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1 INTRODUCTION 
This deliverable is the final output of Task 4.1 (“Architectural SPDI Patterns”) and provides the final version of 
the language for specifying Security, Privacy, Dependability and Interoperability (SPDI) patterns, referred to 
as pattern-language in the rest of this deliverable, and the final set of SPDI patterns developed in SEMIoTICS. 
This is directly targeting the first key overarching objective of WP4, which is to: “Define a language for 
specifying machine interpretable SPDI patterns and develop patterns encoding horizontal and vert ical ways of 
composing parts of IoT applications that can evidently guarantee SPDI properties across heterogeneous smart 
objects and components from all layers of the IoT application implementation stack.” 

In more detail, Task 4.1 activities focus on defining a language for specifying machine interpretable SPDI 
patterns and then develop and specify, using this language, patterns encoding horizontal and vertical ways of 
composing parts of or end-to-end IoT applications that can evidently guarantee SPDI properties. Such 
properties may apply across heterogeneous smart objects and components from all layers of the 
implementation stack of an IoT application. Thus, this deliverable presents the final outcomes of Task 4.1. 
More specifically, it presents the requirements, design process and the final version of the definition of the 
pattern-language that are used for the specification of the SEMIoTICS SPDI patterns. It also presents the final 
set of SPDI patterns developed within the project.  

The pattern language itself is based on a system model defined and presented within this deliverable. Said 
system model is encompassing smart objects in the field layer (IoT sensors, actuators and gateways), the 
network layers (e.g., SDN controllers) and at the backend (e.g., backend services), and the associated SPDI 
and QoS properties, as well as their orchestrations. This model forms the basis of the language definition, 
while a grammar is also defined to specify the exact structure of the language. The translation from this 
language to a machine-processable format to allow for automated verification of the properties and the 
triggering of adaptations is presented as well.  

Moreover, a set of SPDI patterns have been defined in the deliverable, covering each of the key properties 
(i.e., Confidentiality, Integrity, Availability, Dependability and Interoperability)  and the different data states (data 
in transit, at rest, and in process). A representation of these in machine-processable format is also included, 
covering an important implementation aspect that will enable the automated processing, verification and 
adaptation driven by the patterns. 

In addition to the above, the deliverable also presents the integration of the above pattern-driven elements 
with the Recipes approach. The latter allows the definition of abstract IoT orchestrations, hiding the 
implementation details from the end user. The user (e.g., IoT service provider or application developer) does 
not need to have expertise in configuring the network and physical connections between the involved IoT 
devices, can use the Recipe definition tool to define this intended application and the required SPDI and QoS 
at a high level. Then, these can be automatically instantiated (choosing specific implementations of the 
included elements), via the tool and the underlying technologies. Thus, the integration of Recipes and Patterns 
enables the user-friendly, abstract definition of IoT orchestrations (through Recipes) with SPDI and QoS 
guarantees for said orchestrations, both at design and runtime (through Patterns).  

In this context and considering the delta to the previous version of the deliverable, i.e. D4.1 - “SEMIoTICS 
SPDI Patterns (first draft)”, the latest developments presented within this final Task 4.1 deliverable include: 

• The final SEMIoTICS IoT Orchestration System Model (see subsection 3.3) 

• The final version of the associated Pattern Language (see subsection 3.4) 

• The full set of SPDI, QoS and Orchestration Patterns defined within the project (see section 4) 

• Final design and specification of refined Pattern-related components at all layers of the SEMIoTICS 
architecture, as well as some visualisation aspects (see subsection 3.7.3) 

• Refined integration of components with the Recipes approach for the definition IoT Orchestrations (see 
section 6)  

• Mechanisms enabling pattern-driven adaptations in the context of the SEMIoTICS use cases (see 
section 7) 
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In more detail, and considering the above, the deliverable is structured as follows: 
• Chapter 2 summarises the pattern language requirements that had to be considered when defining the 

language and the patterns. 

• Chapter 3 features the final pattern language definition, including the presentation of the SEMIoTICS 
system model derived, the grammar of the language and the way this is translated into a machine-
processable format to enable the automated SPDI-driven processing and adaptation. 

• Chapter 4 provides the final set of patterns that have been specified in the project (based on the 
language defined in Chapter 3), covering all core property types, different data states and 
connectivity/interaction types. 

• Chapters 5 and 6 present the concept of Recipes, leveraged to define IoT orchestrations in a usable 
manner and details the integration of Recipes with the SEMIoTICS pattern-driven SPDI monitoring and 
adaptation approach, along with some examples of its use. 

• Chapter 7 presents the pattern-driven adaptation capabilities at the various of the layers of the 
SEMIoTICS architecture, through the main scenarios of pattern-driven monitoring and adaptation 
developed in the context of the SEMIoTICS use cases. 

• Finally, Section 8 features the concluding remarks of the deliverable.  
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 PERT chart of SEMIoTICS 

The figure below presents the PERT chart of the project, visualizing the links and relationships between the 
WPs and Tasks. Please note that the PERT chart is kept on task level for better readability. 
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2 SPDI PATTERN REQUIREMENTS 
An important first step in the development of the SEMIoTICS pattern language is to define the requirements 
stemming from the involved IoT environments and the SPDI properties required in the corresponding 
applications, as these will guide the development of said language.  

In this context, it is essential to consider how the pattern language will be used to specify machine interpretable 
SPDI patterns supporting:  

– the composition structure of the IoT applications and platform components; 

– the end-to-end SPDI properties guaranteed by the pattern; 

– the smart object/component/activity level SPDI properties required for the end-to-end SPDI 
properties to hold; 

– conditions about pattern components that need to be monitored at runtime to ensure 

– end-to-end SPDI properties; and 

– ways of adapting and/or replacing individual IoT application smart objects/components that 
instantiate the pattern if it becomes necessary at runtime (e.g., when some components become 
unavailable). 

Moreover, the SPDI language will need to be able to support the definition of all SPDI properties, including the 
six core property types, namely:  

– Security (S), i.e. Confidentiality, integrity and availability,  

– Privacy (P),  

– Dependability (D) and  

– Interoperability (I). 

The above will be considered in all three data states:  

– Data-in-transit,  

– Data-at-rest, and  

– Data-in-processing. 

...and two cases of IoT platform connectivity:  

– Within the SEMIoTICS platform 

– Across IoT platforms 

Considering these aspects, the detailed requirements are analysed in the subsections below, organized per 
SPDI property.  

 Security 

Security is generally composed of the three properties of confidentiality, integrity, and availability, sometimes 
also abbreviated as CIA [1]. In more detail: 

– Confidentiality: the disclosure of information happens only in an authorised manner, i.e. non-
authorised access to information should not be possible. 

– Integrity: maintenance and assurance of the accuracy and consistency of data. 

– Availability: the invocation of an operation to access some information or use a resource leads to a 
correct response to the request. 

Therefore, for the pattern language, we will also develop patterns covering these three aspects, at the 
component as well as at the end-to-end and workflow level. 

In terms of the composition structures of IoT applications and platform components, the following must be 
considered: 
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– Confidentiality: End-to-end confidentiality can be composed as confidentiality of each link, of each 
platform handling the data, and of each platform processing the data. If one link or one platform fails 
to achieve the property, then the property is broken end-to-end. 

– Integrity: End-to-end integrity can be composed as integrity of each link and of each platform handling 
the data. If one link or one platform fails to achieve the property, then the property is broken end-to-
end. For data-in-processing, integrity is typically irrelevant, as in most changes said processing 
changes data; though there are cases where integrity of the processing would need to me monitored 
(e.g. through internal checks in the processing functions). Data links in this context are logical links 
and not network links. In particular, some SDN nodes may not be endpoints of a data link. Instead, 
there may be a direct logical link between gateway and backend, preserving confidentiality and/or 
integrity from gateway to backend. 

– Availability: For availability, we consider mainly availability of network connections. 
Sensors/actuators, gateways, and backend components are usually singular components existing only 
once, i.e. if one of these devices or platforms fails, then overall availability is lost. Thus, as there are 
no alternatives in these cases, a pattern has no means of ensuring availability. In contrast, on the 
network layer, SEMIoTICS generally assumes that there are several redundant network connections 
available: The software defined network (SDN), interconnected by various SDN switches, connects the 
gateway to the backend. In this case, a connection from gateway to backend is assumed to be available 
if each intermediate hop on the connection is available. Should at least one intermediate hop from or 
to an SDN switch become non-available, then the pattern can reroute the connection from gateway to 
backend (or vice versa) to use a different intermediate route which is available. 

In addition to the above, smart object/component/activity level SPDI properties required for the end-to-end 
properties to hold. All components must provide standardized APIs for security functions which are mandatory 
to be used, i.e. applications or virtual network functions must not use their own cryptography libraries. This is 
necessary to be able to monitor use of cryptographic functions in order to enforce patterns. 

Monitored conditions about pattern components to ensure above-mentioned E2E properties are needed. 
These could include, e.g., encryption enforcement monitors, checks that traffic is encrypted, integrity checks 
on stored data, or network components, such as SDN controllers and nodes, that are monitored for availability.  

An example of such a monitor for the Availability property would be simple to devise, as a component is 
considered to be available if it can be reached via the network and is able to perform specified services. Non-
availability can be due, e.g., to loss of network connectivity or the hardware running a network component 
failing. 

For Confidentiality, some examples for each state of data could include: 

– Data in transit: At least one of the endpoints needs to be monitored. If there is a standard system-wide 
API for cryptography functions, behavioural monitoring can be used: Before data can be transferred, it 
has to be encrypted, i.e. a call to a sufficiently strong encryption function must be observed. Depending 
on the scenario, a call to a key generation function can also be required to generate keys for encryption 
(and also to distribute them). If these calls, as required by the pattern, are missing, then a warning can 
be logged and/or the network transmission can be stopped. 

– Data at rest: Similarly, to data in transit, behaviour monitoring can be used to determine whether 
confidentiality of data is ensured using sufficiently strong encryption. Before data is written to a file, 
there must be a corresponding call to an encryption function. After data is read from a file, there must 
be a corresponding call to a decryption function. 

– Data in processing: For data processing, data at rest must be decrypted. During processing, it must be 
monitored that there are no unexpected network connections by the data processing process(es).  

Furthermore, patterns can also define to which recipients’ data may be sent in order to protect confidentiality 
of data. 

Similarly, for Integrity: 
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– Data in transit: Many network protocols provide integrity protection. Thus, if data integrity is required, 
it must be monitored that protocols meeting this requirement are used. 

– Data at rest: Data at rest is usually integrity protected at the hardware level and/or at the file system 
level. 

Finally, runtime adaptations will be needed to ensure the required (and monitored) security properties are 
maintained, i.e. ways of adapting and/or replacing concrete IoT application smart objects/components that 
instantiate the pattern if it becomes necessary at runtime. Thus, these will also need to be encoded in the 
developed language. 

 Privacy 

There have been plenty attempts to define privacy over the years but so far, no universal definition could be 
created. Despite the fact that the claim for privacy is universal, its concrete form differs according to the current 
era and context (technical landscape) [2]. In any case, IIoT devices generate, process, exchange and store 
vast amounts of security add safety-critical data as well as privacy-sensitive information hence careful handling 
is needed, both from an ethical as well as a regulatory perspective (esp. in cases where medical data is 
involved). 

It is important to understand that information collected in a system becomes personal if identity can be 
correlated with an activity [3]. Such identification can be direct or indirect. The identifier can be a name, an 
identification number, location data or an online identifier (such as IP address). It may also be speci fic to the 
physical, physiological, genetic, mental, economic, cultural or social identity of that natural person [4]. This is 
why data protect law does not apply to anonymous data (i.e., data in which the data subjects are no longer 
identifiable). However, if the risk of identification is reasonably high, then the information should be regarded 
as personal data [5], experience shows that the risks may be quite high [6]. 

 REGULATORY REQUIREMENTS 

An important aspect when considering privacy is the compliance with regulations (such as the General Data 
Protection Regulation of European Union – Regulation (EC) 2016/679 (European Parliament 2016)) [4] and 
several standards, like the ISO/IEC standards 27018 (ISO/IEC 2014) [7] and 29100 (ISO/IEC 2011) [8]. Some 
key aspects to be considered in the pattern language design (and the SEMIoTICS approach as a whole) are 
analysed below.  

Under the GDPR [4], data controllers and processors need to ‘’implement appropriate technical and 
organizational measures’’ (GDPR, Article 32). Such measures shall take into account the following elements: 

– State-of-the-art; 

– Cost of implementation; 

– Nature, scope, context and purposes of the processing; and 

– Risk of varying likelihood and severity of the rights and freedoms of natural persons. 

Nevertheless, the security measures to be implemented should be ‘’appropriate to the risk’’ 

– the pseudonymization and encryption of personal data; 

– the ability to ensure the on-going confidentiality, integrity, availability and resilience of processing 
systems and services; 

– the ability to restore the availability and access to personal data in a timely manner in the event of 
a physical or technical incident; and 

– a process for regularly testing, assessing and evaluating the effectiveness of technical and 
organizational measures for ensuring the security of the processing. 

When considering the NIS directive, the following should be considered: 

Essential Service is considered "a service essential for the maintenance of critical societal and/or economic 
activities depending on network & information systems, an incident to which would have significant disruptive 
effects on the service provision “, as defined in article 5. 
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EU Member States have to identify the operators of essential services established on their territory by 27 
months after entry into force of the Directive. Operators active in the following sectors may be included: energy, 
transport, banking, stock exchange, healthcare, utilities, and digital infrastructure (NIS Directive, Annex II) 1. 

When determining the significance of a disruptive effect in order to identify operators of essential services, the EU 
Member States must consider the following factors: 

• the number of users relying on the service concerned;  
o For health sector, the number of patients under the provider’s care per year. 

• the dependency of (one of) the sectors mentioned above on the service concerned;  

• the impact incidents could have on economic and societal activities or public safety;  

• the market shares of the entity concerned;  

• the geographic spread of the area that could be affected by an incident;  

• the importance of the entity to maintain a sufficient level of the service, taking into account the availability 
of alternative means for the provision of that service;  

o With regard to energy suppliers, we should be considered circumstances where an incident would 
have significant disruptive effect on the provision of an essential services. Such factors could 
include the volume or proportion of national power generated; 

• and any other appropriate sector-specific factor (NIS Directive, art 6).  
 
Digital Service "any service normally provided for remuneration, at a distance, by electronic means and at the 
individual request of a recipient of services" (NIS Directive, art 4(5)). The NIS covers three different types of digital 
services, Online Marketplace, Online search engine and Online computing service. 
For our cases we need to consider the Online computing service which is defined as “services that allow access to 
a scalable and elastic pool of shareable computing resources”.  

 PILOT-SPECIFIC PRIVACY ASPECTS 

Since the 1st and 2nd pilot of SEMIoTICS focus on specific vertical domains, the intrinsic requirements of each 
of those verticals must be considered. The Industrial environment of UC1 has quite different requirements to 
the healthcare environment of UC2, while the horizontal pilot (UC3) must be able to consider these and other 
vertical domains and their intricacies. Especially for UC2 and the healthcare domain, special care will need to 
be taken to monitor and safeguard the Privacy properties of components and their orchestrations. 

 HEALTHCARE-SPECIFIC PRIVACY CONSIDERATIONS 

Additionally, specific requirements must be met for the demonstration of SEMIoTICS framework in the 
healthcare pilot, the SARA-Health scenario. Following the example of HIPAA Privacy Rule (Health and Human 
Services Privacy Rule and Public Health) [9], “the definition of protected health information is needed” (HHSa, 
2003, p. 1); the definition and limitation of the circumstances in which an individual’s protected health 
information may be used or disclosed (HHSa, 2003, p. 4); the goal is to strike a balance that permits important 
uses of information, while protecting the privacy of people who seek care and healing (HHSa, 2003, p. 1).  

Additionally, End-user consent is crucial in the healthcare sector, patients should have control over their data 
(e.g. Personal Health Record – PHR); who can access, for how long and under what conditions. Failure to 
ensure the above may result in significant physical, financial and emotional harm to the patient. Slamanig and 
Stringle [9] present certain mechanisms for prevent disclosure related attacks.  

– Unlinkability 

A system containing n users provides unlinkability if the relation of a document Di and a user Uj exists 
with probability p= 1/n. Hence, an insider or attacker cannot gain any information on links between users 
and documents by means of solely observing the system. 

– Anonymity 

 

1 https://www.enisa.europa.eu/topics/nis-directive 
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It is the state of being not identifiable within a set of subjects X. The degree of anonymity can be measured 
by the size of anonymity set |X|. For example, anonymity is provided when anonymous user in a set U′⊆U 
can access document Dj 

– Identity Management 

A user’s identity can be managed by dividing the identity of a person into sub-identities I = {Ipublic, I1,.Ik 
}, where each sub-identity is a user-chosen pseudonym. A user can assign any sub-identity for any subset 
of his PHR/HER records. This allows the hiding of sensitive data via a sub-identity, this protecting them 
from disclosure attacks.  

Data that can be used to trace back the identity or the location of the patient [10] should be carefully handled 
and be protected, meaning that mechanisms such as encryption [11], HL75 protocols and 
anonymization/pseudo-anonymization, should be examined. Considering mechanisms like this, we can hide 
the real identity that is tied to the stored data so that is not directly associable to the patient. Even if that data 
somehow ends on an unauthorized user, he will not be able to leverage (e.g. sell, modify it) it, without the 
encryption key. Although invoking unlinkability/anonymity is very important we also need to consider ways of 
achieving it so that we don’t disturb our data handling, in terms of data incorrectly ascribed (at any point in the 
System’s processing of that data) to another patient. Since this will not only disclosure confidential data of a 
current patient but also may cause medical problems due to false data for the assessment.  

Other than sensor data during the SARA program, audio and video transmissions are captured during tele -
presence, SARA through SEMIoTICS must ensure that these communications remain private and follow the 
same principles as we mentioned above. Storage of said data, should be limited to what’s necessary and 
accomplished in a secure backend database. 

The accessibility of such data should be limited to authorized personnel that registered through a strict (e.g. 
two factor) authentication process. Furthermore, the principle of least privilege should be used to minimize the 
exposure of such data on irrelevant parties. For instance, the patient’s General Practi tioner should have access 
to all Patient medical records whereas the technician should only have access to technical system 
configuration information. Using this approach, when an incident occurs, we can already narrow our search. 

As mentioned above, consent is crucial on nowadays technical landscape and more importantly to sensitive 
health related data gathered by IoT devices. We must consider mechanisms that ensure that the patient (or 
close relatives) should always be properly informed (e.g. by the RA) prior of using the service. This includes 
notifications to the user, whenever a tele-presence session is about to begin & to end, and the clarification of 
the identity of the person responsible for that session (e.g. remote operator). 

When considering the composition structures of IoT applications and platform components, the following 
aspects should be highlighted: 

– Data pseudonymization in-transit: Data’s identifier should not be able to be tracked directly during 
transit. 

– Data pseudonymization at rest: Data’s identifier won’t be able to be tracked directly during rest. 

– Data pseudonymization in-transformation: Pseudonymization should be reversible and should still 
remain difficult to track directly during transformation. Transformation should be reversible while 
keeping the pseudonymization. 

In the privacy context, the E2E properties that must be guaranteed by the patterns and their protection 
mechanisms should include: 

• Data collection 

o Consent 

o Opt-in 

o Fairness 

• Data access 

o Identifiability 
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o Notification 

o Auditability 

o Challenge compliance (Accountability) 

• Data usage 

o Retention 

o Disposal 

o Report 

o Break or incident  

For the E2E properties to hold, additional component-level properties must be identified and guaranteed by 
the patterns. Regarding sensors, initially, proper configuration must be attained via certain pattern 
mechanisms; these mechanisms need to be easily repeatable in order for re-configuration on runtime to apply. 
Appropriate, authentication must be achieved through identifiable attributes that can be integrated in the 
sensor’s hardware such as Trusted Platform Module [12]. Additionally, it is important that the sensors have 
enough resources (e.g. computational power) to complete as much processing of the data as possible at their 
end, to effectively avoid leaking identifiable or user related data to interested parties; if t hey do need to send 
such data for the purposes of SEMIoTICS, then operations to encrypt and anonymize the data must be 
supported by the computational environment and performed prior sending them. Malfunctioning sensors, that 
can no longer guarantee the properties above should be detected by the Sensing unit’s dedicated firewall and 
reported to the IoT gateway. 

For both E2E and component-level properties to endure through the pattern language mechanisms, 
SEMIoTICS will monitor certain conditions and make necessary runtime adaptations.  

Authentication and authorisation services throughout the framework (cross-layer) and between all components 
(cross-platform) must be observed carefully to ensure only approved and appropriate (e.g. privilege wise) 
interactions occur. In the case that an abuse is detected, specific pattern-based mechanisms must engage to 
notify related components, such as an IoT gateway, to compel certain actions (e.g. shutdown a sensing unit). 
Moreover, the patterns must track the procedures that interact with sensitive data and intend to secure them; 
including protection of sensitive data at rest and at transit operations (e.g. encryption); mechanisms that ensure 
only the necessary data is aggregated, stored, processed and send (minimization, under GDPR); mechanisms 
that offer secure disposition/deletion of unimportant, no longer relevant or personal data (under GDPR’s right 
to be forgotten). In the event of misuse of such mechanisms, due to misconfiguration/malfunction/malicious 
activity, specific privacy-pattern-driven operations will be used in runtime to tackle this. 

 Dependability  

Dependability is the ability of a system to deliver its intended level of service to its users [13]. The main 
attributes which constitute dependability are reliability, availability, safety and maintainability.  Dependable 
systems impose the necessity to provide higher fault and intrusion tolerance. The satisfaction of these 
attributes can avoid threats such as faults, errors and failures offering fault prevention, fault tolerance and fault 
detection. More specifically, dependability in SEMIoTICS is focused on three major attributes such as reliability, 
availability, and fault tolerance as follows: 

• Reliability is the ability of a system to perform a required function under stated conditions for a 
specified period of time [14]. It is an attribute of system dependability and it is also correlated with 
availability. For hardware components, the property is usually provided by the manufacturer. This is 
calculated based on the complexity and the age of the component. Reliability assessment can be 
classified into two main categories the deterministic models and the probabilistic ones.  

• Availability guarantees that information is available when it is needed [14]. The lack of availability in 
network transmissions has a severe influence on both the security and the dependability of network. 
More specifically, network availability is the ability of a system to be operational and accessible when 
required for use. Moreover, availability in networks is the probability of successful packet reception  
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[15]. Other factors which affect the availability of a link are the transmission range of the signal strength, 
noise, fading effects, interference, modulation method, and frequency.  

• Fault Tolerance is the ability of a system or component to continue normal operation despite the 
presence of hardware or software faults [14]. Network fault tolerance appears to be a critical topic for 
research [16]. The most common solutions to guarantee fault tolerance and avoid single point of failure, 
include the replication of paths forwarding traffic in parallel, the use of redundant paths and the ability 
to switch in case of failure (failover) and traffic diversity. Fault tolerance mechanisms exists in all layers 
of field, network and backend/cloud. In the field layer, failures involve the drop of sensors or actuators 
and the gateways. More specifically, fault tolerance in network architectures requires the design of a 
network able to guarantee avoidance of single or multiple link failures, faulty end hosts and switches, 
or attacks. The key technical solution of the problem includes the creation of a fault tolerance 
mechanism to provide open-flexible design where existing fault tolerance solutions are not effective. 

Dependability analysis of an IoT system includes whether non-functional requirements such as availability, 
reliability, safety and maintainability are preserved. The conditions depend on the respective dependability 
property that the system guarantee. The satisfiability of a property can be defined by a Boolean value (i.e. true, 
false), an arithmetic measure (i.e. delay) or probability measure (i.e. reliability/uptime availability).  

More specifically, for the SEMIoTICS framework a number of different dependability requirements have been 
defined as follows: 

• Use Case 1 (Wind Energy) defines that network resource isolation must be performed for guaranteed 
service properties – i.e. reliability, delay and bandwidth constraints. Furthermore, fail-over and highly 
available network management shall be performed in the face of either controller or data-plane failures. 
Finally, decisions made by unreliable, i.e. faulty or malicious SDN controllers, shall be identified and 
excluded.  

• Use case 2 (SARA) defines that SEMIoTICS platform should support time- and safety- critical 
requirements by allowing SARA application logic to be deployed on resource-constrained edge 
gateways (e.g. smartphones, vehicles, mobile robots). SEMIoTICS platform functionalities should be 
locally available even in case of failure of communication with the SEMIoTICS cloud nodes. 
Furthermore, the SEMIoTICS platform should support the SARA solution to manage the trade-off 
between different requirements (e.g. reliability, power consumption, latency, fault -tolerance) by 
allowing both SARA application logic and platform features to be distributed over a cluster of gateways 
(SARA Hubs). Finally, the connectivity should keep track of the field device connectivity state (e.g. to 
detect anomalies, but also required for higher-level (cognitive) control algorithms).  

• In Use Case 3 (Smart Sensing), while no specific dependability requirements have been defined 
(being a horizontal use case), the previously described properties such as reliability, safety and 
availability requirements should be also satisfied for the component in the field layer as involved for 
this scenario. 

In terms of the Composition structures of IoT applications and platform components, the following aspects 
should be noted: The definition of the composition includes also a set of constraints as requirements that 
should be satisfied by the individual composing components or by the components’ composition as a whole. 
These constraints may represent functional requirements such as connectivity and reachability. Considering 
the functional requirements, the connectivity between the different components is one of mode crucial 
requirements of the components’ composition. Different parameters such as the distance between network 
nodes that is a topological constraint for a network may also be expressed through patterns constraints . For 
instance, in wired networks this connectivity can be satisfied using suitable interfaces and cables.  

However, in IoT devices such as wireless sensors, the connectivity is based on the coverage of each IoT 
device and it can be classified into deterministic and probabilistic models. But for a wireless link the following 
can be assumed: either a communication link can be characterized as a component having specific properties 
(propagation, length, interference, noise, etc.) or a link can be a connector which connects two components 
i.e. two wireless sensors. Other constraints which may be expressed may refer to the quantity and type of 
nodes, interfaces per nodes, cost and energy consumption. Furthermore, the applications and services that 
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make use of the network are crucial factors on the design of a network as they can affect the available 
resources such as computational power, available memory, storage and networking capabilities.  

Based on the above, as components, we may consider the different elements of SEMIoTICS architecture. That 
includes applications and clouds in the backend cloud, controllers, switches in the network level, and finally, 
sensors, gateways and actuators in the field devices. 

In terms of the E2E properties that must be guaranteed by the patterns, the need for end-to-end dependability 
between the heterogeneous IoT devices (at the field level), the heterogeneous IoT Platforms (at the backend 
cloud level) and the network level include high adaptation capability to accommodate different dependability 
needs such as reliable communication, availability and low latency. 

Monitored Conditions about pattern components to ensure above-mentioned E2E properties should include  

failure monitoring and detection, which is required to discover link failures and packet losses in order to identify 
lack of network availability. To do so, a suitable mechanism is able to dynamically monitoring path and 
component conditions. For instance, in network layer, when there are dropped packets between two nodes or 
the link is down, the monitoring mechanism detects it as failure. This can be done also by the use of node 
connector statistics as fetched by switches such as receive/transmit packets, errors, drops CRC errors and 
collisions in the SDN components. Furthermore, these statistics can be used as an intrusion detection 
mechanism to forward traffic to different secure paths. In SEMIoTICS, suitable mechanism should be defined 
for monitoring the components on the different layers of SEMIoTICS architecture. 

When the monitors detect unwanted alterations of the dependability state, ways of adapting and/or replacing 
concrete IoT application smart objects/components that instantiate the pattern should be present, if it becomes 
necessary, at runtime. Dependability-driven adaptations can be used at runtime when the property is 
violated in case of DoS attacks. In case of a network fall, new alternative network paths or components must 
be found. However, the most important factor for runtime adaptation appear to be after the detection and the 
identification of an attack/ failure, the required adaptation time for restoration. Apart from the proactive 
definition of the respective paths, a reactive mechanism should exist to dynamically allocate paths for fast fault 
detection and restoration, which is required to detect link failures and packet losses in order to restore network 
availability. The abstract form of the fault detection and restoration of network faults or attacks and can be 
applied first locally and then globally. In SEMIoTICS, suitable mechanism should be defined to replace, re-
instantiate, or reroute traffic at runtime adaptation. 

 Interoperability 

Desired interoperability characteristic imposes special requirements on the designed SEMIoTICS framework. 
Interoperability gives an ability to a system or a product to connect and work with other systems or products. 
Interoperability is defined as a characteristic of a product or system, whose interfaces are completely 
understood, to work with other products or systems, present or future, in either implementation or access, 
without any restrictions [17].  

The following types of interoperability can be distinguished and will be covered by SEMIoTICS: 

• Technological interoperability – enables seamless operation and cooperation on heterogeneous 
devices that utilize different communication protocols 

• Syntactic interoperability – establishes clearly defined formats for data, interfaces and encoding 

• Semantic interoperability – settles commonly agreed information models and ontologies for the used 
terms that are processed by the interfaces or are included in exchanged data 

• Organizational interoperability – cross-domain service integration and orchestration through 
common semantic and programming interfaces. 

Considering the composition structures of IoT applications and platform components, and from the perspective 
of semantic operability, an information about every entity should be available through dedicated interface. 
There should be interfaces for exchanging information about entities, values of their attributes, metadata and 
availability status. Similarly, IoT platforms services should be available to use via dedicated interface. Some 
key components to be considered in the regard, are highlighted below. 
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Semantic Broker: Although, a common interpretation of exchanged information is a desired characteristic of 
designed SEMIoTICS solution, shared ontology between local systems is not always available. Thus, it is 
necessary to enable interaction in indirect way. The Semantic Information Broker proposed in [18] can be used 
for this purpose. This component is responsible for correlating required information and enabling the 
interoperability of systems with different semantics as well as cross-domain interaction. 

The metadata interoperability is a prerequisite for uniform access to objects in multiple autonomous and 
heterogeneous systems. Domain experts must establish the metadata interoperability model before uniform 
access can be achieved [19]. “Metadata interoperability can be defined as a qualitative property of metadata 
information objects that enables systems and applications to work with or use these objects across system 
boundaries” [19]. 

Mechanisms that can be used to reconciling heterogeneities among models are: language mapping, schema 
mapping, instance transformation and metadata mapping [19]. For example, temperature units can be 
Fahrenheit, Celsius or Kelvin, but they express the same information which can be obtained after proper 
instance transformation (Figure 1) using the correct mathematical formula. Semantic ontology for each domain 
(healthcare, smart sensing, renewable energy) should be established first by domain experts. 

 

FIGURE 1 ACHIEVING METADATA INTEROPERABILITY BY INSTANCE TRANSFORMATION MAPPING 
ON THE EXAMPLE OF TEMPERATURE 

Common Programming Interface: Furthermore, a common Application Programming Interface (API) is 
established by EU funded project BIG IoT between different IoT middleware platforms. This approach will ease 
the development of software services and applications for different platforms.  

Functionalities provided by such an API can also implement interoperability on device-, fog-, and cloud-level. 
The main functionalities of API: 

- Identity management and registration to resources 

- Resource discovery based on user-defined criteria  

- Access to data or metadata (publish/subscribe streams) 

- Command forwarding to things enabling smart actuation 

- Vocabulary management of semantic information 

- Security management (authentication, authorisation, key management) 

- Charging and billing management for using providing assets. 

In terms of the corresponding E2E properties that must be guaranteed by the patterns, and from the 
perspective of IoT landscape, interoperability means that every smart object should be seamlessly plugged 
into a system without additional effort while the whole process of establishing meaningful connection should 
be as transparent as possible. The data collected by smart objects should be sent automatically in a way that 
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ensures user requirements and this data should be completely understood in the destination place without any 
loss of data (or with acceptable minimal one). Established connection must have confidentiality and integrity 
properties, but other patterns will be responsible for that. From the destination perspective it should be also 
possible to seamlessly interact with smart objects like actuators to enable actions in response to corresponding 
events generated by analytics backend. To fulfil interoperability pattern requirements SEMIoTICS framework 
should have the ability not only to recognize and balance the heterogeneous capabilities and constraints of 
smart objects and to correctly interpret data generated by these objects, but also to establish meaningful 
connections between different IoT platforms.  

