 
procedures. In such a way it is relatively easy to achieve integration of different systems within the same 
domain or between different implementations within the stack of a specific software vendor [5]. In the current 
Internet of Things (IoT) ecosystems, the various devices and applications are installed and operate in their 
own platforms and cloud services, but without adequate compatibility with products from different brands [6], 
[7], [8], [9]. For example, a smart watch developed in Android cannot interact with a smart bulb without the 
relevant proprietary gated application provided by the same vendor. Thus, islands of IoT functionality are 
established leading towards a vertically oriented ‘Intranet of Things’ rather than the ‘Internet of Things’. 

To take advantage of the full potential of the IoT vision, we need standards to enable the horizontal and vertical 
communication, operation, and programming across devices and platforms, regardless of their model or 
manufacturer. As it concerns the meaning of data, which is the focus of this deliverable, semantics can settle 
commonly agreed information models and ontologies for the used terms that are processed by the interfaces 
or are included in the exchanged data. However, as there are several ontologies for describing each distinct 
Thing, we need semantic interoperability mechanisms in order to perform common data mapping across the 
various utilized formats (e.g. XML or JSON) and ontology alignment. Our goal is to enable end-to-end 
compatibility and cooperation at all layers. Thus, semantic interoperability mechanisms across all layers must 
be deployed in order to resolve semantics between the field, network, and backend components. 

The next subsections analyse the challenges for accomplishing semantic interoperability in the IoT sector.  A 
motivating example is also described, presenting the main features of our proposed solution in a smart sensing 
setting. The operation of the GW Semantic Mediator (GWSM) component and the Backend Semantic Validator 
(BSV) component in the backend system is presented (based on the SEMIoTICS architecture D2.4). For clarity, 
the application of semantic solutions at the field layer of SEMIoTICS is detailed in Deliverable 3.3 and its 
follow-up, D3.9. 

 Challenges for Semantic Interoperability 

 OVERVIEW 

According to the European Research Cluster on the Internet of Things [10], the main purpose of the IoT is not 
only the connection between devices by using the Internet, but it is also the exchange of web data, due to 
enabling systems with more capacities to become “smart” (Figure 2). In other words, IoT pursues the 
integration between the physical and the virtual world by using the Internet as the medium to communicate 
and exchange information. On the other hand, the heterogeneity of devices, communication technologies and 
interoperability in different layers in an IoT ecosystem, is a challenge that should be overcome to realize 
generic IoT solutions at a global scale. Particularly, some high-level interoperability issues should be resolved, 
for a seamless communication and interaction in IoT environments, such as [11]: 

• Integration of multiple data-sources: This describes the fundamental requirement for the integration 
of multiple data/events coming from heterogeneous data sources [12]. 

• Unique ontological point of reference: The semantic interoperability can be achieved by having a 
unique point of reference at the ontology level. This can be accomplished by  

o third party responsible for translating between different schemes or via ontology 
merging/mapping 

o protocols for agreeing upon a specific ontology. 

• Mobility and Crowdsensing: This is related to the necessity of supporting the mobility of the device 
and the transmission of data beyond boundaries 

• Peer to Peer (P2P) communication: It is the requirement for applications to communicate at a higher 
level. 

• Data Modelling and Data Exchange: Modelling data (data should be based on standards) is one of 
the major challenges in IoT service deployment; storage and retrieval of this information are also 
important. 

Other main challenges in Semantic Interoperability: 
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• Ontology merging / Ontology matching & alignment 

• Data/Event Semantic Annotation (and dedicated ontologies) 

• Knowledge Representation and related ontologies 

• Knowledge Sharing 

• Knowledge Revision & Consistency 

• Semantic Discovery of Data Sources, Data and Services 

• Semantic Publish/subscribe & Semantic Routing 

• Analysis & Reasoning 

Except the above, which are the main high-level challenges in semantic interoperability to be resolved, there 
are some crucial new security threats to be dealt with in order to allow the continued growth of such ecosystems 
[13]. Specifically, sensitive data are stored, sent, or received by IoT platforms; as a result, security mechanisms 
are needed to protect these data from unauthorized access and maybe they should be more complex than in 
conventional networks. Also, as new security vulnerabilities could be discovered over time, there is the 
necessity to update IoT platforms on a regular basis, which is not effortless on most of them. 

 

FIGURE 2 SEMANTIC INTEROPERABILITY SYSTEM IN DIFFERENT IOT PLATFORMS 

 

 SEMIOTICS CHALLENGES FOR SEMANTIC INTEROPERABILITY 

Taken together, the challenges of IoT, which are related to semantic technologies are organized in the following 
categories: scalability and flexibility; standardization and reusability; high-level processing; data quality; data 
confidentiality and privacy; and interpretation and synthesis. Based on the SEMIoTICS requirements, it should 
tackle some of these challenges.  

Specifically, in case that a brownfield device needs to be initialized and registered in SEMIoTICS framework, 
without a semantic description, a user should add this information (many users should add this information for 
different UCs). Due to that fact, SEMIoTICS should overcome the challenges of standardization, reusability 
and data quality. This problem becomes more critical in a healthcare scenario (UC2), as different sensors 
should be integrated into SARA (see D2.4). 
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Moreover, systems, like in UC2, will not only own and record information about users but will also produce 
sensitive data that are rich in context. In this case, data confidentiality and privacy issues should be addressed 
by SEMIoTICS framework. 

 Motivating Scenario – Smart Sensing 

We use this motivating example, in order to describe the initial interoperability mechanisms; the final 
implementation and the specific scenarios of the use of semantic interoperability mechanisms in each of the 
SEMIoTICS Use Cases are presented in sections 8 and 9 respectively. 

Hence, we consider the following smart sensing scenario. A smart building deploys several sensing equipment 
in order to support pervasive and ubiquitous functionality. Horizontal operation in the field layer is mandatory 
as well as vertical cooperation with the backend. 

The main functionality of the system is the optimization of energy consumption and can be deployed either in 
the home gateway and/or in the backend layer. The interoperability of the underlying IoT devices and the 
system services must be guaranteed regardless of their brand or manufacturer. The user should be able to 
buy and install any smart device while retaining the full functionality of the integrated system. 

As an indicative scenario, we consider the case where the user installs temperature environmental sensors. 
Three types of sensory devices are modelled (see Figure 3):  

• the first one is bought from a European vendor – it measures the temperature in the Celsius scale (oC) 
and transmits data in an XML format 

• the second one is bought from the USA – it measures the temperature in the Fahrenheit scale (oF) and 
transmits JSON messages 

• the third sensor is compatible with the semantics of the FIWARE6 project – it measures the temperature 
in oC and transmits JSON messages. 

 

6 https://www.fiware.org/ 

https://www.fiware.org/
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FIGURE 3 THE SMART SENSING INTEROPERABILITY SCENARIO 

 

Then, we model the process of semantic interoperability where the system uses the collected data in order to 
take real-time decisions. The system functionality must retain a specified temperature value in the building. 

The components of the SEMIoTICS architecture (see Deliverable 2.5) that are involved in this process are: 

• Backend Layer: 
o Backend Semantic Validator: Component responsible for semantic validation mechanisms at 

the backend layer. 
o Thing Directory: The repository of knowledge containing the necessary Thing models. 
o Recipe Cooker: Component responsible for cooking (creating) recipes reflecting user 

requirements on different layers (cloud, edge, network) as well as transforming recipes into 
understandable rules for each layer. It uses the Thing Directory with all the models required to 
create these rules. 

• Field Layer: 
o GW Semantic Mediator: Component responsible for the semantic mapping between different 

data models. 
o Semantic API & Protocol Binding: Component responsible for binding different protocol and 

exposing a common semantic API located at the Generic IoT Gateway layer. 
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o Local Thing Directory: The purpose of Local Thing Directory is to store locally the semantic 
description of Things in the Generic IoT Gateway. 

 HORIZONTAL SCENARIO – FIELD LAYER 

In the first scenario, the semantic interoperability mechanisms run in the local gateway with the aim to retain 
a specified temperature value in the building. If the temperature in a room goes beyond the specified threshold, 
the relevant fan equipment is adjusted accordingly. The data flow depicts the sensor device which sends data 
(temperature) in °C and uses the XML format to transmit data (Figure 4). However, the actuator (fan) requires 
data in °F and a JSON format file for transmission. Hence, the semantic interoperability mechanisms are 
responsible for resolving this semantic difference. Particularly, the procedure starts with searching for the 
necessary Thing models in the Thing Directory Component, in order to detect the above potential semantic 
conflicts between the interacting Things (sensor, actuator). Afterwards, the Semantic Edge Platform in the 
Semantic API & Protocol Binding (SAPB) component is responsible to solve the semantic conflicts of 
temperature units, using the Adaptor Nodes that configure an Interaction Pattern in accordance to the 
application's requirements. Finally, the GWSM component is triggered to send the request in an appropriate 
format to the target Thing (actuator). 

 

FIGURE 4 HORIZONTAL SCENARIO – IN FIELD LAYER 

 

 VERTICAL SCENARIO – BACKEND LAYER 
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The purpose of the backend layer scenario is the same as the previous, but it requires vertical operation and 
communication across devices from different layers (Figure 5). Specifically, The BSV can receive a request 
from an IoT application for the interaction between two Things (i.e. sensor, actuator), which are described with 
two different TDs (based on W3C Thing Descriptions that are serialized to the JSON-LD standard format), 
respectively. The functionality of this component consists of: 

• Searching for the necessary Thing models in the Thing Directory component, in order to detect any 
potential semantic conflicts between the interacting domains. In this case, the request refers to a 
sensor device, which sends the data (temperature) in oC and uses JSON format to transmit data. 
However, the actuator (fan) requires data in oF and XML format file. 

• Connecting with the Recipe Cooker component to resolve the semantic conflicts of temperature units, 
using the Adaptor Nodes that configure an Interaction Pattern in accordance with the application's 
requirements. 

• Transferring the translated request to the SAPB component which is responsible to trigger the GW 
Semantic Mediator in the field layer, in order to send the request in an appropriate format to the target 
Thing (actuator). 

 

 

FIGURE 5 VERTICAL SCENARIO – IN BACKEND LAYER 

In cases where the abovementioned communication between the field and the backend must be encrypted, 
the semantic functionality is performed in the cloud by the endpoint that decrypts and processes the data. 
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3 BACKGROUND AND RELATED WORK 
This chapter details the background and related work regarding the various semantic technologies. This 
includes basic notation, the description of Things, ontologies and semantic models for smart objects. 

 The Basis for Semantics 

To enable the interaction with representations of resources over networks, a form of identification is needed. 
A Uniform Resource Identifier (URI) provides a simple and extensible means for identifying a resource (RFC 
39867). The most common form of URI is the Uniform Resource Locator (URL) used to identify webpages on 
the World Wide Web (WWW). The next figure disassembles the URI syntax. 

 

FIGURE 6 URI SYNTAX 

Several schemes are used nowadays for URIs, like http://, ftp://, tel:, urn:, and mailto: (the URI scheme is not 
the same as the underlying protocol). The HTTP URIs are the most common data access and things 
identification mechanism. They provide globally unique names, distributed ownership, and allow people to look 
up those names. 

The Resource Description Framework (RDF) is a data format for representing things and their interrelations. 
The RDF data model is formed as triples of {subject → predicate → object}. For example, we can express the 
working relations of a person named George, who is employed by FORTH that is based in Heraklion (Code 1). 

 

George → worksFor → FORTH 
FORTH → basedin → Heraklion 
<http://dbpedia.org/resource/FORTH> 
    <http://xmlns.com/foaf/0.1/based_near> 
        <http://sws.geonames.org/351940/> 
 

CODE 1 RDF EXAMPLE 

In contrast to the Semantic Web technologies that focus on the ontological level or knowledge inference, 
Linked-Data (LD) is mainly designed for publishing structured data in RDF using URIs. The provided 
simplification lowers the entry barrier for data provider and enables the wide-spread adoption. 

The LD approach proposes 4 principles: 

1. Use URIs to name things on the Web 
2. Use HTTP URIs allowing to look-up those names on the Web 
3. When someone looks up a URI, provide useful information 
4. Include links to other URIs to allow discovery of more things 

The abovementioned links are usually RDF properties that are interpreted as hyperlinks. The LD setting 
accomplishes ease of discovery and information consumption, reduced redundancy, and added value. 

 

7 https://www.ietf.org/rfc/rfc3986.txt 

https://www.ietf.org/rfc/rfc3986.txt
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JSON-LD is a popular implementation of the LD concept. It is developed by leveraging the Schema.org 
vocabulary. It is a joint effort by Google, Bing, Yahoo, and Yandex to establish a unified structured data 
vocabulary for the Web. JSON-LD annotates elements on a web page and structures the data. These features 
are utilized by search engines in order to disambiguate elements and derive facts surrounding entities. Once 
associated, they can create a more organized and better Web overall. 

The following code sample (Code 2) describes a technician that can repair the sensors in the motivating 
example (European sensors that measure temperature in the Celsius scale and transmit XML messages). 

 

{ 
    "@context": "http://schema.org/", 
    "@type": "Person", 
    "name": "George Brown", 
    "jobTitle": "Technician", 
    "telephone": "(425) 123-4567", 
    "url": "http://www.georgebrown.com", 
    "expertise": { 
      "@type": "Sensor", 
      "@id": "semiotics:sensor_type1@example.org", 
      "name": "European Temperature Sensor" 
    } 
  } 
 

CODE 2 JSON-LD TECHNICIAN EXAMPLE 

 

The next code sample (Code 3) represents the expanded version of the abovementioned JSON-LD data which 
is also signed with RSA. 

 

{ 
    "@context": [ 
      { 
        "@version": 1.1 
      }, 
      "http://schema.org/", 
      "https://w3id.org/security/v1" 
    ], 
    "@type": "Person", 
    "name": "George Brown", 
    "jobTitle": "Technician", 
    "telephone": "(425) 123-4567", 
    "url": "http://www.georgebrown.com", 
    "expertise": { 
      "@type": "Sensor", 
      "@id": "semiotics:sensor_type1@example.org", 
      "name": "European Temperature Sensor" 
    }, 
    "signature": { 
      "type": "LinkedDataSignature2015", 
      "created": "2018-10-02T09:37:24Z", 
      "creator": "https://example.com/jdoe/keys/1", 
      "domain": "json-ld.org", 
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      "nonce": "b99461eb", 
      "signatureValue": "ltGu17tYQWE0MsI3dmqXv2POJF1MykjTOXtn2A5EtMXdmrSmRKUCtvv8jOTmJxJT
BxAIgZR0nDfwEUj+DSa2SUA41NRK6+plPGsj5fvCCFK5rwM8KFVPTDP8CfBG5CSsQW3faf3oudu5yjNCbxuHUFNvL
6UMkDEeyP1MCcGOR0s=" 
    } 
  } 
 

CODE 3 JSON-LD TECHNICIAN EXAMPLE – EXPANDED AND SIGNED 

 

 Semantic Models for Smart Objects 

In computer and information science an ontology is defined as “a formal, explicit specification of a shared 
conceptualization” [14] and is used to represent knowledge within a domain as a set of concepts related to 
each other. In the area of IoT domain, an ontology provides all the crucial semantics for the IoT devices as 
well as the specifications of the IoT solution (input, output, control logic) that is deployed in such devices. The 
abovementioned semantics shall include the terminology related to sensors and observations and extend them 
to capture also the semantics of devices beyond sensors (e.g. actuators, tags, embedded devices, features of 
interest). Ontologies should be: 

• clear (definitions should be objective and complete), 

• coherent (should sanction inferences that are consistent with the definitions), 

• extendable (should be able to define new terms based on the existing vocabulary without the need of 
revising the existing definitions), 

• the conceptualization should be specified at the knowledge level without depending on a symbol -level 
encoding. 