IoT ecosystem’s end-to-end interoperability features that should be guaranteed by service orchestration-
focused patterns, referred to as Recipes, were introduced in the context of the BIG IoT project2. These patterns 
are listed below [20]: 

- Cross platform – applications or services access resources from multiple platforms though the 
common interfaces. 

- Platform-scale independence – integrates the resources from platforms at different scale in the way 
that application can uniformly aggregate information for different scale platforms (cloud-, fog-, device-
level). 

- Platform independence – refers to distinct platforms that implement the same functionality in the way 
that ensures that a single driver application can interoperate with both platforms in a uniform manner 
without requiring any changes. 

- Cross application domain – refers to uniform access to information from platforms that process data 
from different domains. 

- Higher-level service facades – services can also interact with themselves through a common API. 
Therefore, a single application can interact with two platforms to create value-added operations. 

 

Smart object/component level interoperability properties are required in this case as well, for the end-to-end 
properties to hold; these are shown in Table 1. 

TABLE 1 COMPONENT-LEVEL INTEROPERABILITY PROPERTIES 

Component Requirements for vertical 
interoperability 

Requirements for horizontal 
interoperability 

Smart object Technological interoperability - 
device should have a protocol which 
enables to operate with framework 

 

Technological interoperability – Two 
devices should have the same 
communication interface and thus be 
able to work with each other 

 

Gateway  Technological interoperability – 
gateways should implement 
multimode radios and support 
different technologies (Wi-Fi, 
Bluetooth, ZigBee) 

 

Syntactic interoperability – 
gateway proxies for messaging 
protocols converting messages from 
one messaging protocol to 

 

 

2 http://big-iot.eu/ 
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compatible format of another protocol 
(RESTful HTTP, CoAP, XMP, MQTT, 
DDS, platform specific protocols 
<DPWS, UPnP, OSGi> or other 
protocols) 

 

Network Technological interoperability – 
network elements should support the 
same technologies (e.g., wired 
Ethernet) 

 

Technological interoperability – 
network elements should support the 
same technologies (e.g., wired 
Ethernet) 

 

Syntactic interoperability – 
Considering the presence of SDN, 
network elements should support the 
same protocol for control flows 
(OpenFlow) 

SEMIoTICS 

Backend/Cloud 

Semantic interoperability and 

Cross-domain/organizational 
interoperability - usage of some 
services like Semantic Information 
Brokers correlating required 
information and enabling 
interoperability of the system  

 

Semantic interoperability and  

Cross-domain/organizational 
interoperability - common 
Application Programming Interface 
(API) for connecting platforms and 
objects to a SEMIoTICS framework 

 

 

IoT Platform / 

 services 

Technological interoperability - 
service should have an API which 
enables to operate with framework 

 

Semantic interoperability and 

Cross-domain/organizational 
interoperability – common 
programming interface between 
different IoT platforms/services to 
establish meaningful connection and 
give ability to work with each other 

 

 

When considering Monitored Conditions about pattern components to ensure above-mentioned E2E 
properties, verifying whether interoperability requirements are satisfied will be possible by testing if devices 
are able to communicate with SEMIoTICS components without compatibility issues in different scenarios. 
When any new device is plugged, ensure that data type mappings exist for this smart object, ensure that 
semantic mechanism exists and the desired IoT platform/service is available. 
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Interoperability properties such us cross platform property, platform-scale independence, platform 
independence, cross platform domain and higher-level service facades will be tested to ensure interoperability 
condition. It should be noted that in the pattern scheme, these properties can also be achieved by the presence 
of specific certifications that the devices/applications hold, and which, while valid, provide guarantees about 
the interoperability/compatibility properties of the entity. 

In terms of ways of adapting and/or replacing concrete IoT application smart objects/components that 
instantiate the interoperability pattern if it becomes necessary at runtime, the interoperability between each 
related component should be checked again in case of any observed change in connection occurs, before 
checking integrity conditions. An any change in connection with the device/smart object, especially 
disconnection, should be handled by network protocol. 

 

 Requirements Specification considerations 

The table below highlights some key pertinent requirements, as defined in deliverable D2.3 (“Requirements 
specification of SEMIoTICS framework”), also including non-SPDI specific requirements, such as 
underlying/global requirements, functional requirements etc., that directly or indirectly affect the design of SPDI 
patterns and which will need to be considered during the pattern language definition. 

TABLE 2. PATTERN LANGUAGE REQUIREMENTS 

SEMIoTICS Requirement 
Pattern language 
considerations Reference Req. ID Description 

R.BC.18 
The backend layer must feature SPDI pattern 
reasoning embedded intelligence capabilities 

This is a core set of 
requirements for the SPDI 
capabilities that must be 
covered within the 
pattern-driven approach 
developed within T4.1. 
Individual Pattern 
reasoning components 
should be developed and 
deployed at all layers, 
while the backend should 
feature global reasoning 
capabilities. All reasoning 
engines should aggregate 
(through interfacing with 
monitoring) relevant 
information needed for 
said reasoning. 

The system model 
and associated 
pattern language 
developed are 
tailored to the 
multi-layer 
approach of 
SEMIoTICS, also 
anticipating intra- 
and cross- layer 
reasoning. 

Furthermore, 
Pattern reasoning 
components 
(referred to as 
Pattern Engines) 
are embedded at 
all layers; see 
subsection 
3.7.2.2. 

The real-time 
reasoning will be 
achieved in 
conjunction with 
the monitoring 
framework 
(developed in the 
context of T4.2, 
and documented 

R.BC.19 
The backend layer should feature pattern-
driven cross-layer orchestration capabilities 

R.BC.20 

The backend layer must aggregate intra-
layer as well as inter-layer SPDI status 
information to enable local and global 
intelligence reasoning and adaptation 

R.NL.12 
The network layer must feature SPDI pattern 
reasoning local embedded intelligence 
capabilities 

R.NL.13 
The network layer must aggregate intra-layer 
monitored information to enable local 
intelligence reasoning and adaptation 

R.FD.14 
The field layer must feature SPDI pattern 
reasoning local embedded intelligence 
capabilities 

R.FD.15 
The field layer must aggregate intra-layer 
monitored information to enable local 
intelligence reasoning and adaptation 
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in D4.2), which 
can be used for 
providing Pattern 
Rules with the 
appropriate input 
for reasoning. 

 

R.GP.1 

End-to-end connectivity between the 
heterogeneous IoT devices (at the field level) 
and the heterogeneous IoT Platforms (at the 
backend cloud level) 

While an indirect set of 
requirements, the various 
cross platform and cross 
layer interactions 
(including E2E between 
field and backend) with 
heterogeneous 
components will need to 
be supported and their 
SPDI properties 
monitored accordingly. 

As can be seen in 
subsections 3.2 
(Language Model) 
and 3.3 (Language 
Constructs), 
instances of Java 
class Link allow 
Pattern Engines to 
monitor and verify 
connectivity 
among IoT service 
orchestration 
components. This 
also encompasses 
the pattern-driven 
interoperability 
mechanisms 
developed in the 
context T3.4 (and 
which are further 
described in D3.4), 
which leverage the 
language and 
pattern definitions. 

Through the above 
and the integration 
of pattern-based 
capabilities at the 
network level 
(SDN pattern 
engine), 
connectivity and 
QoS parameters 
can also be 
monitored. 

R.UC1.1 
Automatic establishment of networking setup 
MUST be performed to establish end-to-end 
connectivity between different stakeholders 

R.UC2.3 

The SEMIoTICS platform SHOULD guarantee 
proper connectivity between the various 
components of the SARA distributed 
application. The SARA solution is a distributed 
application not only because it uses different 
cloud services (e.g. AREAS Cloud services, AI 
services) from different remote computational 
nodes, but also because the SARA application 
logic itself is distributed across various edge 
nodes (SARA Hubs). 

R.GP.3 
High adaptation capability to accommodate 
different QoS connectivity needs (e.g. low 
latency, reliable communication) 

Other than the aspects of 
availability and 
dependability (and 
associated concepts; e.g. 
fault tolerance) that are 
already integral in the 

As can be seen in 
subsections 3.3 
(Language Model) 
and 3.4 (Language 
Constructs), Java 
class Property 

R.GP.4 
Detection of events requiring a QoS change 
and triggering network reconfiguration 
needed by SPDI pattern 
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R.GP.7 
SDN controller giving feedback for a future 
generation of SPDI patterns to avoid using 
the same pattern in case of failure 

SPDI properties, other 
QoS-related parameters 
(e.g. latency) can also be 
accommodated by the 
pattern language adopted. 
Moreover, the pattern 
language must be able to 
leverage appropriate 
monitors and interface 
with the necessary 
mechanisms to act as an 
enabler for configuring the 
network and triggering 
network updates / 
reconfigurations, as 
needed (e.g. for fault 
tolerance or QoS). 

owns an attribute 
Category, allowing 
Pattern Engines to 
monitor QoS 
properties of the 
components of an 
IoT service 
orchestration. 
Moreover, the 
properties 
associated with 
the Link class 
directly affect the 
requirements 
relayed to the 
network layer (with 
the associated 
properties 
reasoned by the 
Pattern Engine 
embedded at the 
SDN controller; 
see subsection 
3.7.2.2). 

R.UC1.5 

Fail-over and highly available network 
management SHALL be performed in the 
face of either controller or data-plane 
failures. 

R.UC1.3 

There MUST be enabled the definition of 
network QoS on application-level and 
automated translation into SDN controller 
configurations. 

R.UC1.4 

Network resource isolation MUST be 
performed for guaranteed Service properties 
– i.e. reliability, delay and bandwidth 
constraints. 

R.UC2.15 

The SEMIoTICS platform SHOULD provide 
low latency connectivity between the SARA 
hubs and cloud services (i.e. AREAS cloud 
services and AI services) to allow offloading of 
near real-time computation intensive tasks to 
the cloud. 
Therefore, SARA hubs need to send with 
minimal delay: 
• raw range data (e.g. from Lidar sensors) 

to identify proximal objects/objects, 
• real-time audio stream for speech 

analysis, 
and real-time raw video stream (object/people 
recognition, gesture recognition, posture 
analysis). 

R.GSP.1 
The Intrusion Detection System (IDS) MUST 
capture and process suspicious traffic. 

Concerns regarding any 
sensitive data that is 
generated, processed, 
stored and exchanged at 
all layers must be 
considered, enforcing and 
monitoring the 
corresponding security 
mechanisms, especially 
when different trust 
domains are involved. 

Proper authentication and 
authorisation services are 
a necessity when trying to 
safeguard the security 
and privacy of data and 
services. These aspects 

Security-related 
properties (such 
as Confidentiality) 
are at the core of 
the properties 
covered in the 
SEMIoTICS 
system model 
(subsection 3.3) 
and associated 
language 
(subsection 3.4). 
Moreover, a first 
version of 
security-related 
pattern rules can 
be seen in 
subsection 4.1, 

R.NL.11 

Secure communication with the various 
Backend Cloud components (e.g., use of 
dedicated management network, appropriate 
Firewall rules), as well as the communication 
between VIM, SDN Controller, and MANO, 
with data paths acting as computing nodes 
for VNF spinoff. 

R.S.7 
The negotiation interface of the SDN 
Controller SHALL be secure against network-
based attacks 
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R.S.1 
The confidentiality of all network 
communication MUST be protected using 
state-of-the-art mechanisms. 

must be defined in the 
pattern language, 
monitored and enforced, 
considering the different 
types of devices (e.g. 
sensors, network 
controllers, backend 
servers), actors (e.g. 
humans, 
machines/applications) 
and interaction types (e.g. 
maintenance or medical 
staff, simple users). 
These, along with 
cryptographic 
mechanisms, will need to 
be used to establish trust 
within and across 
domains. 

Moreover, privacy 
considerations will have to 
be included (e.g. 
protection of private data 
at rest and in transit, data 
anonymization and 
minimisation, data 
retention; see section 
2.2.1 above). 

In addition to the above, 
patterns can also be 
leveraged to monitor and 
enforce the presence of 
security mechanisms in 
different IoT 
orchestrations. 

 

 

 

while a first set of 
Privacy Patterns 
can be seen in 
subsection 4.1.5. 

Moreover, using 
the pattern 
language, different 
verification types 
can be declared 
for each of the 
properties (see 
subsection 3.3); 
this can be 
exploited to define 
interfaces with the 
various security 
mechanisms 
which will allow the 
verification of the 
different SPDI 
properties 
associated with 
them (e.g., 
monitoring 
encryption 
mechanisms that 
provide the 
property of 
Confidentiality). 

This will be 
achieved in 
conjunction with 
the monitoring 
framework 
(developed in the 
context of T4.2, 
and documented 
in D4.2), which 
can be used for 
providing Pattern 
Rules with the 
appropriate input 
for reasoning on 
relevant security 
and privacy -
related aspects, 
such as secure 
deletion of 
unnecessary data, 
limitation of 
sampling via a 
variant of the 

R.S.6 

Sensors SHALL be able to encrypt the data 
they generate, i.e. their CPU and memory 
SHALL be sufficient to perform these 
cryptographic operations. 

R.S.2 

Authentication and authorisation of the 
stakeholders MUST be enforced by the 
Network controller, e.g. through access and 
role-based lists for different levels of function 
granularities (overlay, customized access to 
service, QoS manipulation, etc.) 
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mechanisms used 
to ensure QoS 
parameters, etc. 

 

 

R.S.3 
Sensors SHALL be identifiable (e.g. by a 
TPM module/smartcard) and authenticated 
by the gateway. 

These Security and 
Privacy requirements are 
indirectly related to the 
pattern approach 
presented herein. 
Nevertheless, the 
SEMIoTICS patterns need 
to be able to 
accommodate all these 
requirements, monitoring 
the status of the 
corresponding 
components 
implementing these 
security and privacy 
requirements, and 
triggering adaptations if 
needed. 

All key security 
and privacy 
properties are 
covered within the 
SEMIoTICS 
patterns (see 
Section 4). 
Furthermore, the 
language 
expressiveness 
allows the 
definition of the 
appropriate 
conditions (facts) 
to be verified in 
order to provide 
real-time 
verification of the 
properties 
sketched by these 
requirements (see 
subsections 3.4 
and 3.9). 

R.S.4 
All components from gateway, via SDN 
Controller, to cloud platforms and their users 
MUST authenticate mutually. 

R.S.5 

Before sensitive data is being transmitted, 
the respective components SHALL be 
authenticated as defined by requirements 
R.S.3 and R.S.4 

R.S.17 

There MUST be an interface between the 
network controller and the network 
administrators for the designation of the 
applications’ permissions. 

R.S.18 
All network functions SHALL be mapped to 
application permissions 

R.GSP.4 
Platforms, e.g. cloud platform and sensor, 
SHALL be trusted. 

R.GSP.9 
The SARA system SHALL provide robust 
mechanisms to protect Patient-related data. 

R.GSP.10 

The SARA system MUST fully comply with all 
relevant Italian laws governing the privacy, 
security and storage of sensitive Patient 
health-related data. 

R.P.1 
The collection of raw data MUST be 
minimized. 

Coverage of privacy 
requirements within the 
SEMIoTICS patterns is 
needed. 

As documented in 
subsection 4.2, the 
SEMIoTICS 
patterns (and by 
extension the 
pattern-driven 
reasoning 
capabilities of 
SEMIoTICS at all 
layers) include all 
key privacy 
properties. 

R.P.3 Storage of data MUST be minimized. 

R.P.4 
A short data retention period MUST be 
enforced and maintaining data for longer 
than necessary avoided. 

R.P.6 

Data MUST be anonymized wherever 
possible by removing the personally 
identifiable information in order to decrease 
the risk of unintended disclosure. 

R.P.8 Data MUST be stored in encrypted form. 

R.P.9 Repeated querying for specific data by 
applications, services, or users that are not 
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intent to act in this manner SHALL be 
blocked. 

R.UC1.6 
Decisions made by unreliable, i.e. faulty or 
malicious SDN controllers, SHALL be 
identified and excluded. 

Events received from 
monitoring critical aspects 
of the systems’ and 
subsystems’ operation, as 
highlighted by the pattern 
language, will need to be 
aggregated and evaluated 
by the pattern engine. 
These will need to 
encompass SPDI and 
other parameters (e.g. 
QoS related), as well as 
anomalies, indicators of 
malicious actions, 
malfunction, resource 
depletion, failures etc., 
across the different layers 
and (physical & logical) 
components of the 
SEMIoTICS deployment. 
Pattern-driven 
interoperability 
mechanisms will ensure 
that these connections 
can be established, 
further explored in D3.4. 
In cases of privacy-
sensitive monitoring data 
(e.g. location of the 
device), the necessary 
privacy provisions will 
need to be enforced. 

As can be seen in 
section 3.2 
(Language Model) 
and 3.3 (Language 
Constructs), the 
pattern language 
that has been 
created can 
declare Properties 
whose verification 
type is Monitoring. 
That allows for 
capturing the 
monitoring critical 
aspects and 
enabling the 
reasoning on 
parameters 
related to 
properties such as 
reliability. 

As above, the 
necessary inputs 
will be aggregated 
from the 
monitoring 
framework of 
SEMIoTICS 
(T4.2/D4.2). 

R.GSP.7 

The cloud platform SHALL be able to monitor 
the execution of an app, in particular its 
interactions with other apps, the network 
interface, and APIs. 

R.UC3.7 
MCU IoT Sensing unit shall be able to send 
change detection and signal local changes / 
anomalies to IoT Sensing gateway. 

This set of requirements 
indirectly affects the 
development of the 

Availability and 
Dependability 
patterns 
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R.UC3.16 

Each registered sensing unit should send to 
the sensing gateway a keep alive signal on a 
specified period (e.g. few seconds) to notify 
the gateway it is correctly working. The 
sensing gateway should detect by this mean 
any non-working sensing unit and 
reconfigure the system accordingly. 

SEMIoTICS pattern 
solution. The Availability 
and Dependability 
aspects integrated into 
the pattern approach need 
to support these UC 
requirements. 

developed within 
SEMIoTICS are 
able to 
accommodate the 
monitoring defined 
in these 
requirements (see 
subsections 4.1.3 
and 4.3). These 
features will be 
further explored 
and demonstrated 
in the context of 
the UC3 
scenarios, as 
detailed in 
subsection 7.3.  

R.UC3.18 
Sensing units may be equipped with 
dedicated FW to detect relevant sensors 
malfunctioning and report that to the gateway 

R.P.12 

During all communication and processing 
phases logging MUST be performed to 
enable the examination that the system is 
operating as promised 

Logging is an integral part 
of security, enabling 
auditing functions and 
providing accountability. 
Moreover, regulatory 
drivers also necessitate it 
(e.g. transparency 
through logging is 
essential under GDPR). 
This must be considered 
in the definition of the 
pattern language, the 
associated engine and its 
monitors, enabling the 
provision of reliable and 
trustworthy logging 
mechanisms both for the 
various actors as well as 
the events and reasoning 
of the pattern engine 
itself. 

All pattern engine 
components (see 
subsection 
3.7.2.2) feature 
integrated logging 
mechanisms that 
allow for auditing 
on all pattern-
driven reasoning 
and adaptation 
actions triggered. 

In other parts of 
the SEMIoTICS 
framework and 
protected 
infrastructure, the 
deployment and 
monitoring of the 
proper operation 
of the logging 
functions can be 
introduced as with 
any other 
mechanism (see 
subgroups of 
requirements 
above). 

 

 Project Objectives and KPIs considerations 

In addition to the requirements stemming from the project’s concept and approach (as described in subsections 
2.1 to 2.4), as well as the formally defined project requirements (subsection 2.5), additional considered aspects 
are the overarching Objectives and associated KPIs.  
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While the work carried out within Task 4.1 directly targets Objective 1 of the project (“Objective 1: Development 
of patterns for orchestration of smart objects and IoT platform enablers in IoT applications with guaranteed 
security, privacy, dependability and interoperability (SPDI) properties” ), it is also relevant to various aspects of 
other overarching objectives of the project as well; e.g., the patterns specified herein are important enablers 
of the multi-layered embedded intelligence and semi-autonomic operation of SEMIoTICS, as sketched in 
Objective 4 of the project.  

In this context, a detailed mapping of the work carried out in Task 4.1 to the overarching project objectives and 
the associated KPIs is presented in Table 3 and Table 4. 

TABLE 3. PATTERN-SPECIFIC KPIS 

Objective KPI Relation and Status 

# Description ID Description 

1 Development of 
patterns for 
orchestration of 
smart objects and 
IoT platform 
enablers in IoT 
applications with 
guaranteed 
security, privacy, 
dependability and 
interoperability 
(SPDI) properties. 

KPI-1.1 Delivery of 36 
verified SPDI 
patterns covering 
the 6 core property 
types for 3 data 
states and 2 cases 

Pattern-driven SPDI management is at the core of 
the SEMIoTICS security-by-design approach. The 
final set of SPDI patterns is defined herein (see 
Section 4). As aggregated in subsection 4.6, 49 
patterns are delivered in total, covering all key 
SPDI properties and different data states and 
cases of platform connectivity. 

KPI-1.2 Machine-
processable 
pattern language 

The final version of the pattern language is defined 
and presented in detail herein (see Section 3 and 
Table 6), developed to accommodate all the needs 
of the SEMIoTICS pattern definition and 
reasoning. 

 

TABLE 4. CONSIDERATIONS AND RELATION TO OTHER PROJECT OBJECTIVES AND ASSOCIATED 
KPIS 

Objective KPI Relation and Status 

# Description ID Description 

2 Development of 
semantic 
interoperability 
mechanisms for 
smart objects, 
networks and IoT 
platforms. 

KPI-2.1 Semantic descriptions 
for 6 types of smart 
objects 

The pattern-driven approach of SEMIoTICS 
has been integrated with the usable IoT 
orchestrations framework leveraging Thing 
Descriptions (Task 3.3), as shown in sections 
5 and 6 below. The role of the patterns in the 
associated use case featuring semantics 
aspects is detailed in subsection 7.1. 

3 Development of 
dynamically and 
self-adaptable 
monitoring 
mechanisms 
supporting 
integrated and 
predictive 
monitoring of smart 
objects of all layers 
of the IoT 

KPI-3.1 Delivery of a monitoring 
management layer for 
generating monitoring 
strategies for different 
checks and 
configurations of 
monitors available in 
the targeted IoT 
platforms 

The initial semantics of a monitoring 
language, derived in the context of Task 4.2, 
are presented in D4.2 and the final ones in 
D4.9, while the associated SPDI monitoring 
properties are foreseen in the design of the 
SPDI model and associated pattern language 
(see subsections 3.3 and 3.4 and 
respectively). 

KPI-3.2 Delivery of a monitoring 
language capable of 
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implementation 
stack in a scalable 
manner. 

defining platform 
agnostic monitoring 
conditions (as part of 
SPDI patterns), 
correlations of different 
IoT platform events that 
are necessary for this, 
and predictive 
monitoring checks 

4 Development of 
core mechanisms 
for multi-layered 
embedded 
intelligence, IoT 
application 
adaptation, 
learning and 
evolution, and end-
to-end security, 
privacy, 
accountability and 
user control. 

KPI-4.2 Delivery of adaptation 
mechanisms that 
support proactive and 
reactive, as well as 
horizontal and vertical 
adaptation actions, 
related to network, 
smart objects and IoT 
platforms with an 
adaptation time of 15ms 

Pattern rules defined herein (see section 4), 
along with the associated pattern components 
able to reason on said pattern rules and facts 
(see subsection 3.7.2), will be key drivers 
behind the SEMIoTICS adaptations. This is in 
tandem with the proactive mechanisms 
(defined within D4.2 and D4.9), backend 
orchestration for management/adaptation 
(see D4.6). 

KPI-4.6 Development of 3 new 
security 
mechanisms/controls 
enabling the secure 
management of smart 
devices and sensors 
over programmable 
industrial networks 

The SPDI-focused pattern-driven monitoring 
and adaptation that is at the heart of the 
SEMIoTICS concept and is presented herein 
is one of the three core security-related 
innovations of the project and a key enabler 
of the multi-layered embedded intelligence of 
the platform. 

6 Development of a 
reference 
prototype of the 
SEMIoTICS open 
architecture, 
demonstrated and 
evaluated in both 
IIoT (renewable 
energy) and IoT 
(healthcare), as 
well as in a 
horizontal use 
case bridging the 
two landscapes 
(smart sensing), 
and delivery of the 
respective open 
API. 

KPI-6.1 Reduce Required 
Manual Interventions. 

The semi-autonomic operation of the IoT 
deployment, through the multi-layered 
embedded intelligence capabilities that, 
among others, the pattern-driven approach 
presented herein provides, aims to reduce 
manual interventions and also effectively and 
efficiently mitigate the SPDI-related risks 
stemming from the faults introduced from 
erroneous or malicious human actions. 
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3 PATTERN LANGUAGE DEFINITION 

 Concept 

Patterns are re-usable solutions to common problems and building blocks to architectures [21][22], the 
foundations of which were laid by the architect Christopher Alexander in his seminal work "The Timeless Way 
of Building" [23]. In other words, patterns describe a recurring problem that arises in specific context and 
presenting a well-proven, generic solution for it. 

This section provides the final definition of the SEMIoTICS Pattern Language. Overall, this language: 

- provides constructs for expressing/encoding dependencies between SPDI properties at the component 
and at the composition/orchestration level; 

- is structural; It does not prescribe exactly how the functions should be executed nor, e.g., how the 
ports ensure communication; 

- supports the static and dynamic verification of SPDI properties; 

- is automatically processable by the SEMIoTICS framework so that IoT applications can be adapted at 
runtime. 

Patterns expressed in the SEMIoTICS pattern language will enable the pattern based IoT application 
management process followed in SEMIoTICS, in which patterns are used to: 

• design IoT applications that satisfy required SPDI properties 

• verify that existing IoT applications satisfy required SPDI properties at design time, prior to the 
deployment of the application 

• enable the adaptation of IoT applications or partial orchestrations of components within them at runtime 
in a manner that guarantees the satisfaction of required SPDI properties  

To fulfil the above, SPDI patterns encode proven dependencies between security, privacy, dependability and 
interoperability (SPDI) properties of individual components of IoT applications and corresponding properties of 
orchestrations of such components. More specifically, a pattern encodes relationships of the form 

P1 and P2 and … and Pn → Pn+1  

where Pi (i=1,…,n) are properties of individual components and Pn+1 is a property of the orchestration of these 
components. The relation encoded by a pattern is an entailment relation. 

The runtime adaptations that can be enabled by SPDI patterns may take three forms: 

(1) to replace particular components of an orchestration 

(2) to change the structure of an orchestration, and 

(3) a combination of (1) and (2).  

The above types of adaptations are exemplified in Figure 2, where we consider nodes (these could represent 
any atomic component; e.g., a physical device or a service) which are composed through links (e.g., a network 
connection) into more complex orchestrations (e.g., a complex workflow involving several services), forming a 
graph. As shown in the figure at the node level Node 1 is replaced by Node 1’. This adaptation may, for 
example, become necessary as a component of the role and type of Node 1 may be required (by a pattern) to 
have a security certificate to prove a property (e.g., encryption of data with a 256-bit algorithm) that is needed 
of the component for the overall system to fulfil another property (confidentiality). If at some point during 
runtime the (encryption) certificate of Node1 expires, the active pattern will trigger the replacement the 
component. Adaptations may also be at the link level. More specifically, a network link between Node 1 and 
Node 2 may be replaced with two links (two alternative networks) to offer increased redundancy (e.g. to achieve 
the required levels of dependability). Finally, adaptations may be triggered at graph level. In Figure 2, the 
graph containing Node 3, Node 4, Node 5 and their links is replaced completely with a new graph, containing 
Node 3’, Node 4’ and Node 5’ and their new links (e.g. to satisfy the need for a certain end-to-end security 
property). 
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SPDI patterns cover the different and heterogeneous orchestration models required for IoT and IIoT 
applications, covering aspects of both the high-level service orchestration view as well as the deployment view 
of said applications. 

 

FIGURE 2. EXAMPLES OF PATTERN ADAPTATIONS AT THE NODE, LINK AND GRAPH LEVEL 

 Related Works 

The popularity of Internet of Things (IoT) brought the realization that the application of semantic technologies 
(ontologies, semantic annotation, Linked Data and semantic Web services) to IoT offers many advantages with 
the most important of them being interoperability among IoT resources promoting the interoperability among 
data providers and consumers, data access and integration, resource discovery, semantic reasoning, and 
knowledge extraction. Semantic technologies are the principal solutions for the realization of the IoT [24]. 
However, the ultimate goal of achieving more capable and powerful applications remains and leads to service 
composition approaches oriented in the area of IoT.  

There are some attempts for describing IoT service compositions such as those of [25], [26] and [27] which 
focus on the energy consumption of the involved IoT devices. The latter pays attention to QoS properties 
reducing the services search space and the composition time, but none of them takes under consideration 
possible Security properties of the individual IoT services or the whole composition. 

Moreover, there is the work of [28] that introduce a contExt Aware web Service dEscription Language 
(wEASEL) is introduced. wEASEL is an abstract service model to represent services and user tasks in Ambient 
Assisted Living (AAL) environments. Attention is paid to data-flow and context-flow constraints for the service 
composition but the authors do not mention any security properties.  
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A work that includes security aspects is that of [29]. BPMN 2.0 is used for the description of the service 
choreographies that the built platform can synthesize and execute. Regarding the security aspect, the 
enforcement of security properties is exclusively done by the existing communication protocols since the 
security filter component is able to filter these protocols and keep only those that conform to the specified 
security requirements. 

Finally, [30] present a mechanism that manages IoT choreographies at runtime dynamically. According to their 
approach IoT service compositions are described by templates called Recipes, which consist of Ingredients 
and their Interactions. In addition, there are more requirements described by offering selection rules (OSRs) 
that make the reconfiguration of the system possible during runtime. The authors’ service composition 
approach is semi-automated to avoid the complexity of the semantic models and the inefficiency of the 
reasoner due to the large number of available devices and services. We consider this approach closer to the 
way we envision a pattern language. Their way of IoT representation with the notions of Ingredients and 
Interactions, and the fact that the OSRs allow for requirement description inspired the creation of the language 
described in this chapter.  

Table 5 in the next page summarizes related works on different approaches/frameworks of service 
composition. Given this survey of the SoTA, and considering the expertise available within the consortium, the 
choice is to combine the expertise on pattern-driven SPDI management with the Recipes approach by [30], 
tailoring the former to the intricacies of IoT environments covered in SEMIoTICS and extending the latter with 
SPDI property specification, monitoring and adaptation at design and at runtime (through said patterns). 
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TABLE 5: RELATED WORKS 

Composition 
Category Title 

Composition 
Type 

Targeted 
Environment 

Service 
representation Pros Cons Security 

E
n
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pt
io

n 
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m
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Zhangbing Zhou, Deng Zhao, Lu Liu, 
Patrick C.K. Hung, “Energy-aware 
composition for wireless sensor networks 
as a service”, Future Generation Computer 
Systems, Volume 80, 2018, Pages 299-
310, ISSN 0167-739X, 
https://doi.org/10.1016/j.future.2017.02.050. 

Automated, static sensor nodes 
in wireless 
sensor 
networks 
(WSNs) 

* WSN service is a 
tuple (nm,dsc, op, 
eng, spt, tpr), where 
(i) nm is the name, 
(ii) dsc is the text 
description, (iii) op is 
an operation 
(functionality), (iv) 
eng is the remaining 
energy, (v) spt is the 
spatial constraint, 
and (vi) tpr is the 
temporal constraint.    
* Service network 
snSC is a directed 
graph, and is 
represented as a 
tuple (SvC (=service 
classes), Lnk (=direct 
links), InvP 
(=invocation 
possibility)) 

+ approximately 
optimal WSN 
services 
compositions                        
+ no need for the 
users to represent 
their requirements in 
an explicit 
specification, just 
input, output and 
description       
+ energy-aware 
service composition  
+ high availability 

- the linkage 
between services 
and physical 
sensor nodes is 
not explored             
- high complexity  
- low scalability 
- a certain, but 
limited number of 
service classes 
can be identified 
in a certain 
domain (service 
network) 

Not covered / Not mentioned 

Baker, Thar & Asim, Muhammad & Tawfik, 
Hissam & Aldawsari, Bandar & Buyya, 
Rajkummar. (2017). An Energy-aware 
Service Composition Algorithm for Multiple 
Cloud-based IoT Applications. Journal of 
Network and Computer Applications. 
10.1016/j.jnca.2017.03.008. 

Automated, static  IoT A service is 
described by its 
provider in a 3-tuple 
format (si,so,sec), 
where sec is the 
energy required for 
the service 
computation at the 
hosting datacentre, si 
is the input and so is 
the output 

+ power efficiency of 
the physical devices 
in composition 
approach                       
+ minimum number 
of IoT services in the 
composition  
+transitional 
relationships 
between the 
customer and the 

- each cloud 
provider must 
have pre-
defined/developed 
composition plans  
- high time and 
cost 

Not covered / Not mentioned 
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datacenters are 
taken under 
consideration  
+superior 
performance against 
established 
composition 
algorithms 
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A. Urbieta, A. González-Beltrán, S. Ben 
Mokhtar, M. Anwar Hossain, L. Capra, 
“Adaptive and context-aware service 
composition for IoT-based smart cities”, 
Future Generation Computer Systems, 
Volume 76, 2017, Pages 262-274 

Automated, static IoT contExt Aware web 
Service dEscription 
Language (wEASEL) 

+ deals 
simultaneously with 
signature and 
specification 
matching and 
supports several 
concept matching 
techniques 

- no QoS 
attributes in the 
evaluation 

Not covered / Not mentioned 

Montori, Federico & Bedogni, Luca & 
Bononi, Luciano. (2017). A Collaborative 
Internet of Things Architecture for Smart 
Cities and Environmental Monitoring. IEEE 
Internet of Things Journal. PP. 1-1. 
10.1109/JIOT.2017.2720855. 

Automated, static IoT N/A + exploitation of the 
devices owned by the 
end users  
+crowdsensing  
+homogeneity to data 

- end users must 
want to 
participate (may 
want a reward)  
- some sources 
may be unreliable  
- no prediction for 
sensitive 
information  
- single point of 
failure (server-
client system) 

Not covered / Not mentioned 

IP
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Kleinfeld, Robert & Steglich, Stephan & 
Radziwonowicz, Lukasz & Doukas, 
Charalampos. (2014). glue.things – a 
Mashup Platform for wiring the Internet of 
Things with the Internet of Services. 
10.13140/2.1.3039.9049. 

Designer, static Web-enabled 
IoT devices, 
web services 

Json-based data 
models (triggers and 
actions) 

+ token management 
of devices  
+ user management  
+ integration of IoT 
and web services,  
+ Interfaces for 
registration, 
configuration and 
monitoring 

- availability of 
nodes                  
- low scalability 

Web service authorisation 
with OAuth 
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Chen, Lei & Englund, Cristofer. (2017). 
Choreographing Services for Smart Cities: 
Smart Traffic Demonstration. 1-5. 
10.1109/VTCSpring.2017.8108625. 

Designer  IoT N/A + runtime insurance 
for services 
communication,  
+ BPMN usage  

- platform under 
construction,  
- availability of 
stakeholders 

Filters the interaction 
protocols of the service with 
respect to different security 
requirements  

Doukas, Charalampos & Antonelli, Fabio. 
(2015). Developing and deploying end-to-
end interoperable & discoverable IoT 
applications. 673-678. 
10.1109/ICC.2015.7248399. 

Designer (uses 
Node-RED), static 

IoT iServe (a service 
warehouse which 
unifies service 
publication, analysis, 
and discovery 
through the use of 
lightweight semantics 
as well as advanced 
discovery and 
analytic capabilities.) 

+ bridge between 
REST and MQTT/ 
WebSockets/STOMP,      
+ reuse of services,     
+ monitoring 

- availability of 
services 

Access control, Data 
privacy, Integrity 

Georgios Pierris , Dimosthenis Kothris , 
Evaggelos Spyrou , Costas Spyropoulos, 
SYNAISTHISI: an enabling platform for the 
current internet of things ecosystem, 
Proceedings of the 19th Panhellenic 
Conference on Informatics, October 01-03, 
2015, Athens, Greece  
[doi>10.1145/2801948.2802019] 

Designer, static IoT (sensors, 
processors, 
actuators) 

IoT ontology + SNN 
ontology + qu-rec20 
ontology 

+ Reuse of registers 
services,  
+ secure storage 

- no GUI yet,  
- availability of 
services,  
- no runtime 
monitoring 

Authentication, 
Authorisation, Data-
anonymization in storage  

Mayer, Simon & Verborgh, Ruben & 
Kovatsch, Matthias & Mattern, Friedemann. 
(2016). Smart Configuration of Smart 
Environments. IEEE Transactions on 
Automation Science and Engineering. 13. 
1-9. 10.1109/TASE.2016.2533321. 

Automated (goal-
driven 
configuration), 
dynamic 

IoT, Web of 
things 

RESTdesc 
expressed in 
Notation3 

+ adaptation to 
dynamic 
environments,  
+ fault tolerance,  
+ scalability,  
+ correct service 
composition, 
+ security 
requirements 

- no universal 
remedy for false 
compositions,  
- inefficient 
reasoning for 
large number of 
devices 

Confidentiality of data 
exchanged within a mashup 

J. Seeger, R. A. Deshmukh and A. Broring, 
"Running Distributed and Dynamic IoT 
Choreographies," in Global IoT Summit 
(GIoTS), Bilbao, 2018. 

Designer, dynamic  IoT Recipe, Offerings, 
OSRs, RRCs 

+ Dynamic update of 
IoT components,  
+ choreography 
approach,  
+ scalability,  
+ failure detection 

- No SDN support 
yet 
- Limited 
availability of 
offerings 

Not covered / Not mentioned 
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Huber, Steffen & Seiger, Ronny & Kühnert, 
André & Schlegel, Thomas. (2016). Using 
Semantic Queries to Enable Dynamic 
Service Invocation for Processes in the 
Internet of Things. 10.1109/ICSC.2016.75. 

Designer (table-
based editors for 
Ecore models), 
dynamic 

IoT arbitrary ontologies 
can be integrated 
(DogOnt ontology) 

+ concept can be 
generalized and 
applied to different 
models and systems 
from the BPM and 
IoT communities  
+ allows for context-
sensitive resource 
allocation 

- In large-scale 
systems 
containing more 
than 106 IoT 
services, service 
discovery and 
invocation will 
most likely take 
minute  
- SPARQL 
queries 
introduces an 
additional 
overhead 

Not covered / Not mentioned 
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Nambi, S. & Sarkar, Chayan & Prasad, 
Venkatesha & Biswas, Abdur Rahim. 
(2014). A unified semantic knowledge base 
for IoT. 2014 IEEE World Forum on Internet 
of Things, WF-IoT 2014. 575-580. 
10.1109/WF-IoT.2014.6803232. 

N/A IoT Resource Ontology, 
Location ontology 
(extension of 
GeoNames 
ontology),  Context 
and Domain 
Ontologies (Aspect-
Scale-Context),  
Policy ontology 
(Belief-Desire-
Intention-Policy 
model),  Service 
ontology (extension 
of OWL-S) 

+ The proposed 
knowledge base 
integrates several 
existing ontologies 
that were mainly 
related to sensor 
resources, web 
services and extends 
them for IoT 

- This is just the 
knowledge base 
and they do not 
mention anything 
about composition 
of services 

Not covered / Not mentioned 

W. Wang, S. De, R. Toenjes, E. Reetz, and 
K. Moessner, ‘‘A comprehensive ontology 
for knowledge representation in the Internet 
of Things,’’ in Proc. IEEE 11th Int. Conf. 
Trust, Secur. Privacy Comput. Commun. 
(TrustCom), Jun. 2012, pp. 1793–1798 

N/A IoT  IoT service is a 
subclass of the 
Service class defined 
in the OWL-S, 
therefore, an IoT 
Service can have 
one Service Profile 
and one Process that 
describe its 
functional and non-
functional properties, 
as well as links to 
domain knowledge 

+ functional and non-
functional properties 
for the services,   
+ a model-based 
approach to guide 
automatic test 
generation and 
control 

- Νο QoS and 
QoL aware 
methods for 
service 
composition and 
adaptation 

Not covered / Not mentioned 
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(e.g., service 
category and 
physical location 
ontologies), 

Vögler, Michael & Li, Fei & Claeßens, 
Markus & Schleicher, Johannes & Sehic, 
Sanjin & Nastic, Stefan & Dustdar, 
Schahram. (2015). COLT Collaborative 
Delivery of Lightweight IoT Applications. 
10.1007/978-3-319-19656-5_38. 

N/A ΙοΤ An IoT Application is 
represented as a 
self-contained 
archive with 
corresponding 
metadata, containing 
the following 
information: (i) a 
Name that uniquely 
identifies the 
application, (ii) a 
natural language 
Description, (iii) 
Provider name and 
id, (iv) a list of 
Suitable Devices the 
application can be 
deployed and 
executed on, and (v) 
a Version number 

+ browse the market 
for applications  
+ buy and deploy 
applications 
+monitoring 
component 

- Νο pricing and 
revenue sharing 
models that allow 
more 
stakeholders that 
are involved in 
the development 
process, to 
collaborate 

Not covered / Not mentioned 
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 IoT Application Architecture and Orchestration Modelling 

The overall objective of SEMIoTICS is to develop a framework that will be capable of managing the IoT 
applications based on patterns. Therefore, it is necessary to develop a language for specifying the components 
that constitute such applications along with their interfaces and interactions. Thus, the security and other 
quality properties may be required of such components and their orchestrations. A model with such 
characteristics will effectively serve as a general “architecture and workflow model” of the IoT application. Once 
defined, this model will be used in conjunction with patterns to enable the reasoning required for determining 
the applicability of particular SPDI patterns in specific IoT applications and subsequently reason based on 
them to enable the different types of adaptation that were introduced in subsection 3.1. 

The development of the language for specifying an IoT application architecture and workflow model (referred 
to as “IoT application model” in the rest of this deliverable) has also taken into account the requirements 
identified in Section 2 and the current SoTA presented in subsection 3.2.  

For the creation of the IoT application model we used Eclipse that through the EMF modelling framework 
enables the use of the default tree-based editor. The tree-based editor allows to define properties for classes, 
attributes and references.  

The basic constructs for defining an IoT application model in SEMIoTICS is shown in Figure 3.The figure shows 
the basic modelling constructs of the language and their relations in the form of a UML diagram3. 

 

3 http://www.uml.org/ 
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FIGURE 3. SEMIOTICS IOT ORCHESTRATION SYSTEM MODEL 

The language for defining IoT application models advocates an orchestration-based approach. In this 
approach, the interactions between the different types of components of such applications (e.g., software 
components, software services, sensors, actuators) interact with each other as specified as orchestration(s) 
within the IoT application. Such orchestrations are modelled by the class Orchestration in Figure 3. An 
orchestration of activities may be of different types depending on the order in which the different activities 
involved in it must be executed. According to this criterion, an orchestration may be defined as a Sequential, 
Parallel, Merge, Choice or Iterate orchestration. The meaning of these types of orchestrations is as follows:  

(i) Sequence is a segment of a process instance in which several activities are executed in sequence under 
a single thread of execution. 

(ii) Parallel is a segment of a process instance where two or more activity instances are executing in parallel 
within the workflow, giving rise to multiple threads of control. 

(iii) Merge is a point in the workflow where two or more parallel executing/alternative activities converge into 
a single common thread of control. 

(iv) Choice is a point within the workflow where a single thread of control makes a decision upon which 
branch to take when encountered with multiple alternative workflow branches, based on a choice 
condition. 
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(v) Iterates is a workflow activity cycle involving the repetitive execution of one (or more) workflow activity(s) 
until a condition is met. 

Moreover, an orchestration involves orchestration activities (see class OrchestrationActivity in Figure 3). At 
any instance of time, these activities may have a known implementation or a not known implementation. In the 
former case, the activity will be a linked activity (see class LinkedActivity in Figure 3). In the latter, the activity 
will be an unassigned activity (see class UnassignedActivity in Figure 3). Unassigned activities in an IoT 
application orchestration may exist during the design of the IoT application, when the exact implementation of 
a specific orchestration activity might not have been decided yet or at runtime when the particular component 
that used to provide the implementation of the activity can no longer be used (because, for example, it might 
be unavailable or because it no longer fulfils the properties required of it) and must be replaced.  

The implementation of an activity in an IoT application orchestration may be provided by: 

(i) A software component, i.e., a software module with an available and modifiable implementation that 
encapsulates a set of functions and data and makes them available through a programmatic interface. 

(ii) A software service, i.e., a software module that encapsulates a set of functions and data and makes 
them available through a programmatic interface, accessible remotely over a network, whose 
implementation is neither available to the owner nor modifiable.  

(iii) A network component, such as software defined network controllers, software switches/vSwitches, and 
potentially legacy networking components. 

(iv) An IoT sensor, i.e., a device that collects data from the environment or object under measurement and 
turns it into useful data. 

(v) An IoT actuator, i.e., a device that takes electrical input and transforms the input into tangible action. 

(vi) An IoT gateway, i.e., is a physical device or software program that serves as the connection point 
between the field devices and the SEMIoTICS backend, via the software-defined network layer.  

(vii) A (sub) orchestration of IoT application activity implementers of types (i) to (vi).  

Software component may also represent external IoT platform services. By adding this class to our model, the 
description of two different types of platform connectivity, within SEMIoTICS project and across IoT platforms, 
becomes feasible. In that way we can create patterns that can be used for the verification of SPDI properties 
in IoT application orchestrations described just within the SEMIoTICS ecosystem and/or across SEMIoTICS 
and other IoT platform services, such as FIWARE.  

The above types of IoT application activity implementers are grouped under the general concept of placeholder 
(see the class Placeholder in Figure 3). The language introduces also subclasses of the general class 
Placeholder to represent the above elements. These are the classes Orchestration and OrchestrationActivity. 
As already described Orchestration class above, the OrchestrationActivity class is extended by LinkedActivity 
and UnassignedActivity classes. Both of these classes have an attribute Name to identify them unambiguously. 
LinkedActivity, referring to activities whose implementation is known, defines the specification of the SDPI 
properties of the involved activity. On the other hand, UnassignedActivity, referring to a not known 
implementation, requires a ThingDescription, which provides the details on how the activity is implemented, 
the characteristics of the underlying devices and relevant parameters (e.g., IP address, exposed endpoints, 
available resources), the corresponding SDPI properties, etc. For the exact information that may be included 
within these Thing Descriptions, please refer to Deliverable D3.3 – “Bootstrapping and interfacing SEMIoTICS 
field level devices (first draft)”.  

A placeholder is accessible through a set of interfaces. An interface is a named set of operations through which 
the functions and the data of the placeholder can be accessed from any element outside it. Interfaces are 
represented by the class Interface in Figure 3. The interfaces through which a placeholder can be accessed 
are linked to the placeholder as the interfaces that it provides (see provides association end between the class 
Placeholder and Interface in Figure 3). In addition, placeholders may require additional interfaces provided by 
other placeholders for them to function properly. A placeholder P1 that provides access to a set of data may, 
for example, authenticate data access requests by relying to another placeholder P2 with responsibility for 
authentication and authorisation checks over users. In this case, P2 would be modelled as a placeholder that 
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provides two interfaces, i.e., an authentication and an authorisation interface, and P1 as a placeholder that 
requires these two interfaces. Requires relations between placeholders and interfaces are modelled through 
requires association end between the class Placeholder and Interface in Figure 3. 

The individual operations that constitute the interface of a placeholder are represented by the class Operation 
in Figure 3. As shown in the figure an operation has a set of parameters: i) name, ii) input and iii) output. Name 
is used as an identifier for the Operation and the input and output are a set of Parameters. If we assume that 
an activity PaymentService is to be invoked, the name of the operation could be “payment” and the input/output 
could be a set of parameters such as the items to be purchased, the number of the credit card and the address 
for the items to be delivered.  

Placeholders (of all different types) may also be characterised by their SPDI and QoS properties. A property 
of a placeholder is specified according to the class Property in Figure 3. According to it, a Property has a name, 
a type, a verification, a category and a dataState. The attribute type refers to the state of the property, which 
can be required or confirmed. A required property is a property that a placeholder must hold in order  to be 
included (considered for) the orchestration. For example, if the required property of an orchestration defining 
a secure logging process is Confidentiality, then all placeholder activities involved in the orchestration and the 
links between them may be required to have the Confidentiality property. On the other hand, a confirmed 
property is a property that is verified at runtime, through a specific means as defined in the Verification.  

Verification is a class that describes the way a Property of a Placeholder is verified. The verification process 
can be done through monitoring, testing, a certificate or via a pattern. This means that the existence of a 
monitoring service or a testing tool allows the verification of the SPDI property of a placeholder activity. Such 
a monitoring service could, for example, justify that a service or a device is available at specific time windows 
if the desirable property is a specific target for availability. Another way of verifying SPDI properties could be 
a repository with certificates that are able to justify that a certain placeholder satisfies a certain property. In 
case of a pattern the Mean of verification is the pattern itself; in all the other cases we need an interface to a 
corresponding monitoring tool, testing service or certificate repository through which the verification can take 
place.  

Moving on with category attribute, the Category enumerator in Figure 3 shows the different categories. A 
Property can belong to confidentiality, integrity, availability, privacy, dependability, interoperability or QoS. In 
this way a classification of the properties is achieved.  

The final attribute, dataState, is referred to state of the data of a Placeholder (see enumerator DataState in 
Figure 3). In SEMIoTICS, all three data states are considered, i.e. data in transit, at rest or in processing. If 
the Placeholder is an Orchestration, then the state of the data will be “in_transit”. If we have to do with an 
OrchestrationActivity and the OrchestrationActivity is bound to a storage service for example, then dataSate 
could also be “at_rest”. If the OrchestrationActivity is bound to a service or device that transforms data, then 
dataSate could be “in_processing”. This attribute was added in the model to allow description of different 
pattern regarding the three aforementioned data states. This can be done by creating Orchestrations that are 
subjects to Properties with variant datastates.  

Finally, the set of all the SPDI properties that are inferred for the different placeholders of an orchestrator by 
a pattern are aggregated into PropertyPlan object. 

 Language Constructs 

Based on the IoT application model presented above we created a corresponding language the constructs of 
which are described using an EBNF grammar. This language can be used to define activities, as well as basic 
control flow operations (namely sequential, parallel, choice and merge) enabling their composition into complex 
orchestrations, and to define the associated individual and composition properties. Upon instantiation of the 
orchestration, the abstract definition of the orchestration structure is replaced with the actual components 
implementing said orchestration. This grammar, which is a textual representation of the IoT application model 
presented above, is shown in Table 6.  
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In order to create the said language, we used Eclipse’s Xtext textual editor, which enables the production of a 
textual representation of the IoT application model. This textual (Χtext) representation was used as input for 
an online language converter4 to produce the equivalent constructs expressed in EBNF5. 

  

TABLE 6. PATTERN LANGUAGE CONSTRUCTS 

grammar EBNF; 

  

model:   modelelement (COMMA modelelement)* 

    ; 

     

COMMA: ',';     

OPEN_PAREN: '('; 

CLOSE_PAREN: ')'; 

 

modelelement 

   :  propertysubject 

   |  property 

   |  patternrule 

   ; 

 

propertysubject 

   :  placeholder 

   |  operation 

   |  parameter 

   |  link 

   ; 

 

placeholder 

    :   placeholdertitle OPEN_PAREN placeholderid CLOSE_PAREN 

    |   placeholdertitle OPEN_PAREN placeholderid (COMMA operationinterface)* CLOSE_PAREN 

    |  orchestration 

    |  orchestrationactivity 

    |   host 

    ; 

placeholdertitle: 'Placeholder'; 

placeholderid: STRING; 

 

operationinterface 

   :  interfacetitle OPEN_PAREN interfacename CLOSE_PAREN 

   |   interfacetitle OPEN_PAREN interfacename (COMMA operation)* CLOSE_PAREN 

   ; 

interfacetitle: 'Operationinterface'; 

interfacename: STRING; 

intefacetype 

   :  'provided' 

   |  'required' 

   ; 

 

operation 

   :  operationtitle OPEN_PAREN operationname COMMA placeholderid CLOSE_PAREN 

   |   operationtitle OPEN_PAREN operationname COMMA placeholderid (COMMA input)* (COMMA 

output)* CLOSE_PAREN 

   ; 

operationtitle: 'Operation'; 

 

4 https://bottlecaps.de/convert/ 
5 https://tomassetti.me/ebnf/ 
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operationname: STRING; 

input 

   :  parameter 

   |  parametername 

   ; 

output 

   :  parameter 

   |  parametername 

   ; 

 

parameter 

   :  parametertitle OPEN_PAREN parametername COMMA parametertype COMMA propertyname (COMMA 

propertyname)* CLOSE_PAREN 

   ; 

parametertitle: 'Parameter'; 

parametername: STRING; 

parametertype 

   :  'soap' 

   |  'rest' 

   ; 

 

link 

   :  linktitle OPEN_PAREN linkid COMMA placeholdera COMMA placeholderb CLOSE_PAREN 

   ; 

linktitle: 'Link'; 

linkid: STRING; 

placeholdera 

   :  placeholder 

   |  placeholderid 

   ; 

placeholderb 

   :  placeholder 

   |  placeholderid 

   ; 

placeholderc 

   :  placeholder 

   |  placeholderid 

   ; 

 

property 

   :  propertytittle OPEN_PAREN propertyname COMMA propertytype COMMA category COMMA value 

COMMA datastate COMMA verification COMMA subject COMMA satisfied CLOSE_PAREN 

       ; 

 

propertytittle: 'Property'; 

propertyname: STRING; 

propertytype 

   :  'required' 

   |  'confirmed' 

   |   'propertytype' 

   ; 

category 

   :  'confidentiality' 

   |  'integrity' 

   |  'availability' 

   |  'privacy' 

   |  'dependability' 

   |  'interoperability' 

   |  'qos_delay' 

   |  'qos_bandwidth' 
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   |  'qosbandwidth' 

   |  'qos_protect' 

   |   'propertycategory' 

   |   'path' 

   ; 

value: STRING; 

datastate 

   :  'at_rest' 

   |  'in_transit' 

   |  'in_processing' 

   |  'end_to_end' 

   |   'datastate' 

   ; 

subject 

   :  placeholderid 

   |  linkid 

   |  operationname 

   |  parametername 

   |   sequenceid 

   ; 

source: STRING; 

destination: STRING; 

flavour 

    :   'atomic' 

    |   'composite' 

    ; 

satisfied: BOOLEAN; 

 

verification 

   :  verificationtitle OPEN_PAREN verificationtype COMMA means CLOSE_PAREN 

   ; 

verificationtitle: 'Verification'; 

verificationtype 

   :  'patternbased' 

   |  'monitoring' 

   |  'testing' 

   |  'certificate' 

   |   'verificationtype' 

   ; 

means 

   :  'pattern' 

   |  'interface' 

   |   patternruleid 

   |   'means' 

   ; 

    

propertyplan 

   :  propertyplantitle OPEN_PAREN propertyname (COMMA propertyname)* CLOSE_PAREN 

   ; 

propertyplantitle: 'Propertyplan'; 

 

orchestration 

   :  sequence 

   |  parallel 

   |  choice 

   |  merge 

   |  iterate 

   |   split 

   ; 
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sequence 

   :  sequencetitle OPEN_PAREN sequenceid COMMA placeholdera COMMA placeholderb COMMA 

orchlink CLOSE_PAREN 

   ; 

sequencetitle: 'Sequence'; 

sequenceid: STRING; 

orchlink: STRING; 

 

merge 

   :  mergetitle OPEN_PAREN mergeid COMMA placeholdera COMMA placeholderb COMMA 

placeholderc COMMA orchlink COMMA orchlink2 CLOSE_PAREN 

   ; 

mergetitle: 'Merge'; 

mergeid: STRING; 

orchlink2: STRING; 

 

choice 

   :  choicetitle OPEN_PAREN choiceid COMMA placeholdera COMMA placeholderb COMMA 

placeholderc COMMA orchlink COMMA orchlink2 CLOSE_PAREN 

   ; 

choicetitle: 'Choice'; 

choiceid: STRING; 

 

split 

   :  splittitle OPEN_PAREN splitid COMMA placeholdera COMMA placeholderb COMMA 

placeholderc COMMA orchlink COMMA orchlink2 CLOSE_PAREN 

   ; 

splittitle: 'Split'; 

splitid: STRING; 

 

parallel 

   :  paralleltitle OPEN_PAREN parallelid COMMA placeholdera COMMA placeholderb CLOSE_PAREN 

   ; 

paralleltitle: 'Parallel'; 

parallelid: STRING; 

 

iterate 

   :  iteratetitle OPEN_PAREN iterateid COMMA placeholdera COMMA placeholderb OPEN_PAREN 

   ; 

iteratetitle: 'Iterate'; 

iterateid: STRING; 

 

host 

    : hosttitle OPEN_PAREN hostid COMMA mac COMMA activityaddress CLOSE_PAREN 

    ; 

hosttitle: 'Host'; 

hostid: STRING; 

mac: STRING; 

    

orchestrationactivity 

   :  linkedactivity 

   |  unassignedactivity 

   |  softwareservice 

   |  softwarecomponent 

   |  networkcomponent 

   |  iotsensor 

   |  iotactuator 

   |  iotgateway 

   |   orchestrationactivityid 

   ; 
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orchestrationactivityid: STRING; 

 

activityaddress: STRING; 

activityport: STRING; 

  

linkedactivity 

   :  linkedactivitytitle OPEN_PAREN linkedactivityid CLOSE_PAREN 

   |   linkedactivitytitle OPEN_PAREN linkedactivityid COMMA activityaddress CLOSE_PAREN 

   |   linkedactivitytitle OPEN_PAREN linkedactivityid COMMA activityaddress COMMA 

activityport CLOSE_PAREN 

   ; 

linkedactivitytitle: 'Linkedactivity'; 

linkedactivityid: STRING; 

 

unassignedactivity 

   :  unassignedactivitytitle OPEN_PAREN unassignedactivityid CLOSE_PAREN 

   |   unassignedactivitytitle OPEN_PAREN unassignedactivityid COMMA activityaddress 

CLOSE_PAREN 

   |   unassignedactivitytitle OPEN_PAREN unassignedactivityid COMMA activityaddress COMMA 

activityport CLOSE_PAREN 

   ; 

unassignedactivitytitle: 'Unassignedactivity'; 

unassignedactivityid: STRING; 

 

softwareservice 

   :  softwareservicetitle OPEN_PAREN softwareserviceid CLOSE_PAREN 

   ; 

softwareservicetitle: 'Softwareservice'; 

softwareserviceid: STRING; 

 

softwarecomponent 

   :  softwarecomponenttitle OPEN_PAREN softwarecomponentid COMMA activityport COMMA hostid 

CLOSE_PAREN 

   ; 

softwarecomponenttitle: 'Softwarecomponent'; 

softwarecomponentid: STRING; 

 

networkcomponent 

   :  networkcomponenttitle OPEN_PAREN networkcomponentid CLOSE_PAREN 

   |   networkcomponenttitle OPEN_PAREN networkcomponentid COMMA activityaddress 

CLOSE_PAREN 

   |   networkcomponenttitle OPEN_PAREN networkcomponentid COMMA activityaddress COMMA 

activityport CLOSE_PAREN 

   ; 

networkcomponenttitle: 'Networkcomponent'; 

networkcomponentid: STRING; 

 

iotsensor 

   :  iotsensortitle OPEN_PAREN iotsensorid CLOSE_PAREN 

   |   iotsensortitle OPEN_PAREN iotsensorid COMMA activityaddress CLOSE_PAREN 

   |   iotsensortitle OPEN_PAREN iotsensorid COMMA activityaddress COMMA activityport 

CLOSE_PAREN 

   ; 

iotsensortitle: 'Iotsensor'; 

iotsensorid: STRING; 

 

iotactuator 

   :  iotactuatortitle OPEN_PAREN iotactuatorid CLOSE_PAREN 

   |   iotactuatortitle OPEN_PAREN iotactuatorid COMMA activityaddress CLOSE_PAREN 

   |   iotactuatortitle OPEN_PAREN iotactuatorid COMMA activityaddress COMMA activityport 
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CLOSE_PAREN 

   ; 

iotactuatortitle: 'Iotactuator'; 

iotactuatorid: STRING; 

 

iotgateway 

   :  iotgatewaytitle OPEN_PAREN iotgatewayid CLOSE_PAREN 

   |   iotgatewaytitle OPEN_PAREN iotgatewayid COMMA activityaddress CLOSE_PAREN 

   |   iotgatewaytitle OPEN_PAREN iotgatewayid COMMA activityaddress COMMA activityport 

CLOSE_PAREN 

   ; 

iotgatewaytitle: 'Iotgateway'; 

iotgatewayid: STRING; 

 

 

patternrule 

   :  patternruletitle OPEN_PAREN patternruleid COMMA propertyname (COMMA propertyname)* 

INFER propertyname CLOSE_PAREN 

   ; 

patternruletitle: 'Patternrule'; 

patternruleid: STRING; 

INFER: '->'; 

  

STRING :  '"' (ESC | ~["\\])* '"' ; 

fragment ESC :   '\\' (["\\/bfnrt] | UNICODE) ; 

fragment UNICODE : 'u' HEX ; 

fragment HEX : [0-9a-fA-F] ; 

NUMBER 

    :   '-'? INT '.' [0-9]+ EXP? // 1.35, 1.35E-9, 0.3, -4.5 

    |   '-'? INT EXP             // 1e10 -3e4 

    |   '-'? INT                 // -3, 45 

    ; 

fragment INT :   '0' | [1-9] [0-9]* ; // no leading zeros 

fragment EXP :   [Ee] [+\-]? INT ; // \- since - means "range" inside [...] 

WS  :   [ \t\n\r]+ -> skip ; 

 

 

BOOLEAN 

    : 'true' 

    | 'false' 

    ; 

 

 

 Specification of SPDI patterns 

SPDI patterns encode proven dependencies between SPDI properties of individual placeholders implementing 
activities in IoT applications orchestrations (i.e. activity-level SPDI properties) and SPDI properties of these 
orchestrations (i.e. workflow-level SPDI properties). The specification of an SPDI pattern consists of four parts: 

i. The Activity Properties (AP) part, which defines the activity-level SPDI properties which are required 
of the activity placeholders present in the workflow of the pattern to allow for the guarantee of the OP 
properties detailed in the corresponding part of the pattern. 

ii. The Orchestration (ORCH) part, which defines the abstract form of the orchestration that the pattern 
applies to. As such, the ORCH is specified as an orchestration of abstract activity placeholders. When 
the pattern is matched against a specific orchestration, the placeholders in its ORCH may be bound to 
operations of specific nodes or sub-orchestrations of it. 
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iii. The Conditions part, which defines the functional requirements, the states or the constraints that a 
system should define or what a system must do and how it reacts on specific inputs or situations.  

iv. The Orchestration Properties (OP) part, which defines the orchestration-level SPDI properties that 
the pattern can guarantee for the orchestration specified in its ORCH part.  

Based on the above, a semantic interpretation of an SPDI pattern having the above structure is that if the AP 
properties that have been specified for the activity placeholders in the orchestration of the pattern and the 
conditions of the pattern hold (verified as True), then the OP property specified in the pattern also holds for 
the whole ORCH. Formally, this can be expressed as: 

 

𝐴𝑃 ⋀  𝑂𝑅𝐶𝐻 ⋀ 𝐶𝑂𝑁𝐷𝐼𝑇𝐼𝑂𝑁𝑆 ⊨ 𝑂𝑃, 

 

where ⊨ denotes the entailment relation that has been established by the proof of the pattern. 

APs are materialized using the Property class in Figure 3. Property name identifies uniquely the SPDI property 
and the PropertySubject depicts the Placeholder that implements the activity for which the property is required 
or verifiable (PropertyType). In the latter case, PropertyVerification depicts how the verification takes place. 
PropertyCategory classifies the SPDI property, while DataState show that state of the data used by the 
Placeholder. 

ORCH is an Orchestration object including Placeholders of type UnassignedActivity, making our model 
parametric since it does not have to refer to exact placeholders. This Orchestration can be of different types 
(Sequential, Parallel, Merge, Choice or Iterate) depending on the order that the involved activities are 
executed. 