There are four main components that an ontology is composed of: classes (concepts), individuals (instances), 
relations and attributes. Classes being the main concepts to be described, they can have one or several 
children, known as subclasses, used to define more specific concepts. Classes and subclasses have attributes 
that represent their properties and characteristics. Individuals are instances of classes or their properties. 
Finally, relations are the edges that connect all the presented components. There are numerous IoT ontologies, 
such as: 

• SWAMO8 - created to enable dynamic, composable interoperability of sensors, web products and 
services. It focuses on the sensor domain and particularly on processes to control them. It is 
interoperable with the Sensor Web Enablement (SWE) descriptions. 

• CSIRO9 - designed to describe and reason about sensors, observations and scientific models. It 
provides a semantic description of sensors for use in workflows. It was used to develop the Semantic 
Sensor Network (SSN) ontology. 

• The OMA LWM2M architecture from the Open Mobile Alliance10 for M2M11 or IoT12 device management 
is based on a client component, which resides in the LWM2M Device, and a server component, which 
resides within the M2M Service Provider or the Network Service Provider. A client can have any number 
of resources and these resources are organized into objects. The OMA Lightweight M2M enabler 
focuses on device management and service enablement for LWM2M Devices. Each resource supports 

 

8 https://www.w3.org/2005/Incubator/ssn/XGR-ssn-20110628/#SWAMO 

9 https://www.w3.org/2005/Incubator/ssn/XGR-ssn-20110628/#CSIRO_Sensor_Ontology 

10 https://en.wikipedia.org/wiki/Open_Mobile_Alliance 

11 https://en.wikipedia.org/wiki/Machine_to_machine 

12 https://en.wikipedia.org/wiki/Internet_of_things 
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one or more operations. The Omalwm2m ontology describes the resources, objects and operations 
supported by the OMA LWM2M architecture. 

The SSN ontology is based on the concepts of systems, processes and observations. It supports the 
description of the physical and processing structure of sensors. An SSN declares descriptions of sensors, 
networks and domain concepts in order to provide support in querying, searching, managing data and the 
network. Semantics follow a horizontal and vertical modularization architecture by including a lightweight but 
self-contained core ontology called Sensor, Observation, Sample, and Actuator (SOSA) for its elementary 
classes and properties with their different scope and different degrees of axiomatization. The SOSA provides 
a formal but lightweight general-purpose specification for modelling the interaction between the entities 
involved in the acts of observation, actuation, and sampling. 

 

FIGURE 7 EXTENDED MODEL BASED ON SSN ONTOLOGY 

Particularly, the above model could be extended with the additional required concepts to model the targeted 
application scenarios in a specific system (Figure 7). A possible semantic model is structured around entities 
like smart thing, actuator device, actuator, event, sensing device, sensor, observation, result time, unit, quantity 
kind, metadata, location. Smart thing stands for an IoT object. Sensing device refers to a device that 
implements sensing and it can contain many Sensors. Sensor is a device that has the capability to measure a 
physical property of the real world (e.g. temperature or smoke sensor). Observation is an activity conducted 
by a sensor in order to measure a physical property (e.g. the readings of a thermometer). QuantityKind 
represents the essence of a quantity without any numerical value or unit. Unit is real scalar quantity, defined 
and adopted by convention, with which any other quantity of the same kind can be compared to express the 
ratio of the two quantities as a number (e.g. degrees Celsius, meter, pound). Result time is the time when the 
Observation act was completed. Metadata refers to data about the properties (e.g. the metadata for a given 
sensor could be its precision, sensitivity, accuracy and so on). Actuator device refers to a device that 
implements actuating, an Actuator Device could contain many Actuators. The actuator is a device that has the 
capability to perform an operation on or control a system/physical entity in the real world (e.g. relays, solenoids, 
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linear actuators). Event is a certain action that triggers an Actuator to perform an operation or it triggers Sensor 
to start sensing. We assume that Sensors can work in two modes, the first one conducts observations at 
specific, time intervals (e.g. the observation of temperature every 10 minutes), the second is that the 
observation begins only when a specific Event occurs (e.g. observation of the GPS location of a car might be 
initialized when the car is in motion, in specific terms when speedometer’s value is not equal to 0). Location 
identifies a point or place where the Smart Thing is deployed [15], [16]. 

 Ontologies 

 OVERVIEW 

The most notable effort in the IoT field is the SSN ontology and Sensor Observation Sampling Actuator (SOSA) 
ontology by the W3C community [17]. The SOSA/SSN ontologies model sensors, actuator, samplers as well 
as their observation, actuation, and sampling activities. The ontologies capture the sensor and actuator 
capabilities, usage environment, performance, and enable contextual data discovery. This also constitutes the 
standardized ontologies for semantic sensor networks. The cooperation of SSN and SOSA offers different 
scopes and degrees of axiomatization that enable a wide range of application scenarios towards the Web of 
Things [18]. 

More specifically, the SSN ontology is a suite of general-purpose ontologies. It embodies the following 10 
conceptual modules: 1) Device, 2) Process, 3) Data, 4) System, 5) Deployment, 6) PlatformSite, 7) 
SSOPlatform, 8) OperatingRestriction, 9) ContraintBlock, and 10) MeasuringCapability. The modules consist 
of 41 concepts and 39 object properties. 

The general approach regarding the semantic interoperability that is followed by several IoT initiatives, like the 
EU funded projects Open source solution for the Internet of Things (OpenIoT) [19] and INTER-IoT [20], is the 
usage of the SSN/SOSA ontologies as the semantic base. The ontologies are then extended with the additional 
required concepts to model the targeted application scenarios. Such concepts usually include relevant 
standards and ontologies for specific application areas, like e-health [21], and less often extensions at the 
sensor level (as the relevant SSN/SOSA information is quite complete). Other similar and popular IoT 
ontologies include the Smart Appliance REFerence (SAREF) [22] and the MyOntoSens [23]. 

The following table lists the potential namespaces that are utilized for the SEMIoTICS. 

TABLE 1 MODEL NAMESPACES FOR SEMIOTICS 

Prefix Ontology/Language Namespace 

core SEMIoTICS ontology http://schema.semiotics.org/core/ 

rdf RDF concepts vocabulary http://www.w3.org/1999/02/22‐rdf‐syntax‐ns# 

rdfs RDF schema ontology http://www.w3.org/2000/01/rdf‐schema# 

schema Schema.org ontology http://schema.org/ 

iotschema iotschema.org  http://iotschema.org/ 

td Thing Description http://www.w3.org/ns/td# 

xsd XML schema definition http://www.w3.org/2001/XMLSchema# 

 

 ONTOLOGIES IN HEALTHCARE DOMAIN 

This section gives an overview of ontologies that are relevant within the healthcare domain. Traditionally, the 
semantic ontologies and standards play a significant role in the medical sciences since much of the available 
medical research needs an avenue to be shared across disparate computer systems [24]. Specifically, the 
ontologies can provide a basis for searching context-based medical research information, hence it can be 
integrated and used for future research; the semantic web standards can offer the communication across 
different Electronic Health Records (EHRs) systems. Thus, a challenging issue in the field of healthcare domain 

http://schema.semiotics.org/core/
http://www.w3.org/1999/02/22‐rdf‐syntax‐ns
http://www.w3.org/2000/01/rdf‐schema
http://schema.org/
http://iotschema.org/
http://www.w3.org/ns/td
http://www.w3.org/2001/XMLSchema
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is providing interoperability among healthcare systems [25] that enable universal forms of knowledge 
representation that integrate heterogeneous information, answer complex queries, and pursue data integration 
and knowledge sharing in healthcare [26]. 

In the literature, there has been a growing interest in the medical sciences/healthcare ontologies and 
standards. Particularly, there are three main organizations that are included in international standards for 
EHRs. These incorporate the International Organization for Standardization (ISO), the Committee European 
Normalization (CEN), and the Health Level 7 (HL7)—U.S. based (HL7, 2004). Table 2 presents a few of the 
standards currently used for interoperability in the semantic web [24]. 

 

TABLE 2 EXTRA STANDARDS FOR INTEROPERABILITY - HEALTHCARE DOMAIN 

Name Purpose Associated 
Organization 

Clinical Document 
Architecture CDA 

Leading standard for clinical and administrative data 
exchange among organizations 

HL7 

Guidelines Interchange 
Format (GLIF) 

Specification for structured representation of guidelines 

 

InterMed 
Collaboratory 

CORBAmed Provides interoperability among health care devices Object Management 
Group 

HL7 Messaging between disparate systems HL7 

 

A list of medical sciences/healthcare ontologies is summarized in Table 3 [24]. 

 

TABLE 3 ONTOLOGIES- HEALTHCARE DOMAIN 

Name Purpose Associated 
Organization 

DAML 
Extension of RDF which allows ontologies to be 
expressed; formed by DARPA Markup 

DAML Researcher 
Group 

Arden Syntax Standard for medical knowledge representation HL7 

Riboweb Ontology 
Facilitate models of ribosomal components and compare 
research results 

Helix Group at 
Stanford Medical 
Informatics 

Gene Ontology 
To reveal information regarding the role of an organism’s 
gene products 

GO Consortium 

LinkBase 
Represents medical terminology by algorithms in a formal 
domain ontology 

L&C 

GALEN Uses GRAIL language to represent clinical terminology OpenGALEN 

ADL Formal language for expressing business rules openEHR 

SNOWMED Reference terminology SNOMED Int’l 

LOINC (Logical) 
Database for universal names and codes for lab and 
clinical observations 

Regenstrief Institute, 
Inc. 
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UMLS—Unified Medical 
Language 

Facilitates retrieval and integration of information from 
multiple sources; can be used as a basic ontology for any 
medical 

US National Library 
of Medicine 

ICD-10 
Classification of diagnosis codes; is the newer version 
after ICD-9 

National Center for 
Health Statistics 

CPT Codes Classification of procedure codes 
American Medical 
Association 

 

4 SEMIoTICS SEMANTICS 
This chapter details the semantics that are supported by the SEMIoTICS project. Linked Data is the main 
method that is utilized for publishing structured data using standard Web and Semantic technologies, like 
HTTP, RDF, and URIs. Ontologies that are designed for the IoT domain by the World Wide Web Consortium 
(W3C) community are used to address the SEMIoTICS requirements. 

 Data Mappings in SEMIoTICS 

Semantic mappings is a layer that we introduce in the SEMIoTICS project with the aim to map and integrate 
brownfield semantics (existing meta-data related to field devices) with Industrial Internet of Things (IIoT) 
semantics (new semantic models developed for IoT applications). In this layer, we have to provide a mapping 
knowledge, which can be used to map semantics from a brownfield semantic standard into another IIoT 
standard. The SEMIoTICS IoT Gateway is able to utilize the mapping knowledge and thus is enabled to 
integrate data and metadata from appropriate field devices into a harmonized IoT access layer. This is 
accomplished based on the W3C Web of Things (WoT) standard – Thing Description.  

Thing Description is serialized in JSON for Linking Data (JSON-LD). It is a serialization format for JSON (a 
widely adopted serialization and messaging format on the Web). JSON-LD enables JSON data to be interlinked 
and structured based on semantic models. Thus, it brings the Linked Data paradigm to JSON. There exist 
implementations and tools for processing and querying JSON-LD data.  

 Ontologies in SEMIoTICS 

One of the purposes of SEMIoTICS is to integrate an extremely large amount of IoT heterogeneous entities, 
which need to be consistently and formally represented and managed. Such entities are sensor and actuation 
devices as well as applications that utilize them. For that reason, an API will be designed to provide access 
semantically described data along with descriptions of capabilities of connected devices. This API is based on 
WoT upcoming standard, and things are specified in the WoT TD format. TD is semantically annotated with 
iot.schema.org. The iot.schema.org is a community organization for extending schema.org to connected 
Things. Jointly, W3C WoT and iot.schema.org, instate a layer for semantic interoperability which renders the 
software capable in interacting with the physical world. This interplay is abstracted in such a manner where 
the development of applications across various IoT settings and domains is easy and simplified. Hence, in 
SEMIoTICS, we will focus on using existing standards to describe things, as only the standard semantics 
provides the necessary base for the interoperability. Thus, we will extend iot.schema.org with standard 
semantics that is required for SEMIoTICS use cases (see Deliverable 3.3 and its follow-up, D3.9). 

 TDs for all the Types of Smart Objects in SEMIoTICS 

The purpose of this subsection is to give a brief overview of the TDs of SEMIoTICS sensors; it describes, from 
semantically perspective, the smart objects in SEMIoTICS. The following presentation is divided according to 
the sensors used in each UC. 

 TDS OF UC1 SENSORS 
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This subsection contains the semantic models with the Thing Description for the sensors that are used in Use 
Case 1. The following Table 4 summarizes the properties, the data types and the actions for each Thing. 

 

TABLE 4 DESCRIPTION OF A SUBSET OF SENSORS ONBOARD USED IN UC1 

Thing (type) Properties Data Types Actions 

IpCamera 
count integer StartRecording 

lastChange string StopRecording 

Microphone 
count integer startMicrophone 

lastChange string stopMicrophone 

TemperatureSensing 

count integer  

lastChange string  

temperature Celsius  

An example of the corresponding JSON-LD file based on the above Table 4 is following (Code 4): 

 

{ 
    "title": "counter", 
    "description": "counter example Thing", 
    "@context": ["https://www.w3.org/2019/wot/td/v1", { 
        "iot": "http://iotschema.org/", 
        "schema": "http://schema.org/" 
    }, { 
        "@language": "en" 
    }], 
    "@type": ["Thing", "iot:IpCamera", "iot:Microphone", "iot:TemperatureSensing"], 
    "security": ["nosec_sc"], 
    "properties": { 
        "count": { 
            "type": "integer", 
            "description": "current counter value", 
            "iot:Custom": "example annotation", 
            "observable": true, 
            "readOnly": true, 
            "writeOnly": false, 
            "forms": [{ 
                "href": "http://localhost:8080/counter/properties/count", 
                "contentType": "application/json", 
                "op": ["readproperty"], 
                "htv:methodName": "GET" 
            }, { 
                "href": "http://localhost:8080/counter/properties/count/observable", 
                "contentType": "application/json", 
                "op": ["observeproperty"], 
                "subprotocol": "longpoll" 
            }, { 
                "href": "coap://localhost:5683/counter/properties/count", 
                "contentType": "application/json", 
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                "op": ["readproperty"] 
            }] 
        }, 
        "lastChange": { 
            "type": "string", 
            "description": "last change of counter value", 
            "observable": true, 
            "readOnly": true, 
            "writeOnly": false, 
            "forms": [{ 
                    "href": "http://localhost:8080/counter/properties/lastChange", 
                    "contentType": "application/json", 
                    "op": ["readproperty"], 
                    "htv:methodName": "GET" 
                }, 
                { 
                    "href": "http://localhost:8080/counter/properties/lastChange/observab
le", 
                    "contentType": "application/json", 
                    "op": ["observeproperty"], 
                    "subprotocol": "longpoll" 
                }, 
                { 
                    "href": "coap://localhost:5683/counter/properties/lastChange", 
                    "contentType": "application/json", 
                    "op": ["readproperty"] 
                } 
            ] 
        }, 
        "temperature": { 
            "@type": "iot:Temperature", 
            "iot:capability": "iot:TemperatureSensing", 
            "description": "current temperature value", 
            "observable": true, 
            "readOnly": true, 
            "writeOnly": false, 
            "type": "integer", 
            "schema:minValue": -10, 
            "schema:maxValue": 100, 
            "iot:temperatureUnitCode": "iot:Celsius", 
            "forms": [{ 
                    "href": "http://18.222.210.109/counter/properties/temperature", 
                    "contentType": "application/json", 
                    "op": ["readproperty"], 
                    "htv:methodName": "GET" 
                }, 
                { 
                    "href": "http://18.222.210.109/counter/properties/temperature/observa
ble", 
                    "contentType": "application/json", 
                    "op": ["observeproperty"], 
                    "subprotocol": "longpoll" 
                }, 
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                { 
                    "href": "coap://localhost:5683/counter/properties/temperature", 
                    "contentType": "application/json", 
                    "op": ["readproperty"] 
                } 
            ] 
        } 
    }, 
    "actions": { 
        "startMicrophone": { 
            "@type": "iot:StartRecording", 
            "iot:capability": "iot:Microphone", 
            "description": "Starts recording the audio.", 
            "forms": [{ 
                "href": ".../actions/startMicrophone", 
                "contentType": "audio/mpeg", 
                "op": ["invokeaction"], 
                "htv:methodName": "POST" 
            }], 
            "idempotent": false, 
            "safe": false 
        }, 
        "stopMicrophone": { 
            "@type": "iot:StopRecording", 
            "iot:capability": "iot:Microphone", 
            "description": "Stops recording the audio.", 
            "forms": [{ 
                "href": ".../actions/stopMicrophone", 
                "contentType": "audio/mpeg", 
                "op": ["invokeaction"], 
                "htv:methodName": "POST" 
            }], 
            "idempotent": false, 
            "safe": false 
        }, 
        "startCamera": { 
            "@type": "iot:StartRecording", 
            "iot:capability": "iot:Camera", 
            "description": "Starts recording the video.", 
            "forms": [{ 
                "href": "http://.../counter/actions/startCamera", 
                "contentType": "video/mp4", 
                "op": ["invokeaction"], 
                "htv:methodName": "POST" 
            }], 
            "idempotent": false, 
            "safe": false 
        }, 
        "stopCamera": { 
            "@type": "iot:StopRecording", 
            "iot:capability": "iot:Camera", 
            "description": "Stops recording the video.", 
            "forms": [{ 
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                "href": "http://.../counter/actions/stopCamera", 
                "contentType": "video/mp4", 
                "op": ["invokeaction"], 
                "htv:methodName": "POST" 
            }], 
            "idempotent": false, 
            "safe": false 
        } 
    } 
}    