CONDITIONS are materialized using the Operation and Parameters classes. Inputs and outputs of the activity 
placeholders of the SPDI pattern are defined in the objects of those two classes. 

Finally, OP is an orchestration-wide Property object. That means that values of some of its attributes are pre-
defined, such as the PropertySubject, which is the ORCH described above, and the DataState that is set to 
“end-to-end”. 

  

 Example of Orchestration Definition 

To showcase the use of the above, let us consider an example of a simple orchestration involving three 
activities in a sequential composition, as depicted in Figure 4. 

 

 

FIGURE 4. A SIMPLE SEQUENTIAL ORCHESTRATION INVOLVING THREE ACTIVITIES 

 

The sequential orchestration pattern, which will be applied twice to define the above, is defined as follows: 

 

0. _ORCH “Seq2” 

1. Placeholder (_a, (ActivityName, Description)) 

2. Placeholder (_b, (ActivityName, Description)) 

3. Sequence (_a, _b) 
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4. Link (_l1, _a, _b) 

5. Property (_p1, _a, PropertyType, (VerificationType, VerificationMeans), PropertyCategory, DataState) 

6. Property (_p2, _l1, PropertyType, (VerificationType, VerificationMeans), PropertyCategory, “in_transit”) 

7. Property (_p3, _b, PropertyType, (VerificationType, VerificationMeans), PropertyCategory, DataState) 

8. Property (_OP, “ConfSeq2”, required, (pattern-based, _PR), PropertyCategory, “end_to_end”) 

9. PatternRule (_PR: _p1, _p2, _p3 → _OP) 

 

In the above, the underscore before the name (e.g. as in “_a”) is used to express that these are placeholders, 
which, as mentioned, will be replaced with actual activities when the pattern is matched to actual workflows. 
Line 3 denotes that the orchestration type between the activities is sequential (other orchestration patterns 
are also supported, as mentioned above; e.g. Parallel(_a,_b)). Moreover, the involved activities are further 
specified within the pattern in lines 1 & 2, to define specific parameters about each, if needed. Furthermore, 
the link between the activities has be specified, as managing and monitoring the properties of the networking 
infrastructure is an important aspect of the SEMIoTICS framework and also necessary to guarantee the end-
to-end satisfaction of individual properties. Therefore, line 4 defines the links between the involved activities 
and their type. Lines 5 to 7 define Activity Properties (AP), such as _p1 for placeholder _a and _p2 for _l1, i.e. 
the link between placeholders _a and _b. Finally, line 8 includes an Orchestration Property (OP) that can be 
guaranteed as long as the Activity Properties _p1 to _p3 hold, as defined in pattern rule _PR (defined in line 9).  

The sequential orchestration pattern of Figure 4, which involves three activities, can be defined via the “Seq2” 
orchestration pattern as follows: 

 

_ORCH “Seq3” : Sequence (_a, _b, _c) == _ORCH “Seq2” : Sequence (Sequence (_a, _b), _c) 

 

Therefore, activities _a and _b are composed into a single (complex) activity by applying the sequential 
orchestration pattern “Seq2”, and the resulting activity forms the first part of the next application of “Seq2”, with 
_c as the second term in it.  

When instantiating the above template, the placeholders are substituted by specific activities (or orchestrations 
of activities, which can be considered as sub-orchestrations), and also the properties become specific. 
Continuing with the same example above, a specific instance of the orchestration template can be seen in 
Figure 5 below, whereby placeholders _a, _b and _c are instantiated with activities “A1”, “A2” and “A3”, 
respectively. 

 

 

FIGURE 5. INSTANCE OF THE SEQ3 ORCHESTRATION DEPICTED IN FIGURE 4 

 

Thus, the description of the instance of the orchestration of Figure 4, as shown in Figure 5, can be defined by 
replacing placeholder _a with activity “A1” (e.g. ,  _b with activity “A2” and _c with activity “A3”. Then the 
individual descriptions become specific, such as:  

- Placeholder (A1, (PaymentActivity, PaymentDescription)) 

- Placeholder (A2, (PlaceOrderActivity, PlaceOrderDescription)) 
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- Placeholder (A3, (WriteReportActivity, WriteReportDescription)) 

- Link (L1, A1, A2) 

- Link (L2, Α2, Α3) 

The same goes for the individual and orchestration-wide properties; examples include:  

- Property (P1, A1, required, (monitoring, interface), confidentiality, in_processing) 

- Property (P2, L1, required, (monitoring, interface), confidentiality, in_transit) 

- Property (P3, A2, required, (pattern-based, PSP), confidentiality, in_processing) 

- Property (P4, L2, required, (monitoring, interface), confidentiality, in_transit) 

- Property (P5, A3, required, (certificate, interface), confidentiality, at_rest) 

- Property (OP, “Seq2”, required, (pattern-based, PR1), confidentiality, “end_to_end”) 

In the above instantiation example, we assume that the end-to-end confidentiality is pursued for the instantiated 
orchestration, and therefore individual component confidentiality properties need to be verified. Specific details 
about the individual properties are included in the instantiated form of the orchestration; e.g., property P1 (see 
line 7) refers to confidentiality of data in processing at activity A1, and this is verified through monitoring of a 
specific interface. Similarly, P3 refers to the confidentiality in processing at activity A2, but in this case the 
verification is pattern-based, and more specifically via pattern PSP (more details on the PSP property can be 
found in section 4.1.1).  

The verification takes place by iteratively applying the Sequential composition pattern for two activities (“A1” 
and “A2”) and then again for the derived complex activity and “A3”, as previously defined for the generic 
example. 

 Implementation aspects 

 MACHINE-PROCESSABLE PATTERN ENCODING 

An important requirement for implementing the SPDI pattern-driven management and adaptation of the 
SEMIoTICS infrastructure is to support the automated processing of developed patterns. To achieve this, the 
SEMIoTICS SPDI patterns are expressed as Drools business production rules, and the associated rule engine, 
by applying and extending the Rete algorithm [31] and later the PHREAK algorithm [115]. The latter is an 
efficient pattern-matching algorithm known to scale well for large numbers of rules and data sets  of facts, thus 
allowing for an efficient implementation of the pattern-based reasoning process. 

In more detail, the language constructs depicted in Table 6 above are represented as Java classes in a Drools 
project for loading and executing Drools rules. Consequently, SPDI patterns expressed as Drools production 
rules, take advantage of the associated rule engine that comes with Drools rules for automated processing of 
the patterns. 

A Drools production rule has the following generic structure: 

 

rule name <attributes>* 

when <conditional element>* then <action>* end 

 

The when part of the rule specifies a set of conditions and the then part of the rule a list of actions. When a 

rule is applied, the Drools rule engine checks whether the rule conditions (defined within the <conditional 
element> above) match with the facts in the Drools Knowledge Base (KB) and if they do, it executes the 
actions (i.e. “<action>”) of the rule. Rule actions are typically used to modify the KB by inserting, retracting 
or updating the objects (facts) in it, through the standard Drools actions “insert”, “retract” and “update”, 
respectively. The conditions of a rule are expressed as patterns of objects that encode the facts in the Drools 
KB. These patterns define object types and constraints for the data encoded in objects which may be atomic 
or complex. Complex Drool object constraints are defined through logical operators (e.g. and, or, not, 
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exists, forall, contains). The full grammar of the current version of the Drools rule language (version 
7.36.0 as of April 2020, when writing this deliverable) can be found online6, while an overview of the main 
specification constructs is provided in Table 7 to allow the reader to follow the pattern specifications provided 
within the work presented herein. 

TABLE 7. HIGH LEVEL DROOLS RULE SPECIFICATION CONSTRUCTS 

Type Construct Description 

Conditional 
element 

and-CE | or-CE | not-CE 
| exists-CE | forall-CE 
| contains-CE | from-CE 
| collect-CE | 
accumulate-CE | eval-CE 

Conditional elements are used to specify conditions in the when 
part of a rule and in constraint expressions (see Pattern construct 
below). Conditional elements realise basic logical operators (e.g. 
and, or, not); quantified logic operators (contains, forall and 
exists); and object collection operators (e.g. collect, accumulate). 

Pattern Top level syntax: 

Pattern: <pattern-
Binding “:” > 
PatternType “(“ 
Constraints “)” 

Patterns are matched with elements in the working memory. The 
pattern binding is typically a variable and the pattern type refers 
to declared object types that could be matched with the pattern. 
Constraints are specified by logical expressions. Such 
expressions can be constructed by logic conditional elements 
(see above); object collection elements; unification operators; 
relational; arithmetic; property/list access operators; data 
accumulation functions; regular expression matching operators, 
and; temporal operators.  

Action Modify | Update | Insert 
| Retract 

Pattern-related actions include Modify to modify the contents of 
a fact, Update a face, Insert to insert new fact in the KB and 
Retract to delete a fact. 

As mentioned, Drools are used in SEMIoTICS to encode the relation between AP and OP properties in SPDI 
patterns in a way that allows the inference of the AP properties required of the activity placeholders present in 
the ORCH of said pattern in order for the ORCH to have the SPDI property guaranteed by the pattern. In more 
detail, the matching between Drool rules and patterns happens as follows: 

• The when part encodes the ORCH part of the pattern, conditions regarding the inputs and outputs of 
activities within the ORCH, as well as the OP property guaranteed by the patterns for the specific 
ORCH; 

• the then part encodes the AP (i.e. activity-level) properties which, if satisfied by the ORCH’s activity 
placeholders will guarantee the OP property. 

Leveraging the above, a Drools rule expressing an SPDI pattern encodes 𝑂𝑅𝐶𝐻 ∧ 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠 ∧ 𝑂𝑃 ⇒  𝐴𝑃𝑖  (𝑖 =
1, … , 𝑛), where 𝐴𝑃𝑖  are the AP properties required of the individual nodes bound to the activity placeholders of 
the SPDI pattern. This is the opposite of the dependency relation proven in the pattern defined above (namely 
𝐴𝑃 ⋀ 𝑂𝑅𝐶𝐻 ⋀ 𝐶𝑂𝑁𝐷𝐼𝑇𝐼𝑂𝑁𝑆 ⊨ 𝑂𝑃). Thus, this encoding allows the inference of the 𝐴𝑃𝑖 properties which, if 
satisfied by the individual activities participating in the ORCH, guarantee the satisfaction of the ORCH-level 
SPDI property of it, as encoded in the pattern. This satisfaction of the OP property allows for the design (but 
also the adaptation at runtime) of the ORCH in a manner that preserves the ORCH-level SPDI property defined 
in the pattern.  

Using this approach, when new data are inserted into the Drools working memory in the form of Drools facts, 
all the rules are checked against them and a subset of the rules are triggered. Drools rules whose conditions 
included in their when part are met, are part of that subset. Rules of any kind (security/privacy/ 
interoperability/content) can be triggered depending on the incoming data. Regarding the order of rules 

 

6 https://www.drools.org/ 

https://www.drools.org/
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execution, rules whose constraints match are executed in an unspecified order. If it is necessary to define the 
execution order, salience values are used. Firings occur according to these values. 

In Section 4 the SEMIoTICS patterns are defined and, for each pattern, the corresponding representation in 
Drools is also given. 

 SYSTEM ARCHITECTURE AND KEY COMPONENTS 

The implementation of the IoT/IIoT service orchestrations as well as the SPDI approach in SEMIoTICS relies 
on the presence of some key components in the framework’s architecture; these are detailed in the subsections 
below. 

 ORCHESTRATION-ENABLING COMPONENTS 

The key SEMIoTICS architectural components that handle data during workflow executions are described 
below: 

- Backend 

o Recipe Cooker: Module responsible for cooking (creating) recipes providing high level 
definitions of service workflows 

o Backend Semantic Validator: Module responsible for providing semantic validation and 
translation between different semantic models found in IoT environments. 

o Security Module: Module responsible for granting access and necessary security checks at 
the backend layer. 

o IoT Platforms: Different IoT platforms that SEMIoTICS is interfaced with, such as FIWARE 
and MindSphere. 

o Use case-specific Apps: The various backend applications pertinent to the specific use cases 
(e.g. industrial applications for UC1, patient monitoring applications for UC2, and node 
management applications for UC3). 

o Web Services: Private and public cloud monolithic services that are part of the running 
workflows. 

- Network layer 

o Network Service Functions: The different network service functions (e.g. load balancing, 
firewall) running on the VIM. 

o Switches: The switches that form the underlying network, including both hardware and virtual 
programmable devices. 

o SDN Controller: the controller(s) of the software defined network infrastructure 

- Field Layer 

o IoT Gateway: The IoT gateway, including its various modules, such as the semantics mediator, 
semantic API etc. 

o Field devices: The different field devices present in the SEMIoTICS deployments, such as the 
various industrial and healthcare sensors and actuators, as well as their counterparts with 
increased analytics capabilities defined in the context of UC3. 

More specifically, as described above and can be seen in Figure 6, the components that handle data during 
workflow executions are dispersed over the three different layers of SEMIoTICS architecture. The arrows of 
the figure define the basic components that are involved in the data flows. In said figure, with Red are the 
components related to use case 1, and with blue are the components related to use case 2. Furthermore, with 
green are the components that are mainly related to the data flows of the intermediate traffic, orchestrated by 
pattern related components with the maroon colour. We may consider as an example of a data flow the 
following order of participated functional components: 

1. Sensing Data are received by Sensors (or actuation commands to Actuators) 

2. Processed transported through the Use Case Specific devices 
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3. Transformed and evaluated by the GW Semantic Mediator  

4. Semantic integration into IoT semantic models by the Semantic API & Protocol Mediator 

5. Forwarded traffic through the programmable by the SDN SEMIoTICS controller Switches.  

6. Forwarded traffic through the predefined service function chains if needed. 

7. Processed traffic is forwarded through the backend related components ( i.e., web/cloud service) 

8. Forwarded to the MindSphere Apps in case of Use Case 1 or through the FIWARE in Use Case 2 

9. And finally, the use case apps are responsible to process the data  

 

The same procedure can be followed starting from the step 9 and going to step 1 in case of an actuation 
command. 

More details about the individual components can be found in the corresponding architecture deliverable, i.e., 
Deliverable D2.5 (“SEMIoTICS High-Level Architecture (final)”), where the SEMIoTICS architecture and the 
included components are detailed. The pattern-specific modules in the architecture and some initial sequence 
diagrams of their operation can be found in the subsection below. 
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FIGURE 6. SEMIOTICS ARCHITECTURE 

 

 PATTERN COMPONENTS 

In addition to the components of the SEMIoTICS architecture enabling the implementation of IoT service 
orchestrations (as defined in the previous subsection), pattern-related components are present in all layers of 
the SEMIoTICS framework (see Figure 7), in line and towards realising the SEMIoTICS vision of embedded 
intelligence across all layers of the IoT deployment. 
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FIGURE 7. PATTERN MODULES WITHIN THE SEMIOTICS ARCHITECTURE 

 

In more detail, these components are: 

- (Backend) Pattern Orchestrator: Module featuring an underlying semantic reasoner able to 
understand instantiated Recipes, as received from the Recipe Cooker module and transform them into 
composition structures (orchestrations) to be used by architectural patterns to guarantee the required 
properties. The Pattern Orchestrator is then responsible to pass said patterns to the corresponding 
Pattern Engines (as defined in the Backend, Network and Field layers), selecting for each of them the 
subset of these that refer to components under their control (e.g. passing Network-specific patterns to 
the Pattern Module present in the SDN controller).  

o Regarding the current implementation status, Pattern Orchestrator is created using Java, 
ANTLR and Maven. The whole set of Java classes has been created corresponding to main 
components of the IoT orchestration system model. Moreover, ANTLR parser recognises the 
given orchestration components and REST APIs are used for the communication between the 
Pattern Orchestrator and the other Pattern-related components. 
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- Backend Pattern Engine: Features the pattern engine for the SEMIoTICS backend, along with 
associated subcomponents (knowledge base, reasoning engine). It will enable the capability to insert, 
modify, execute and retract patterns at design or at runtime in the backend; these interactions will 
happen through the interfacing with the Pattern Orchestrator (see above). Will be able to reason on 
the SPDI properties of aspects pertaining to the operation of the SEMIoTICS backend. Moreover, at 
runtime the backend Pattern Engine may receive fact updates from the individual Pattern Engines 
present at the lower layers (Network & Field), allowing it to have an up-to-date view of the SPDI state 
of said layers and the corresponding components.  

o Regarding the current implementation status, the current version of the Backend Pattern 
Engine has been created as a Maven project, using Java. In the current version, the installed 
Drools Rules Engine will be used for the automated processing of SPDI patterns expressed as 
Drools rules. The communication between the Backend Pattern Engine and the other Pattern-
related components is accomplished by interfaces that are implemented with the REST API. 

- Network Pattern Engine: Integrated in the SDN controller to enable the capability to insert, modify, 
execute and retract network-level patterns at design or at runtime. It is supported by the integration of 
all required dependencies within the network controller, as well as the interfaces allowing entities that 
interact with the controller to be managed based on SPDI patterns at design and at runtime. It features 
different subcomponents as required by the rule engine, such as the knowledge base, the core engine 
and the compiler.  

o Regarding the current implementation status, the Drools Rules Engine dependencies have 
been included in the Maven project for the processing of Drools rules. The communication 
towards Network Pattern Engine is achieved using exposed NBIs of the SDN controller. These 
NBIs are REST RPCs that are defined utilizing the YANG model. 

- Field Layer Pattern Engine: Typically deployed on the IoT/IIoT gateway, able to host design patterns 
as provided by the Pattern Orchestrator. Since the compute capabilities of the gateway can be limited, 
this module is a lightweight version of the Backend Pattern Engine. Patterns in the Field Layer Pattern 
Engine are able to guarantee SPDI properties locally based on the data retrieved and processed by 
the monitoring module, the Thing Directory in the IoT gateway and based on the interaction as well 
with other components in the field layer. Patterns, as in Backend Pattern Engine, can be pre-installed 
or provided by the Pattern Orchestrator.  

o In terms of implementation, the Field Layer Pattern Engine is a lightweight version of the 
Backend Pattern Engine. So, Field Layer Pattern Engine is based on the current version of the 
Backend Pattern Engine. Technologies that are used include Java, Maven, Drools Engine, 
REST APIs.  

For more details on these components, we defer the reader to the corresponding implementation deliverables 
(namely the latest versions of the Task 3.5 and Task 4.6 deliverables; D4.6 and D4.7 at the time of writing).  
It should also be noted that there can be multiple instances of the above components (e.g., as many backend 
pattern engines as many backend instances we have, as many network pattern engines as many SSCs we 
have, etc.), but there can only be one Pattern Orchestrator, to avoid conflicts in setup/configuration of the 
orchestration and associated pattern rules. Through the deployment of these components, the whole  IoT/IIoT 
deployment takes advantage of the pattern-driven monitoring and management of its SPDI properties, which 
is at core of the SEMIoTICS concept. 

 PATTERN STATUS VISUALISATION 

To provide meaningful insight into the SEMIoTICS platform, SPDI patterns and Recipes are visualized in GUI. 
The visualization of patterns encompasses cross-layer and inner-layer patterns. To achieve that, the data 
which are to be visualized are sent from Pattern Orchestrator as an HTTP request. In order to get full insight 
into the patterns and their status Pattern Orchestrator appends the data from Pattern Engines containing the 
information about satisfied patterns in each layer.  
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FIGURE 8. COMPONENTS USED IN SPDI PATTERN VISUALISATION 

When a user enters the Pattern Monitoring page which is at /spdiPattern/spdiMonitoring, the HTTP request is 
sent to the server part of GUI to fetch the data essential for the visualization. The detailed flow is depicted in 
the diagram below.    
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FIGURE 9. SPDI VISUALISATION FLOW 

The HTTP response of that request is a JSON which contains a list of defined recipes with all nodes combined 
with SPDI patterns defined for them. All patterns are assigned to one of the possible layers (backend, network, 
gateway) or to cross-layers that are between standard layers. GUI translates this data to show it either as 
patterns with assigned to layers or as a node graph.  

 

 

FIGURE 10. AN EXAMPLE OF PATTERN ORCHESTRATOR RESPONSE 
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The outcome is the visualization of patterns. The Figure 11 depicts the status of pattern across the platform. 

The status of the pattern can be visualized either in the form as shown below or as a table (Figure 12), by 

pressing Show Table button. To increase readability as much as possible, the patterns are visualized per layer 

(or cross-layer) they affect and by the purpose they fulfil. Four blocks were distinguished, each of them 

represents the pattern property: S stands for Security, P for Privacy, D for Dependability and I for 

Interoperability. Under the acronym of pattern property, there is an information on how many patterns are 

satisfied out of the total pattern number defined per property per layer. Additionally, each pattern can be 

inspected and information about the pattern’s details are depicted as per Figure 13). Patterns are coloured 

according to their current state; more specifically: 

• Colour green indicates that all patterns are satisfied 

• Colour red indicates that no pattern is satisfied 

• Colour yellow indicates that a pattern is partially satisfied. 

• Colour grey indicates that a pattern is not defined. 

 

 

FIGURE 11. AN EXAMPLE OF PATTERN MONITORING VISUALISATION 

 

FIGURE 12. AN EXAMPLE OF PATTERN MONITORING VISUALISATION 
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FIGURE 13. PATTERN DETAILS VIEW 

The SPDI Recipe visualization depicts recipes in a form of the node sequence. The inner components of the 
sequences are coloured with the same colour to meaningfully illustrate the recipe. Split nodes are the nodes 
that have more than one child (e.g. when data from one collector is passed to the two different analytic tools). 
Merge nodes are the nodes that have at least two parents (e.g. to use two factors to make some decision). 

As it is in the “Recipe1” example (see Figure 14), the red one sequence illustrates passing data from Camera 
to the ObjectDetector. The green one sequence shows that sound data is passed from the Microphone to the 
SoundClassifier. The output from ObjectDetector and the output from SoundClassifier are combined in the 
DetectIntruder merge node. This node is responsible for combined analytics with the aim of the detection of 
an intruder. Based on the output of the DetectIntruder node, the SendNotification component can be invoked.  

 

 

FIGURE 14. SPDI RECIPE VIEW 
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 PERFORMANCE CONSIDERATIONS 

The performance of the patterns themselves is dominated by the performance of the Drools rules reasoning 
engine used with the Pattern Engines, which is dominated by the (well-studied) performance of the Rete 
[112][113] and the Rete-derived PHREAK algorithm [114]. Subsection 4.3.1 of deliverable D3.10 features the 
unit testing and basic functionality validation of the pattern-driven NBI developed within T3.4, which is built 
around the same reasoning engine, and which is common for all pattern engines, providing additional 
performance insights. 

Furthermore, validation and evaluation results of the pattern-driven NBI are provided in deliverable D4.9 
("SEMIoTICS Monitoring, Prediction and Diagnosis Mechanisms (final)"), and subsection 5.3 in specific, where 
more complex scenarios are deployed to evaluate the performance of the developed mechanisms more 
accurately and to validate their efficacy in configuring, monitoring, and adapting the network, as needed,  in 
order to satisfy the defined SPDI properties.  

The final validation and evaluation of the above mechanisms will take place in the context of the project’s first 
two use cases, and the corresponding demonstrators, with the results appearing in the pertinent deliverables 
(i.e., D5.9, D5.10, for UC1 and UC2, respectively. 

 Language Interpretation and Instantiation 

Regarding the language interpretation, the EBNF grammar is used as input to an ANTLR4 lexer, parser and 
listener. These programs manage to create for every orchestration activity, control flow operation and property 
a Drools fact, i.e., an instance of the corresponding Java class. The Drools facts are then inserted in the 
Knowledge base of Drools, a repository of all the application's knowledge definitions, in the three Pattern 
Engines of SEMIoTICS. Sessions are created from the KnowledgeBase in which data can be inserted and 
process instances started. A knowledge session is the way to interact with Drools and the core component to 
fire Drools rules. Rules themselves are also hold in a knowledge session. The information that is stored in the 
KnowledgeBase is used for reasoning. 

Figure 15 shows a simple orchestration along with its description using the IoT application language. As we 
can see, the orchestration consists of two Placeholders, Camera and ObjectDetector, and a Link between 
them, named L1. Moreover, they are in sequence (Sequence1), which means that the output of the former is 
consumed as input by the latter.   

 

 

FIGURE 15: SIMPLE ORCHESTRATION EXAMPLE 

During the first step of the translation of an IoT application orchestration to Drools facts the ANTLR4 lexer 
recognizes keywords and transforms them in tokens. The created tokens are used by the ANTLR4 parser for 
creating the logical structure, i.e. the parse tree. 

Next, the ANTLR4 listener allows us to communicate with Drools every time a node in the parse tree is entered. 
The listener takes information from the tokens and sends it to Drools. Drools then creates instances from the 
corresponding Java classes and stores the received information at the class attributes.  

During the last step, the created java instances are inserted as facts into the knowledge session. These Drools 
facts are used by Drools rules, which are fired when a condition is met. 
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 Language Expressiveness and Versioning 

A key design choice early on in the project was to implement a language tailored to the intrinsic requirements 
and characteristics of IoT environments. This was the result of considering the complex set of requirements of 
the SEMIoTICS pattern language (see Section 2) and the gap analysis carried out on the existing SoTA 
approaches (see subsection 3.2), and which led to definition of the elaborate system model presented in 
subsection 3.3. The rationale and methodology behind the definition of said model, which is the source of the 
associated language (see subsection 3.4), as well as the anticipation in the work programme that said language 
will evolve throughout the runtime of the project (thus the provision of two deliverables with first and final 
version of the language), eventually covering all use cases and a full set of patterns covering all SPDI 
properties and data state and connectivity options, provides significant guarantees that the end result (i.e., 
final version of the language) will provide all the needed expressive means to fully cover for the needs of the 
project and the covered IoT environments. 

Nevertheless, it is foreseen that in order to address additional domains (e.g., smart vehicles, smart agriculture), 
the model will have to be extended to cover the devices and interactions intrinsic to each of the targeted 
domains. This is not an obstacle and is supported by the (by design) extensible approach followed: the system 
model is by design extensible and it is trivial to define additional classes and interactions. Following the  same 
techniques presented in the language definition process above, extensions to the model are transferred to the 
language, enabling it to support additional expressive constructs, as needed. Thus, the language itself is also 
volatile and adding more concepts to newer versions of the language can be done easily. 

In terms of versioning, and while all typical file and software versioning tools can be used for that purpose, 
care must be taken when introducing new classes in the definition of relationships among old ones. Changing 
any part of the older version and/or the relationships between the old classes can break backward compatibility 
with previous versions of the language (and, thus, the associated reasoning). Nevertheless, even in cases 
where this is needed, the only additional measure that the system owners have to take is to re-define the older 
orchestrations and ensure that the reasoning engines at the different layers are updated with the new rules 
and facts. 
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4 PATTERN RULES 
This section presents the final set of SEMIoTICS patterns, using the language and associated constructs 
defined in the previous section. The work presented herein does not intent to provide a pattern catalogue, as 
there are already such resources available (see subsection 4.6), and it would be beyond the scope of the 
project. Instead, characteristic examples of patterns are provided, adapted to SEMIoTICS and covering all 
SPDI properties, as well as all data states and all cases of platform connectivity. These patterns include 
adaptation of common concepts taken from the relevant literature and adapted to the SEMIoTICS model and 
language, as well as original patterns developed within the project. Moreover, in addition to the implementation-
level patterns, in some cases process patterns are included to showcase the sequence within which the former 
has to be used to achieve the desired property. 

The provided patterns are listed in the subsections that follow, organised based on the individual properties 
they cover, i.e. Security, Privacy, Dependability, Interoperability, as well as QoS, since different types of 
property reasoning and monitoring conditions need to be defined for each of them.  The patterns are 
categorised using a hierarchical taxonomy (the most widely accepted approach to tackle this issue, as shown 
by Hafiz et al. [32] and followed in most pattern-related works). This allows classifying patterns based on 
provided property, context and generality, also showing the relationships between them, while also facilitating 
retrieval of patterns and verification of the associated properties. When visualised, this results in tree-form 
graphs connecting the defined properties and associated patterns, as presented in the subsections that follow. 

 Security 

As previously mentioned, Security is typically broken down into the individual properties of Confidentiality, 
Integrity and Availability [1]. Additional security properties are mentioned in the literature (e.g., [33]), adding 
the properties of Non-reputation, Auditability, Accountability and Authenticity. The whole set of Security 
properties covered herein, in the hierarchical tree formed mentioned above, is depicted in Figure 16. As we 
can see, there are relationships even between the Security properties under Extension. Non-repudiation / 
Auditability / Accountability implies Identification, Identification in turn, implies Authorisation, which implies 
Authentication.  

In the subsections that follow, these overarching properties will be described in high level while later 
subsections provide more specific security patterns that may cover one or more of these fundamental security 
properties. 

 

FIGURE 16. SECURITY PROPERTIES 

 CONFIDENTIALITY 

Confidentiality is the “property that information is not made available or disclosed to unauthorized individuals, 
entities, or processes” (ISO/IEC 15408-2008 [59]). Thus, the preservation of Confidentiality requires that the 
disclosure of information happens only in an authorised manner, i.e. non-authorised access to information 
should not be possible. This actually implies leveraging a number of security controls to protect the 
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confidentiality of data which, depending on the needs of the specific use case, may include authentication and 
authorisation provisions, in addition to encryption mechanisms. 

Formal definitions of Confidentiality are typically based on the concept of Information Flow (IF) [34], separating 
users in classes with different access rights to the system’s information and distinguishing the information 
flows within the system according the user classes they should be accessible to. 

Confidentiality is considered a property that is referred to a high-level problem and depends on specific patterns 
to solve lower level problems, creating the context for them. The relationships of Confidentiality with the specific 
patterns is depicted in Figure 17, in the form of a graph.  

Three patterns can be utilized for achieving Confidentiality, Encrypted Channel, Encrypted Storage and 
Encrypted Processing.  

 

FIGURE 17. CONFIDENTIALITY PATTERN GRAPH 

Let us assume that there is a need to verify that Confidentiality property holds for a sequence of two 
placeholders, connected by a link. Such a sequence can be described in the pattern language as shown below. 

 

1. ORCH “Confidentiality” 

2. Placeholder (A, “1st placeholder”) 

3. Placeholder (B, “2nd placeholder”) 

4. Link (L1, A, B) 

5. Sequence (S1, A, B, L1) 

6. Property (Pr, subject=S1, category=Confidentiality, satisfied==false) 

 

Based on the above, Confidentiality can be expressed as a Drools rule, depicted in Table 8. The when part 
defines the sequence for which the Confidentiality property needs to be checked if it holds and the property 
itself. The then part creates new properties for the components of the sequence in question. The type of 
properties to be created depends on the types of Operations each of the components owns. So, an 
EncryptedStorage property is created for a component that stores data locally; an EncryptedProcessing 
property is created for a component that processes data and an EncryptedChannel property is created for the 
link of the sequence.    

TABLE 8. CONFIDENTIALITY PATETRN AS DROOLS RULE 

1. rule "Confidentiality - Sequence" 

2.     when 

3.         $s: Sequence($sId:=id, $pA:=placeholdera, $pB:=placeholderb, $Link:=link) 

4.         Property($sId:=subject, category=="Confidentiality", satisfied==false) 

5.     Then 

6.         if ($pA.hasOperationType("storeData")) { 

7.             insert(new Property($pA:=subject, category=="EncryptedStorage", satisfied==false); 

8.         } 

9.         if ($pA.hasOperationType("processData")) { 
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10.             insert(new Property($pB:=subject, category=="EncryptedProcessing", satisfied==false); 

11.         } 

12.         if ($pB.hasOperationType("storeData")) { 

13.         insert(new Property($pA:=subject, category=="EncryptedStorage", satisfied==false); 

14.     } 

15.     if ($pB.hasOperationType("processData")) { 

16.         insert(new Property($pB:=subject, category=="EncryptedProcessing", satisfied==false); 

17.     } 

18.         insert(new Property($Link:=subject, category=="EncryptedChannel", satisfied==false); 

19. end 

 

 ENCRYPTED STORAGE PATTERN DEFINITION 

The Encrypted Storage pattern [35] provides a line of defence at a second layer against the theft of data on 
systems. Even if it is stolen, the most sensitive data will remain safe from prying eyes. Confidentiality is 
increased by ensuring that the data cannot be decrypted, even if it has been captured.  

Example usage of this pattern (with possible variations) include: i) the UNIX password file that hashes each 
user's password and stores only the hashed form; ii) web sites use encryption to protect the most sensitive 
data that must be stored on the server. 

An implementation of the pattern is depicted below in Figure 18 and the steps for storing and using sensitive 
data are mentioned. 

 

 

FIGURE 18. ENCRYPTED STORAGE PATTERN (SOURCE: KIENZLE ET AL. [35]) 

 

Receipt of sensitive data: 

1. The client submits a transaction containing sensitive data 

2. The server submits the data to the encryption module 

3. The server overwrites the clear-text version of the sensitive data 

4. The sensitive data is stored in the database with other user data and an identifier for the sensitive 

information 

Use of sensitive data: 

1. A transaction requiring the key is requested (usually from the client) 

2. The transaction processor retrieves the user data from the database 

3. The sensitive data is submitted to the encryption module for decryption 

4. The transaction is processed 
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5. The clear-text sensitive data is overwritten 

6. The transaction is reported to the client without any sensitive data 

 

 PATTERN SPECIFICATION RULE 

Let us assume that we need to verify if the Encrypted Storage property holds for the sequence in Figure 19. 

 

 

FIGURE 19. ENCRYPTED STORAGE SEQUENCE 

The sequence above can be described using the pattern language created in SEMIoTICS as depicted below:  

 

1. ORCH “Encrypted Storage” 

2. Placeholder (A, “1st placeholder”) 

3. Placeholder (B, “2nd placeholder”) 

4. Operation (Op1, subject=B, operationType==“Encrypt data to be stored”) 

5. Link (L1, A, B) 

6. Sequence (S1, A, B, L1) 

7. Property (Pr, subject=S1, category=EncryptedStorage, satisfied==false) 

 

Based on the above, the Encrypted Storage Pattern can be represented in Drools as shown in Table 9. 

 

TABLE 9. ENCRYPTED STORAGE PATTERN AS DROOLS RULE 

1. rule " Encrypted Storage Verification - Sequence" 
2.     when 

3.         $P1: Placeholder($pl1:=placeholderid) 

4.         $P2: Placeholder($pl2:=placeholderid) 

5.         $OP: Operation(($pl2:=subject, operationType=="EncryptData”) 

6.         $ORCH: Sequence ($seq:=placeholderid, $pl1:=placeholdera, $pl2:=placeholderb) 

7.         $PR: Property ($seq:=subject, category=="EncryptedStorage", satisfied==false) 

8.     then 

9.          modify($pr2){satisfied=true}; 

10. End 

 
1. rule "Encrypted Storage Verification with Certificate - Placeholder" 

2.     when 

3.         $P1: Placeholder($pl1:=placeholderid) 

4.         $Op: Operation($pl1:=subject, name=="EncryptData") 
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5.         $PR: Property ($pl1:=subject, category=="EncryptedStorage", 

verificationType=="Certificate", $vermeans:=means, satisfied==false) 

6.     then 

7.         if ($PR.checkCertificate($vermeans)) { 

8.             modify($PR){satisfied=true}; 

9.         } 

10. end 

 

As we can see in the table above, there are two Drools rules for two different layers, sequence and placeholder. 
According to the first rule, the when part of the first rule specifies:  

1. the two placeholders $P1 and $P2 of the Encrypted Storage pattern (lines 3-4);  
2. the property EncryptData that must hold for the second placeholder (line 5); 
3. the order in which they should be executed (line 6);  
4. the orchestration property that can be guaranteed through the application of the pattern, i.e., the 

EncryptedStorage property in this case (line 7). 

The then part verifies that the orchestration property ($PR) holds (satisfied=true), since all the necessary 
orchestration components (placeholders and properties) are present in the when part of the rule.  

At the Placeholder level, second rule, we present an additional Drools Rules regarding the verification of the 
pattern. This second rule verifies that the EncryptedStorage property holds for an individual orchestration 
component. The way to verify that this property actually holds is utilizing a certificate from a trusted entity. The 
when part of the rule specifies:  

• the placeholder $P1 along with its operation “EncryptData” (lines 3-4);  

• the property that can be guaranteed utilizing the available certificate, i.e., the EncryptedStorage 
property (line 5) 

The then part calls the method that assesses the certificate and if the certificate is valid, the EncryptedStorage 
property is verified (lines 7-8). 

 ENCRYPTED CHANNELS PATTERN DEFINITION 

Messages passing across any public network can be intercepted. The information contained in such messages 
is thus potentially available to an eavesdropper. Encrypted channels [36] ensure that sensitive data remains 
confidential during their transmission across public networks. 

Information needs to be exchanged between the two communication parties to allow them to set up encrypted 
communication between themselves. What is needed is a shared encryption key that can be used for the 
encryption and decryption of the sensitive data, a mechanism for the exchange of that key, such as a protocol, 
and finally an encryption mechanism. Figure 20 below show the key exchange between the two communication 
participants. 

The most common implementation of the Encrypted Channels Pattern across the Internet is the Secure 
Sockets Layer (SSL). Web browsers (Chrome, Edge, Netscape, Mozilla, Opera, Firefox), Web Servers (IIS, 
Apache) and development platforms such as J2EE and .NET have SSL capabilities. What is needed is a server 
certificate for SSL that can then authenticate the server to the client. Other implementations of the pattern 
include protocols such as IPSec, TLS and various VPN.  

SEMIoTICS does make use of Encrypted Channels utilizing SSL between the communication of different 
components such as Pattern Orchestrator and Pattern Engines in the three layers. Moreover, an MQTT Broker 
with encryption enabled, is used for the communication between IoT sensors and SEMIoTICS components. 
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FIGURE 20. ENCRYPTION KEY EXCHANGE (SOURCE: SCHUMACHER ET AL. [36]) 

  

 PATTERN SPECIFICATION RULE 

Let us assume that we need to verify if the EncryptedChannels property holds for the sequence in Figure 21. 

 

 

FIGURE 21. ENCRYPTED CHANNELS SEQUENCE 

The sequence above can be described using the pattern language created in SEMIoTICS as depicted below:  

 
1. ORCH “Encrypted Channels” 

2. Placeholder (A, “1st placeholder”) 

3. Placeholder (B, “2nd placeholder”) 

4. Link (L1, A, B) 

5. Operation (Op1, subject=L1, operationType==“Encryption”) 

6. Sequence (S1, A, B, L1) 

7. Property (Pr, subject=S1, category=EncryptedChannels, satisfied==false) 
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Based on the above, the Encrypted Channels Pattern can be represented in Drools as shown in Table 10. The 
rule in this table is a verification rule, which verifies that the EncryptedChannels property holds for a link. The 
way to verify that this property actually holds is utilizing a certificate from a trusted entity.  

The when part of the rule specifies:  

1. the link $L (line 3);  
2. the property that can be guaranteed utilizing the available certificate, i.e., the EncryptedChannels 

property (line 4) 

The then part calls the method that assesses the certificate and if the certificate is valid, the 
EncryptedChannels property is verified (lines 6-8). 

 

TABLE 10. SECURE CHANNELS AS DROOLS RULE 

1. rule "Encrypted Channels Verification with Certificate - Link" 

2.     when 

3.         $L: Link($linkId:=linkid) 

4.         $PR: Property ($linkId:=subject, category == "EncryptedChannels", 

verificationType == "Certificate", $vermeans := means, satisfied==false) 

5.     then 

6.         if ($PR.checkCertificate($vermeans)) { 

7.         modify($PR){satisfied=true}; 

8.     } 

9. end 

 

 ENCRYPTED PROCESSING PATTERN DEFINITION 

The main weakness of encrypted data is that while being processed, they are in a plain state since it is 
deciphered before processing.  At this state data is highly exposed to unauthorized intrusion. 

On the other hand, there is a high value to Encrypted Processing. The most significant advantages are:  

• strengthening of data security,  

• considerable savings in computer time, and  

• savings in the costs of handling part of the security problems of the operating system [37].  

There are various implementations of Encrypted Processing, mainly through the use of homomorphic functions 
[37][38].  

 

 PATTERN SPECIFICATION RULE 

Let us assume that we need to verify if the Encrypted Processing property holds for the sequence in Figure 
22. 
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FIGURE 22: ENCRYPTED PROCESSING SEQUENCE 

The sequence above can be described using the pattern language created in SEMIoTICS as depicted below:  

 
1. ORCH “Encrypted Processing” 

2. Placeholder (A, “1st placeholder”) 

3. Placeholder (B, “2nd placeholder”) 

4. Operation (Op1, subject=B, operationType==“Process encrypted data”) 

5. Link (L1, A, B) 

6. Sequence (S1, A, B, L1) 

7. Property (Pr, subject=S1, category=EncryptedProcessing, satisfied==false) 

 

Based on the above, the Encrypted Processing Pattern can be represented in Drools as shown in Table 11. 

 

TABLE 11: ENCRYPTED PROCESSING PATTERN AS DROOLS RULE 

1. rule " Encrypted Processing Verification - Sequence" 
2.     when 

3.         $P1: Placeholder($pl1:=placeholderid) 

4.         $P2: Placeholder($pl2:=placeholderid) 

5.         $OP: Operation(($pl2:=subject, operationType=="Process encrypted data”) 

6.         $ORCH: Sequence ($seq:=placeholderid, $pl1:=placeholdera, $pl2:=placeholderb) 

7.         $PR: Property ($seq:=subject, category=="EncryptedProcessing", satisfied==false) 

8.     then 

9.          modify($pr2){satisfied=true}; 

10. End 

 
1. rule "Encrypted Processing Verification with Certificate - Placeholder" 

2.     when 

3.         $P1: Placeholder($pl1:=placeholderid) 

4.         $Op: Operation($pl1:=subject, name=="Process encrypted data") 

5.         $PR: Property ($pl1:=subject, category == "EncryptedProcessing", 

verificationType == "Certificate", $vermeans := means, satisfied==false) 

6.     then 

7.         if ($PR.checkCertificate($vermeans)) { 

8.             modify($PR){satisfied=true}; 

9.         } 

10. end 
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As we can see in the table above, there are two Drools rules for two different layers, sequence and placeholder. 
According to the first rule, the when part of the first rule specifies:  

1. the two placeholders $P1 and $P2 of the Encrypted Processing pattern ( lines 3-4);  
2. the operation Encrypted Data that must hold for the second placeholder (line 5); 
3. the order in which they should be executed (line 6);  
4. the orchestration property that can be guaranteed through the application of the pattern, i.e., the 

EncryptedProcessing property in this case (line 7). 

The then part verifies that the orchestration property ($PR) holds (satisfied=true), since all the necessary 
orchestration components (placeholders and properties) are present in the when part of the rule.  

At the Placeholder level, second rule, we present an additional Drools Rules regarding the verification of the 
pattern. This second rule verifies that the EncryptedProcessing property holds for an individual orchestration 
component. The way to verify that this property actually holds is utilizing a certificate from a trusted entity. The 
when part of the rule specifies:  

• the placeholder $P1 along with its operation “Process Encrypted Data” (lines 3-4);  

• the property that can be guaranteed utilizing the available certificate, i.e., the EncryptedProcessing 
property (line 5) 

The then part calls the method that assesses the certificate and if the certificate is valid, the 
EncryptedProcessing property is verified (lines 7-8). 

 PERFECT SECURITY PROPERTY PATTERN DEFINITION 

Based on the information flow-based definition of confidentiality, the Perfect Security Property (PSP) [48] 
requires low-level users (i.e. a user with restricted access, in contrast to high-level users having full access) 
who are only allowed to view public information, should not be able to determine anything concerning high-
level (confidential) information. 

A sequential orchestration P with two activity placeholders, A and B, whereby B is executed after A, is depicted 
in Figure 23. We assume that for each x in {P, A, B} the following hold: 

• 𝐼𝑁𝑥  and 𝑂𝑈𝑇𝑥  are the sets of inputs and outputs of x, and 𝐸𝑥 =  𝐼𝑁𝑥  ∪  𝑂𝑈𝑇𝑥; 

• 𝑉𝑥 and 𝐶 𝑋 are two disjoint subsets of 𝐸𝑥, portioning into public parts and confidential parts respectively. 

Further conditions that define P, as depicted in Figure 23, include: 

• The inputs of A are the inputs of the workflow P 

• The inputs of B are the outputs of A 

• The outputs of the orchestration P are the outputs of B 
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FIGURE 23. PSP ON A SEQUENTIAL SERVICE ORCHESTRATION 

Based on the above, the SPDI pattern for preserving PSP (i.e. confidentiality) on the service orchestration P 
can be defined as follows: 

i. NP:  

a. 𝑃𝑆𝑃(𝐴, 𝑉𝐴 , 𝐶 𝐴) 𝑎𝑛𝑑 𝑉𝐴 ⊆ 𝑉𝑃  𝑎𝑛𝑑 𝐶 𝐴 ∩ 𝑉𝑃 = ⊘ 

b. 𝑃𝑆𝑃(𝐵, 𝑉𝐵 , 𝐶𝐵) 𝑎𝑛𝑑 𝑉𝐵 ⊆ 𝑉𝑃  𝑎𝑛𝑑 𝐶𝐵 ∩ 𝑉𝑃 = ⊘ 

ii. OP: 

a. 𝑆𝑒𝑐𝑅𝑒𝑞𝑃 = 𝑃𝑆𝑃(𝑃,  𝑉𝑃 ,  𝐶𝑃) 

Interpreting the pattern above, and as proven in [49], PSP then holds on the orchestration P if, for all activity 
placeholders x in {A, B}, the following are true: 

a) 𝑉𝑋 ⊆ 𝑉𝑃; i.e. the actions of x that reveal public information are part of the actions of P that reveal public 
information are part of the actions of P that reveal public information, and 

b) 𝐶 𝑋 ∩ 𝑉𝑃 =  ⊘; i.e. the actions of x that reveal confidential information do not include any action of P 
that reveal public information. 

The above conditions are expressed as NP properties of the pattern and entail the PSP property on P, as 
expressed in the OP part of the pattern. 

 PATTERN SPECIFICATION RULE 

Based on the above, the confidentiality (PSP) pattern can be represented in Drools as shown in Table 12. 

The when part of the rule specifies: the two activity placeholders A and B of the PSP pattern (variables $A and 

$B on lines 3-4); the order in which $A and $B are executed (variable $ORCH) and the conditions between the 

outputs of $A, and the inputs of $B as required by the PSP pattern (line 5), and; the OP property that can be 
guaranteed by applying the pattern, i.e. the PSP property in this case (variable $ORCH on line 6). Lines 3-7 are 
the specification of the ORCH part of the pattern. 

The then part of the rule generates a security plan that includes the NP security properties that (if satisfied by 
the activity placeholders that will be selected for the pattern’s ORCH) would lead to a ORCH satisfying the OP 
(i.e. the PSP property). Based on the proof of the PSP property detailed earlier in this document, both of the 
placeholders A and B should satisfy the PSP property; thus, PSP is defined as the NP property that both 
placeholders should satisfy in lines 12 and 17, respectively. Moreover, the additional conditions defined earlier 
(i.e. 𝑉𝐴 ⊆ 𝑉𝑃  𝑎𝑛𝑑 𝐶 𝐴 ∩ 𝑉𝑃 = ⊘ for placeholder A and 𝑉𝐵 ⊆ 𝑉𝑃  𝑎𝑛𝑑 𝐶𝐵 ∩ 𝑉𝑃 = ⊘ for B) are also added to the 
corresponding NPs, as can be seen in lines 13-14 and 18-19, respectively.  
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TABLE 12. PSP PATTERN AS DROOLS RULE 

1. rule "PSP on Cascade" 

2.     when 

3.          $A: Placeholder($input : operation.inputs, $intData : parameters.outputs) 

4.          $B: Placeholder(parameters.inputs == $intData, $output : parameters.outputs) 

5.          $ORCH: Sequence(parameters.inputs == $inputs, parameters.outputs == $outputs, 

firstActivity == $A, secondActivity == $B) 

6.          $OP: Property( propertyName == "PSP", subject == $ORCH, satisfied == false) 

7.          $SP: PropertyPlan (properties contains $OP) 

8.      then 

9.          PropertyPlan newPropertyPlan = new newPropertyPlan ($SP); 

10.          newPropertyPlan.removeProperty($OP); 

11.          Set V_P = $OP.getAttributesMap().get("V"); 

12.          Property NP_A = new Property($OP, "PSP", $A); 

13.          NP_A.getAttributesMap().put("V", new Operation("subset", V_P)); 

14.          NP_A.getAttributesMap().put("C", new Operation("subset", new 

Operation("complement",V_P))); 

15.          newPropertyPlan.getProperty().add(NP_A); 

16.          insert(NP_A); 

17.          Property NP_B = new Property($OP, "PSP", $B); 

18.          NP_B.getAttributesMap().put("V", new Operation("subset", V_P)); 

19.          NP_B.getAttributesMap().put("C", new Operation("subset", new 

Operation("complement",V_P))); 

20.          newPropertyPlan.getProperties().add(NP_B); 

21.          insert(NP_B); 

22.          insert(newPropertyPlan); 

23. end 

 

 INTEGRITY 

Integrity involves maintaining the consistency, accuracy, and trustworthiness of data over its entire life cycle.  
It is a “property of accuracy and completeness” according to ISO/IEC 15408-2008 [59].  

To achieve this, firstly data must not be altered in transit. Moreover, it has to be ensured that data cannot be 
altered by unauthorized users. File permissions and user access controls are mechanisms that can be used 
for that purpose. However, even authorized users may cause accidental changes. Version control is a 
mechanism that can deal with this problem. Finally, changes may occur as a result of events such as an 
electromagnetic pulse (EMP) or server crash. Checksums (cryptographic or not) are used for verification of 
integrity. Backups or redundancies must be available for the restoration of the affected data to its correct state.  

Integrity, as Confidentiality, is considered a property that is referred to a high-level problem creating the context 
for more specific patterns. The relationships of Integrity with the specific patterns is depicted in Figure 24, in 
the form of a graph.  

Three high level patterns can be utilized for achieving integrity, Safe Channel, Safe Storage and Safe 
Processing. 
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FIGURE 24. INTEGRITY PATTERN GRAPH 

 

Let us assume that there is a need to verify that Integrity property holds for a sequence of two placeholders, 
connected by a link. Such a sequence can be described in the pattern language as shown below. 

 

1. ORCH “Integrity” 
2. Placeholder (A, “1st placeholder”) 
3. Placeholder (B, “2nd placeholder”) 
4. Link (L1, A, B) 
5. Sequence (S1, A, B, L1) 
6. Property (Pr, subject=S1, category=Integrity, satisfied==false) 

 

Based on the above, Integrity can be expressed as a Drools rule, depicted in Table 13. The when part defines 
the sequence for which the Integrity property needs to be checked if it holds and the property itself. The then 
part creates new properties for the components of the sequence in question. The type of properties to be 
created depends on the types of Operations each of the components owns. So, a SafeStorage property is 
created for a component that stores data locally; a SafeProcessing property is created for a component that 
processes data and a SafeChannel property is created for the link of the sequence.    

 

TABLE 13: INTEGRITY PATTERN IN DROOLS RULE 

1. rule "Integrity - Sequence" 

2.     when 

3.         $s: Sequence($sId:=id, $pA:=placeholdera, $pB:=placeholderb, $Link:=link) 

4.         Property($sId:=subject, category=="Integrity", satisfied==false) 

5.     Then 

6.         if ($pA.hasOperationType("storeData")) { 

7.               insert(new Property($pA:=subject, category=="SafeStorage", satisfied==false); 

8.         } 

9.         if ($pA.hasOperationType("processData")) { 

10.               insert(new Property($pB:=subject, category=="SafeProcessing", satisfied==false); 

11.         } 

12.         if ($pB.hasOperationType("storeData")) { 

13.               insert(new Property($pA:=subject, category=="SafeStorage", satisfied==false); 

14.         } 
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15.        if ($pB.hasOperationType("processData")) { 

16.             insert(new Property($pB:=subject, category=="SafeProcessing", satisfied==false); 

17.        } 

18.        insert(new Property($Link:=subject, category=="SafeChannel", satisfied==false); 

19. end 

 

 SAFE CHANNEL PATTERN DEFINITION  

Sending messages across public networks can be vulnerable to interceptions and the transmitted information 
can become available to eavesdroppers. Safe channel [33] ensures integrity on transport layer making use of 
certificates.  

An implementation of this pattern can be found in the form of File channel integrity tool in the Apache Flume 7, 
a distributed system for efficiently collecting, aggregating and moving large amounts of log data from different 
sources to a centralized data store. TCP protocol provides a not cryptographic checksum8 to aid in detecting 
data corruption, not protecting against reordering of data, nor recalculation of the checksum. 

 

 PATTERN SPECIFICATION RULE 

Let us assume that we need to verify if the SafeChannel property holds for the sequence in Figure 25. 

 

 

FIGURE 25. SAFE CHANNEL SEQUENCE 

 

The sequence above can be described using the pattern language created in SEMIoTICS as depicted below:  

 
1. ORCH “Safe Channel” 

2. Placeholder (A, “1st placeholder”) 

3. Placeholder (B, “2nd placeholder”) 

4. Link (L1, A, B) 

5. Operation (Op1, subject=L1, operationType==“Integrity”) 

6. Sequence (S1, A, B, L1) 

7. Property (Pr, subject=S1, category=SafeChannel, satisfied==false) 

 

Based on the above, the Safe Channel Pattern can be represented in Drools as shown in Table 14. The rule 
in this table is a verification rule, which verifies that the SafeChannel property holds for a link. The way to verify 
that this property actually holds is utilizing a certificate from a trusted entity.  

The when part of the rule specifies:  

 

7 https://flume.apache.org/ 
8 https://locklessinc.com/articles/tcp_checksum/ 

https://flume.apache.org/
https://locklessinc.com/articles/tcp_checksum/
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1. the link $L (line 3);  
2. the property that can be guaranteed utilizing the available certificate, i.e., the SafeChannel property 

(line 4) 

The then part calls the method that assesses the certificate and if the certificate is valid, the SafeChannel 
property is verified (lines 6-8). 

 

TABLE 14. SAFE CHANNEL PATTERN AS DROOLS RULE 

1. rule "Safe Channel Verification with Certificate - Link" 

2. when 

3.     $L: Link($linkId:=linkid) 

4.     $PR: Property ($linkId:=subject, category == "SafeChannel", 

verificationType == "Certificate", $vermeans := means, satisfied==false) 

5.     then 

6.     if ($PR.checkCertificate($vermeans)) { 

7.         modify($PR){satisfied=true}; 

8.     } 

9. end 

 

 HASH CHECK PATTERN DEFINITION 

A direct implementation of Safe Channel is the Hash Check pattern.  

Data Integrity refers to the maintenance and assurance of the accuracy and consistency of data. Let us assume 
a sequential orchestration P with two activity placeholders, A and B, whereby B is executed after A. We assume 
that for each x in {P, A, B} the following hold: 

• 𝐼𝑁𝑥  and 𝑂𝑈𝑇𝑥  are the sets of inputs and outputs of x 

• Dx(i) the data of x at the given time t 

• Hash(i) are the cryptographic hash function result applied to data i 

Further conditions that define P, as depicted in Figure 23, include: 

• The inputs of A are the inputs of the orchestration P 

• The inputs of B are the outputs of A 

• The outputs of the orchestration P are the outputs of B 

Based on the above, a pattern for preserving integrity for data that are at in processing and in transit on the 
service orchestration P can be defined as follows: 

• Hash(INP)=Hash(INA) 
• Hash(OUTP)=Hash(OUTB) 
• Hash(INB)=Hash(OUTA) 

Interpreting the pattern above, we have for every data that is transmitted not only through datalinks but also 
through inter process communication to evaluate that the data that an activity A sends to activity B are not by 
any chance changed. 

Moreover, based on the above specification we can define a generic pattern for integrity at data at rest as the 
following: 

Hash(Dx(i))=Hash(Dx(i-1)) 

Which means that whenever we check data at rest those data must not be changed. 

 

 PATTERN SPECIFICATION RULE 

The specification rule of the above patterns in Drools is shown in Table 15. Specifically, for the Integrity At 
Rest rule, it specifies the data of the activity that are we check at line 6. Then in line 4 we define a special 
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activity that becomes true every n seconds and forces the Drools engine to run the then part of the rule. At line 
11 we calculate the hash checksum of the data and we retrieve the checksum that it is already stored and 
those must be true since the data are at rest. 

 

TABLE 15. HASH CHECK PATTERN AS DROOLS RULES  

1. rule "Integrity - Sequence" 

2. when 

3.     $A: Placeholder($input : operation.inputs, $intData : parameters.outputs) 

4.     $B: Placeholder(parameters.inputs == $intData, $output : parameters.outputs) 

5.     $ORCH: Link(firstActivity == $A, secondActivity == $B) 

6.     $OP: Req( propertyName == "Integrity", subject == $ORCH, satisfied == false) 

7.     $SP: PropertyPlan (properties contains $OP) 

8. then 

9.     PropertyPlan newPropertyPlan = new PropertyPlan($SP); 

10.     newPropertyPlan.removeRequirement($OP); 

11.     Req Hash1 = new Req($OP, "equality",sha512($A.input),sha512(operation.input)); 

12.     newPropertyPlan.getProperties().add(Hash1); 

13.     insert(Hash1); 

14.     Req Hash2 = new Req($OP, "equality",sha512($A.output),sha512($B.inputs)); 

15.     newPropertyPlan.getProperties().add(Hash2); 

16.     insert(Hash2);  

17.     Req Hash3 = new Req($OP, "equality",sha512($B.output),sha512(operation.inputs)); 

18.     newPropertyPlan.getProperties().add(Hash3); 

19.     insert(Hash3); 

20.     insert(newPropertyPlan); 

21. end 

 

1. rule "IntegrityAtRest - Placeholder" 

2. when 

3.     $A: Placeholder($intData : datastore.Data) 

4.     $T: Timer(time.Interval(“Default time interval”)) 

5.     $ORCH: Check(firstActivity == $A, secondActivity == $T) 

6.     $OP: Req( propertyName == "Integrity", subject == $ORCH, satisfied == false) 

7.     $SP: PropertyPlan (properties contains $OP) 

8. then 

9.     PropertyPlan newPropertyPlan = new PropertyPlan($SP); 

10.     newPropertyPlan.removeRequirement($OP); 

11.     Req Hash1 = new Req($OP, "equality",sha512(&intData),datastore.StoredHash($A)); 

12.     newPropertyPlan.getProperties().add(Hash1); 

13.     insert(Hash1); 

14.     insert(newPropertyPlan); 

15. end 

 

 SAFE STORAGE PATTERN DEFINITION 

The Safe Storage pattern [33] ensures integrity at storage level. Data integrity is the overall accuracy, 
completeness, and consistency of data. When data integrity holds for a system, the information stored locally 
will remain complete, accurate, and reliable no matter how long it’s stored or how often it’s accessed. Moreover, 
data integrity refers to the safety of data in regard to regulatory compliance.  

Example usage of this pattern (with possible variations) include: i) the UNIX password file that hashes each 
user's password and stores only the hashed form; ii) web sites use encryption to protect the most sensitive 
data that must be stored on the server. 

Lower level patterns that can be used to implement aspects of integrity are the Hash Check, Server Sandbox 
and Minefield patterns (Figure 26).  
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FIGURE 26. SAFE STORAGE PATTERN TREE 

 

 PATTERN SPECIFICATION RULE  

Herein, we present a Drools rule (1st rule in the table) that shows the relationship of Safe Storage pattern with 
the Hash Check, Server Sandbox and Minefield patterns. The rule is depicted in Table 16. 

 

TABLE 16. SAFE STORAGE PATTERN AS DROOLS RULE 

1. rule "Safe Storage" 

2. when 

3.     $p: Placeholder($pId:=placeholderid) 

4.     Property($pId:=subject, category=="SafeStorage", satisfied==false) 

5. then 

6.     insert(new Property($pA:=subject, category=="Hash Check", satisfied==false); 

7.     insert(new Property($pB:=subject, category=="Server Sandbox", satisfied==false); 

8.     insert(new Property($pB:=subject, category=="Minefield", satisfied==false); 

9. end 

 

1. rule "Safe Storage Verification" 

2. when 

3.     $p: Placeholder($pId:=placeholderid) 

4.     Property($pId:=subject, category=="HashCheck", satisfied==true) 

5.     Property($pId:=subject, category=="ServerSandbox", satisfied==true) 

6.     Property($pId:=subject, category=="Minefield", satisfied==true) 

7.     $pr: Property($pId:=subject, category=="SafeStorage", satisfied==false) 

8. then 

9.     modify($pr){satisfied=true}; 

10. end 

 

According to the rule, if we need to check the SafeStorage property on an orchestration placeholder, we have 
to create three new properties for that placeholder, the Hash Check, Server Sandbox and Minefield properties. 
If these last properties hold for the placeholder in question, the SafeStorage property also holds (2 nd rule in 
the table).  

 

 SERVER SANDBOX PATTERN DEFINITION 

The Server Sandbox pattern builds a wall around the Web server in order to contain the damage that could 
result from an undiscovered bug in the server software. 
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The Server Sandbox pattern strictly limits the privileges that Web application components possess at run time. 
This is most often accomplished by creating a user account that is to be used only by the server. Operating 
system access control mechanisms are then used to limit the privileges of that account to those that are needed 
to execute, but not administer or otherwise alter, the server. 

 

 

FIGURE 27. SERVER SANDBOX PATTERN (SOURCE: KIENZLE ET AL. [35]) 

 

Server Sandbox pattern enhances integrity by preventing component vulnerabilities from causing the entire 
server to be compromised. 

 PATTERN SPECIFICATION RULE 

Based on the above, the Server Sandbox Pattern can be represented in Drools as shown in Table 17. 

 

TABLE 17. SERVER SANDBOX PATTERN AS DROOLS RULE 

1. rule "Server Sandbox (Sequence)" 

2. when 

3.     $P1: Placeholder($pl1:=placeholderid) 

4.     $P2: Placeholder($pl2:=placeholderid) 

5.     $ORCH: Sequence ($seq:=placeholderid, $pl1:=placeholdera, $pl2:=placeholderb) 

6.     $PR: Property ($seq:=subject, category=="ServerSandbox", satisfied==false) 

7. then 

8.     if ($P1.type=="WebServer") { 

9.         insert(new Property($P1, "ServerSandbox", false)); 

10.     } 

11.     if ($P2.type=="WebServer) { 

12.         insert(new Property($P2, "ServerSandbox", false)); 

13.     } 

14. end 

 

The when part of the first rule specifies:  

1. the two placeholders $P1 and $P2 of the Server Sandbox pattern (lines 3-4);  

2. the order in which they should be executed (line 5),  

3. the orchestration property that can be guaranteed through the application of the pattern, i.e., the 
“ServerSandbox” property in this case (line 6). 

The then part generates the security properties that, if satisfied by the activity placeholders of the pattern’s 
orchestration, would make the orchestration to satisfy the orchestration property. In this specific case, 
placeholders that constitute the sequence and are of type (type == “WebServer”) should satisfy the 
“ServerSandbox” property (lines 8-13). 
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 MINEFIELD PATTERN DEFINITION 

The Minefield pattern will trick, detect, and block attackers during a break-in attempt.  Attackers often know 
more than the developers about the security aspects of standard components. This pattern aggressively 
introduces variations that will counter this advantage and aid in detection of an attacker.  

There is no cookie-cutter approach to developing minefields, as that would defeat the purpose. But there are 
a few basic approaches, including the following: 

1. Rename common, exclusively administrative commands on the server and replace them with 
instrumented versions that alert the administrator to an intruder before executing the requested 
command. 

2. Alter the file system structure. 

3. Introduce controlled variation using tools such as the Deception Toolkit. 

4. Add application-specific boobytraps that will recognize tampering with the site and prevent the 
application from starting. 

 

Integrity is improved by increasing confidence that scripted attacks will fail and that human attackers will be 
detected before they can cause damage. 

 

 PATTERN SPECIFICATION RULE 

Based on the above, the Minefield Pattern can be represented in Drools as shown in Table 18. 