CODE 4 TDS OF UC1 SEMIOTICS SENSORS 

 

For clarity, the description of a subset of sensors on board used in use case 1 of SEMIoTICS is detailed in 
D3.9. 

 TDS OF UC2 SENSORS 

This subsection contains the semantic models with the Thing Description for the sensors that are used in Use 
Case 2. The following Table 5 summarizes the properties, the data types and the actions for each Thing. 

 

TABLE 5 DESCRIPTION OF A SUBSET OF SENSORS ON BOARD USED IN UC2 

Sensor Properties Actions Data Types 

Ultrasonic range 

obstacleL 
(ObstacleSensors) 

 Meters 

obstacleC 
(ObstacleSensors) 

 Meters 

obstacleR 
(ObstacleSensors) 

 Meters 

Accelerometer 
Acceleration  Number (float) 

Resolution SetResolution  

An example of the corresponding JSON-LD file based on the above Table 5 is following (Code 5): 

 

{ 
    "@context ":"https://www.w3.org/2019/td/v1", 
    "id":"urn:wotrrsara", 
    "title":"WoT_RR_SARA", 
    "description":"RR_SARA", 
    "security":[ 
      "psk_sec" 
    ], 
    "securityDefinitions":{ 
      "psk_sec":{ 
        "scheme":"psk" 
      } 
    }, 
    "properties":{ 
      "obstacleL":{ 
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        "description":"obstacleL", 
        "type":"application/json", 
        "forms":[ 
          { 
            "href":"coap://localhost:5683/obstacleL" 
          } 
        ] 
      }, 
      "obstacleC":{ 
        "description":"obstacleC", 
        "type":"application/json", 
        "forms":[ 
          { 
            "href":"coap://localhost:5683/obstacleC" 
          } 
        ] 
      }, 
      "obstacleR":{ 
        "description":"obstacleR", 
        "type":"application/json", 
        "forms":[ 
          { 
            "href":"coap://localhost:5683/obstacleR" 
          } 
        ] 
      }, 
      "accelx":{ 
        "description":"accelx", 
        "type":"application/json", 
        "forms":[ 
          { 
            "href":"coap://localhost:5683/accelx" 
          } 
        ] 
      }, 
      "accely":{ 
        "description":"accely", 
        "type":"application/json", 
        "forms":[ 
          { 
            "href":"coap://localhost:5683/accely" 
          } 
        ] 
      } 
    } 
  } 

CODE 5 TDS OF UC2 SEMIOTICS SENSORS 

 

For clarity, the description of a subset of sensors on board used in use case 2 of SEMIoTICS is detailed in 
D3.9. 

 TDS OF UC3 SENSORS 
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This subsection contains the semantic models with the Thing Description for the sensors that are used in Use 
Case 3. The following Table 6 summarizes the properties, the data types and the actions for each Thing. 

 

TABLE 6 DESCRIPTION OF A SUBSET OF SENSORS ONBOARD USED IN UC3 

Sensor Properties Actions Events Data Types 

IHES Sensing 
Node 

nodeIdentifier reset temperatureSensor array(float) 

operationStatus state humiditySensor array(float) 

connected  pressureSensor array(float) 

  accelerometerSensor array(float) 

  changeDetected string 

An example of the corresponding JSON-LD file based on the above Table 6 is following (Code 6): 

  

{ 
    "@context":"https://www.w3.org/2019/wot/td/v1", 
    "id":"urn:00-80-e1-00-00-99", 
    "title":"IHES Sensing Node", 
    "securityDefinitions":{ 
      "no_sc":{ 
        "scheme":"nosec" 
      } 
    }, 
    "security":[ 
      "no_sc" 
    ], 
    "properties":{ 
      "nodeIdentifier":{ 
        "description":"Shows the node ID.", 
        "type":"string", 
        "forms":[ 
          { 
            "href":"mqtt://192.168.200.2:1883/ihes/node/out/00-80-e1-00-00-99/events" 
          } 
        ] 
      }, 
      "operationStatus":{ 
        "description":"Shows the current status of the node.", 
        "type":"string", 
        "forms":[ 
          { 
            "href":"mqtt://192.168.200.2:1883/ihes/node/out/00-80-e1-00-00-99/events" 
          } 
        ] 
      }, 
      "connected":{ 
        "description":"Shows if the node is connected or not.", 
        "type":"boolean", 
        "forms":[ 
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          { 
            "href":"mqtt://192.168.200.2:1883/ihes/node/out/00-80-e1-00-00-99/events" 
          } 
        ] 
      } 
    }, 
    "actions":{ 
      "reset":{ 
        "description":"Reset the node.", 
        "inputSchema":{ 
          "type":"string", 
          "const":"RESET" 
        }, 
        "forms":[ 
          { 
            "href":"mqtt://192.168.200.2:1883/ihes/node/in/00-80-e1-00-00-99" 
          } 
        ] 
      } 
    }, 
    "events":{ 
      "temperatureSensor":{ 
        "description":"Provides periodic temperature value updates.", 
        "data":{ 
          "type":"array" 
        }, 
        "forms":[ 
          { 
            "href":"mqtt://192.168.200.2:1883/ihes/node/out/00-80-e1-00-00-99/data" 
          } 
        ] 
      }, 
      "humiditySensor":{ 
        "description":"Provides periodic humidity value updates.", 
        "data":{ 
          "type":"array" 
        }, 
        "forms":[ 
          { 
            "href":"mqtt://192.168.200.2:1883/ihes/node/out/00-80-e1-00-00-99/data" 
          } 
        ] 
      }, 
      "pressureSensor":{ 
        "description":"Provides periodic pressure value updates.", 
        "data":{ 
          "type":"array" 
        }, 
        "forms":[ 
          { 
            "href":"mqtt://192.168.200.2:1883/ihes/node/out/00-80-e1-00-00-99/data" 
          } 
        ] 
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      }, 
      "accelerometerSensor":{ 
        "description":"Provides periodic accelerometer value updates.", 
        "data":{ 
          "type":"array" 
        }, 
        "forms":[ 
          { 
            "href":"mqtt://192.168.200.2:1883/ihes/node/out/00-80-e1-00-00-99/data" 
          } 
        ] 
      }, 
      "changeDetected":{ 
        "description":"Provides change in data, when detected.", 
        "data":{ 
          "type":"string" 
        }, 
        "forms":[ 
          { 
            "href":"mqtt://192.168.200.2:1883/ihes/node/out/00-80-e1-00-00-99/data" 
          } 
        ] 
      } 
    } 
  } 

CODE 6 TDS OF UC3 SEMIOTICS SENSORS 
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5 SEMANTIC MEDIATOR MECHANISMS 
This chapter describes in more detail the operation of the semantic interoperability mechanisms. Particularly, 
data models and techniques are presented in order to map the data in a common format (i.e. JSON). For 
ontology alignment, transformation rules are retrieved and performed by the semantic interoperability 
procedure. 

 Ontology Alignments & Data Transformation Techniques 

 DATA MAPPING 

 YANG MODEL 

YANG is a data modelling language which was originally developed to model Remote Procedure Calls (RPCs), 
notifications, configurations, state data of network elements, as well as constraints to be enforced on the data 
[27]. Additionally, it can be used to describe other network constructs, such as services, protocols, policies 
and customers [28]. It follows a hierarchical organization; namely, data is structured into a tree and it can 
contain complex types, such as lists and unions. Also, YANG supports the NETCONF [29] and RESTCONF 
[30] interfaces for the deployment of network and RESTful services, respectively.  The service operations are 
modelled in YANG. Then, the YANG processor parses the model and exports the abstract development project 
in a denoted programming language (e.g. JAVA, C/C++, etc). YANG is also utilized to transform data from one 
format to another. 

These features could be adapted in order to deploy the smart functionality that collects, processes, and 
transmits the sensed information. Particularly, the RESTCONF and the implemented RESTful web services 
could be used to run in the field and backend systems. Moreover, a YANG model was used to establish a 
common data mapping between the involved operations. The interfaces can process messages (such as get 
the current temperature value from a sensor) with semantic information. Afterwards, at runtime, XML messages 
can be transformed into JSON and vice versa, according to the specific format which is supported by each 
interface. The IEFT Internet Draft draft-ietf-netmod-yang-json13 establishes a one-to-one mapping between 
JSON and the subset of XML that can be modelled by YANG. The overall functionality is also tailored in order 
to cooperate with legacy formats, as in the IoT domain there could be several constrained devices, like 
motes/sensors, that do not process structured data. 

 DEVELOPMENT FUNCTION 

An alternative solution for mapping between XML and JSON is the implementation of a function using 
algorithms and libraries from specific programming languages. There are many mappings between JSON and 
XML, and programs implementing those mappings. Specifically, these techniques are based on the fact that 
XML and JSON data objects are multi-branch tree structures. Any XML/JSON file can be parsed and translated 
by recursive traversal of its tree object. Particularly, a traversal algorithm can be divided into the steps below: 

1. Get the root of the tree object 
2. Get a value from the node of a, if the value is a number of child nodes, then traverse all child nodes, 

do operation a on all child trees whose roots are these child nodes, otherwise return the value of the 
node 

However, there are already many libraries for translating XML to JSON, JSON to XML or both. One of the most 
widespread solutions is the JSON package in Java [package org.json]14, which includes the capability to 
convert between JSON and XML in Java language. It is open-source and could address the requirements of 
the data mapping semantic interoperability mechanism in SEMIoTICS. For that reason, this approach is most 
suitable for SEMIoTICS framework and is used for the data mapping in a common format (i.e. JSON). 

 ONTOLOGY ALIGNMENT 

 

13 https://tools.ietf.org/html/draft-ietf-netmod-yang-json-10 

14 https://github.com/stleary/JSON-java.git 

https://tools.ietf.org/html/draft-ietf-netmod-yang-json-10
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After defining a common format, the next step is to resolve any potential semantic conflicts and perform 
ontology alignment between the interacting domains. In that case, transformation rules can be used to 
describe how we can transform the data that are processed by one application into a compatible form that is 
understandable by another machine. 

 JSON REGULAR EXPRESSION: 

A possible and simplified solution for this issue is to model the rules as specific JSON tags that are included 
in the related TD/JSON-LD files. Each rule tag can contain the identification of the two domains (from-to) and 
a Regular Expression (RE). The RE could be a valid PERL15 program that models the search pattern 
(matching the data to be altered) and the transformation formula itself (how the data will be changed). For 
example, the next TD sample (Code 7) transforms the temperature value from the Celsius to the Fahrenheit 
scale. Once parsed by the inference engine, the rule could take as input the JSON-LD file from a FIWARE’s 
set_temperature service operation, search for the temperature value and change it to the other scale.  

 
{ … JSON-LD TD file … 
  "transformation_rules": [ 
    { 
        "from": "temperature_celsius", 
        "to": "temperature_fahrenheit", 
        "RE": "my $data=$ARGV[0]; 
         if ($data =~ m/fan_power=(\\d+)/){   
             my $fahrenheit=$1*9/5+32; 
            $data =~ s/fan_power=(\\d+)/fan_power=$fahrenheit/g; 
        }  
         if ($data =~ m/set_temperature=(\\d+)/) {  
            my $fahrenheit=$1*9/5+32;  
            $data=~ s/set_temperature=(\\d+)/set_temperature=$fahrenheit/g; 
        } 
    }   
  {other rules},] …… end of data TD … } 

CODE 7 TRANSFORMATION RULE IN JSON-LD FILE IN PERL      

                           

The expressiveness of this type of RE is even more advanced than just performing a single mathematic 
formula. REs could perform complicated transformations and successfully resolve the conflicts that occur from 
the incorrect OWL correlations. 

Figure 8 illustrates the above description of the semantic interoperability procedure. 

 

15 https://www.perl.org/ 

https://www.perl.org/
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FIGURE 8 SEMANTIC INTEROPERABILITY PROCEDURE: DATA MAPPING AND ONTOLOGY 
ALIGNMENT WITH JSON RE-ACTIVITY DIAGRAM 

 DROOLS PATTERN ENGINE: 

Another suggestion for the description of transformation rules is the use of Drools16 . It is a rule engine system, 
which combines rule-based techniques and object-oriented programming. It is based on the Event-Condition-
Action (ECA) structure of rules which is a flexible method to achieve process adaptation, different from a series 
of nested if-then-else statements that do not offer workflow readability (Code 8). From the developing point of 
view [31]: 

1. Drools uses objects as marked out by patterns and rules that invoke certain actions.  
2. A pattern is a coded expression (program), which manipulates one or more objects to form a pattern 

to make, adapt or fashion behavior according to designed logic.  

 

16 https://www.drools.org/ 
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3. Drools objects are Java objects and can be represented by instances of Java classes or XML schemas. 
4. A rule can perform many types of actions, such as a), add or remove an object from the working 

memory, b) modify an object, c) execute a method on one of the objects 
 

rule “<name of rule>” 
 <attribute> <value> 
 when 
  <LHS> 
 then 
  <RHS> 
end 
 
*LHS: Pattern-matching against objects in the Working Memory, RHS: Code executed 
when a match is found 

CODE 8 RULE EXAMPLE - DROOLS 

Additionally, the decisive advantage of Drools is the fact that the development is interactive; the work 
environment provides the capability to quickly add change rules and re-run test cases. This supports the 
automatic synchronization between the semantic reasoning procedure and the rule engine. Whenever an 
object is updated not only the corresponding semantic concept in the model is updated, but the Drools engine 
is also triggered to evaluate its rules. In this way, the changes in the semantic model are propagated all the 
way up to Drools. 

Together with the above analysis, making use of Drools for the transformation rules gives the following benefits:  
a) the object-oriented character is very suitable to topic map elements, b) the rule engine adopts Rete 
algorithm17 and implementation for the Java language and it can reason on rules effectively, c) its open-source 
project brings the benefit of overriding the code expediently to fit the practical applications. 

 EXTENSION RECIPE MODEL – ADAPTOR NODES IN NODE-RED PLATFORM: 

Node-RED18 is an open-source programming tool for wiring the IoT, hardware devices, APIs and online 
services, created by the Emerging Technology team of IBM. It includes a browser-based flow editor to wire 
together flows using a wide range of nodes. The flows can be then deployed at runtime. Hence, nodes and 
flows are the two fundamental components in Node-RED. Nodes can be divided into three categories, input, 
output and function. The connection between specific nodes designs the above flows. Additionally, from a 
programming point of view, JavaScript functions can be created/extended within the editor using a rich text 
editor and flows are stored using the JSON format, which can be easily imported and exported for sharing with 
other applications. 

The Recipe Model (see Deliverable 4.1 and its follow-up, D4.8) and the Recipe Cooker component (see 
Deliverable 2.4) are based on Node-RED. Thus, a proposed methodology, which the purpose of resolving any 
potential semantic conflicts, can be the addition of extra nodes to the core node palette of Node-RED. 
Particularly, this technique is used for SEMIoTICS to resolve any potential semantic conflicts and perform 
ontology alignment between the interacting domains, in order to have consistency and interactivity between 
the components of the architecture. In the next subsection, a full set of Adaptor nodes are described in order 
to address the SEMIoTICS requirements. 

 FULL SET OF ADAPTOR NODES 

The SEMIoTICS framework aims to provide ways of adapting and/or replacing concrete IoT application smart 
objects/components if it becomes necessary at runtime (e.g., when some components become unavailable) in 

 

17 https://en.wikipedia.org/wiki/Rete_algorithm 

18 https://nodered.org/ 
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order to ensure that data flow is possible between smart objects. In such circumstances, it requires the dynamic 
adaptation of the available infrastructure (sensors) in order to cope with changes in smart objects and IoT 
platform configurations. For this reason, is it possible to change one sensor to another with the same 
functionality (belonging to the same category e.g. a temperature Thing) in this case it should be checked 
whether the input / output of the two devices obey the same format. For this purpose, Adaptor Nodes are 
offered. 

Based on subsection 4.3, which presents the TDs for all types of smart objects that are used in SEMIoTICS, 
we can come up with the possible corresponding classes of Adaptor Nodes that are intended to meet the 
requirements of all UCs. Particularly, in UC1 (see 4.3.1), the TD of temperature sensor has the attribute 
"iot:temperatureUnitCode": "iot:Celsius"; it means that the temperature units is Celsius. For this case we 
provide nodes to convert data: 

• from Celsius to Fahrenheit and vice versa 

• from Celsius to Kelvin and vice versa 

• from Fahrenheit to Kelvin and vice versa. 

In UC2 (see 4.3.2), the accelerometer Thing uses as data type number (float) for counting. Thus, we provide 
nodes to convert data: 

• from float to string and vice versa 

• from float to integer and vice versa. 

Finally, in UC3 (4.3.3) the temperatureSensor, humiditySensor, pressureSensor and accelerometerSensor 
Thing use as data type float for counting. For this UC, in the same token as the UC2, we provide nodes to 
convert data: 

• from float to string and vice versa 

• from float to integer and vice versa. 

Said Adaptor Nodes are produced at runtime with the corresponding functionality. The implementation and the 
application of them are detailly described in Section 8. Figure 9,Figure 10,Figure 11 highlight some of the 
Adaptor Nodes that are available and developed in SEMIoTICS to deal with the UCs requirements.  

The above Adaptor Nodes can be used in combination; for example, if it is required an advanced conversion 
such as Fahrenheit to Celsius and String to Integer. In this case, two Adaptor Nodes are used parallel in line 
and the output of the first is the input of the second. 
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FIGURE 9 1ST ADAPTOR NODES EXAMPLE IN SEMIOTICS UCS 

 

 

FIGURE 10 2ND ADAPTOR NODES EXAMPLE IN SEMIOTICS UCS 
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FIGURE 11 3RD ADAPTOR NODES EXAMPLE IN SEMIOTICS UCS 

s 

 Semantic Reasoning 

The term semantic alignments has been used in the literature to adapt and transform the data into the declared 
ontologies [32]. Depending on the expressiveness of the ontologies, reasoning engines can further infer 
associations and links into the data. Hence, the reasoning is responsible for making conclusions and deriving 
new facts, which do not exist in the knowledge base. Traditionally, reasoning with rules is based on first-order 
predicate logic or description logic to make conclusions from a sequence of statements derived by predefined 
rules [33]. A reasoning engine (i.e., a reasoner) is a software tool that realizes reasoning with rules. Most of 
them manage a comprehensive set of RDFS and OWL vocabularies and most RDF data formats.  

Various semantic reasoning engines have been proposed. Specifically, the Jena inference subsystem19, 
Pellet20, RacerPro21, HermiT22, RIF4J23 and Fact++24 are based on different rule languages and can give 

 

19 https://jena.apache.org/documentation/inference/ 

20 https://www.w3.org/2001/sw/wiki/Pellet 

21 http://franz.com/agraph/racer/ 

22 http://www.hermit-reasoner.com/ 

23 http://rif4j.sourceforge.net/ 

24 http://owl.man.ac.uk/factplusplus/ 
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support for ontologies and OWL. On the other hand, there are some reasoners which support SWRL25 and 
RIF26 rule languages and others have implemented their own human-readable rule syntaxes. 

Moreover, there are sensor-based linked open rules [34] for sharing and reusing rules in IoT applications based 
on Jena rules syntax. Besides that, another methodology [35] is used to link and reuse rules on the Web which 
is expressed as SPARQL queries. Also, in [36], a cloud platform has been proposed for editing and reusing 
SPARQL queries online. 

Taking all the above together, the query language for the Semantic Web is SPARQL, which offers an 
appropriate way to interrogate multiple triple-stores (RDF stores) over HTTP. It was designed by the W3C RDF 
Data Access Working Group (DAWG) and it is considered one of the key technologies for the semantic web. 
Conjunctions, disjunctions, triple patterns, and some optional patterns are supported by SPARQL; also, SQL 
syntax such as SELECT and WHERE clauses can be used as part of a SPARQL query, i.e. (Code 9): 

 

PREFIX foaf:  <http://xmlns.com/foaf/0.1/> 

SELECT ?name ?email  

WHERE {   
?subj a foaf:Person .  
?subj foaf:name ?name .  
?subj foaf:mbox ?email . 
    }    

CODE 9 SPARQL QUERY FOR SELECTING ALL THE NAMES AND EMAIL ADDRESSES OF RDF DATA 
THAT HAS THE TYPE FOAF:PERSON 

The above example builds on the friend-of-a-friend ontology definition (foaf), and it provides a simple query to 
return all the names and email addresses of RDF data that has the type foaf:Person.  

Despite the fact that SPARQL is the standard query language for retrieving and manipulating RDF data, the 
majority of SPARQL implementations requires the data to be available in advance (in main memory or in a 
repository), thereby not exploiting the real-time and dynamic nature of Linked Data. An interesting solution is 
presented by the DAWG group [37], SPARQL-LD27, which is an extension of SPARQL and allows to directly 
fetch and query RDF data from any HTTP Web source. 

The following piece of code in SPARQL-LD (Code 10) selects the technicians that are expert in repairing a specific 
sensor type. 

 

SELECT DISTINCT ?technician 

WHERE { 

 SERVICE <http://schema.semiotics.org/core/Technician> { 
  Semiotics:Technician semiotics-owl ?expertise } 
 VALUES ?templ { 
  <http://schema.semiotics.org/core/Senor/Type1>} 
}    

CODE 10 SPARQL-LD QUERY FOR SELECTING THE EXPERT TECHNICIANS FOR A SPECIFIC  

 

25 http://www.w3.org/Submission/SWRL/ 

26 http://www.w3.org/TR/rif-in-rdf/ 

27 https://github.com/fafalios/sparql-ld 

http://schema.semiotics.org/core/
http://schema.semiotics.org/core/
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Another solution, which is based on SPARQL, is the Thingweb Directory28. It is an open-source implementation for 
TD models; these models are recommended by the W3C Web of Things working group. It provides an API to 
Create, Read, Update and Delete (CRUD) a TD. It can be used both to browse and discover Things based on their 
TDs. 
Specifically, TDs can be filtered using SPARQL. Matching a SPARQL filter requires the inclusion of semantic 
annotations in the TD. The following SPARQL filter (Code 11) selects TDs that include the char “2” in the name 
property. A SPARQL filter for Thingweb Directory should be sent in a query parameter and percent-encoded29. 
 
Particularly, this technique (see Thing Directory component) is used for SEMIoTICS for semantic reasoning 
procedure. 
 

?prop <http://www.w3.org/ns/td#name>  ?name . FILTER contains(?name, "2"); 

 

CODE 11 SPARQL FILTER IN THINGWEB DIRECTORY 

  

 

28 https://github.com/thingweb/thingweb-directory 

29 https://lists.w3.org/Archives/Public/public-wot-ig/2017Nov/0005.html 
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6 SEMIoTICS INTEGRATION APPROACH WITH OTHER IoT 
PLATFORMS 

This chapter presents the means of integrating SEMIoTICS with other IoT platforms. That includes the 
interoperability between said heterogeneous IoT platforms and delivery of dynamic interaction between them 
to interconnect the variety of smart objects covering both multiple technologies and intelligent services. 

 Introduction 

The interoperability between the SEMIoTICS framework and other external IoT platforms, such as FIWARE, 
MindSphere and openHAB, works in two directions. The first direction is originating from other IoT platforms, 
moving towards the SEMIoTICS framework. In that way, SEMIoTICS can use the exposed interfaces of said 
IoT platforms, in order to take advantage of IoT devices whose descriptions are available in repositories outside 
SEMIoTICS framework. The second direction is originating from the SEMIoTICS framework, moving towards 
other IoT platforms. In a similar way, said platforms utilize the SEMIoTICS’ exposed interfaces of selected 
components in order to employ IoT smart objects and services. The next subsections describe the interaction 
of SEMIoTICS and the above IoT external platforms. 

 Interaction with FIWARE 

 OVERVIEW 

The SEMIoTICS platform components can expose dedicated APIs which are visible outside the platform thanks 
to a router functionality embedded in the backend platform itself. Each component can interact with any other 
component through the provided API but also with outside components like other platforms APIs or FIWARE’s 
Generic Enablers (GEs) through provided Next Generation Service Interface (NGSI). On the other hand, the 
component creator can restrict API visibility. 

To create more permanent and quick ways to connect with other IoT platforms, the code responsible for 
connection is created in the form of reusable components. Such components take care of the common task 
like request mapping, API calling, response mapping, etc. 

As it was mentioned in previous SEMIoTICS deliverables, FIWARE is not commercial, but an open-source 
cloud-based infrastructure for IoT platforms. This solution can even be regarded as an IoT platform or as a 
platform for platforms, so it is reasonable to consider this solution apart from the other IoT platforms. Taking 
that unique aspect into consideration, it is reasonable to use or even to incorporate some of FIWARE’s GEs 
to build the SEMIoTICS framework. 
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FIGURE 12 FIWARE IOT SERVICES ENABLEMENT ARCHITECTURE 

From a semantic point of view, it is worth to mention that FIWARE follows an approach consistent with 
SEMIoTICS, to represent a Device with integrated specific entities as a whole and do not distinguish between 
Sensors and Actuators (Figure 12). Moreover, FIWARE proposes semantics built upon iot.schema.org, which 
is the target semantic core for SEMIoTICS (data in this core semantics are defined in JSON Schema). This 
allows the use of the open-source FIWARE semantics (schema.fiware.org) instead of working with the raw 
iot.schema.org. Adopting and improving schemas.org vocabularies can reduce duplication of efforts and focus 
attention on innovation rather than replication30. The exposed by FIWARE Data Models repository contains 
JSON Schemas corresponding to the models. What can be useful from the perspective of SEMIoTICS 
semantics is that it is possible to contribute to this project and create additional data models31 32 33. 

This data model datasets are exposed through the FIWARE NSGI version 2 API32. According to specification, 
the FIWARE NGSI API defines a data model and a context data interface as well as a context availability 

 

30 https://iot.schema.org/docs/iot-gettingstarted.html 

31 https://www.fiware.org/developers/data-models/ 

32 https://github.com/Fiware/dataModels 

33 https://www.fiware.org/2016/09/02/towards-schema-fiware-org/ 
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interface34 35. The NGSI context data has been presented in the image below (Figure 13). Each entity can have 
many attributes and can be identified by type and id. 

As it was mentioned, integration with FIWARE Data Models is possible via NSGI API, if SEMIoTICS leverages 
the same API for context queries, context subscription and context updates to interact with the respective 
context elements (i.e., sensors and actuators) in a FIWARE domain. The Orion context broker is an 
implementation of the NSGIv2 REST API binding developed as a part of the FIWARE platform. A few 
exemplifying queries are listed below (more to be found in documentation34 35): 

▪ query for retrieving API resources. Retrieve API Resources returns links to affordances in the form of 
links in the JSON body, 

▪ retrieving query List Entities which returns all matches by different criteria, 
▪ query Create Entity where object follows JSON Entity Representation. 

 

FIGURE 13 NSGI CONTEXT DATA 34 35 

 

FIWARE provides a few GEs related to semantic interoperability that can be applied to the SEMIoTICS project. 
These GEs are listed and shortly described below:  

IoT Discovery – is a GE written in Java and the meeting point between IoT Context Producers and IoT Context 
Consumers; it provides APIs for contextual information exchange, or the Sense2Web API that supports Linked 
Open Data (LOD) (more information in36). 

The NSGI-9 Server provides a repository for the storage of NGSI entities and allows NSGI-9 clients [38] to 
register context information about Smart Things as well as discover context information using id, attribute, 
attribute domain and entity type 

Sense2Web API is a platform that provides a semantic repository for IoT providers to register and manage 
semantic descriptions (in RDF/OWL)  

IoT Broker – is a GE exposed by FIWARE as a docker image or to be built from source exchanging information 
between other components via the NGSI interface.A part of the IoT Broker is an IoT Knowledge Server which 
contains a large amount of IoT semantic knowledge useful from the perspective of a project. The IoT 
Knowledge Server is a standalone component created to provide semantic information, which serves IoT 
Broker semantic ontologies (for example, to explore the information structure contained in real world data). It 

 

34 http://telefonicaid.github.io/fiware-orion/api/v2/stable/  

35 http://fiware.github.io/specifications/ngsiv2/stable/ 

36 https://fiware-iot-discovery-ngsi9.readthedocs.io/en/latest/index.html 

https://fiware-iot-discovery-ngsi9.readthedocs.io/en/latest/index.html
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provides REST APIs and Subscribe / Notify functionality in JSON format. It is composed by two components 
(web servers) and two databases along with the servers (Figure 14). 

 

 

FIGURE 14 IOT KNOWLEDGE SERVER, IOT BROKER AND IOT DISCOVERY INTEROPERATION 
EXAMPLE (BASED ON [82]) 

 

Summary of the FIWARE integration perspective:  

It is possible to use data models or to define proprietary data models using a JSON Schema which covers the 
key-value representation of NGSI v2 context data (not normalized but shorter)37. 