The when part of the first rule specifies:  

1. the two placeholders $P1 and $P2 of the Minefield pattern (lines 3-4);  
2. the order in which they should be executed (line 5),  
3. the orchestration property that can be guaranteed through the application of the pattern, i.e., the 

“Minefield” property in this case (line 6). 

The then part generates the security properties that, if satisfied by the activity placeholders of the pattern’s 
orchestration, would make the orchestration to satisfy the orchestration property. In this specific case, both 
placeholders that constitute the sequence should satisfy the “Minefield” property (lines 8-9). 

 

TABLE 18. MINEFIELD PATTERN AS DROOLS RULE 

1. rule "Minefield (Sequence)" 

2.     when 

3.         $P1: Placeholder($pl1:=placeholderid) 

4.         $P2: Placeholder($pl2:=placeholderid) 

5.         $ORCH: Sequence ($seq:=placeholderid, $pl1:=placeholdera, $pl2:=placeholderb) 

6.         $PR: Property ($seq:=subject, category==" Minefield", satisfied==false) 
7.     then 

8.         insert(new Property($P1, "Minefield", false)); 

9.         insert(new Property($P2, "Minefield", false)); 

10. end 

 

 SAFE PROCESSING PATTERN DEFINITION 

The Safe Processing pattern [33] ensures integrity at processing level. Data integrity must hold even after the 
processing of data by an application.  

 

 PATTERN SPECIFICATION RULE  

Let us assume that we need to verify if the Safe Processing property holds for the sequence in Figure 28. 
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FIGURE 28. SAFE PROCESSING SEQUENCE 

 

The sequence above can be described using the pattern language created in SEMIoTICS as depicted below: 

 
1. ORCH “Safe Processing” 
2. Placeholder (A, “1st placeholder”) 

3. Placeholder (B, “2nd placeholder”) 

4. Operation (Op1, subject=B, operationType==“IntegrityAtProcessLevel”) 

5. Link (L1, A, B) 
6. Sequence (S1, A, B, L1) 

7. Property (Pr, subject=S1, category=SafeProcessing, satisfied==false) 

 

Based on the above, the Safe Processing Pattern can be represented in Drools as shown in Table 19. 

 

TABLE 19. SAFE PROCESSING AS DROOLS RULE 

1. rule " Safe Processing Verification - Sequence" 
2.     when 

3.         $P1: Placeholder($pl1:=placeholderid) 

4.         $P2: Placeholder($pl2:=placeholderid) 

5.         $OP: Operation(($pl2:=subject, operationType=="IntegrityAtProcessLevel”) 

6.         $ORCH: Sequence ($seq:=placeholderid, $pl1:=placeholdera, $pl2:=placeholderb) 

7.         $PR: Property ($seq:=subject, category=="SafeProcessing", satisfied==false) 

8.     then 

9.          modify($PR){satisfied=true}; 

10. End 

 
1. rule "Safe Processing Verification with Certificate - Placeholder" 

2.     when 

3.         $P1: Placeholder($pl1:=placeholderid) 

4.         $Op: Operation($pl1:=subject, name=="IntegrityAtProcessLevel") 

5.         $PR: Property ($pl1:=subject, category == "SafeProcessing", 

verificationType == "Certificate", $vermeans := means, satisfied==false) 

6.     then 

7.         if ($PR.checkCertificate($vermeans)) { 

8.             modify($PR){satisfied=true}; 

9.         } 

10. end 



780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017 

Deliverable D4.8 SEMIoTICS SPDI Patterns (final) 

Dissemination level: Public  

 

82 

 

As we can see in the table above, there are two Drools rules for two different layers, sequence and placeholder. 
According to the first rule, the when part of the first rule specifies:  

1. the two placeholders $P1 and $P2 of the Encrypted Storage pattern (lines 3-4);  
2. the property that must hold for the second placeholder (line 5); 
3. the order in which they should be executed (line 6);  
4. the orchestration property that can be guaranteed through the application of the pattern, i.e., the 

SafeProcessing property in this case (line 7). 

The then part verifies that the orchestration property ($PR) holds (satisfied=true), since all the necessary 
orchestration components (placeholders and properties) are present in the when part of the rule.  

At the Placeholder level, second rule, we present an additional Drools Rules regarding the verification of the 
pattern. This second rule verifies that the SafeProcessing property holds for an individual orchestration 
component. The way to verify that this property actually holds is ut ilizing a certificate from a trusted entity. The 
when part of the rule specifies:  

• the placeholder $P1 along with its operation “IntegrityAtProcessLevel” (lines 3-4);  

• the property that can be guaranteed utilizing the available certificate, i.e., the SafeProcessing 
property (line 5) 

The then part calls the method that assesses the certificate and if the certificate is valid, the SafeProcessing 
property is verified (lines 7-8). 

 AVAILABILITY 

According to [50], availability is defined as “readiness for correct system service”; a service is deemed to be 
correct if it implements the specified system function. Readiness of a system in this definition means that if 
some agent invokes an operation to access some information or use a resource, it will eventually receive a 
correct response to the request. Moreover, availability is a “property of being accessible and usable on demand 
by an authorized entity” according to ISO/IEC 15408-2008 [59].   

A more information technology -focused definition of availability [39] refers to a system that is continuously 
operational for a desirably long length of time. Availability can be measured relative to "100% operational" or 
"never failing." In actual practice, availability goals are expressed and measured in the number of nines of 
availability ranging typically from 99. 9% (3NINES) to 99. 999% (5NINES) and even up to 99.9999% (6NINES).  

Considering the above, we consider availability as a property that refers to a high-level problem and depends 
on specific patterns, creating the context for them. The relationships of availability with the specific patterns is 
depicted in Figure 29, in the form of a graph.  

Three patterns can be utilized for achieving Availability: Uptime, Redundancy and Fault Management. 

 

 

FIGURE 29: AVAILABILITY GRAPH 
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Let us assume that there is a need to verify that Availability property holds for a sequence of two placeholders, 
connected by a link. Such a sequence can be described in the pattern language as shown below: 

 

1. ORCH “Availability” 

2. Placeholder (A, “1st placeholder”) 

3. Placeholder (B, “2nd placeholder”) 

4. Link (L1, A, B) 

5. Sequence (S1, A, B, L1) 

6. Property (Pr, subject=S1, category=Availability, satisfied==false) 

 

Based on the above, Availability can be expressed as a Drools rule, depicted in Table 20. The when part 
defines the sequence for which the Availability property needs to be checked if it holds and the property itself. 
The then part creates new properties for the components of the sequence in question. The Uptime, 
Redundancy and FaultManagement properties are created for the two components that consist the sequence. 

TABLE 20. AVAILABILITY PATTERN IN DROOLS RULE 

1. rule "Availability - Sequence" 

2. when 

3.     $s: Sequence($sId:=id, $pA:=placeholdera, $pB:=placeholderb, $Link:=link) 

4.     Property($sId:=subject, category=="Availability", satisfied==false) 

5. Then 

6.     insert(new Property($pA:=subject, category=="Redundancy", satisfied==false); 

7.     insert(new Property($pB:=subject, category=="FaultManagement", satisfied==false); 

8.     insert(new Property($pA:=subject, category=="Uptime", satisfied==false); 

9. end 

 

In this context, an Uptime verification pattern is provided in the subsection that follows, while Redundancy and 
Fault Management patterns are described in detail at subsections 4.3.2 and 4.3.3 respectively, under the 
Dependability property (since they are related to that property as well). 

 UPTIME PATTERN DEFINITION 

Availability can also be defined as the uptime, i.e. the time it is available to the users over a given period. 
Uptime of a system in this definition means the percentage of time a machine, a computer or a website, has 
been working and available. Motivated by this, an Uptime pattern is defined, which can be used to monitor the 
uptime of the resource of interest and provide satisfaction or violation evidence in reference to the desired 
value.  

 PATTERN SPECIFICATION RULE 

The specification of the Uptime Pattern in Drools is provided in Table 21. 

TABLE 21. UPTIME PATTERN AS DROOLS RULE 

1. rule "Uptime" 

2. when 

3.     $A: Placeholder($input : operation.inputs, output : parameters.outputs) 

4.     $T: Timer(time.Interval(“Default time interval”)) 

5.     $ORCH: Check($A,$T) 

6.     $OP: Req( propertyName == "uptime", subject == $ORCH, satisfied == false) 

7.     $SP: PropertyPlan (properties contains $OP) 

8. then 

9.     PropertyPlan newPropertyPlan = new PropertyPlan($SP); 

10.     newPropertyPlan.removeRequirement($OP); 

11.     Req Hash1 = new Req($OP,"uptime",$A, ”Uptime percentage”); 

12.     newPropertyPlan.getProperties().add(Hash1); 
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13.     insert(Hash1); 

14.     insert(newPropertyPlan); 

15. end 

 

 NON-REPUDIATION, AUDITABILITY AND ACCOUNTABILITY 

A set of key properties integral to the provision of security are non-repudiation, accountability and auditability. 

Non-repudiation refers to the “ability to prove the occurrence of a claimed event or action and its originating 
entities” (ISO/IEC 27000:2018 [40]). Auditability from a security perspective requires the ability to recognise, 
record, store and analyse information related to security relevant activities, producing “audit records that can 
be examined to determine which security relevant activities took place and whom (which user) is responsible 
for them” (ISO/IEC 15408-2008 [59]). Finally, accountability, as the name suggest, refers to the ability of 
assigning actions and decisions to entities, while having the means (e.g., using authentication, authorisation, 
auditing and non-repudiation mechanisms) to hold said entities accountable for those actions and decisions.  

 SIGNED MESSAGE PATTERN DEFINITION 

Signed Message ensures a message’s authenticity, integrity and non-repudiation. Message sender may sign 
the message using digital signature generation. In that wat the signer is securely associated with the message. 
Digital signatures use a standard, called Public Key Infrastructure (PKI), to provide the highest levels of security 
along with universal acceptance. They are a specific signature technology implementation of electronic 
signature (eSignature). 

Three algorithms are involved with the digital signature process: 

• Key generation — This algorithm provides a private key along with its corresponding public key. 

• Signing — This algorithm produces a signature upon receiving a private key and the message that is 
being signed. 

• Verification — This algorithm checks for the authenticity of the message by verifying it along with the 
signature and the public key 

 

Figure 30 shows the processes that take place and communications between the involved parties. The signer 
uses their private key to sign the message, while verifier uses the corresponding public key to verify the 
message. The signature is valid when the two hash values, the one stored and the one calculated, are equal. 
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FIGURE 30. SIGNED MESSAGE DIAGRAM (SOURCE: M. SELVAMANIKKAM9) 

 PATTERN SPECIFICATION RULE 

Let us assume that entity “A” needs to communicate with entity “B”, but the messages to be transmitted must 
be signed form entity “A”. The workflow in Figure 31 depicts the corresponding sequence. 

 

 

FIGURE 31. SIGNED MESSAGE SEQUENCE 

The sequence above can be described using the pattern language created in SEMIoTICS as depicted below: 

 

1. ORCH “Signed Message” 

2. Placeholder (A, “1st placeholder”) 

3. Placeholder (B, “2nd placeholder”) 
4. Operation (Op1, subject=A, operationType==“SignMessage”) 

5. Operation (Op2, subject=B, operationType==“VerifyMessage”) 

6. Link (L1, A, B) 

7. Sequence (S1, A, B, L1) 
8. Property (Pr, subject=S1, category=SignedMessage, satisfied==false) 

 

9 https://medium.com/@meruja/digital-signature-generation-75cc63b7e1b4 

https://medium.com/@meruja/digital-signature-generation-75cc63b7e1b4
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Based on the above, the SignedMessage pattern can be represented in Drools as shown in Table 22. 

 

TABLE 22. SIGNED MESSAGE PATTERN AS DROOLS RULES 

1. rule " Signed Message Verification - Sequence" 
2.     when 

3.         $P1: Placeholder($pl1:=placeholderid) 

4.         $P2: Placeholder($pl2:=placeholderid) 

5.         $OP: Operation(($pl1:=subject, operationType=="SignMessage”) 

6.         $OP: Operation(($pl2:=subject, operationType=="VerifyMessage”) 

7.         $ORCH: Sequence ($seq:=placeholderid, $pl1:=placeholdera, $pl2:=placeholderb) 

8.         $PR: Property ($seq:=subject, category=="SignedMessage", satisfied==false) 

9.     then 

10.          modify($PR){satisfied=true}; 
11. End 

 
1. rule " SignedMessage Verification with Certificate #1 - Placeholder" 
2.     when 

1.         $P1: Placeholder($pl1:=placeholderid) 

2.         $Op: Operation($pl1:=subject, name==" SignMessage ") 
3.         $PR: Property ($pl1:=subject, category == "SignedMessage", verificationType == 

"Certificate", $vermeans := means, satisfied==false) 

4.     Then 

5.         if ($PR.checkCertificate($vermeans)) { 

6.             modify($PR){satisfied=true}; 

7.         } 

8. end 

 

1. rule " SignedMessage Verification with Certificate #2 - Placeholder" 
2.     when 

3.         $P1: Placeholder($pl1:=placeholderid) 

4.         $Op: Operation($pl1:=subject, name=="StegoRetrieve") 

5.         $PR: Property ($pl1:=subject, category == "SignedMessage", verificationType == 

"Certificate", $vermeans := means, satisfied==false) 

6.     then 

7.         if ($PR.checkCertificate($vermeans)) { 

8.         modify($PR){satisfied=true}; 

9.     } 

10. end 

 

As we can see in the table above, there are three Drools rules for two different layers, sequence and 
placeholder. According to the first rule, the when part of the first rule specifies:  

1. the two placeholders $P1 and $P2 of the SignedMessage pattern (lines 3-4);  
2. the operation types “SignMessage” and “VerifyMessage” that must be supported by the 1st and 2nd 

placeholder respectively (lines 5 and 6); 
3. the order in which they should be executed (line 7);  
4. the orchestration property that can be guaranteed through the application of the pattern, i.e., the 

SignedMessage property in this case (line 8). 

The then part verifies that the orchestration property ($PR) holds (satisfied=true), since all the necessary 
orchestration components (placeholders and properties) are present in the when part of the rule.  

At the Placeholder level, second rule, we present two additional Drools Rules regarding the verification of the 
pattern. These rules verify that the “SignMessage” and “VerifyMessage” operation types are present in the two 
placeholders as needed, which ensure that the SignedMessage property holds for the individual orchestration 
components. In this example, the verification assumes the presence of a certificate from a trusted entity. 
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 AUDIT LOG PATTERN DEFINITION 

Audit log is the simplest, yet very effective form of tracking temporal information. The idea is that whenever 
something significant happens you write some record indicating what happened and when it happened.  

An audit log can have many implementations. The most common one is a file. A database table also makes a 
fine audit log. If you use a file you need a format, such as ASCII, which makes it readable to humans without 
special software. If it's a simple tabular structure, then text is simple and effective. XML can be used for more 
complex structures. 

At the system level, UNIX offers a variety of standard log files, directed to the /var partition.  Cron program 
performs the rotation of log files.  Old logs are compressed in order to save space and renamed with a unique 
suffix. Moreover, at the network level, a unified logging system called NetCool, offers a number of different 
“probes” that can be used to collect data from a variety of sources, including conventional text log files, UNIX 
syslog streams, PIX firewall events, and Oracle table insertions [35]. 

 PATTERN SPECIFICATION RULE 

Let us assume that we need to verify if the AuditLog property holds for the sequence in Figure 32. 

 

 

FIGURE 32. AUDITLOG SEQUENCE 

The sequence above can be described using the pattern language created in SEMIoTICS as depicted below:  

1. ORCH “AuditLog” 

2. Placeholder (A, “1st placeholder”) 

3. Placeholder (B, “2nd placeholder”) 

4. Operation (Op1, subject=B, operationType==“AuditLog”) 

5. Link (L1, A, B) 

6. Sequence (S1, A, B, L1) 

7. Property (Pr, subject=S1, category= AuditLog, satisfied==false) 

 

Based on the above, the Audit Log Pattern can be represented in Drools as shown in Table 23. 

 

TABLE 23. AUDIT LOG AS DROOLS RULE 

1. rule " Audit Log Verification - Sequence" 
2.     when 

3.         $P1: Placeholder($pl1:=placeholderid) 

4.         $P2: Placeholder($pl2:=placeholderid) 

5.         $OP: Operation(($pl2:=subject, operationType=="AuditLog”) 

6.         $ORCH: Sequence ($seq:=placeholderid, $pl1:=placeholdera, $pl2:=placeholderb) 

7.         $PR: Property ($seq:=subject, category=="AuditLog", satisfied==false) 
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8.     then 

9.          modify($pr2){satisfied=true}; 

10. End 

 
1. rule " Audit Log Verification with Certificate - Placeholder" 
2.     when 

3.         $P1: Placeholder($pl1:=placeholderid) 

4.         $Op: Operation($pl1:=subject, name==" Audit Log ") 
5.         $PR: Property ($pl1:=subject, category == "AuditLog", 

verificationType == "Certificate", $vermeans := means, satisfied==false) 

6.     then 

7.         if ($PR.checkCertificate($vermeans)) { 

8.             modify($PR){satisfied=true}; 

9.     } 

10. end 

 

As we can see in the table above, there are two Drools rules for two different layers, sequence and placeholder. 
According to the first rule, the when part of the first rule specifies:  

1. the two placeholders $P1 and $P2 (lines 3-4);  
2. the property AuditLog that must hold for the second placeholder (line 5); 
3. the order in which they should be executed (line 6);  
4. the orchestration property that can be guaranteed through the application of the pattern, i.e., the 

AuditLog property in this case (line 7). 

The then part verifies that the orchestration property ($PR) holds (satisfied=true), since all the necessary 
orchestration components (placeholders and properties) are present in the when part of the rule.  

At the Placeholder level, second rule, we present an additional Drools Rules regarding the verification of the 
pattern. This second rule verifies that the AuditLog property holds for an individual orchestration component. 
The way to verify that this property actually holds is utilizing a certificate from a trusted entity. The when part 
of the rule specifies:  

• the placeholder $P1 along with its operation “AuditLog” (lines 3-4);  

• the property that can be guaranteed utilizing the available certificate, i.e., the AuditLog property 
(line 5) 

The then part calls the method that assesses the certificate and if the certificate is valid, the AuditLog property 
is verified (lines 7-8). 

 AUTHORISATION 

Authorisation defines who is authorized to access specific resources in a system, and the way in which a 
resource is accessible by a specific user. As previously mentioned, authorisation implies the existence of 
authentication (before checking if entity “X” is allowed to access resource “Y”, we have to confirm that the 
entity interacting is indeed “X” – hence, the need to authenticate “X”). In this context, Figure 33 presents an 
authorisation process pattern, which also shows the role of authentication within. 
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FIGURE 33. AUTHORISATION PROCESS PATTERN (SOURCE: DIAMANTOPOULOU ET AL. [60]) 

We consider Authorisation as a property that is referred to a high-level problem and depends on specific 
patterns, creating the context for them. Two patterns can be utilized for achieving Authorisation, 
SingleAccessPont and AuthorisationEnforcer. The relationships of Authorisation with the specific patterns is 
depicted in Figure 34, in the form of a graph. 

 

FIGURE 34. AUTHORISATION GRAPH 

 

Authorisation can be expressed as a Drools rule, depicted in Table 24. The when part defines the sequence 
for which the Authorisation property needs to be checked if it holds and the property itself. The then part 
creates new properties for the components of the sequence in question. The SingleAccessPont and 
AuthorisationEnforcer properties are created for the components of the sequence that own an interface 
operationType. 

TABLE 24. AUTHORISATION PATTERN IN DROOLS RULE 

1. rule "Availability - Sequence" 

2. when 

3.     $s: Sequence($sId:=id, $pA:=placeholdera, $pB:=placeholderb, $Link:=link) 

4.     Property($sId:=subject, category=="Availability", satisfied==false) 

5. Then 

6.     if ($pA.hasOperationType("interface")) { 

7.         insert(new Property($pA:=subject, category=="SingleAccessPoint", satisfied==false); 
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8.         insert(new Property($pA:=subject, category=="AuthorisationEnforcer", satisfied==false); 

9.     } 

10.     if ($pA.hasOperationType("interface")) { 

11.         insert(new Property($pB:=subject, category=="SingleAccessPoint", satisfied==false); 

12.         insert(new Property($pB:=subject, category=="AuthorisationEnforcer", satisfied==false); 

13.     } 

14. end 

 

 SINGLE ACCESS POINT PATTERN DEFINITION 

If you need to provide external access to a system, but want to protect it from misuse or damage, define a 
Single Access Point [36] that grants or denies entry to the system after checking the client requiring access. 
The Single Access Point is easy to apply, defines a clear entry point to the system, and can be assessed when 
implementing the desired security policy. Single Access Point enforces the overall system confidentiality.  

Concrete implementations are called Login Window, Guard Door, or Validation Screen. The client logs in at 
the single access point and then uses the protected system (Figure 35). 

 

 

FIGURE 35. SINGLE ACCESS POINT SEQUENCE DIAGRAM (SOURCE: SCHUMACHER ET AL. [36]) 

 

As it is already depicted in Figure 9, the Confidentiality Pattern graph, Single Access Point can itself be 
considered as a pattern that creates the context for other pore-specific patterns to solve lower level problems. 
In the Confidentiality graph we can see a number of patterns below Single Access Point. As an entry point is 
created, it can be used for the enforcement of different policies such as authentication, authorisation, validity 
of incoming data, known offenders and replay policies. If the user is interested only for authentication, the 
Authentication Enforcer Pattern enforces the authentication policies, using potentially yet other patterns. 
Authorisation Enforcer defines and enforces the authorisation policies. Intercepting Validator Pattern scans 
and validates data passed in for malicious code or malformed content. Network Address Blacklist is used to 
keep track of network addresses (IP addresses) that are the sources of hacking attempts and other mischief. 
These more specific patterns are described below in the document. 

 

 PATTERN SPECIFICATION RULE 

Let us assume that we need to verify if the SingleAccessPoint property holds for the orchestration in Figure 
36. 
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FIGURE 36. SINGLE ACCESS POINT SEQUENCE 

 

The sequence above can be described using the pattern language created in SEMIoTICS as depicted below:  

 

1. ORCH “Single Access Point” 

2. Placeholder (A, “1st placeholder”) 

3. Placeholder (B, “2nd placeholder”) 

4. Operation (Op1, subject=B, operationType==“Interface”) 
5. Link (L1, A, B) 

6. Sequence (S1, A, B, L1) 

7. Property (Pr, subject=S1, category=SingleAccessPoint, satisfied==false) 

 

Based on the above, the Single Access Point pattern can be represented in Drools as shown in Table 25. 

 

TABLE 25. SINGLE ACCESS POINT PATTERN AS DROOLS RULES 

1. rule " Single Access Point Verification - Sequence" 
2.     when 

3.         $P1: Placeholder($pl1:=placeholderid) 

4.         $P2: Placeholder($pl2:=placeholderid) 

5.         $PR1: Property ($pl2:=subject, category=="SingleAccessPoint", satisfied==true) 

6.         $ORCH: Sequence ($seq:=placeholderid, $pl1:=placeholdera, $pl2:=placeholderb) 

7.         $PR2: Property ($seq:=subject, category=="SingleAccessPoint", satisfied==false) 

8.     Then 

9.          if ($P2.hasOneInterface) { 

10.           modify($PR2){satisfied=true}; 
11.          } 
12. End 

 
1. rule "Single Access Point Verification with Certificate - Placeholder" 

2.     when 

3.         $P1: Placeholder($pl1:=placeholderid) 

4.         $Op: Operation($pl1:=subject, name=="Interface") 

5.         $PR: Property ($pl1:=subject, category == "SingleAccessPoint", 

verificationType == "Certificate", $vermeans := means, satisfied==false) 

6.     then 

7.         if ($PR.checkCertificate($vermeans)) { 

8.             modify($PR){satisfied=true}; 

9.         } 
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10. end 

 

As we can see in the table above, there are two Drools rules for two different layers, sequence and placeholder. 
According to the first rule, the when part of the first rule specifies:  

1. the two placeholders $P1 and $P2 of the Single Access Point pattern (lines 3-4);  
2. the property SingleAccessPoint that must hold for the second placeholder (line 5); 
3. the order in which they should be executed (line 6);  
4. the orchestration property that can be guaranteed through the application of the pattern, i.e., the 

SingleAccessPoint property in this case (line 7). 

The then part verifies that the orchestration property ($PR) holds (satisfied=true), since all the necessary 
orchestration components (placeholders and properties) are present in the when part of the rule.  

At the Placeholder level, second rule, we present an additional Drools Rules regarding the verification of the 
pattern. This second rule verifies that the SingleAccessPoint property holds for an individual orchestration 
component. The way to verify that this property actually holds is utilizing a certificate from a trusted entity. The 
when part of the rule specifies:  

1. the placeholder $P1 along with its operation “Interface” (lines 3-4);  
2. the property that can be guaranteed utilizing the available certificate, i.e., the SingleAccessPoint 

property (line 5) 

The then part calls the method that assesses the certificate and if the certificate is valid, the SingleAccessPoint 
property is verified (lines 7-8). 

 

 AUTHORISATION ENFORCER PATTERN DEFINITION 

Authorisation Enforcer [36] describes who is authorized to access specific resources in a system, in an 
environment in which we have resources whose access needs to be controlled. It indicates, for each active 
entity that can access resources, which resources it can access, and how it can access them. 

As depicted in Figure 37, the Subject class describes an active entity that attempts to access a resource 
(Protection Object) in some way. The ProtectionObject class represents the resource to be protected. The 
association between the subject and the object defines an authorisation, from which the pattern gets its name. 
The association class Right describes the access type (for example, read, write) the subject is allowed to 
perform on the corresponding object. Through this class one can check the rights that a subject has on some 
object, or who is allowed to access a given object. 

 

 

FIGURE 37. AUTHORISATION ENFORCER PATTERN (SOURCE: SCHUMACHER ET AL. [36]) 
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The two most common implementations are Access Control Lists and Capabil ities. Access Control Lists (ACLs) 
are kept with the objects to indicate who is authorized to access them, while Capabilities are assigned to 
processes to define their execution rights. Access types should be application oriented. 

Authorisation is materialized by Security Manager Component of SEMIoTICS. Two SEMIoTICS components 
in order to start communicating with each other, need to ask and take a token from the Security Manager. After 
acquiring the token, the communication may start. 

Moreover, attribute-based encryption is also materialized by the Security Manager. Each SEMIoTICS 
component receives a set of encrypted information and is able to decrypt only a part of it, for which it is 
authorized. 

 PATTERN SPECIFICATION RULE 

Let us assume that we need to verify if the Authorisation Enforcer property holds for the sequence in Figure 
38. 

 

 

FIGURE 38. AUTHORISATION ENFORCER SEQUENCE 

The sequence above can be described using the pattern language created in SEMIoTICS as depicted below:  

 

1. ORCH “Authorisation Enforcer” 

2. Placeholder (A, “1st placeholder”) 

3. Placeholder (B, “2nd placeholder”) 

4. Operation (Op1, subject=B, operationType==“Authorize”) 
5. Link (L1, A, B) 

6. Sequence (S1, A, B, L1) 

7. Property (Pr, subject=S1, category=AuthorisationEnforcer, satisfied==false) 

 

Based on the above, the Authorisation Enforcer Pattern can be represented in Drools as shown in Table 26. 

 

TABLE 26. AUTHORISATION ENFORCER PATTERN AS DROOLS RULE 

1. rule "Authorisation Enforcer Verification - Sequence" 

2.     when 

3.         $P1: Placeholder($pl1:=placeholderid) 

4.         $P2: Placeholder($pl2:=placeholderid) 

5.         $OP: Operation(($pl2:=subject, operationType=="Authorize”) 

6.         $ORCH: Sequence ($seq:=placeholderid, $pl1:=placeholdera, $pl2:=placeholderb) 

7.         $PR: Property ($seq:=subject, category=="AuthorisationEnforcer", satisfied==false) 

8.     then 

9.          modify($pr2){satisfied=true}; 
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10. End 
 

1. rule " Authorisation Enforcer Verification with Certificate - Placeholder" 
2.     when 

3.         $p1: Placeholder($pID:=placeholderID) 

4.         $op: Operation($opID:=operationID, $pID:=subject, operationType=="Authorize") 

5.         $pr: Property ($pID:=subject, category=="AuthorisationEnforcer",            

verificationType=="Certificate", $vermeans:=means, satisfied==false) 

6.     then 

7.         if ($pr.checkCertificate($vermeans)) { 

8.            modify($pr){satisfied=true}; 

9.         } 

10. end 

 

Both rules verify that the AuthorisationEnforcer property holds. However, they focus on different orchestration 
levels. The first one checks AuthorisationEnforcer property on a sequence of two placeholders and the second 
on an orchestration placeholder.  

The when part of the first rule specifies:  

1. the two placeholders $P1 and $P2 of the Authorisation Enforcer pattern (lines 3-4);  

2. the operation Authorize of the 2nd placeholder (line5) 

3. the order in which they should be executed (line 6),  

4. the orchestration property that can be guaranteed through the application of the pattern, i.e., the 
“AuthorisationEnforcer” property in this case (line 7). 

If all the above hold, the then part verifies the AuthorisationEnforcer property for the whole orchestration.  

The when part of the second rule specifies:  

1. the placeholder $P1 of the Authorisation Enforcer pattern (lines 3);  

2. the operation Authorize of the placeholder (line4) 

3. the orchestration property that can be guaranteed through the application of the pattern, i.e., the 
“AuthorisationEnforcer” property in this case (line 5). 

If all the above hold, the then part verifies the AuthorisationEnforcer property for the orchestration 
(=placeholder) after checking that the actual certification of the placeholder is valid.  

 

 AUTHENTICATION 

Authentication is the “provision of assurance that a claimed characteristic of an entity is correct”  (ISO/IEC 
15408-2008 [59]). According to [48], Authentication enforces the verification and validation of the identities and 
credentials exchanged between the Webservices provider and the consumer. Requester must be authenticated 
to prove its identity with credentials that are considered reliable (e.g., X.509 digital certificates [42], Kerberos 
tickets [43], or any kind of security token).  

An authentication process pattern presenting the above in a structure manner is depicted in Figure 39. 
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FIGURE 39. AUTHENTICATION PROCESS PATTERN (SOURCE: DIAMANTOPOULOU ET AL. [60]) 

It can be possible to deploy mutual authentication mechanisms where credentials are exchanged and validate 
them before initiating the communication. In that way risks (man-in-the-middle, identity spoofing, and message-
replay attacks) are alleviated and mitigated associated. 

Let us assume that there is a need to verify that Authentication property holds for a sequence of two 
placeholders, connected by a link. Such a sequence can be described in the pattern language as shown below. 

 

1. ORCH “Integrity” 

2. Placeholder (A, “1st placeholder”) 

3. Placeholder (B, “2nd placeholder”) 

4. Link (L1, A, B) 

5. Sequence (S1, A, B, L1) 

6. Property (Pr, subject=S1, category=Integrity, satisfied==false) 

 

Based on the above, Authentication can be expressed as a Drools rule, depicted in Table 27. The when part 
defines the sequence for which the Authentication property needs to be checked if it holds and the property 
itself. The then part creates new properties for the components of the sequence in question.  

So, AuthenticationEnforcer, AuthenticationSession, Blacklist and AccountLockout properties are created for 
the two placeholders of the sequence. Finally, a AuthenticatedChannel property is created for the link between 
the two placeholders.    

 

TABLE 27. AUTHENTICATION PATTERN IN DROOLS RULE 

1. rule "Integrity - Sequence" 

2. when 

3.     $s: Sequence($sId:=id, $pA:=placeholdera, $pB:=placeholderb, $Link:=link) 

4.     Property($sId:=subject, category=="Integrity", satisfied==false) 

5. Then 
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6.     insert(new Property($pA:=subject, category=="AuthenticationEnforcer", satisfied==false); 

7.     insert(new Property($pA:=subject, category=="AuthenticatedSession", satisfied==false); 

8.     insert(new Property($pA:=subject, category=="Blacklist", satisfied==false); 

9.     insert(new Property($pA:=subject, category=="AccountLockout", satisfied==false); 

10.     insert(new Property($pB:=subject, category=="AuthenticationEnforcer", satisfied==false); 

11.     insert(new Property($pB:=subject, category=="AuthenticatedSession", satisfied==false); 

12.     insert(new Property($pB:=subject, category=="Blacklist", satisfied==false); 

13.     insert(new Property($pB:=subject, category=="AccountLockout", satisfied==false); 

14.     insert(new Property($Link:=subject, category=="AuthenticatedChannel", satisfied==false); 

15. end 

 

 AUTHENTICATION ENFORCER PATTERN DEFINITION 

Operating systems have legitimate users that use it to host their files. However, there is no way to make sure 
that a user who is logged in is a legitimate user. Users can impersonate others and gain illegal access to their 
files. Authentication Enforcer addresses the problem of how to verify that a subject is who it says it is.  