Sense2Web API (from the IoT Discovery GE) which supports LOD, could be used for semantic querying via 
SPARQL and to register and manage semantic descriptions (in RDF/OWL) so it could be used as a semantic 
descriptions repository or as a part of it.   

IoT Knowledge Server (from the IoT Broker GE) which, as mentioned, contains a large amount of IoT semantic 
knowledge. The IoT Knowledge Server is a standalone component created for serving semantic information to 
the IoT Broker semantic ontologies (for example, to explore the information structure contained in the real-
world data). It provides REST API and Subscribe /Notify in JSON format. This knowledge could also be 
incorporated during the process of plugging a new object, for example, creating a new entity (finding matching 
types with subtypes). 

 

37 https://fiware-datamodels.readthedocs.io/en/latest/howto/index.html 
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FIGURE 15 LOGIC OF SEMANTIC MAPPINGS BETWEEN COMPONENTS AS A SEPARATE 
COMPONENT DEFINING TRANSFORMATION MAPPINGS BETWEEN ENTITIES 

 

FIWARE is recently switching to the NSGI-LD specification to enhance relationships between entities, but 
currently, it is up to the logic of the application (in this case the SEMIoTICS platform) to navigate between 
entity relationships37. A possible need for developing such a component responsible for the logic of semantic 
mappings has been presented in Figure 15. 

The following JSON-LD code (Code 12) describes a smart building for FIWARE. 

 

{ 

    "id": "57b912ab-eb47-4cd5-bc9d-73abece1f1b3", 

    "type": "BuildingOperation", 

    "dateCreated": "2016-08-08T10:18:16Z", 

    "dateModified": "2016-08-08T10:18:16Z", 

    "source":  "http://www.example.com", 

    "dataProvider": "OperatorA", 

    "refBuilding": "building-a85e3da145c1", 

    "operationType": "airConditioning", 

    "description": "Air conditioning levels reduced due to out of hours", 

    "result": "ok", 

    "startDate": "2016-08-08T10:18:16Z", 

    "endDate": "2016-08-20T10:18:16Z", 

    "dateStarted": "2016-08-08T10:18:16Z", 

    "dateFinished": "2016-08-20T10:18:16Z", 

    "status": "finished", 

    "operationSequence": [ 

     "fan_power=0", 

     "set_temperature=24" 

    ], 

    "refRelatedBuildingOperation": [ 

      "b4fb8bff-1a8f-455f-8cc0-ca43c069f865", 

      "55c24793-3437-4157-9bda-667c9e1531fc" 
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    ], 

    "refRelatedDeviceOperation": [ 

      "36744245-6716-4a28-84c7-0e3d7520f143", 

      "33b2b713-9223-40a5-87a0-3f80a1264a6c" 

    ] 

  }    

CODE 12 FIWARE TEMPERATURE JSON-LD EXAMPLE 

 

 SCENARIO OF INTEGRATION BETWEEN SEMIOTICS AND FIWARE 

This subsection presents the scenario and the corresponding implementation of the first direction (SEMIoTICS 
uses services from other target external IoT platforms). 
For the sake of simplicity, the current example includes the interoperability between SEMIoTICS and FIWARE 
for the description and analysis of the development of the proposed approach. 
Firstly, the key components of the SEMIoTICS architecture (see Figure 16) related to interoperability with 
external IoT platforms that are involved in this process are: 

• Recipe Cooker (RC) which is responsible for cooking (creating) recipes reflecting user requirements, 

• Pattern Orchestrator (PO) which oversees the automated configuration, coordination, and 
management of different patterns (in this case Interoperabil ity patterns) and their deployment, 

• Pattern Engine - Backend (PEB) which allows the insertion, modification, execution, and retraction of 
patterns through the Pattern Orchestrator, 

• Backend Semantic Validator (BSV) which resolves semantic interoperability issues and 

• Thing Directory - Backend (TDB) which is the repository of knowledge containing the necessary Thing 
models 
 

 

FIGURE 16 KEY COMPONENTS OF THE SEMIOTICS ARCHITECTURE RELATED TO INTERACTION 
WITH EXTERNAL IOT PLATFORMS 

 
The implementation of the approach includes the interoperability between the components and respective APIs 
of the framework and the platforms. A number of different steps are required, as described below and as 
highlighted in the sequence diagram in Figure 17: 
 

• Step1: The first phase includes the design of the flow interaction between two Things i.e. FIWARE 
Sensor, SEMIoTICS TemperatureSensing expressed as a recipe/flow in RC. The main goal is to 
validate the semantic interoperability between the identified nodes to ensure the required 
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interconnection. For that reason, RC sends the cooked recipe to the PO in order to transform it into 
architectural patterns (in this case interoperability patterns – see subsection 7.2). The RC is developed 
based on the Node-RED framework and is responsible for cooking (creating) recipes reflecting user 
requirements, send the recipe in PO using a POST method request. Particularly, this POST parameters 
include the recipe/flow (JSON format), as body and the header is application/json.  

• Step2: The second phase includes the transmission of the interoperability requirement as a POST from 
the PO to the PEB to enforce the respective pattern rules. These rules are expressed as Drools (see 
7.2.3) business production rules, running and the associated rule engine. The latter is an efficient 
pattern-matching algorithm known to scale well for large numbers of rules and data sets of facts, thus 
allowing for an efficient implementation of the pattern-based reasoning process. The IoT service 
workflow in question is described in a dedicated language that the PO understands and is given as 
input, using the language constructs and methodology defined in D4.8. It exchanges information with 
the PEB in order to check if a specific property holds throughout the whole workflow and corresponds 
accordingly. 

• Step3: The third phase of PEB includes the validation of the semantic interoperability for any links in 
the recipe/flow as triggered the BSV. In the described example, there is only one link/wire identifying 
the connection between FIWARE Sensor and SEMIoTICS Thermostat Sensor. The BSV component 
receives a request from the PEB to check the semantic interoperability between two Things (link) in 
JSON-LD/JSON format. The JSON-LD/JSON Parser is implemented as part of the BSV, to analyze the 
received input and extract the meaningful information from these set of data. The communication 
between said components is achieved using a POST method. 

• Step4: The fourth phase includes the BSV that begins the procedure to tackle the semantic 
interoperability issues between these two Things from said recipe/flow. In order to give this answer, 
the semantic description for any Thing is required (for FIWARE Sensor and SEMIoTICS Thermostat 
Sensor). For that reason, it sends two requests: (i) SPARQL query to TDB (is developed based on the 
Thingweb Directory) in order to receive the Thing Description of SEMIoTICS Thermostat and (ii) GET 
request to the Orion Context Broker FIWARE platform to receive the context data Description of 
FIWARE Sensor. The response consists of JSON format with the FIWARE Sensor attributes (type, 
metadata elements). 

• Step 5: The last phase involves the received by the BSV information in order to decide regarding the 
interoperability between the Things and harmonize the semantic model capabilities with the registration 
of extra Adaptor Nodes in the recipe if required. Particularly, there are three possible results. Firstly, 
the link source and destination are interoperable, so the BSV updates the PEB with the TRUE 
response. Secondly, the link source and destination are not interoperable and the BSV can add Adaptor 
Nodes (see 8.3.1 for the development of new nodes in Node-RED framework) in order to guarantee 
the interoperability. In this case, BSV not only sends the TRUE response in PEB but also updates the 
recipe in RC using the corresponding Adaptor Nodes. Lastly, the link source and destination are not 
interoperable and BSV does not have the required information to develop the Adaptor Nodes; hence, 
the PEB receives the FALSE response by the BSV. 
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FIGURE 17 SEQUENCE DIAGRAM OF SEMIOTICS INTEROPERABILITY WITH EXTERNAL IOT 
PLATFORMS 

 
Figure 18 demonstrates the initial status of the recipe and the final structure taking advantage of the BSV 
procedure which tackles the semantic interoperability issues between these two Things. Additionally, it should 
be mentioned that the above development can be applicable in any other external IoT platfor ms, except 
FIWARE, since it provides compatible exposed interfaces and services. 
Following the implementation analysis in which the SEMIoTICS is able to use the exposed interfaces of said 
IoT external platforms, it is worthwhile noting that the opposite direction of interoperability - external IoT 
platforms utilize the SEMIoTICS’ exposed interfaces of selected components in order to employ IoT smart 
objects and services provides - is available by some components. Namely, one of the selected components 
that has exposed interfaces is the TDB. Things and their description reside in the TDB. The interface of it can 
be used to retrieve the already stored semantic description of Things. The TD of the corresponding Thing that 
is returned, complies with the iotschema and can be used for consumption from other IoT platforms (for more 
details see Deliverable D3.9). 
Furthermore, another component that has exposed interfaces is the PO which, along with the Pattern Engines, 
can offer not only interoperability but also verification of Security, Privacy, Dependability and along with 
Interoperability (SPDI) and Quality of Service (QoS) properties as a service to be used from the other IoT 
platforms. In that way, an external IoT platform may utilize said service in order to verify the SPDI/QoS 
properties to an existing workflow that is comprised of IoT smart objects (IoT service workflow). The IoT service 
workflow in question is described in a dedicated language that the PO understands and is given as input , using 
the language constructs and methodology defined in D4.8. PO exchanges information with the Pattern Engines 
in order to check if a specific property holds throughout the whole workflow and corresponds accordingly.  For 
more details on this process, the SEMIoTICS pattern language and the mechanisms enabling the pattern -
driven monitoring and adaptation please refer to deliverable D4.8. 
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Finally, the SDN controller of SEMIoTICS (SSC) is also exposed in the scope of offering a service which 
provides means of managing available OpenFlow devices in the other IoT platforms. More details on the 
pattern-driven interface of the SSC can be found in deliverable D3.10. 
 

 

FIGURE 18 INTEROPERABILITY BETWEEN SEMIOTICS AND FIWARE SENSORS - EXAMPLE USING 
FLOW FROM RECIPE COOKER 

 

 FIWARE – SEMIOTICS INTEROPERABILITY LAYER BRIDGE 

In Section 6.2.1, the FIWARE Data Models have already presented. Namely, Figure 13 describes the original 
OMA NGSI meta-model, the fundamental metamodel around the FIWARE Data Models. There are three main 
elements in this meta-model, as shown in the figure above: Entities, Attributes and Metadata. Entities are the 
center of gravity in the NGSI information model. An entity represents a thing, i.e., any physical or logical object 
(e.g., a sensor, a person, a room, an issue in a ticketing system, etc.). Attributes are properties of context 
entities. Finally, Metadata is used as an optional part of the attribute value; like attributes, each piece of 
metadata has a name, describing the role of the metadata in the place where it occurs. 

Thus, for the interconnection and interoperability between FIWARE and SEMIoTICS, except the proposed 
approach that has already described in the previous subsection (exposed services which provide the delivery 
of dynamic interaction between two said platforms), the deployment of a bridge capable to read and write 
inserted data is required in order to achieve the communication between the two IoT platforms. In fact, based 
on a study of the data model of FIWARE, an adaptation of the FIWARE Data Model is proposed to match 
iotschema.org, as used by SEMIoTICS. The main mappings between FIWARE and SEMIoTICS semantic 
concept are expressed in Table 7. 

 

TABLE 7 AN OVERVIEW OF MAPPING FIWARE DATA MODEL TO IOTSCHEMA.ORG 

FIWARE Data Model iotschema.org 

Entity Thing Description 

Id of Entity Id of Thing Description 

Type of Entity Type of Thing Description 

Attributes Properties 
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 Interaction with MindSphere 

An IIoT Gateway (see deliverable D3.9) is expected to be deployed for the integration of devices from an 
existing brownfield devices (e.g., wind turbine), as well as new IoT devices that may be added to the system 
(e.g., a camera, microphone, accelerometer etc.). The role of IIoT Gateway is to expose the functionality of 
field devices over a uniform interface with clear semantics, i.e., machine interpretable descriptions of field 
devices. For that purpose, we use the W3C Web of Things with its Thing Description and iotschema.org. Apart 
from this (southbound) functionality, IIoT Gateway is also used to transfer data to MindSphere38. The semantics 
created in the Field level and exposed over a Thing Description is also used for creating MindSphere asset 
model. In this way, we have a transparent IoT semantics, not only at the Field level but also across complete 
SEMIoTICS platform. 

The data model of MindSphere is based on assets39. An asset is a digital representation of a machine or an 
automation system with one or multiple automation units connected to MindSphere.  An asset is based on a 
type. The type consists of aspects and variables. Aspects provide a mechanism to model data of assets. They 
gather related data in logical groups. For example, an asset “pump” has an aspect "energy consumption". 
Further on, an aspect contains a set of concrete variables (datapoints). For instance, the aspect "energy 
consumption" contains the variables: "power", "current", "voltage" etc. 

Studying the data model of MindSphere a proposed mapping of semantic constructs from iotschema.org (that 
aligned to W3C WoT Thing Description) to constructs of MindSphere data model is derived. 

 

TABLE 8 AN OVERVIEW OF MAPPING MINDSPHERE MODEL TO IOTSCHEMA.ORG 

MindSphere asset model iotschema.org 

AssetType Capability that is the composition of other Capabilities or a Thing 
Description template 

AspectType Capability 

Asset Thing Description 

Aspect Thing Description’s part marked up with a Capability 

Variable Thing Description’s Event, Property or Action 

Table 8 shows the mapping of main concepts from MindSphere asset model and iotschema.org. Apart from 
this, metadata of each concept should be mapped too. For example, name and description of AspectType 
should be mapped to the name and description of a corresponding Capability of iotschema.org. Units and data 
types should be mapped from iotschema.org to the new model, which is created in MindSphere too.  

Code 13 shows an example of Thing Description (TD) for a microphone device used in a wind turbine (Use 
Case 1). TD has been semantically enriched with the mark up from iotschema.org. This TD is exposed by IIoT 
Gateway and available in Local and Global Thing Description Directory. The same TD has been used to create 
an asset model in MindSphere. Code 14 shows the equivalent model of the microphone, represented in 
MindSphere asset model. As we see the model contains semantic constructs from TD, and as such ensures 
the semantic interoperability between Cloud and Field/Edge level. 

 

{ 

    "@context":[ 

 

38 https://siemens.mindsphere.io/en 

39 https://documentation.mindsphere.io/resources/pdf/asset-manager-en.pdf 

https://documentation.mindsphere.io/resources/pdf/asset-manager-en.pdf
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      "http://www.w3.org/ns/td", 

      { 

        "iot":"http://iotschema.org/" 

      } 

    ], 

    "id":"urn:dev:wot:com:example:servient:thing5", 

    "name":"SEMIoTICS-Microphone", 

    "description":"Microphone used in a wind turbine", 

    "securityDefinitions":{ 

      "psk_sc":{ 

        "scheme":"psk" 

      } 

    }, 

    "security":[ 

      "psk_sc" 

    ], 

    "@type":[ 

      "iot:Microphone" 

    ], 

    "actions":{ 

      "on":{ 

        "@type":"iot:iot:startRecording", 

        "description":"Starts recording the audio.", 

        "type":"boolean", 

        "forms":[ 

          { 

            "href":"http://thing-5.iiot-gtw.org:5683/mic/on" 

          } 

        ] 

      }, 

      "off":{ 

        "@type":"iot:iot:stopRecording", 

        "description":"Stops recording the audio.", 

        "type":"boolean", 

        "forms":[ 

          { 

            "href":"http://thing-5.iiot-gtw.org:5683/mic/off" 

          } 

        ] 

      } 

    } 

  } 

CODE 13 EXAMPLE OF TD FOR A MICROPHONE 
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{ 

    "assettype":{ 

      "name":"SEMIoTICS-Wind-Turbine-Monitoring-Type", 

      "description":"SEMIoTICS monitoring system in a wind turbine.", 

      "scope":"private", 

      "aspects":[ 

        { 

          "name":"Microphone", 

          "aspectTypeId":"iot:Microphone" 

        } 

      ] 

    }, 

    "aspecttype":{ 

      "name":"iot:Microphone", 

      "category":"dynamic", 

      "scope":"private", 

      "description":"A capability for an Internet Protocol (IP) microphone.", 

      "variables":[ 

        { 

          "name":"iot:startRecording", 

          "dataType":"boolean", 

          "unit":"N/A" 

        }, 

        { 

          "name":"iot:stopRecording", 

          "dataType":"boolean", 

          "unit":"N/A" 

        } 

      ] 

    }  "asset":{ 

      "name":"Wind-Turbine-Monitoring-5", 

      "externalId":null, 

      "description":"SEMIoTICS monitoring system in a wind turbine no.5.", 

      "aspects":[ 

        "MicrophoneAspects#5", 

        { 

          "name":"iot:Microphone", 

          "variables":[ 

            { 

              "name":"iot:startRecording", 

              "value":"%(.value)" 

            }, 
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            { 

              "name":"iot:stopRecording", 

              "value":"%(.value)" 

            } 

          ] 

        } 

      ] 

    } 

  }    

CODE 14 EXAMPLE OF MINDSPHERE ASSET MODEL FOR A MICROPHONE 

 

 Interaction with openHAB 

ΟpenHAB is an Open Source IoT platform, which mainly targets smart home and smart buildings environments, 
and is leveraged in SEMIoTICS in the context of the Generic IoT use-case. Said platform supports many off-
the-shelf Smart Sensors already present in building environments, and can be extended through “add-ons” 
that handle the interaction with external sensors, data storage backends and chart libraries for sensor value 
visualization. Furthermore, openHAB supports a scripting language to implement automation “if-this-then-that” 
scenarios. openHAB relies on a JSON-LD message bus40 and offers a REST API powered by the Jetty HTTP 
server. The RESTful service offered by openHAB, gives access to Things, Channels and Items, represented 
via the Eclipse Smarthome data model. In more detail: 

• Things are entities that can be physically added to a system. They may provide more than one function 
(for example, a Z-Wave multi-sensor may provide a motion detector and measure room temperature). 
Things do not have to be physical devices; they can also represent a web service or any other 
manageable source of information and functionality. From a user perspective, they are relevant for the 
setup and configuration process, but not for the operation. Things can have configuration properties, 
which can be optional or mandatory. Such properties can be basic information like an IP address, an 
access token for a web service or a device specific configuration that alters its behavior. Things expose 
their capabilities through Channels. 

• Channels represent the different functions the Thing provides. Where the Thing is the physical entity 
or source of information, the Channel is a concrete function from this Thing. A physical light bulb might 
have a color temperature Channel and a color Channel, both providing functionality of the one light 
bulb Thing to the system. For sources of information, the Thing might be the local weather with 
information from a web service with different Channels like temperature, pressure and humidity. 
Channels are linked to Items, where such links are the glue between the virtual and the physical layer. 
Once such a link is established, a Thing reacts to events sent for an item that is linked to one of its 
Channels. Likewise, it actively sends out events for Items linked to its Channels. Whether an 
installation takes advantage of a capability reflected by a Channel depends on whether it has been 
configured to do so. When you configure your system, you do not necessarily have to use every 
capability offered by a Thing. You can find out what Channels are available for a Thing by looking at 
the documentation of the Thing's Binding. 

• Bindings can be thought of as software adapters, making Things available to the system. They are 
add-ons that provide a way to link Items to physical devices. They also abstract away the specific 
communications requirements of that device so that it may be treated more generically by the 
framework. 

 

40 https://www.eclipse.org/smarthome/rest/index.html 

https://www.eclipse.org/smarthome/rest/index.html
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• Items represent capabilities that can be used by applications, either in user interfaces or in automation 
logic. Items have a State which may store sensor values and they may receive commands (e.g., for 
actuation purposes). 

The openHAB support of REST and JSON-LD protocols offers a simple integration path with the SEMIoTICS 
protocol suite without the need of any additional parsers. This is simply achieved with openHAB Transformation 
Services41 that map the SEMIoTICS WoT TDs to the openHAB’s Eclipse Smarthome Data Model. An example 
of a SEMIoTICS thing shown at the openHAB Dashboard is shown in Figure 19, Code 15. 

 
 

 

FIGURE 19 SEMIOTICS THING (I.E., CEILING LAMP) CONNECTED TO OPENHAB DASHBOARD 

 

{ 
  "@context": [ "http://www.w3.org/ns/td", 
              {"iot": "http://iotschema.org/"} ], 
  "@type" : [ 

 

41 https://www.openHAB.org/docs/configuration/transformations.html 

https://www.openhab.org/docs/configuration/transformations.html
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      "Thing", "iot:LightControl", "iot:BinarySwitchControl" 
  ], 
  "id": "urn:dev:wot:lamp", 
  "name": "WirelessLamp", 
  "description" : "WirelessLamp uses JSON-LD 1.1 serialization", 
  "securityDefinitions": { 
      "basic_sc": {"scheme": "basic", "in":"header"} 
  }, 
  "security": ["basic_sc"], 
  "properties": { 
    "status" : { 
      "@type" : "iot:SwitchStatus", 
      "type": "string", 
      "forms": [{ 
         "href": "mqtt://192.168.1.11:1883/house/lamp/status", 
         "mediaType": "application/json"}] 
    } 
  }, 
  "actions": { 
     "toggle" : { 
     "@type" : "iot:ToggleAction", 
     "forms": [{ 
        "href": "mqtt://192.168.1.11:1883/house/lamp/toggle", 
        "mediaType": "application/json"}] 
     } 
  }, 
  "events":{ 
    "overheating":{ 
      "@type" : "iot:TemperatureAlarm", 
      "data": {"type": "string"}, 
      "forms": [{ 
          "href": "mqtt://192.168.1.11:1883/house/lamp/oh", 
          "subprotocol": "longpoll" 
      }] 
    } 
  }    

CODE 15 SEMIOTICS THING (I.E., CEILING LAMP) CONNECTED TO OPENHAB 
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7 END-TO-END INTEROPERABILITY VERIFICATION 
MECHANISMS 

This chapter analyses the verification mechanisms that ensure the end-to-end interoperability of a currently 
composed setting. This process is materialized via the translation of Recipes into SPDI Patterns. The tool 
facilitates the design of workflows and guarantees the composition properties of the system. The development 
of the SPDI pattern language and the associated reasoning mechanisms, a set of initial interoperability 
patterns, along with their interplay and integration with IoT orchestrations’ definitions via Recipes, are detailed 
in D4.1 and its follow up D4.8. 

 Translation of Recipes into SPDI Patterns 

In order to ensure interoperability from the application definition all the way through to the execution at runtime, 
we have implemented four levels of abstraction and accordingly three steps of transformation between them. 
These steps are indicated in Figure 20 below. 

 

FIGURE 20 TRANSLATIONS FROM RECIPES TO EXECUTABLE RULES 

Recipes are designed in the Recipe Cooker tool and serialized in the N3 language. Then, we have implemented 
various N3-based rules that can transform the Recipe into a network configuration. An overview of these 2 
models (Recipe and Network model) and their transformation is shown in Figure 21. They are defined as triples 
in the RDF format and serialized in the N3 format. 

On the left side of Figure 21 , the model to define abstract IoT compositions as recipes is shown. This model 
is based on our previous work [39], [40], [41]. A recipe is a template for a workflow of interactions between 
multiple components, or ingredients. When a recipe is instantiated, ingredients are replaced with concrete 
components, which we call IoT offerings. An offering is a concrete service of an IoT device or platform that has 
inputs, outputs and a semantic category. Here, the recipe model is extended to allow the definition of 
application-level Quality of Service (QoS) constraints, which are then translated to Software Defined 
Networking (SDN) QoS constraints. Therefore, the concept QoSConstraint has been associated with an 
interaction of the recipe. 
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FIGURE 21 TRANSFORMATION FROM RECIPE TO NETWORK CONFIGURATION [42] 

SDN enables the enforcement and validation of QoS constraints on a service composition's network 
communication. To take advantage of these tools, we need to model its parameters in a manner compatible 
with a service model. We have chosen to model SDN concepts in a semantic fashion, for simplified integration 
with semantic service composition systems. Our SDN model is depicted on the right side of  Figure 21. The 
design of this model is inspired by the data structures used by the northbound interfaces of SDN controllers, 
such as the ones defined by [43]. The central component of this model is the application. When the model is 
instantiated, this is the entry point to the definition of a specific SDN configuration. Associated with t he 
application is a time period during which it is valid and a tenant who represents the user of the network. Every 
application is associated with an interface that comprises the network node on which it runs as well as the 
physical port it is attached to. 

A key concept associated with the application is the flow filter. Here, a destination (pointing to a specific 
interface), filter conditions, and QoS requirements are defined. As QoS requirements, we have added delay, 
bandwidth and protect constraints. This modelling is non-exhaustive, and it depends on the functionality 
available at the store and more constraints can be added. The delay constraint describes a maximum allowed 
latency between two endpoints, while the bandwidth constraint specifies a minimum guaranteed bandwidth 
between two endpoints. The protect constraint provides a mean to specify redundant packet transmission, 
which facilitates sending the same packet over different network links to improve the connection reliability.  

These constraints are applied to flows that match the conditions attached to a single filter. Currently, we 
included flow conditions to check for matches on the ethernet, IP, TCP and UDP protocols. Further protocols 
can be added, e.g., based on ARP addresses or ICMP packets. As an example, to specify the maximum delay 
for a connection between a sensor and an actuator, we can instantiate a flow filter with a delay QoS and a flow 
condition consisting of an IP header match with a source IP address of the sensor, and the destination IP 
address that of the actuator. Then, the maximum delay constraint would be applied to all packets being sent 
from the sensor to the actuator. 

Figure 22 shows an example of N3 triple encodings that represent a camera as an offering to be used as part 
of a recipe. In addition to the camera definition, a video frame-rate constraint is given. In this example of an 
application-specific constraint, the frame rate (f) for a camera stream specifies the minimum frames/second 
the network needs to be able to transmit. Since we define this constraint on the application level, information 
on the camera's data format and the resolution of the video stream is available to us. If the video format's 
efficiency is e ∈ [−∞, 1] and the video's resolution is x×y, we can infer a minimum bandwidth with the calculation 
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bw = (1−e)∗x∗y∗f. The bandwidth constraint derived from this equation can then be configured on the network. 
If the application then changes (for example, switching to a video camera with a less effective video format), 
the application-level constraint can be re-evaluated and changes can be applied to the network. 

 

FIGURE 22 DEVICE AND CONSTRAINT DEFINITION IN N3 FORMAT   

Figure 23 contains an excerpt of the translation implementation. The implementation takes the form of rules 
that are expressed as implications. When the premise of the rule holds, the conclusion of the rule is inserted 
into the triple store, with all existential variables replaced with the bindings from the rule's premise. Line 1 
defines the productOf property as a calculation function that is resolved by the rule system. The rule in lines 
2-19 results in the recursive calculation of calculation values. We do this by iterating over all the values in the 
argument list of the calculation relation (for example, productOf) and attaching the calculated values to the 
calculation. The argument list can contain three types of values: Literals, which are used as-is, device 
properties, which are resolved from the device the constraint is applied to, and parameters, which are resolved 
from the constraint itself. When all input values for a calculation are available ( line 16), they are appended into 
a single list and attached to the calculation node. Then, the calculation rule on lines 21 to 28 fires and computes 
the result using the reasoner's built-in math:product predicate. This rule is replicated for other calculation 
instructions, such as differenceOf or sumOf (not included here). When a result value for the root of the 
calculation has been computed, the rule in lines 30-47 generates the target constraint with the correct value. 
Additionally, flow filter information from the device is used to generate a flow filter.  
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FIGURE 23 TRANSLATION RULES FOR A CAMERA FRAME-RATE CONSTRAINT 

Having the above-described translation rules available, we have covered the translation step (1.) in Figure 23. 
To translate the network configuration and details into SPDI patterns, we have developed a Python script. It 
converts the network configuration defined in N3 into the Extended Backus-Naur Form (EBNF) grammar 
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defined in the Antlr42 format. An example output that represents such a SPDI pattern in context of the video 
camera example above is shown in Code 16. 

 

Placeholder(https://iotscheme.siemens.com/#ProcessingOne), 
Placeholder(https://iotscheme.siemens.com/#CameraOne), 
Link(link-0, https://iotscheme.siemens.com/#CameraOne, 
https://iotscheme.siemens.com/#ProcessingOne), 
Property(property-0, confirmed, qos, in_transit, Verification(monitoring, interface), 
link-0), 
Property(property-1, confirmed, qos, in_transit, Verification(monitoring, interface), 
link-0) 

CODE 16 SPDI PATTERN 

 Interoperability Patterns  

 INTRODUCTION 

As mentioned above, the interoperability is the ability of different information technology systems and 
heterogeneous services to communicate, exchange data, and use the information that has been exchanged.  
Generally, the aspects of interoperability comprise technical, syntactical, semantic, and organizational issues, 
usually referenced as interoperability layers [44]. Similarly, four levels of interoperability are included in the 
SEMIoTICS framework: technological, syntactic, semantic and organizational interoperability (see Deliverable 
D4.8, as well as deliverable D3.10 presenting interoperability aspects from a network perspective). Each layer 
is dependent on another layer, i.e. syntactic interoperability is only possible if technological interoperability 
exists; the semantic interoperability will be the next step when syntactic interoperability is already implemented 
and so on (Figure 24 below). Although, it is worthwhile to note that the organizational interoperability is the 
most complex interoperability type. These complexities are associated not only with formal agreements on 
collaboration but also with practical approaches to organizational interoperability [45]. 

 

FIGURE 24 PATTERN DEFINITION – INTEROPERABILITY LAYERS IN SEMIOTICS FRAMEWORK 

 

 

42 https://www.antlr.org/ 

https://iotscheme.siemens.com/#ProcessingOne
https://iotscheme.siemens.com/#CameraOne
https://iotscheme.siemens.com/#CameraOne
https://iotscheme.siemens.com/#ProcessingOne
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 SEMANTIC INTEROPERABILITY PATTERN DEFINITION 

To fully exploit the above pattern-driven features and provide an E2E provision for interoperability throughout 
the SEMIoTICS framework, a set of Interoperability-focused patterns must be defined. The full set of 
Interoperability patterns are presented in Deliverable D3.10 “Network-level Semantic Interoperability (final)” 
and D4.8 “SEMIoTICS SPDI Patterns (final)”. This deliverable focuses on the semantic category of 
Interoperability patterns; hence, the pattern definition and the pattern specification rule are analysed in this 
and in the next subsection accordingly, only from the semantic perspective. 

Particularly, if it is considered that: 

• C := the set of all instantiated components  

• MDL := A set of semantic models 

• C1,C2 ⊆ C , where C1 ≠ C2 

• Ci_MDL ⊆ MDL := semantic models used by Ci 

• SeMD := Semantic Mediator  

then three lemmas could be defined as following 

Lemma 1: If C1, C2 are syntactically interoperable and C1_MDL ∩ C2_MDL ≠ ⌀ then C1 and C2 are directly 
semantically interoperable 

Lemma 2: If C1, C2 are syntactically interoperable and are both directly semantically interoperable with SeMD, 
then C1, C2 are indirectly semantically interoperable 

Lemma 3: If C1, C2 are directly or indirectly semantically interoperable, then C1, C2 are semantically 
interoperable. 