A Subject, typically a user, requests access to system resources. The Authentication Enforcer receives this 
request and applies a protocol using some Authentication Information. If the authentication is successful, the 
Authentication Enforcer creates a Proof of Identity, which can be explicit, for example a token, or implicit (see 
Figure 40). 

Most commercial operating systems use passwords to authenticate their users. 

 

 

FIGURE 40. AUTHENTICATION ENFORCER CLASS DIAGRAM (SOURCE: SCHUMACHER ET AL. [36]) 

The implementation of such a pattern includes: i) the definition of the authentication requirements (number of 
users, degree of security, etc.); ii) the selection of the authentication approach (e.g. the use of passwords); 
and iii) the build of the authentication information.  

The Authentication Enforcer allows user data to be protected from unauthorized disclosure. The Authentication 
Enforcer can itself be considered as a pattern that creates the context for other pore specific patterns to solve 
lower level problems. It creates an Authentication Session and acts as an enforcement point for the Account 
Lockout and Blacklist patterns.  

 

 PATTERN SPECIFICATION RULE 
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Let us assume that we need to verify if the Authentication Enforcer property holds for the sequence in Figure 
41. 

 

FIGURE 41. AUTHENDICATION ENFORCER SEQUENCE 

The sequence above can be described using the pattern language created in SEMIoTICS as depicted below:  

1. ORCH “Authentication Enforcer” 

2. Placeholder (A, “1st placeholder”) 

3. Placeholder (B, “2nd placeholder”) 

4. Operation (Op1, subject=B, operationType==“Authenticate”) 

5. Link (L1, A, B) 

6. Sequence (S1, A, B, L1) 

7. Property (Pr, subject=S1, category=AuthenticationEnforcer, satisfied==false) 

 

Based on the above, the Authentication Enforcer pattern can be represented in Drools as shown in Table 28. 

The when part of the first rule specifies:  

1. the two placeholders $P1 and $P2 of the Authentication Enforcer pattern (lines 3-4);  
2. the order in which they should be executed (line 5),  
3. the orchestration property that can be guaranteed through the application of the pattern, i.e., the 

“AuthenticationEnforcer” property in this case (line 6)  

The then part generates the security properties that, if satisfied by the activity placeholders of the pattern’s 
orchestration, would make the orchestration to satisfy the orchestration property. In this specific case, 
placeholders that constitute the sequence and have an operation that checks credentials 
(hasOperation("interface")) should satisfy the AuthenticationEnforcer, AuthenticatedSession, Account Lockout 
and NetwokAddressBlacklist properties (lines 8-17). Each of these properties refers to the patterns that are 
below Authentication Enforcer in the Confidentiality Pattern graph. 

 

TABLE 28. AUTHENTICATION ENFORCER PATTERN AS DROOLS RULE 

1. rule "Authentication Enforcer (Sequence)" 

2.     when 

3.         $P1: Placeholder($pl1:=placeholderid) 

4.         $P2: Placeholder($pl2:=placeholderid) 

5.         $ORCH: Sequence ($seq:=placeholderid, $pl1:=placeholdera, $pl2:=placeholderb) 

6.         $PR: Property ($seq:=subject, category=="AuthenticationEnforcer", satisfied==false) 

7.     then 

8.         if ($P1.hasOperation("interface")) { 

9.             insert(new Property($P1, "AuthenticationEnforcer", false)); 

10.             insert(new Property($P1, "AuthenticatedSession", false)); 
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11.             insert(new Property($P1, "AccountLockout", false)); 
12.             insert(new Property($P1, "Blacklist", false)); 
13.         } 
14.         if ($P2.hasOperation("interface")) { 
15.             insert(new Property($P2, "AuthenticationEnforcer", false)); 
16.             insert(new Property($P2, "AuthenticatedSession", false)); 
17.             insert(new Property($P2, "AccountLockout", false)); 
18.             insert(new Property($P1, "Blacklist", false)); 
19.         } 
20. End 
 

1. rule " Authentication Enforcer Verification with Certificate - Placeholder" 
2.     when 

3.         $p1: Placeholder($pID:=placeholderID) 

4.         $op: Operation($opID:=operationID, $pID:=subject, operationType=="Authenticate") 

5.         $pr: Property ($pID:=subject, category=="AuthenticationEnforcer",            

verificationType=="Certificate", $vermeans:=means, satisfied==false) 

6.     then 

7.         if ($pr.checkCertificate($vermeans)) { 

8.            modify($pr){satisfied=true}; 

9.         } 

10. end 

 

The when part of the second rule specifies:  

1. the placeholder $P1 of the Authorisation Enforcer pattern (lines 3);  
2. the operation Authorize of the placeholder (line4) 
3. the orchestration property that can be guaranteed through the application of the pattern, i.e., the 

“AuthorisationEnforcer” property in this case (line 5). 

If all the above hold, the then part verifies the AuthorisationEnforcer property for the orchestration (= 
placeholder) after checking that the actual certification of the placeholder is valid.  

 

 AUTHENTICATED CHANNEL PATTERN DEFINITION 

Authenticated channel ensures authenticity on the channel level. According to [44], a secure authenticated 
channel should have the following characteristics:  

1. mutual authentication of the peers;  
2. key confirmation (at least one peer is able to verify that the common secret indeed is common);  
3. forward secrecy (old session keys cannot be calculated even when long-term secret keys (such as 

certificate Secret keys are known). 

Implementation examples of Authenticated channel are Kerberos authentication [43], two-way SSL 
authentication [45]. 

 

 PATTERN SPECIFICATION RULE 

Let us assume that we need to verify if the AuthenticatedChannel property holds for the sequence in Figure 
42. 



780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017 

Deliverable D4.8 SEMIoTICS SPDI Patterns (final) 

Dissemination level: Public  

 

99 

 

 

FIGURE 42. AUTHENTICATED CHANNEL SEQUENCE 

The sequence above can be described using the pattern language created in SEMIoTICS as depicted below:  

1. ORCH “Authenticated Channel” 

2. Placeholder (A, “1st placeholder”) 
3. Placeholder (B, “2nd placeholder”) 

4. Link (L1, A, B) 

5. Operation (Op1, subject=L1, operationType==“Authentication”) 

6. Sequence (S1, A, B, L1) 
7. Property (Pr, subject=S1, category=AuthenticatedChannel, satisfied==false) 

 

Based on the above, the Authenticated Channel can be represented in Drools as shown in Table 29. The rule 
in this table is a verification rule, which verifies that the AuthenticatedChannel property holds for a link. The 
way to verify that this property actually holds is utilizing a certificate from a trusted entity.  

The when part of the rule specifies:  

1. the link $L (line 3);  
2. the property that can be guaranteed utilizing the available certificate, i.e., the 

AuthenticatedChannel property (line 4) 

The then part calls the method that assesses the certificate and if the certificate is valid, the 
AuthenticatedChannel property is verified (lines 6-8). 

 

TABLE 29. AUTHENTICATED CHANNEL PATTERN AS DROOLS RULE 

1. rule "Authenticated Channel Verification with Certificate - Link" 

2. when 

3.     $L: Link($linkId:=linkid) 

4.     $PR: Property ($linkId:=subject, category == "AuthenticatedChannel", 

verificationType == "Certificate", $vermeans := means, satisfied==false) 

5. then 

6.     if ($PR.checkCertificate($vermeans)) { 

7.         modify($PR){satisfied=true}; 

8.     } 

9. end 

 

 ACCOUNT LOCKOUT PATTERN DEFINITION 

Account Lockout protects user accounts from automated password-guessing attacks, by implementing a limit 
on incorrect password attempts before further attempts are disallowed (see Figure 43). 

The steps of an authentication attempt are presented below: 

1. The client is provided with a transaction form or login screen requiring both a username and a 
password. 

2. The user provides the username and password and submits the request for a protected resource. 
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3. The mediator checks the username, and if valid retrieves the account information. If the username 
is invalid, return a generic failed login message.  

4. The mediator checks if this user’s account is locked out (number of successive failed logins 
exceeds the threshold) and not yet cleared (last failed login time + reset duration > current time). 
If locked, return a generic failed login message. 

5. If the user’s account is not locked, the mediator checks the validity of the password. If the password 
is not valid, increment the number of failed login attempts against the account, and set the last 
failed login time to the current time. Return a generic failed login message. 

6. If the password is valid, reset the number of failed logins to 0, and execute the request against the 
protected resource. 

 

 

FIGURE 43. ACCOUNT LOCKOUT PATTERN (SOURCE: KIENZEL ET AL. [35]) 

Let us consider: 

• PAincorrect := number of incorrect password attempts 

• TH := predefined threshold for maximum incorrect password attempts  

• AS := account status (unlocked or locked) 

• RD := reset duration 

• CT := current time 

• LFLT := last failed login time 

Based on the above specification we can define a generic pattern for Account Lockout as the following:  

(PAincorrect >= TH) & (LFLT + RD > CΤ) → AS=locked 

(PAincorrect >= TH) & (LFLT + RD < CT) → AS=unlocked 

 PATTERN SPECIFICATION RULE 

Let us assume that we need to verify if the AccountLockout property holds for the orchestration in Figure 44. 
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FIGURE 44. ACCOUNT LOCKOUT ORCHESTRATION 

 

1. ORCH “Account Lockout” 

2. Placeholder (A, “1st placeholder”) 

3. Placeholder (M, “Mediator”) 

4. Operation (Op1, subject=M, operationType==“Lockout”) 

5. Placeholder (B, “2nd placeholder”) 

6. Link (L1, A, M) 

7. Sequence (S1, A, M, L1) 

8. Placeholder (AI, “Account Information”) 

9. Link (L2, S1, B) 
10. Link (L2, S1, AI) 

11. Choice (Ch, S1, B, AI, L1, L2) 

12. Property (Pr, subject=Ch, category=AccountLockout, satisfied==false) 

 

Based on the above, the Account Lockout pattern can be represented in Drools as shown in Table 30. 

The when part of the first rule specifies:  

1. the placeholders $p1, $p2, $p3 and $p4 along with the property AccountLockout for $p2 ($pr1);   
2. the order in which they should be executed ($s and $ch),  
3. the orchestration property that can be guaranteed through the application of the pattern, i.e., the 

AccountLockout property in this case ($pr2). 

The then part verifies that the orchestration property holds since every essential component is included in the 
when part (satisfied=true).  

 

TABLE 30. ACCOUNT LOCKOUT PATTERN AS DROOLS RULES 

1. rule "Account Lockout Verification" 

2. when 

3.     $p1: Placeholder($pID1:=placeholderID) 

4.     $p2: Placeholder($pID2:=placeholderID) 

5.     $pr1: Property($pID2:=subject, category=="AccountLockout", satisfied==true) 

6.     $p3: Placeholder($pID3:=placeholderID) 

7.     $p4: Placeholder($pID4:=placeholderID) 

8.     $s: Sequence($sID:=id, $pID1:=placeholderA, $pID2:=placeholderB) 

9.     $ch: Choice($chID:=id, $sID:=placeholderA, $pID3:=placeholderB, $pID4:=placeholderC) 

10.     $pr2: Property($chID:=subject, category=="AccountLockout", satisfied==false) 

11. then 



780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017 

Deliverable D4.8 SEMIoTICS SPDI Patterns (final) 

Dissemination level: Public  

 

102 

 

12.     modify($pr2){satisfied=true}; 

13. end 

 

1. rule "Account Lockout Verification with Certificate - Placeholder" 

2. when 

3.     $p1: Placeholder($pID:=placeholderID) 

4.     $op: Operation($opID:=operationID, $pID:=subject, operationType=="Lockout") 

5.     $pr: Property ($pID:=subject, category=="AccountLockout", verificationType == 

"Certificate", $vermeans := means, satisfied==false) 

6. then 

7.     if ($pr.checkCertificate($vermeans)) { 

8.         modify($pr){satisfied=true}; 

9.     } 

10. end 

 

Moreover, the second Drools Rule verifies that the AccountLockout property holds for an individual 
orchestration component (placeholder). In this case, the way to verify that this property actually holds is utilizing 
a certificate from a trusted entity.  

The when part of the rule specifies:  

1. the placeholder $p1 along with its operation “Lockout”;  
2. the property that can be guaranteed utilizing the available certificate, i.e., the Account Lockout property 

in this case ($pr) 

The then part calls the method that assesses the certificate and if the certificate is valid, the Account Lockout 
property is verified (satisfied=true). 

 

 AUTHENTICATED SESSION PATTERN DEFINITION 

An Authenticated Session keeps track of a user’s authenticated identity through the duration of a Web session. 
A user is allowed to access multiple protected pages on the Web site authenticating him-/herself just once. It 
keeps track of the last page access time and causes the session to expire after a predetermined period of 
inactivity. 

The Authenticated Session pattern caches the user’s authenticated identity on the server. As a result, the 
application is more confident that the user has not tampered with it. The only way that the authenticated identity 
session attribute can be set is if the user successfully authenticated to the authentication module. The 
Authenticated Session pattern utilizes existing session mechanisms to associate the client with a particular 
session. 

The repeated authentication in this automated manner increases accountability. Confidentiality and Integrity 
protections of the system are increased consequently. 

 

 PATTERN SPECIFICATION RULE 

Based on the above, the Authenticated Session pattern can be represented in Drools as shown in Table 31. 
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TABLE 31. AUTHENTICATION SESSIONS PATTERN AS DROOLS RULES 

1. rule "Authenticated Session - Sequence" 

2.     when 

3.         $P1: Placeholder($pl1:=placeholderid) 

4.         $P2: Placeholder($pl2:=placeholderid) 

5.         $ORCH: Sequence ($seq:=placeholderid, $pl1:=placeholdera, $pl2:=placeholderb) 

6.         $PR: Property ($seq:=subject, category=="AuthenticatedSession", satisfied==false) 

7.     then 

8.         if ($P1.hasOperation("interface")) { 

9.             insert(new Property($P1, "AuthenticatedSession", false)); 

10.         } 

11.         if ($P2.hasOperation("interface")) { 

12.             insert(new Property($P2, "AuthenticatedSession", false)); 

13.         } 

14. end 

 

1. rule " Authenticated Session Verification with Certificate" 
2.     when 

3.         $P1: Placeholder($pl1:=placeholderid) 

4.         $Op: Operation($pl1:=subject, name=="interface") 

5.       $PR: Property ($pl1:=subject, category == "AuthenticatedSession", verificationType == 

"Certificate", $vermeans := means, satisfied==false) 

6.     then 

7.         if ($PR.checkCertificate($vermeans)) { 

8.             modify($PR){satisfied=true}; 

9.         } 

10. end 

 

The when part of the first rule specifies:  

1. the two placeholders $P1 and $P2 of the Authenticated Session pattern (lines 3-4);  
2. the order in which they should be executed (line 5),  
3. the orchestration property that can be guaranteed through the application of the pattern, i.e., the 

AuthenticatedSession property in this case (line 6). 

The then part generates the security properties that, if satisfied by the activity placeholders of the pattern’s 
orchestration, would make the orchestration to satisfy the orchestration property. Each of the placeholders that 
has an operation that checks credentials (hasOpertionType(“interface”)) should satisfy the 
AuthenticatedSession property (lines 8-13).  

The second Rule is a verification rule and verifies that the AuthenticatedSession property holds for an individual 
orchestration component (Placeholder). In this case, in order to verify that this property holds, we utilize a 
certificate from a trusted entity.  

The when part of the rule specifies:  

1. the placeholder $P1 along with its operation “interface” (lines 3-4);  
2. the property that can be guaranteed utilizing the available certificate, i.e., the AuthenticatedSession 

property in this case (line 5) 

The then part calls the method that assesses the certificate and if the certificate is valid, the 
AuthenticatedSession property is verified (lines 7-9). 

 

 BLACKLIST PATTERN DEFINITION 

A Blacklist (see Figure 45) is used to keep track of network addresses (IP addresses) that are the sources of 
hacking attempts and other mischief. Any requests originating from an address on the blacklist are simply 
ignored.  
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Blocking mechanism at the network level: In normal circumstances, a client that is not on the blacklist will 
make a benign request of the server. The blocking mechanism will let the request pass, and the server will 
respond with normal functionality. 
When a non-blacklisted client makes a suspicious request, the server will keep a record of the network address 
and the nature of the request. If the request is sufficiently egregious (or the last in a sequence of requests that 
exceeds some predefined threshold of tolerance) the server will request that the address be blacklisted.  The 
blacklist will configure the blocking mechanism to deny further requests from that address.  

When a blacklisted client makes a request of any sort, the blocking mechanism will simply drop the request on 
the floor. Optionally, it may log the request for administrator audit. 

After a period of inactivity from a blacklisted address, the blacklist mechanism will  remove the address from 
the blacklist and configure the blocking mechanisms to allow further requests from that address.  Alternately, 
this can occur because of manual administrator intervention, possibly at a user’s request.  

 

 

FIGURE 45. BLACKLIST IMPLEMENTATION (SOURCE: KIENZEL ET AL. [35]) 

Blocking mechanism within the application: In such a case, the application would be structured roughly 
similar to the figure above. When a request is received, it is first checked against the blacklist before being 
dispatched to the appropriate page. 
 

Let us consider: 

• RT := request threat  

• TH := predefined threshold of tolerance 

• AS := address status (blacklisted or whitelisted) 

• RD := reset duration 

• CT := current time 

• LRTA := last request time from address A 
Based on the above specification we can define a generic pattern for Account Lockout as the following:  

RT >= TH → AS= blacklisted 

LRTA + RD < CT → AS= whitelisted 

If Blacklist is implemented effectively, it enhances system confidentiality and integrity, since it will dissuade or 
prevent attempts to misuse the system. In the case that the pattern is ineffective, it will not adversely affect 
these properties. 
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 PATTERN SPECIFICATION RULE 

Let us assume that we need to verify if the Blacklist property holds for the orchestration in Figure 46. 

 

 

FIGURE 46. BLACKLIST ORCHESTRATION 

The sequence above can be described using the pattern language created in SEMIoTICS as depicted below:  

 

1. ORCH “Blacklist” 

2. Placeholder (A, “1st placeholder”) 
3. Placeholder (BM, “Blocking Mechanism”) 

4. Operation (Op1, subject=M, operationType==“Put in Blacklist”) 

5. Placeholder (B, “2nd placeholder”) 
6. Link (L1, A, BM) 
7. Sequence (S1, A, BM, L1) 

8. Placeholder (BL, “Blacklist”) 
9. Link (L2, S1, B) 
10. Link (L2, S1, BL) 
11. Choice (Ch, S1, B, BL, L1, L2) 
12. Property (Pr, subject=Ch, category=Blacklist, satisfied==false) 

 

Based on the above, the Blacklist Pattern can be represented in Drools as shown in Table 32. 

 

TABLE 32. BLACKLIST PATTERN AS DROOLS RULE 

1. rule "Blacklist Verification" 

2. when 

3.     $p1: Placeholder($pID1:=placeholderID) 

4.     $p2: Placeholder($pID2:=placeholderID) 

5.     $pr1: Property($pID2:=subject, category=="Blacklist", satisfied==true) 

6.     $p3: Placeholder($pID3:=placeholderID) 

7.     $p4: Placeholder($pID4:=placeholderID) 

8.     $s: Sequence($sID:=id, $pID1:=placeholderA, $pID2:=placeholderB) 

9.     $ch: Choice($chID:=id, $sID:=placeholderA, $pID3:=placeholderB, $pID4:=placeholderC) 

10.     $pr2: Property($chID:=subject, category=="Blacklist", satisfied==false) 

11. then 

12.     modify($pr2){satisfied=true}; 

13. end 

 

1. rule "Blacklist Verification with Certificate - Placeholder" 
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2. when 

3.     $p1: Placeholder($pID:=placeholderID) 

4.     $op: Operation($opID:=operationID, $pID:=subject, operationType=="Put in Blacklist") 

5.     $pr: Property ($pID:=subject, category=="Blacklist", verificationType == 

"Certificate", $vermeans := means, satisfied==false) 

6. then 

7.     if ($pr.checkCertificate($vermeans)) { 

8.         modify($pr){satisfied=true}; 

9.     } 

10. end 

 

The when part of the first rule specifies:  

1. the placeholders $p1, $p2, $p3 and $p4 along with the property Blacklist for $p2 ($pr1);  
2. the order in which they should be executed ($s and $ch),  
3. the orchestration property that can be guaranteed through the application of the pattern, i.e., the 

Blacklist property in this case ($pr2). 

The then part verifies that the orchestration property holds since every essential component is included in the 
when part (satisfied=true).  

Moreover, the second Drools Rule verifies that the Blacklist property holds for an individual orchestration 
component (placeholder). In this case, the way to verify that this property actually holds is utilizing a certificate 
from a trusted entity.  

The when part of the rule specifies:  

1. the placeholder $P1 along with its operation “Lockout”;  
2. the property that can be guaranteed utilizing the available certificate, i.e., the Blacklist property in this 

case ($pr) 

The then part calls the method that assesses the certificate and if the certificate is valid, the Blacklist property 
is verified (satisfied=true). 

 Privacy 

Privacy, as already highlighted in subsection 2.2, is a complex topic with significant legal and regulatory 
implications. The latter comprise a dynamic landscape, as ever-stricter privacy laws are being introduced in 
many countries around the world, with the EU being at the forefront of such efforts, mainly through GDPR [4], 
and the push for “Privacy by design”. 

There have been various efforts to provide architectural and design patterns for the protection of privacy (e.g., 
[49][52][53][54]) though these are significantly less common than other topics, such as patterns covering 
software development and cloud architectures, or even security properties (as the ones defined in subsection 
4.1 above). Still, this is expected to improve as privacy comes into the limelight , being recognised as an 
important standalone requirement.  

An important obstacle when defining privacy patterns is the fact that while the privacy properties themselves 
are relatively well understood, there is a lack of an established terminology for referring to some of the 
properties [55], and also a lack of a clear taxonomy in defining the relationships between said properties [56]. 
Therefore, a literature review reveals conflicting definitions of the terms, as well as their relationship, even 
among privacy-related standards. For example, some works group anonymity and pseudonymity together (e.g., 
[57]), while others highlight the significant differences between the two in terms of linkability (e.g., see 
Pfitzmann et al. [55] and ISO/IEC 29100:2011 [58]). Another example of such discrepancies is that some works 
group unobservability and undetectability (e.g., see ISO/IEC 15408-2:2008 [59] and Kalloniatis et al. [57]) while 
others differentiate between the two (e.g., Pfitzmann et al. [55] and Diamantopoulou et al. [60]). 

Considering the above landscape and consolidating the various views, the work presented herein covers the 
eight key privacy concepts as identified and defined by the consensus of works in the area [55][57]-[63], 
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namely: i) Data Protection; ii) Authentication; iii) Authorisation; iv) Anonymity; v) Pseudonymity; vi) 
Unlinkability; vii) Undetectability, and; viii) Unobservability.  

From the above, we can derive two subgroups of properties: properties (i)-(iii) are, in fact, security properties 
(which is expected, since security is required to achieve privacy, considering the need for protection of personal 
data), while properties (iv)-(viii) are solely privacy related. Thus, for the first group of properties we refer the 
reader to the analysis of the corresponding properties in subsection 4.1, while properties of the second group 
will be defined in the subsections that follow. 

The subsections below also highlight enablers (typically referred to as Privacy Enabling Technologies – PETs 
– in the context of Privacy) allowing the satisfaction of said properties from an implementation perspective, 
while providing patterns for some characteristic examples of them. PETs are defined as “a system of ICT 
measures protecting informational privacy by eliminating or minimising personal data thereby preventing 
unnecessary or unwanted processing of personal data, without the loss of the functionality of the information 
system” [64][65]. In the context of this work, PETs can be considered as specific technological building blocks 
that can be used to implement a pattern. 

It should be noted that anonymity, pseudonymity, unlinkability, undetectability and unobservability depend on 
the system/attacker model considered. Said model defines the capabilities of the attacker (if the attacker 
eavesdrops upon or controls the network and/or some of the endpoints, if the attacker is colluding with some 
of the senders or some of the receivers or third parties, and other such variations). A full coverage and analysis 
on the satisfaction of these properties under all envisioned cases is beyond the scope of the work presented 
herein, as it focuses on deriving practical patterns for designing, deploying and monitoring IoT orchestrations 
that integrate the PETs that can guarantee said privacy properties. For such a theoretical analysis we defer 
the reader to the rich literature on the matter (e.g., the seminal works of A. Pfitzmann [55][66][67] and other 
resources on the topic [61]). 

The abovementioned privacy properties, concepts and related patterns, their relationships and the enabling 
patterns that will be provided herein, are depicted in the hierarchical graph of Figure 47. 

 

FIGURE 47. HIERARCHICAL VIEW OF PRIVACY PROPERTIES, CONCEPTS AND ENABLING 
PATTERNS 

 ANONYMITY 

Anonymity "ensures that a user may use a resource or service without disclosing the user's identity" (ISO/IEC 
15408-2008 [59]). A definition more evidently considering the current legislative privacy landscape (e.g., 
GDPR), thus focusing on personally Identifiable Information (PII), states that “Anonymity is a characteristic of 
information that does not permit a personally identifiable information principal to be identified directly or 
indirectly” (ISO/IEC 29100:2011 [58]). Nevertheless, a more generic view of Anonymity is provided in the 
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following: "Anonymity of a subject means that the subject is not identifiable within a set of subjects, the 
anonymity set" [55], whereby "anonymity set" is the set of all possible subjects.  

A formal definition of anonymity is as follows (originally defined in [67], adapted in [61]):  

Let RU denote the event that an entity U (e.g., a user) performs a role R (e.g., as a sender or receiver of a 
message) during an event E (e.g., communication event, or a service access). Let A denote an attacker, and 
let NCA be the set of entities that are not cooperating with A. 

An entity U is called anonymous in role R for an event E against an attacker A, if for each observation B that 
A can make, the following holds: 

∀ U´ ∈  NCA: 0 <  P(RU´ | B)  <  1 

A less strict requirement could be that the above relation does not have to hold for all but at least for most non-
cooperating entities from the set NCA. However, anonymity for an entity U in the role R can only be guaranteed 
if the value P(RU | B) is not too close to the values 1 or 0. Thus, an additional requirement should be:  

0 <<  𝑃(𝑅𝑈  | 𝐵)  <<  1 [A <<B means that A is much smaller than B] 

As mentioned above, anonymity also depends on the model considered, leading to different types of 
anonymity: Sender anonymity means the user is anonymous in her role as a sender (the receiver might not 
be), and vice versa for Receiver anonymity. This, elaborating on the above: 

An entity U is defined as perfectly anonymous in role R for an event E against an attacker A, if for each 
observation B that A can make:  

∀ U´ ∈  NCA: P(RU´) = P(RU´ | B) 

That is, observations give an attacker no additional information. 

Thus, in perfect sender (or receiver) anonymity, whereby the attacker cannot distinguish the situations in 
which a potential sender (receiver) actually sent (received) communications and those in which he did not . 

As such, anonymity facilitates user access to services and resources without revealing their identity or other 
sensitive information (e.g., exact location), blocking tracking and profiling attempts. Nevertheless, some 
constraints have to be considered; e.g., strong anonymity implies a large anonymity set (i.e., a large set of 
users, which is not always possible), while strong anonymity also constrains the usability of data (e.g., location-
based or personalised services cannot be as accurate). 

A significant number of PETs can be leveraged to implement anonymity, as the development of anonymous 
communication networks (ACNs) comprises one of the most prominent areas of privacy-related research and 
development efforts. Solutions include the use of anonymizing proxies and trusted third parties (e.g. CATS10), 
Mix networks [68] (e.g., the Mixmaster anonymous remailer11), DC-nets [69], Onion Routing [70] (e.g., the Tor 
browser [71]), k-Anonymity [72], L-diversity [73] and t-Closeness [74] schemes (e.g., for location privacy [75]) 
and many others (see related works cited within this section). 

 MIX NETWORK PATTERN DEFINITION 

The concept of Mix networks (often referred to as “Mix-Nets”) was introduced by D. Chaum [68] and has had 
very significant impact in the area of anonymous networking. It provides sender anonymity against the receiver 
(optionally recipient anonymity), as well as unlinkability of sender and receiver [61]. Combined with dummy 
traffic, they can also provide unobservability [55] (more on that in the subsections that follow). The popular 
concept of Onion Routing [70] is based on mixes but adds layered encryption. 

 

10 https://www.custodix.com/index.php/cats 
11 http://mixmaster.sourceforge.net/ 

https://www.custodix.com/index.php/cats
http://mixmaster.sourceforge.net/
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FIGURE 48. SENDER ANONYMITY IN A MIX NETWORK (SOURCE: M. HAFIZ [51]) 

The concept, as shown in Figure 48 and Figure 49, relies on the existence of a chain of independent mix 
stations (or “mixes”) between senders and receivers. Said stations are responsible for mixing traffic from each 
user with traffic from other users, collecting and storing the user messages, decrypting and re-encrypting them 
(to change their appearance) and outputting them in a different order than the one received. 

 

FIGURE 49. A MIX NETWORK HIDES THE RELATION BETWEEN INCOMING AND OUTGOING 
MESSAGES (SOURCE: S. FISCHER-HÜBNER [61]) 

 

 PATTERN SPECIFICATION RULE 

Let us assume that a node (let it be “A”) wants to send a message to another node (let it be “B”), and we want 
to ensure that anonymity is provided for this exchange. A process pattern that integrates a Mix network into 
the orchestration (resulting in a view similar to Figure 49) can be applied. In order to verify the anonymity 
property holds for the resulting orchestration (see Figure 50), the sequence can be described using the pattern 
language created in SEMIoTICS as follows: 
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1. ORCH “Mix-net” 
2. Placeholder (A, “1st placeholder”) 
3. Placeholder (M, “Mix-net”) 
4. Operation (Op1, subject=M, operationType==“Anonymise”) 
5. Placeholder (B, “2nd placeholder”) 
6. Link (L1, A, M) 
7. Sequence (S1, A, M, L1) 
8. Link (L2, S1, B) 
9. Sequence (S2, S1, B, L2) 

10. Property (Pr, subject=S2, category=Anonymity, satisfied==false) 
 

 

FIGURE 50. MIX NETWORK ANONYMISATION SEQUENCE 

Based on the above, the Mix Network Pattern can be represented in Drools as shown in Table 33. 

TABLE 33. MIX NETWORK ANONYMISATION AS DROOLS RULE 

1. rule " Anonymisation - Sequence" 
2.     when 

3.         $P1: Placeholder($pl1:=placeholderid) 

4.         $P2: Placeholder($pl2:=placeholderid) 

5.         $PR1: Property($pl2:=subject, category=="Anonymity", satisfied==true) 

6.         $P3: Placeholder($pl3:=placeholderid) 

7.  

8.         $s1: Sequence($sid1:=id, $pID1:=placeholderA, $pID2:=placeholderB) 

9.         $s2: Sequence($sid2:=id, $sID1:=placeholderA, $pID3:=placeholderB) 

10.  
11.         $PR2: Property($sID2:=subject, category=="Anonymity", satisfied==false) 
12.     then 
13.          modify($PR2){satisfied=true}; 
14. End 
 

1. rule "" Anonymisation Verification with Certificate - Placeholder " 

2.     when 

3.         $P1: Placeholder($pID:=placeholderID) 

4.         $OP: Operation($opID:=operationID, $pID:=subject, operationType=="Anonymise") 

5.         $PR: Property ($pID:=subject, category=="Anonymity", verificationType == 

"Certificate", $vermeans := means, satisfied==false) 

6.     then 

7.         if ($PR.checkCertificate($vermeans)) { 

8.             modify($PR){satisfied=true}; 

9.         } 

10.  end 

 

As we can see in the table above, there are two Drools rules for two different layers, sequence and placeholder. 
According to the first rule, the when part of the first rule specifies:  
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1. the three placeholders $P1, $P2 and $P3 of the pattern (lines 3-4 and 6);  
2. the property “Anonymity” that must hold for the second placeholder (line 5); 
3. the order in which they should be executed (lines 8 and 9);  
4. the orchestration property that can be guaranteed through the application of the pattern, i.e., the 

Anonymity property in this case (line 11). 