 

 SEMANTIC INTEROPERABILITY PATTERN SPECIFICATION RULE 

Taking to account the above analysis, in the previous subsection, the workflow-based definition of semantic 
interoperability in the fundamental scenario of two IoT activities A1 and A2 interacting with each other is as 
follows: 

1. WF “semantic-interoperability” 
2. Placeholder (A1, (PlaceholderActivity, PlaceholderDescription)) 
3. Placeholder (A2, (PlaceholderActivity, PlaceholderDescription)) 
4. Placeholder (SeMD, (PlaceholderActivity,”Semantic Broker”))  
5. Link (L1, A1, A2) 
6. Link (L2, A1, SeMD) 
7. Link (L3, A2, SeMD) 
8. Property (conn01, L1, required, (pattern-based, pattern),” syntactic-interoperability” , in_transit_ ∨ 

in_processing) 
9. Property (conn02, L2, required, (pattern-based, pattern),” syntactic-interoperability” , in_transit_ ∨ 

in_processing) 
10. Property (conn03, L3, required, (pattern-based, pattern),” syntactic-interoperability” , in_transit_ ∨ 

in_processing) 
11. Property (conn1, L1, required, (pattern-based, pattern),” semantic-interoperability” , in_processing) 
12. Property (conn2, L2, required, (pattern-based, pattern),” semantic -interoperability” , in_processing) 
13. Property (conn3, L3, required, (pattern-based, pattern),” semantic -interoperability” , in_processing) 
14. Property (conn4, “_semantic-interoperability”, required, (pattern-based, PR1),” “_semantic-

interoperability”, end_to_end) 
15. Pattern rule: (PR1: (conn01,conn1) || (conn02,conn2,conn03,conn3) ➔ conn4) 

The corresponding machine-processable Drool rule format of the said semantic interoperability rule can be 
defined in the below code (Code 17): 
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rule "Sequence Semantic Interoperability Verification" 
when 
        Placeholder($pA:=placeholderid) 
        Property ($pA:=subject, category=="semantic", $prvaluein1:=input_value, 
  $prvalueout1:=output_value, satisfied==true) 
        Placeholder($pB:=placeholderid) 
        Property ($pB:=subject, category=="semantic", $prvaluein2:=input_value, 
  $prvalueout2:=out_value, satisfied==true) 
        Sequence($sId:=placeholderid, $pA:=placeholdera, $pB:=placeholderb) 
        $PR: Property ($sId:=subject, category=="semantic", 
$prvalueout1==$prvaluein2,  satisfied==false) 
then 
        modify($PR){satisfied=true, input_value=$prvaluein1, 
output_value=$prvalueout2}; 
end 
 

    

CODE 17 SEMANTIC INTEROPERABILITY VERIFICATION DROOL RULE 
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8 SEMANTIC INTEROPERABILITY MECHANISMS - 
IMPLEMENTATION 

This chapter describes the semantic interoperability techniques for resolving semantic differences and their 
implementation to support the usage scenarios of SEMIoTICS. To achieve this, the SEMIoTICS framework 
has integrated several different software components with the BSV component as the core of this procedure. 
In this context, the following section illustrates the role of BSV component in SEMIoTICS and continues with 
the initial and the final implementation of the above procedure. 

 Role of Backend Semantic Validator Component 

As mentioned, this deliverable focuses on mechanisms to validate semantic interoperability using 
interoperability conditions defined in the pertinent SEMIoTICS patterns (as defined in Task 4.1 and 
documented in D4.8), ensuring that data flow is possible between smart objects in the SEMIoTICS architecture 
components. BSV is the main component responsible for this, as its role is to provide: 

1. Validation mechanisms to ensure semantic interoperability,  
2. Connection with external IoT platforms to enable interoperability between these targeted external IoT 

enabling platforms and SEMIoTICS and  
3. Adaptability taking to account the interoperability of devices that are used in SEMIoTICS. 

Based on the above, the following subsections explain, in detail, the proposed techniques and the procedure 
of said BSV roles, with subsection 8.2 presenting the initial proof-of-concept implementation and subsection 
8.3 focusing on the final prototype implementation. 

 Proof-of-concept Implementation 

The first deliverable of SEMIoTICS Task 4.4 (D4.4 Semantic interoperability mechanisms for IoT (first draft)) 
presented the initial development of data transformation techniques and validation mechanisms to ensure end-
to-end semantic interoperability. Specifically, D4.4 outlines the SEMIoTICS architecture elements that are 
responsible for resolving semantic differences and provide a short analysis of the implementation of them 
based on the motivating scenario, as already analyzed in subsection 2.2. The components of the SEMIoTICS 
architecture which are involved in said semantic interoperability mechanisms are shown in Figure 25. These 
include the Backend Semantic Validator, the Recipe Cooker, and the Thing Directory from the backend layer, 
as well as the Semantic API & Protocol Binding, the GW Semantic Mediator, and the Local Thing Directory 
from the field layer. 
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FIGURE 25 SEMIOTICS ARCHITECTURE COMPONENTS -SEMANTIC INTEROPERABILITY 
MECHANISMS BASED ON MOTIVATING SCENARIO (SUBSECTION 2.2) 

In Figure 26 a sequence diagram depicts the procedure of the semantic interoperability mechanisms between 
the application orchestrator layer and the field layer. As stated in subsection 2.2 , the aim is the connection 
between two Things (Sensor and Actuator), by an IoT application which sends a request in the backend. This 
motivating scenario can be applicable in SEMIoTICS UCs, using any other sensor (e.g. for pressure, humidity, 
light) that aims to interact with an actuator. 
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FIGURE 26 SEQUENCE DIAGRAM FOR SEMANTIC INTEROPERABILITY MECHANISMS BASED ON 
MOTIVATING SCENARIO (SUBSECTION 2.2) 

In fact, the BSV receives the request from the IoT application, using the grpc43 framework and it takes 
information from the Thing Directory component; the Thingweb Directory is used for the implementation of 
Thing Directory component and the interaction is achieved by the HTTP endpoint that provides an HTML client 
to register and discover TDs. This client accesses a REST API to manage TDs that complies to the IETF 
Resource Directory specification. Registration is done by POSTing and discovery can be performed by using 
a SPARQL graph pattern as a query parameter (GET).  

The Recipe Cooker (based on the Node-RED framework) is responsible to harmonize the semantic model 
capabilities with the registration of extra Adaptor Nodes in the recipe, based on the Temperature Control 
Example44 (Figure 27). In case of an advanced scenario that will require to tackle conflicts for multiple 
parameters, e.g. interacting Things used different data transformation techniques for type (string, float) and 
units measurement (Celsius scale, Fahrenheit scale), then the corresponding Adaptor Nodes can be applied 
inline, using the output of the first as the input of the next. The main advantage of this approach is the reusability 
of Adaptor Nodes in order to address the requirements of any usage scenarios and applications and the 
requirements for the infrastructure. 

For the final stage, as the sequence diagram depicts, the SAPB component and the GWSM component from 
the backend layer are responsible to transmit the information to the target actuator. 

 

43 https://grpc.io/ 

44 https://github.com/iot-schema-collab/iotschema-node-red/blob/master/example-doc.md 
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FIGURE 27 TEMPERATURE CONTROL EXAMPLE (GITHUB.COM) 

The next section describes the latest development of data transformation techniques and validation 
mechanisms to ensure that data flow is possible between smart objects of SEMIoTICS UCs, based on the role 
of BSV component; these mechanisms should rely on the inclusion of interoperability conditions in the 
SEMIoTICS patterns.  

 Final Implementation 

 VALIDATION MECHANISMS – IMPLEMENTATION 

One of the main aims of BSV component is to tackle the semantic interoperability issues that arise in the 
SEMIoTICS framework, at the application orchestration layer. The BSV can receive a request for interaction 
between two Things, which are described with two different TDs (based on W3C Thing Descriptions that are 
serialized to JSON-LD standard format), respectively. The functionality of this component consists of: 

• Searching for the necessary Thing models in Thing Directory component to detect any potential 
semantic conflicts between the interacting domains. 

• Connecting with Recipe Cooker to resolve these semantic conflicts using the Adaptor Nodes that 
configure an Interaction Pattern in accordance with the application's requirements. 

From a technical point of view, the first step has been implemented in Cycle 1 of the project’s implementation 
(as documented in D4.4), while during Cycle 2 (documented herein), the service requests (POST/GET) 
development technology was changed in order to be compatible with the other components. Specifically, the 
grpc  method (see Section 8.2)  was replaced by the RESTful API  to provide services for receiving data in a 
convenient format, creating new data, updating data and deleting data between the interaction of SEMIoTICS 
architecture components.  

The second step focuses on resolving any possible semantic conflicts between the interacting different Things, 
using or creating the corresponding Adaptor Nodes in Recipe Cooker. A recipe is instantiated in the Recipe 
Cooker, which is a flow of interactions between Things (i.e. Sensor:TemperatureDevice, Actuator:Thermostat) 

https://github.com/iot-schema-collab/iotschema-node-red/blob/master/example-doc.md
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with their own respective Thing Description. Practically, this flow is a JSON file that includes all the above 
information about the connectivity between Things (ingredients) (see Figure 28). 

 

FIGURE 28 RECIPE EXAMPLE BEFORE SEMANTIC VALIDATION 

Thus, the above functionality of the BSV component is summarized in the following phases: 

1. A Post Service Request (validateRecipeFlow) has been developed in order to Recipe Cooker send 
the JSON/flow recipe to BSV (Figure 28). This request aims to trigger BSV to check for any 
interoperability conflicts between the two Things of this recipe. 

2. The BSV component interacts with the Thing Directory component to ensure that these specific Things 
have already been registered in order to receive information on their TDs. This is a required step, 
otherwise, the BSV cannot resolve semantic differences and ensure that data flow is possible between 
them. 

3. The BSV parses the TDs to discover for the semantic interoperability between the connected Things. 
In this phase, there are two possible cases: 

a. Interacting Things used the same data transformation techniques (i.e. use the same units of 
measurements) 

b. Interacting Things used the different data transformation techniques (i.e. the first Thing uses 
string unit of measurements and the second float). In this case, the BSV searches in Recipe 
Cooker for the corresponding Adaptor Node (for the above example, the corresponding Adaptor 
Node has the name AdaptorNodestringtofloat). If the Adaptor Node does not exist, the BSV 
should develop and add it in the Recipe Cooker. 

4. The BSV sends the response back to Recipe Cooker, using JSON format, with the updated flow, which 
has a new “wire” with the Adaptor Node between two initial Things (ingredients) of the recipe (Figure 
29). The updated flow can be imported and saved by the Recipe Cooker. The advantage of this process 
is that after resolving the semantic interoperability conflicts between these two specific Things, in any 
future interaction that will be required for these, the Adapter Node will be added to the corresponding 
recipe to ensure semantic interoperability (Figure 30). 
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FIGURE 29 RECIPE EXAMPLE AFTER SEMANTIC VALIDATION 

Before continuing the implementation of the other functionalities of BSV, it is worthwhile analyzing the step 3b. 
Specifically, in this phase, the BSV component 45 should try to detect any possible conflict between interacting 
Things, which are referring to the use of different data transformation formats (i.e. the first Thing uses string 
unit of measurements and the second float). Thus, in real time, it checks if there is any Adaptor Node available 
with this functionality in the Recipe Cooker; if not, a new Adapter Node is dynamically created with the required 
functionality at any case. Τhis process is based on the creation of nodes in Node-Red platform, since Recipe 
Cooker is an extension of this platform and consists of a pair of files i) a JavaScript file that defines the role of 
the node, ii) an html file that defines the node’s properties, edit dialog and help text and iii) a package.json file 
is used to package it all together as an npm module. The said files are added under the core folder of Recipe 
Cooker (Node-Red platform) ~/.node-red/node_modules. For the above Adaptor Node example 
(AdaptorNodestringtofloat), the following files are needed (Code 18,Code 19,Code 20): 

 

<script type="text/javascript"> 
    RED.nodes.registerType('AdaptorNodestringTofloat', { 
        category: 'adaptorUnits', 
        color: '#DD105E', 
        defaults: { 
            name: { 
                value: "" 
            } 
        }, 
        inputs: 1, 
        outputs: 1, 
        icon: "file.png", 
        label: function() { 
            return this.name || "AdaptorNodestringTofloat"; 
        } 
    }); 
</script> 

 

45 https://nodered.org/docs/creating-nodes/first-node 
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<script type="text/x-red" data-template-name="AdaptorNodestringTofloat"> 
    <div class="form-row"> 
        <label for="node-input-name"><i class="icon-tag"></i> Name</label> 
        <input type="text" id="node-input-name" placeholder="Name"> 
    </div> 
</script> 
<script type="text/x-red" data-help-name="AdaptorNodestringTofloat"> 
    <p>A simple node that converts the message payloads in String to Float </p> 
</script>    

CODE 18 THE .HTML FILE FOR THE NEW ADAPTOR NODE IN RECIPE COOKER 

 

module.exports = function(RED) { 
    function AdaptorNodestringTofloatFunction(config) { 
        RED.nodes.createNode(this,config); 
        var node = this; 
        node.on('input', function(msg) { 
            msg.payload = parseFloat(msg.payload); 
            node.send(msg); 
        }); 
    } 
    RED.nodes.registerType("AdaptorNodestringTofloat",AdaptorNodestringTofloatFunction); 
} 

CODE 19 THE .JS FILE FOR THE NEW ADAPTOR NODE IN RECIPE COOKER 

 

.... 
  "_spec":"/home/…/MyNodeRedCustomNodes/AdaptorNodestringTofloat", 
  "_where":"/home/…/.node-red", 
  "author":{ 
    "name":"…." 
  }, 
  "dependencies":{ 
 
  }, 
  "description":"Adapt  AdaptorNodestringTofloat", 
  "devDependencies":{ 
 
  }, 
  "license":"ISC", 
  "main":"AdaptorNodestringTofloat.js", 
  "name":" AdaptorNodestringTofloat", 
  "node-red":{ 
    "nodes":{ 
      "unitadaptor":"AdaptorNodestringTofloat.js" 
    } 
  } 
.... 

CODE 20 THE PACKAGE.JSON FILE FOR THE NEW ADAPTOR NODE IN RECIPE COOKER 
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Three functions are implemented for the corresponding above files, to achieve the dynamic development of 
the new Adaptor Nodes (createHtml(), createJavascript(), createPackageFile()), with the relevant arguments 
in order to cover functionality accordingly. 

 

FIGURE 30 SEQUENCE DIAGRAM – RECIPE VALIDATION/CREATE ADAPTOR NODE 

 

 CONNECTION WITH EXTERNAL IOT PLATFORMS – IMPLEMENTATION 

The integration and the connection between SEMIoTICS framework and external heterogeneous IoT platforms 
are presented in detail in subsection 6.2.2. Herein more technical details and development details are provided. 
Namely, SEMIoTICS can use the exposed interfaces of the above IoT platforms, in order to take advantage of 
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IoT devices whose descriptions are available in repositories outside SEMIoTICS framework. Both the key 
components of the SEMIoTICS architecture that are involved in this process and the specific example with 
target FIWARE platform that is used for the description and analysis of the development have already 
highlighted in Figure 16 and Figure 18 accordingly. 

Based on the sequence diagram (see Figure 17), a detailed description of each component that participates 
and API for the interaction between them is outlined below. In fact, the Recipe Cooker component which is 
responsible for cooking (creating) recipes reflecting user requirements, sends the recipe in Pattern 
Orchestrator component using a POST method request. Particularly, this POST parameters include the 
recipe/flow (JSON format) as body and the header is application/json. The structure is presented in  Figure 31. 

 

FIGURE 31 API BETWEEN RECIPE COOKER (BACKEND) – PATTERN ORCHESTRATOR 

The next step from this approach is the request from Pattern Orchestrator to Pattern Engine (Backend)  
component in order to send the Interoperability requirement using a POST method with the following 
parameters (see Figure 32). 
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FIGURE 32 API BETWEEN PATTERN ORCHESTRATOR - PATTERN ENGINE (BACKEND) 

Afterwards, the BSV component receives a request from the Pattern Engine (Backend) to check the semantic 
interoperability between two Things (link) in JSON-LD/JSON format. The JSON-LD/JSON Parser is 
implemented as part of the BSV, to analyze the received input and extract the meaningful information from 
these set of data. The communication between said components is achieved using the POST method (Figure 
33).  

 

FIGURE 33 API BETWEEN PATTERN ENGINE (BACKEND) – BACKEND SEMANTIC VALIDATOR 
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The BSV begins the procedure to tackle the semantic interoperability issues between these two Things from 
said recipe/flow. In order to give this answer, the semantic description for any Thing is required (for FIWARE 
Sensor and SEMIoTICS Thermostat). For that reason, it sends two requests: i) SPARQL query to Thing 
Directory in order to receive the Thing Description of SEMIoTICS Thermostat (see Figure 34) and ii) GET 
method to the Orion Context Broker FIWARE platform to receive the context data Description of FIWARE 
Sensor. The response consists of JSON with the FIWARE Sensor attributes (type, metadata elements). 

 

FIGURE 34 API FOR DISCOVERY OF THING DESCRIPTION IN THING DIRECTORY 

Based on this information, the BSV could decide for the interoperability between the Things and harmonize 
the semantic model capabilities with the registration of extra Adaptor Nodes in the recipe. Particularly, there 
are three possible results. Firstly, the link source and destination are interoperable, so the BSV updates the 
Pattern Engine (Backend) with the TRUE response. Secondly, the link source and destination are not 
interoperable and the BSV can add Adaptor Nodes in order to guarantee the interoperability. In this case, BSV 
not only sends the TRUE response in Pattern Engine (Backend) but also updates the recipe in Recipe Cooker 
using the corresponding Adaptor Nodes. Lastly, the link source and destination are not interoperable and BSV 
does not have the required information to develop the Adaptor Nodes; hence, the Pattern Engine (Backend) 
receives the FALSE response by the BSV. 

 

 INTEROPERABILITY ADAPTATION – IMPLEMENTATION 

Two different types of pattern-driven orchestration adaptations are foreseen, as described in D4.8 
(“SEMIoTICS SPDI Patterns (final)”): i) at design-time, and ii) at runtime. From the semantic perspective, the 
second type is important and can be applicable in the development of data transformation techniques and 
validation mechanisms of SEMIoTICS framework. In fact, the adaptability is mentioned to the requirement of 
the SEMIoTICS to detect and deal with changes in the system, for example, a failure of a sensor used in a 
flow in Recipe Cooker (user interface); in this case adaptation mechanism should detect new available 
devices/components and replace it. During this procedure, the main requirement is to maintain interoperability 
in the system, the efficient coordination and cooperation among the sensors/components. This requirement is 
provided by the BSV component. 

The approach and the implementation of this process has already been analyzed in detail in the previous 
subsection (8.3.2). The only difference, in this case, is that the BSV decides for the interoperability between 
the replacement component and the new, which will be introduced, in order to harmonize the semantic model 
capabilities with the registration of extra Adaptor Nodes.  
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9 SEMANTIC INTEROPERABILITY MECHANISMS IN THE 
SEMIoTICS USE CASES 

Based on the above analysis of the development of data transformation techniques and validation mechanisms 
for the semantic interoperability, the following subsections describe three scenarios focusing on the use cases 
considered in SEMIoTICS. These scenarios are described from the perspective of said mechanisms. 

 Use Case 1 

The aim of this Use Case scenario is the IIoT integration in Wind Park Control Network providing value-added 
services. Specifically, one of its parts refers to taking local action on sensing and analyzing structured data to 
find the inclination of a steel tower. Also, the Recipe Cooker component is used in this Use Case to build the 
application flow of the AI pipeline for grease leakage detection; this is represented by a flow with components 
and connections between them for the interaction and the exchange of data (more details are given in D2.5 
“SEMIoTICS high level architecture (final)”).  

However, at runtime, a possible change in resource availability may require an adaptation mechanism for the 
dynamic recomposition of the flow components, without any change of the system behavior.  For example, let’s 
assume that the above flow has an Inclinometer component. If, for a reason, the Inclinometer becomes 
unavailable, another component from the IoT repository with the same functionality is selected to replace the 
one that has become unavailable. In this case, interoperability of the link between the replaced component 
and the connected flow component should be checked before the final decision for the replacement to ensure 
the initial target of the system. In particular, a potential conflict that needs to be addressed in case of the 
Inclinometer is the different unit of measurement of angle (degrees, radians), which is used by the two 
components (the replaced and the connected flow component). 

The solution in this interoperability adaptation issue is provided by the approach that has already described in 
the previous section (see Section 8) with the participation of the BSV as a core component. It examines the 
interoperability between the corresponding sensors and tries to ensure the interaction between them creating 
Adaptor Nodes. Figure 35 highlights and explains said methodology in the specific Use Case scenario. 
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FIGURE 35 UC1 INTEROPERABILITY ADAPTATION APPROACH 

 Use Case 2 

This Use Case employs the SEMIoTICS technologies to develop an Information and Communication 
Technology (ICT) solution aimed at sustained independence and preserved the quality of life for elders with 
Mild Cognitive Impairment or mild Alzheimer’s disease supporting both 'aging in place' (individuals remain in 
the home of choice as long as possible) and 'community care' (long-term care for people who are mentally ill, 
elderly, or disabled provided within the community rather than in hospitals or institutions) - more details are 
given in D2.5 “SEMIoTICS high level architecture (final)”.   

In detail, this Use Case aims to a possible Fall Event and is consisted of three main phases i) Early Warning, 
ii) Search, and iii) Rescue. The objective of the Search phase is to allow the Robotic Assistant to reach the 
location where the (possible) fall event occurred (D2.5 – Figure 21). This phase is initiated by the Smart 
Environment sending to the Robot the request to move to the location of the event.  Before this step, the 
interoperability mechanisms could be intervened in order to ensure that the data format for the location 
between UC2 Smart Environment and UC2 Robot  is the same, in order to achieve the target of the system 
(for example use both Degrees Minutes Seconds (DMS) or Decimal Degrees). 
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The SEMIoTICS components and the interactions between them that are involved in this technique are 
highlighted in the sequence diagram (see Figure 36). The methodology of this mechanism has already 
described and analyzed in the previous section (Section 8). It is worthwhile noting that BSV component, which 
is responsible to resolve such conflicts, belongs in the Backend layer of SEMIoTICS architecture. 
Nevertheless, the Search Phase of the UC2 starts from the field layer. For that reason, the Pattern Engine 
(Backend) updates the Pattern Orchestrator; afterthought Pattern Orchestrator informs the Pattern Engine 
(field Layer) in order to trigger the UC2 Environment (field layer) component.  

 

 

FIGURE 36 UC2 INTEROPERABILITY VALIDATION APPROACH 

 Use Case 3 

One of the main aims of this Use Case scenario is to distribute vibration monitoring for earthquake detection. 
Specifically, the system is composed by the Gateway, which is connected at least of a set of IHES Sensing 
Units nodes (i.e. environmental sensors: temperature, humidity, pressure, luminosity) and requires monitoring 
and adaptation mechanisms for the redundant sensors that is used in the deployment to ensure that, even in 
the case of failures, another sensor is available to provide inputs (more details are given in D2.5 “SEMIoTICS 
high level architecture (final)). 

Hence, let’s assume that three IHES Sensing Units nodes are involved in this scenario and are connected in 
the Gateway, but only for two of these collect data. If for a reason, one of two sensors become unavailable, 
the third sensor, with the same functionality (i.e. temperature sensing) should be selected to replace the one 
that has become unavailable. In this case, interoperability of the link between the replaced sensor and the 
Gateway should be checked before the final decision for the replacement to ensure the initial target of the 
system. In particular, a potential conflict that needs to be addressed in case of the temperature sensor is the 
different unit of measurement of the thermometer (Celsius, Kelvin, Fahrenheit), which is used by the two 
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components (the link of the replaced sensor and the Gateway). The above functionality, which is part of the 
UC3 Pattern-based monitoring method, belongs to the recover actions such as node replacement, system 
reconfiguration, alerting, etc.(see Section 4.3.2 in D2.4) and is described in Figure 37. The sequence diagram 
in Figure 37 highlights the SEMIoTICS components that are included in this approach; it is intervened before 
the GUI update step in Figure 38.  

 

FIGURE 37 UC3 INTEROPERABILITY VALIDATION APPROACH 
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FIGURE 38 UC3 SEQUENCE FLOWS (FIGURE 103 – D4.8) – INTEROPERABILITY VALIDATION 
PARTICIPATION 
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10 VALIDATION 
This chapter summarizes the validation features of SEMIoTICS that are related to the semantic interoperability 
and the various topics that are covered in this deliverable. 

 Related Project Objectives and Key Performance Indicators (KPIs) 

The objectives related to Task 4.4 and their mapping to D4.11 content are summarized in the Table 9. 

 

TABLE 9 TASK 4.4 OBJECTIVES 

T4.4 Objectives D4.11 Chapters 

Semantics 

• Definition of semantic annotations for the SPDI patterns defined in T4.1 

• Development of data transformation techniques and validation mechanisms to 
ensure end-to-end semantic interoperability 

• Definition of the mappings between datatypes used in SEMIoTICS, to ensure 
that data flow is possible between smart objects that are linked in the 
composition structure defined by the pattern 

2, 3, 4, 7 

Semantic Mediators 

• Definition of SEMIoTICS semantic mediators’ mechanisms, with the purpose 
of resolving, if possible, conflicts among the semantic models used in the 
semantic annotations of the patterns 

• The semantic mediators’ mechanisms will rely on ontology alignment and data 
transformation techniques 

• The mechanisms to validate end-to-end semantic interoperability will rely on 
the inclusion of interoperability conditions in the patterns and be based on the 
use of semantic reasoners or rule engines, as well as logic programming; the 
development of validation mechanisms will be driven by the way semantic 
interoperability conditions are defined 

2, 5, 8 

Operation 

• Definition of data flows between SEMIoTICS architecture components 

• Identification of the elements responsible for logical and structural data 
transformation 

• Identification of the SEMIoTICS architecture elements that are responsible for 
resolving semantic differences and provide an implementation of them to 
support the usage scenarios 

2, 6, 8, 9 

 

The overall deliverable constitutes the initial contribution towards fulfilling the project’s requirements regarding 
SEMIoTICS’s objective 2 (“Development of semantic interoperability mechanisms for smart objects, networks 
and IoT platforms”) and the relevant KPI 2.2 (“Delivery of data type mapping and ontology alignment and 
transformation techniques that realize semantic interoperability”) and KPI 2.3 (“Validated semantic 
interoperability between the SEMIoTICS framework and 3 IoT platforms, including FIWARE”).  

Furthermore, the satisfaction of Task 4.4 and the mapping measurement of the corresponding KPIs is 
evaluated with a UC-specific scenario including data flow which is possible between smart objects and is linked 
in the composition structure defined by the SPDI patterns of Task 4.1 (see Section 9). 
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 SEMIoTICS Interoperability Requirements  

The general SEMIoTICS’ requirements (D2.3) that are covered by the presented semantic interoperability 
mechanisms are summarized in the next table. 

 

TABLE 10 TASK’S OBJECTIVES 

Requirements 
(D2.3) 

Description D4.11 Sections 

R.GP.1 End-to-end connectivity between the heterogeneous IoT 
devices (at the field level) and the heterogeneous IoT 
Platforms (at the backend cloud level) 

Section 6 

R.UC1.8 
Semantic and robust bootstrapping/registration of IIoT 
sensors and actuators with IIoT gateway MUST be 
supported 

Subsection 2.2.1 

R.UC1.9 
Semantic interaction between use-case specific 
application on IIoT Gateway and legacy turbine control 
system MUST be supported 

Section 8, Section 9 

R.UC1.12 
Standardized semantic models for semantic-based 
engineering and IIoT applications SHALL be utilized 

Subsection 4.2, Subsection 
4.3 

R.UC2.3 

The SEMIoTICS platform SHOULD guarantee proper 
connectivity between the various components of the 
SARA distributed application. The SARA solution is a 
distributed application not only because it uses different 
cloud services (e.g. AREAS Cloud services, AI services) 
from different remote computational nodes, but also 
because the SARA application logic itself is distributed 
across various edge nodes (SARA Hubs). 

Section 6, Subsection 9.2 

R.UC2.6 

The SEMIoTICS platform SHOULD allow the SARA 
solution to retrieve the resources exposed by registered 
devices via their object model (i.e. a data structure 
wherein each element represents a resource, or a group 
of resources, belonging to a device). The SEMIoTICS 
platform SHOULD support at least the OMA LWM2M 
object model. 

Subsection 3.2, Subsection 
9.2 

R.UC2.11 
The SEMIoTICS platform SHOULD allow a SARA 
component to request a group of devices to take/initiate 
an action (e.g. turn on/off a light bulb). 

Subsection 2.2, Subsection 
9.2 

R.UC3.1 
IoT Sensing unit shall be able to embed environmental 
(e.g. temperature, pressure, humidity, light) and inertial 
sensors (accelerometer, gyroscope). 

Subsection 2.2, Subsection 
9.3 

R.UC3.15  

A use case specific serialized message protocol is 
required to coordinate the gateway and its associated 
units and exchange data / events / anomalies between 
them. JSON will be the preferred serialization format 
adopted.  

Subsection 5.1.1, 
Subsection 9.3 
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11 CONCLUSION 
This deliverable, being the final output of Task 4.4 (“End-to-End Semantic Interoperability”) presented the 
landscape for accomplishing semantic interoperability in the IoT domain. To do so, the state-of-the-art 
approaches were reviewed, including techniques and technologies for semantics, data mappings, ontologies 
alignment, semantic reasoning, etc.  

The main outcome is the proposal of the semantic interoperability mechanisms that can be deployed in across 
the two main SEMIoTICS’s layers (field, backend) and the provision of the required common representation 
and meaning of data. Moreover, a full set of Adaptor Nodes, which will be responsible for resolving, if possible, 
conflicts among the semantic annotations, are described in subsection 5.1.3, along with their implementation 
details in subsection 8.3.1. 

Additionally, this deliverable describes the final thoughts towards the integration of SEMIoTICS with other IoT 
platforms. Then, the translation of Recipes into SPDI Patterns and semantic interoperability patterns are 
analysed. The overall process is further analysed in Deliverable 4.1 and its follow-up, D4.8. 

Finally, both the initial and the final mechanisms/designs that are responsible for resolving semantic 
differences have described. Hence, the elements that are responsible for resolving semantic differences and 
provide an implementation of them to support the SEMIoTICS Usage Scenarios are presented in Section 9. 
 
To sum up, the mechanisms and designs of data transformation techniques and validation mechanisms to 
ensure end-to-end semantic interoperability presented by this deliverable. Particularly, the final implementation 
of mentioned algorithms, the API for the connectivity to external IoT platforms and the integration of the 
involved components will be analysed in Task 4.6 – Implementation of SEMIoTICS backend API. Also, the 
demonstration and validation of the above semantic interoperability and adaptation techniques in the 
SEMIoTICS use cases will be described in Task 5.4 – Demonstration and validation of IWPC- Energy scenario, 
Task 5.5 – Demonstration and validation of SARA-Health scenario and Task 5.6 – Demonstration and 
validation of IHES-Generic IoT scenario.  
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