The then part verifies that the orchestration property ($PR) holds (satisfied=true), since all the necessary 
orchestration components (placeholders and properties) are present in the when part of the rule.  

At the Placeholder level (second rule), we present an additional Drools Rule regarding the verification of the 
pattern. This second rule verifies that the Anonymity property holds for an individual orchestration component. 
The way to verify that this property actually holds is utilizing a certificate from a trusted entity. The when part 
of the rule specifies:  

1. the placeholder $P1 along with its operation “Anonymise” (lines 3-4);  
2. the property that can be guaranteed utilizing the available certificate, i.e., the Anonymity property (line 

5) 

The then part calls the method that assesses the certificate and if the certificate is valid, the Anonymity 
property is verified (lines 7-8). 

 ORCHESTRATION IDENTIFIABILITY CHECK PATTERN DEFINITION 

In order to guarantee anonymity and unlinkability of entities, not only components that form the service should 
be checked for these properties but also their composition. At each layer of composition, the data union that 
the layer produces should be evaluated, since the privacy properties can be violated by correlation of data 
from different sources In this context, a privacy pattern to check the identifiability is provided herein 
(identifiability being defined as an opposite of anonymity and unlinkability, as in [55]).  

More specifically, let us consider the composition of a service of two components.  

 

FIGURE 51. ORCHESTRATION IDENTIFIABILITY PATTERN EXAMPLE 

Let us assume that for each x in {A, B, C} 

• OUTX are the sets of outputs of x 

• INX are the sets of inputs of x 

• EX=INX ∪ OUTX  
• VX and CX are two disjoint subsets of EX which partition it into public parts VX and confidential parts CX 

• L is a corpus of sets that are pre-defined that expose privacy 
 

Then in order the composition to satisfy the privacy requirements, the following properties must hold: 



780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017 

Deliverable D4.8 SEMIoTICS SPDI Patterns (final) 

Dissemination level: Public  

 

112 

 

a. VA ∩ L =⌀  
b. VB ∩ L =⌀  
c. VC ∩ L =⌀  

 

Moreover, when data are at rest (i.e. in storage) we should take precautions that: 

d. (VA ∪ VB ∪ VC) ∩ L =⌀  
 

Still, the following properties should also hold: 

e. (VA ∪ VB) ⊆ VC  
f. (VA ∪ VB) ∩ CC =⌀ 

 

As an example, let us assume that there are two components A and B that we want to use to create a service 
C. Moreover, a set L that exposes users privacy is L={(name, location), (name, medical_condition)}; i.e., we do 
not want a service that exposes a person’s name along with her location and/or her medical conditions.  

Component A publicly sends the user’s ID, environmental temperature and location, while component B 
publicly sends the user’s name, user’s ID and the humidity of the environment 

In this case, Req(A, Privacy) is validated as True (since OUTA ∩ L =⌀), and also Req(B, Privacy) is validated as 
True (since OUTB ∩ L =⌀). 

Nevertheless, the composition of A and B to form C, as in Figure 51, creates: 

  

OUTC= OUTA∪OUTB = {userID, temperature, location, UserName, humidity} 

 

This means that OUTC ∩ L = {name, location}, which is not empty; thus, the composition of those 2 services is 
not viable, as it violates the privacy pattern rule and creates a privacy leak. 

 PATTERN SPECIFICATION RULE 

Following a similar approach, the pattern definition on our language could be: 

 

0. ORCH “Identifiability” 

1. Activity(_a) 

2. Activity(_b) 

3. Merge(_a,_b) 

4. AP_1(“Identifiability”,_a, certificate) 

5. AP_2(“Identifiability”,_b, certificate) 

6. AP_3(“Identifiability”,dataMerge(_a,_b), patern) 

7. OP(Identifiability, subject == “Identifiability”, satisfied == false) 

8. Pattern rule: AP_1,AP_2,AP_3 ➔ OP 

 

1. ORCH “Identifiability” 

2. Placeholder (A1, (PlaceholderActivity, PlaceholderDescription)) 

3. Placeholder (A2, (PlaceholderActivity, PlaceholderDescription)) 

4. Merge (A1, A2) 

5. Link (L1, A1, A2) 
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6. Property (Identifiability1, A1, required, (certificate, interface), in_processing) 

7. Property (Identifiability2, L1, required, (pattern-based, pattern), in_processing) 

8. Property (Identifiability3, A2, required, (certificate, interface), in_processing) 

9. Property (Identifiability4, “Identifiability”, required, (pattern-based, PR1), end_to_end) 

10. Pattern rule: (PR1: Identifiability1, Identifiability4, Identifiability3 ➔ Identifiability4) 

 

This pattern can be then translated to a Drools engine compatible pattern as in Table 34. 

TABLE 34: SPECIFICATION OF ORCHESTRATION IDENTIFIABILITY CHECK VIA DROOLS 

1. rule "Identifiability" 

2. when 

3.     $A: Placeholder($output_A: Activity.output) 

4.     $B: Placeholder($output_B: Activity.output) 

5.     $ORCH: Merge($A, $B) 

6.     $OP: Property( propertyName == "Identifiability", subject == $ORCH, satisfied == false) 

7.     $SP: PropertyPlan(propeties contains $OP) 

8. then 

9.     PropertyPlan newPropertyPlan = new PropertyPlan($SP);  

10.     newPropertyPlan.removeProperty($OP);   

11.     Property NP_A = new Property($OP, "Identifiability", $A); 

12.     Property NP_B = new Property($OP, "Identifiability", $B); 

13.     insert(NP_A) 

14.     insert(NP_B) 

15.     insert(newPropertyPlan); 

16. end 

As with previous rule definitions, the when part of the first rule specifies the two placeholders, the property 
“Identifiability” that , the order in which they should be executed (“Merge”), and the orchestration property that 
can be verified through the application of the pattern, i.e., the Identifiability property in this case. The then part 
verifies that the orchestration property ($PR) holds (satisfied=true), since all the necessary orchestration 
components (placeholders and properties) are present in the when part of the rule. 

 PSEUDONYMITY 

Pseudonymity “ensures that a user may use a resource or service without disclosing its user identity, but can still 
be accountable for that use” (ISO/IEC 15408-2008 [59]). A definition focusing on PII refers to pseudonymization 
as the “process applied to personally identifiable information (PII) which replaces identifying information with 
an alias” (ISO/IEC 29100:2011 [58]). Again, a more generic definition is provided by Pfitzmann et al. [55]: 
“Pseudonymity is the use of pseudonyms as identifiers”;  whereby a pseudonym is “an identifier of a subject 
other than one of the subject’s real name”. 

As such, pseudonymity allows the use of services without disclosing the user’s real identity or other identifiable 
information, while allowing the use of resources that allow the user to be accountable for her actions (i.e., 
allowing the use of authenticated services, billing, logging, auditing etc.); this is often referred to as linkability 
(for the opposite of linkability, namely unlinkability, please refer to subsection 4.2.3 below). A process pattern 
that provides a generic structure for the use of pseudonymity or anonymity (depending on the context and 
application requirements) is depicted in Figure 52. 
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FIGURE 52. ANONYMITY AND PSEUDONYMITY PROCESS PATTERN (SOURCE: DIAMANTOPOULOU 
ET AL. [60]) 

It is important to reiterate that, while a number of works group pseudonymity and anonymity together (e.g., 
[57]), the two properties are not equivalent [55]. In fact, pseudonymization contrasts with anonymization, as 
the latter destroys linkability. This is evident in the context of the handling of PII, as anonymized data is no 
longer PII (ISO/IEC 29100:2011 [58]). 

There are numerous degrees of pseudonymity depending on various factors (number of pseudonyms per 
subject, guaranteed uniqueness, transferability to other subjects, frequency of changeover etc. [77][78][61]) 
and classifications of pseudonyms (public and non-public personal pseudonyms, role-based pseudonyms, 
transaction pseudonyms etc. [67]), but again a full analysis of these is beyond the scope of this deliverable 
and we defer the reader to the related works cited herein. 

A number of PETs can be leveraged to implement pseudonymisation, varying on their features and capabilities 
depending on the context and application requirements they were designed to accommodate. The most 
prominent application of pseudonyms are user-generated public keys encoded on self-signed certificates, e.g. 
as in the PGP12 system. Other pseudonymisation PETs include the use of browsing pseudonyms, virtual email 
addresses or pseudonymous remailers (e.g. Mixminion [79]), trusted third parties (such as Identity 
Protectors/Brokers), the use of Anonymous Credential Systems [77] (e.g., idemix [80]), CRM personalisation 
[81], and authentication methods that can facilitate user registration using pseudonyms (e.g. the use of smart 
cards or RFID cards).  

 IDENTITY PROTECTOR PATTERN DEFINITION 

A key pseudonymity enabler, particularly in applications where the presence of a trusted third party can be 
assumed, is the deployment of an Identity Broker. An Identity Broker acts as a proxy that handles the linkability 
between users and external services/resources that they access, and the interactions between users. As 
defined in [55]: “Since anonymity can be described as a particular kind of unlinkability, the concept of identity 
broker can be generalized to linkability broker. A linkability broker is a (trusted) third party that, adhering to 
agreed rules, enables linking IOIs for those entities being entitled to get to know the linking”. 

An implementation of such and Identity Broker is the “Identity Protector” [82], which generates pseudo-
identities, handles the translation between real and pseudoidentities, maps pseudo-identities to other pseudo-
identities, and controls all instances when the real identity is disclosed. Such a proxy can be installed on a part 
of the network and create two domains within the information system: (i) an “Identity Domain” within the actual 

 

12 https://www.openpgp.org/ 

https://www.openpgp.org/
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identity of the user(s) is known, and (ii) one or more Pseudo Domain(s), where the real identity is secret and 
pseudonyms are used. A high-level view of this concept is shown in Figure 53. 

 

FIGURE 53. IDENTITY PROTECTOR SEPARATING IDENTITY AND PSEUDO DOMAINS 

As mentioned, depending on the application and its requirements, the Identity Protector can be installed in 
different sections of the network topology. An example of this appears in Figure 54. 

 

FIGURE 54. POSSIBLE INSTALLATIONS OF THE IDENTITY PROTECTORS (ADAPTED FROM [61]) 

 PATTERN SPECIFICATION RULE 

Let us assume that a node (let it be “A”) wants to interact with a service (let it be “B”), and we want to ensure 
that pseudonymity is used (i.e., A’s identity is not revealed to B, but only a pseudonym). A process pattern that 
integrates an Identity Protector into the orchestration can be applied. In order to verify that the pseudonymity 
property holds for the resulting orchestration (see Figure 55), the sequence can be described using the pattern 
language created in SEMIoTICS as follows: 

1. ORCH “IdentityProtector” 
2. Placeholder (A, “1st placeholder”) 
3. Placeholder (IP, “IdentityProtector”) 
4. Operation (Op1, subject=IP, operationType==“Pseudonymise”) 
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5. Placeholder (B, “2nd placeholder”) 
6. Link (L1, A, IP) 
7. Sequence (S1, A, IP, L1) 
8. Link (L2, S1, B) 
9. Sequence (S2, S1, B, L2) 

10. Property (Pr, subject=S2, category=Pseudonymity, satisfied==false) 
 

 

FIGURE 55. IDENTITY PROTECTOR ANONYMISATION SEQUENCE 

Based on the above, the Identity Protector Pattern can be represented in Drools as shown in Table 35. 

TABLE 35. IDENTITY PROTECTOR PSEUDONYMITY AS DROOLS RULE 

1. rule " Pseudonymisation - Sequence" 
2.     when 

3.         $P1: Placeholder($pl1:=placeholderid) 

4.         $P2: Placeholder($pl2:=placeholderid) 

5.         $PR1: Property($pl2:=subject, category=="Pseudonymity", satisfied==true) 

6.         $P3: Placeholder($pl3:=placeholderid) 

7.  

8.         $s1: Sequence($sid1:=id, $pID1:=placeholderA, $pID2:=placeholderB) 

9.         $s2: Sequence($sid2:=id, $sID1:=placeholderA, $pID3:=placeholderB) 

10.  
11.         $PR2: Property($sID2:=subject, category=="Pseudonymity", satisfied==false) 
12.     then 
13.          modify($PR2){satisfied=true}; 
14. End 
 

1. rule "" Pseudonymisation Verification with Certificate - Placeholder " 

2.     when 

3.         $P1: Placeholder($pID:=placeholderID) 

4.         $OP: Operation($opID:=operationID, $pID:=subject, operationType=="Pseudonymise") 

5.         $PR: Property ($pID:=subject, category=="Pseudonymity", verificationType == 

"Certificate", $vermeans := means, satisfied==false) 

6.     then 

7.         if ($PR.checkCertificate($vermeans)) { 

8.             modify($PR){satisfied=true}; 

9.         } 

10. end 

 

As we can see in the table above, there are two Drools rules for two different layers, sequence and placeholder. 
According to the first rule, the when part of the first rule specifies:  

1. the three placeholders $P1, $P2 and $P3 of the pattern (lines 3-4 and 6);  
2. the property “Pseudonymity” that must hold for the second placeholder (line 5); 
3. the order in which they should be executed (lines 8 and 9);  
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4. the orchestration property that can be guaranteed through the application of the pattern, i.e., the 
Pseudonymity property in this case (line 11). 

The then part verifies that the orchestration property ($PR) holds (satisfied=true), since all the necessary 
orchestration components (placeholders and properties) are present in the when part of the rule.  

At the Placeholder level (second rule), we present an additional Drools Rule regarding the verification of the 
pattern. This second rule verifies that the Pseudonymity property holds for an individual orchestration 
component. The way to verify that this property actually holds is utilizing a certificate from a trusted entity. The 
when part of the rule specifies:  

1. the placeholder $P1 along with its operation “Pseudonymise” (lines 3-4);  
2. the property that can be guaranteed utilizing the available certificate, i.e., the Pseudonymity property 

(line 5) 

The then part calls the method that assesses the certificate and if the certificate is valid, the Pseudonymity 
property is verified (lines 7-8). 

 UNLINKABILITY 

Unlinkability “ensures that a user may make multiple uses of resources or services without others being able to link 
these uses together” and “requires that users and/or subjects are unable to determine whether the same user 
caused certain specific operations in the system” (ISO/IEC 15408-2008 [59]). A more universal definition, not 
focusing specifically on users but on Items of Interest (IOIs) in general,  has been proposed by Pfitzmann et al. 
[55]: “Unlinkability of two or more items of interest (IOIs, e.g., subjects, messages, actions, ...) from an 
attacker’s perspective means that within the system (comprising these and possibly other items), the attacker 
cannot sufficiently distinguish whether these IOIs are related or not”. 

More formally, unlinkability can be defined as follows (originally defined in [67], adapted in [61]): 

Let XE,F denote the event that the events E and F have a corresponding characteristic X. Two events, E and F, 
are unlinkable in regard of a characteristic X (e.g., two messages are unlinkable with a subject or with an 
transaction) for an attacker A, if for each observation B that A can make, the probability that E and F are 
corresponding in regard of X given B is greater than zero and less than one: 

0 <  P(XE,F | B)  < 1. 
A stricter requirement for unlinkability is: 

0 <<  P(XE,F | B)  <<  1 

E and F are perfectly unlinkable if:  
P(XE,F | B)  =  P(XE,F) 

As such, unlinkability is related to anonymity, but is a more “fine-grained” property; it is a sufficient condition 
for anonymity, but not a necessary one [55]. The benefits from unlinkability are important for users who do not 
wish to be tracked in terms of the services and other resources they access, thus minimising risks that may 
arise from the correlation of such activities (e.g., to derive PII by combining seemingly non-personal data) and 
user profiling in general. Nevertheless, as it is the case with anonymity, whereby strong anonymity requires a 
large anonymity set, strong unlinkability also requires a large unlinkability set. To strengthen unlinkability, often 
equal or near-equal equal distribution of traffic between all potential senders and all potential receivers is 
pursued (often through the generation of cover “dummy” traffic), which is not always practical and leads to 
excessive traffic overheads. 

Implementation techniques that can used to provide the unlinkability property are for the most part common to 
those providing anonymity (e.g., Mix networks [68], DC-nets [69], Onion Routing [70]). Other pertinent tools 
include various track and evident erasers [60] (e.g., spyware detection and removal tools, browser cleaning 
tools, activity traces erasers, hard disk data erasers), as well as identity federation13 and data fragmentation 
techniques [83]. Finally, the use of dummies (be it dummy traffic, dummy activity traces and any other dummy 
data and actions) can be used to provide unlinkability between a user and her actions [61][49][52].  

 COVER TRAFFIC PROXY PATTERN DEFINITION 

 

13 https://privacypatterns.org/patterns/Identity-federation-do-not-track-pattern 

https://privacypatterns.org/patterns/Identity-federation-do-not-track-pattern
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Considering the importance of generating dummy traffic to increase the unlinkability set and negate any 
attempts for linking users to their actions, a valuable addition in any orchestration requiring unlinkability is one 
of a proxy generating fake request and dummy traffic. Such a proxy will typically be placed between the user 
and the services of interest (see Figure 56), ensuring that third parties cannot map specific users to specific 
request of access to a service or a resource.  

 

FIGURE 56. A COVER TRAFFIC PROXY GENERATING DUMMY TRAFFIC TO INCREASE THE 
UNLINKABILITY SET. 

 PATTERN SPECIFICATION RULE 

Let us assume that entity “A” needs to access a resource “B”, but there is need to ensure unlinkability.  Through 
the application of a “Use of dummies” [60] or “Cover Traffic” [52] process pattern, a Cover Traffic Proxy is 
deployed in the workflow, resulting in an orchestration as depicted in Figure 57. 

 

FIGURE 57. UNLINKABILITY THROUGH COVER TRAFFIC SEQUENCE 

In the SEMIoTICS pattern language, this sequence can be described as follows: 

1. ORCH “CoverTraffic” 
2. Placeholder (A, “1st placeholder”) 
3. Placeholder (CTP, “CoverTrafficProxy”) 
4. Operation (Op1, subject=CTP, operationType==“CoverTrafficGeneration”) 
5. Placeholder (B, “2nd placeholder”) 
6. Link (L1, A, IP) 
7. Sequence (S1, A, IP, L1) 
8. Link (L2, S1, B) 
9. Sequence (S2, S1, B, L2) 

10. Property (Pr, subject=S2, category=Unlinkability, satisfied==false) 
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Based on the above, the Identity Protector Pattern can be represented in Drools as shown in Table 36. 

TABLE 36. COVER TRAFFIC AS DROOLS RULE 

1. rule " Pseudonymisation - Sequence" 
2.     when 

3.         $P1: Placeholder($pl1:=placeholderid) 

4.         $P2: Placeholder($pl2:=placeholderid) 

5.         $PR1: Property($pl2:=subject, category=="Unlinkability", satisfied==true) 

6.         $P3: Placeholder($pl3:=placeholderid) 

7.  

8.         $s1: Sequence($sid1:=id, $pID1:=placeholderA, $pID2:=placeholderB) 

9.         $s2: Sequence($sid2:=id, $sID1:=placeholderA, $pID3:=placeholderB) 

10.  
11.         $PR2: Property($sID2:=subject, category=="Unlinkability", satisfied==false) 
12.     then 
13.          modify($PR2){satisfied=true}; 
14. End 
 

1. rule "" Unlinkability Verification with Certificate - Placeholder" 

2.     when 

3.         $P1: Placeholder($pID:=placeholderID) 

4.         $OP: Operation($opID:=operationID, $pID:=subject, operationType=="CoverTrafficGeneration") 

5.         $PR: Property ($pID:=subject, category=="Unlinkability", verificationType == 

"Certificate", $vermeans := means, satisfied==false) 

6.     then 

7.         if ($PR.checkCertificate($vermeans)) { 

8.             modify($PR){satisfied=true}; 

9.         } 

10. end 

 

As we can see in the table above, there are two Drools rules for two different layers, sequence and placeholder. 
According to the first rule, the when part of the first rule specifies:  

1. the three placeholders $P1, $P2 and $P3 of the pattern (lines 3-4 and 6);  
2. the property “Unlinkability” that must hold for the second placeholder (line 5); 
3. the order in which they should be executed (lines 8 and 9);  
4. the orchestration property that can be guaranteed through the application of the pattern, i.e., the 

unlinkability property in this case (line 11). 

The then part verifies that the orchestration property ($PR) holds (satisfied=true), since all the necessary 
orchestration components (placeholders and properties) are present in the when part of the rule.  

At the Placeholder level (second rule), we present an additional Drools Rule regarding the verification of the 
pattern. This second rule verifies that the Unlinkability property holds for an individual orchestration component. 
The way to verify that this property actually holds is utilizing a certificate from a trusted entity. The when part 
of the rule specifies:  

1. the placeholder $P1 along with its operation “CoverTrafficGeneration” (lines 3-4);  
2. the property that can be guaranteed utilizing the available certificate, i.e., the unlinkability property (line 

5) 

The then part calls the method that assesses the certificate and if the certificate is valid, the unlinkability 
property is verified (lines 7-8). 

 UNDETECTABILITY 

Undetectability is “the inability for a third party to distinguish who is the user (among a set of potential users) 
using a service” [60]. A less user-focused and, thus, more general definition of undetectability is as follows: 
“Undetectability of an item of interest (IOI) from an attacker’s perspective means that the attacker cannot 
sufficiently distinguish whether it exists or not” [55].  
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It should be noted that in the privacy-related literature the undetectability property is not always considered as 
a standalone aspect (e.g., there is no reference to it in ISO/IEC 15408-2008 [59], ISO/IEC 29100:2011 [58], 
the Common Criteria for Information Technology Security Evaluation [62], nor in a large part of the pertinent 
academic works); in fact, it is often merged with unlinkability or unobservability. Nevertheless, as highlighted 
by A. Pfitzmann’s seminal works on privacy terminology and the iterative enrichment of said terminology (e.g., 
see additions from [84] to [55], and more recent works from other authors adopting this approach [60]), the 
differentiation between these terms is clear and needed for a thorough analysis of said aspects under the 
different attacker models. More specifically, in the case unlinkability (and anonymity, as well) the focus is on 
protecting (hiding) the relationship between subjects and other IOIs (other users, services, resources etc.), 
while in the case of undetectability the focus is on protecting the IOIs as such [55]. Unobservability, on the 
other hand, is a much stronger property, as will be analysed in subsection 4.2.5 that follows.  

A process pattern for the application of unlinkability and undetectability, providing a structure for the application 
of lower level patterns of individual primitives, is shown in Figure 58. 

 

FIGURE 58. UNLINKABILITY AND UNDETECTABILITY PROCESS PATTERN (SOURCE: 
DIAMANTOPOULOU ET AL. [60]) 

Through undetectability users’ privacy is protected since an attacker (or any third party) cannot detect the IOI ; 
e.g., assuming the IOI is a message, maximal undetectability (or “perfect undetectability”) would mean that the 
message is completely indistinguishable from no message at all. As is the case with other properties defined, 
the strength of undetectability depends on the number of IOIs belonging to the undetectability set.  

The main method of providing undetectability in communication channels is through the adoption of 
mechanisms to achieve statistical independence of all discernible phenomena at lower layers of the 
communication infrastructure stacks (i.e., at a lower communication layer) [55]. This can be achieved, for 
example, by using dummy traffic to maintain a constant flow of messages that look random (typically by 
leveraging encryption to achieve this randomness) for everyone except the entities communicating. Therefore, 
the communication between the entities will go undetected by external parties, as they will see a random and 
constant flow of traffic. In this context, the Cover Traffic generation techniques mentioned for the unlinkability 
property (see subsection 4.2.3.1 above) is also applicable. Other well-known techniques for achieving 
unlinkability include the use of steganography [85], as well as spread-spectrum [86] and spread-time [87] 
stegosystems. 
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 STEGANOGRAPHY PATTERN DEFINITION 

A key enabler of undetectability is the use of steganography, selecting the specific steganographic technique 
depending on the medium used for the communications. Steganography (from the Greek word 
“Στεγανογραφία”, translated to “covert writing”) focuses on techniques allowing the undetectable transmission 
of message by embedding them into innocuous carriers. These carriers are referred to as “stego-mediums” 
and they may include text messages, images & video, audio and others (e.g., using unused space in storage 
devices or the noise in communication channels). Depending on the stego-medium, different steganographic 
techniques can be employed (see Figure 59).  

 

 

FIGURE 59. KEY STEGANOGRAPHIC TECHNIQUES DEPENDING ON TYPE OF STEGO-MEDIUM 

So, in contrast to cryptography that is used to hide the contents of a message, steganography focuses on 
hiding the message itself. A high-level view of a steganographic system (“stegosystem”) is depicted in Figure 
60, also covering the commonly occurring combination of steganography with encryption (for increased 
protection in case the covert message is exposed). 



780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017 

Deliverable D4.8 SEMIoTICS SPDI Patterns (final) 

Dissemination level: Public  

 

122 

 

 

FIGURE 60. STEGANOGRAPHIC SYSTEM MODELS. SIMPLE (TOP) AND WITH ENCRYPTION 
(BOTTOM). (SOURCE: ZÖLLNER ET AL. [88]) 

 PATTERN SPECIFICATION RULE 

Let us assume that entity “A” needs to communicate with entity “B”, but there is need to ensure undetectability 
of the message being sent. For that purpose, steganography can be employed, resulting in a workflow as 
depicted in Figure 61. 

 

FIGURE 61. UNDETECTABILTIY THROUGH STEGANOGRAPHY SEQUENCE 

The sequence above can be described using the pattern language created in SEMIoTICS as depicted below:  

 

1. ORCH “Steganography” 

2. Placeholder (A, “1st placeholder”) 

3. Placeholder (B, “2nd placeholder”) 

4. Operation (Op1, subject=A, operationType==“StegoEmbed”) 
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5. Operation (Op2, subject=B, operationType==“StegoRetrieve”) 

6. Link (L1, A, B) 
7. Sequence (S1, A, B, L1) 

8. Property (Pr, subject=S1, category=Undetectability, satisfied==false) 

 

Based on the above, the Steganography pattern can be represented in Drools as shown in Table 37. 

 

TABLE 37. STEGANOGRAPHY PATTERN AS DROOLS RULES 

1. rule " Single Access Point Verification - Sequence" 
2.     when 

3.         $P1: Placeholder($pl1:=placeholderid) 

4.         $P2: Placeholder($pl2:=placeholderid) 

5.         $OP: Operation(($pl1:=subject, operationType=="StegoEmbed”) 

6.         $OP: Operation(($pl2:=subject, operationType=="StegoRetrieve”) 

7.         $ORCH: Sequence ($seq:=placeholderid, $pl1:=placeholdera, $pl2:=placeholderb) 

8.         $PR: Property ($seq:=subject, category=="Undetectability", satisfied==false) 

9.     then 

10.          modify($pr2){satisfied=true}; 
11. End 

 
1. rule "Undetectability Verification with Certificate #1 - Placeholder" 

2.     when 

3.         $P1: Placeholder($pl1:=placeholderid) 

4.         $Op: Operation($pl1:=subject, name=="StegoEmbed") 

5.         $PR: Property ($pl1:=subject, category == "Undetectability", verificationType == 

"Certificate", $vermeans := means, satisfied==false) 

6.     Then 

7.         if ($PR.checkCertificate($vermeans)) { 

8.             modify($PR){satisfied=true}; 

9.         } 

10. end 

 

1. rule "Undetectability Verification with Certificate #2 - Placeholder" 

2.     when 

3.         $P1: Placeholder($pl1:=placeholderid) 

4.         $Op: Operation($pl1:=subject, name=="StegoRetrieve") 

5.         $PR: Property ($pl1:=subject, category == "Undetectability", verificationType == 

"Certificate", $vermeans := means, satisfied==false) 

6.     then 

7.         if ($PR.checkCertificate($vermeans)) { 

8.         modify($PR){satisfied=true}; 

9.     } 

10. end 

 

As we can see in the table above, there are three Drools rules for two different layers, sequence and 
placeholder. According to the first rule, the when part of the first rule specifies:  

1. the two placeholders $P1 and $P2 of the Steganography pattern (lines 3-4);  
2. the operation types “StegoEmbed” and “StegoReceive” that must be supported by the 1 st and 2nd 

placeholder respectively (lines 5 and 6); 
3. the order in which they should be executed (line 7);  
4. the orchestration property that can be guaranteed through the application of the pattern, i.e., the 

Undetectability property in this case (line 8). 

The then part verifies that the orchestration property ($PR) holds (satisfied=true), since all the necessary 
orchestration components (placeholders and properties) are present in the when part of the rule.  
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At the Placeholder level, second rule, we present two additional Drools Rules regarding the verification of the 
pattern. These rules verify that the “StegoEmbed” and “StegoReceive” operation types are present in the two 
placeholders as needed, which ensure that the Undetectability property holds for the individual orchestration 
components. In this example, the verification assumes the presence of a certificate from a trusted entity. 

 UNOBSERVABILITY 

Unobservability “ensures that a user may use a resource or service without others, especially third parties, being 

able to observe that the resource or service is being used” (ISO/IEC 15408-2008 [59]). Pfitzmann et al. [55] 
provide a definition that also shows the relationship (reliance) of unobservability to the co-existence of two 
other “weaker” properties defined above, undetectability and anonymity: “Unobservability of an item of interest 

(IOI) means undetectability of the IOI against all subjects uninvolved in it and anonymity of the subject(s) involved 
in the IOI even against the other subject(s) involved in that IOI.”  

A formal definition of unobservability is as follows (originally defined in [67], adapted in [61]): 

An event E is unobservable for an attacker A, if for each observation B that A can make, the probability of E 
given B is greater zero and less one: 

0 <  𝑃(𝐸 | 𝐵)  <  1 

A stricter requirement, which prevents that the value P(E | B) is too close to either 1 or 0, could be:  

0 <<  𝑃(𝐸 | 𝐵)  <<  1. 

If for each possible observation B that A can make, the probability of an event E is equal to the probability of E 
given B, that is P(E) = P(E|B) then E is called perfectly unobservable. 

As such, unobservability can be considered the strongest property of the ones previously defined and requires 
the provision of these underlying properties in order to be achieved. The unobservability process pattern is 
depicted in Figure 62, whereby the fact that unobservability implies the existence of anonymity or pseudonymity 
and undetectability is visualised. Here it should be clarified that, even though the terms of anonymity and 
pseudonymity are used interchangeably in the figure, as highlighted in [60], the pseudonymity in this context 
is only acceptable if a certain degree of unlinkability can be provided (e.g., through the use of transactions 
pseudonyms that offer a high degree of unlinkability). 

 

FIGURE 62. UNOBSERVABILITY PROCESS PATTERN (SOURCE: DIAMANTOPOULOU ET AL. [60]) 
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Furthermore, the strength of the unobservability depends on the strength of the anonymity/pseudonymity set 
and the strength of the undetectability set, i.e., the strength of the two underlying properties combined to 
achieve unobservability.  

While the benefits of unobservability are significant (users can use a resource or service without others being 
able to observe that said use takes place, while having anonymity amongst all involved parties – an ideal 
condition from a privacy perspective), the complexity and overhead (strong cryptographic operations, complex 
calculations and significant traffic overhead typically involved) are significant, thus the usability is often 
questionable. 

To implement unobservability, one must combine mechanisms offering anonymity with those providing 
unlinkability, as is also reflected in Figure 62. Any mechanism providing some type of anonymity (e.g. 
leveraging the Mix Network pattern defined in subsection 4.2.1.1), appropriately combined with dummy traffic 
(e.g., leveraging the Cover Traffic pattern provided in subsection 4.2.3.1), yields the corresponding type of 
unobservability [55]. Therefore, no unobservability-specific pattern will be defined herein. 

 Dependability 

Dependability typically refers to the provision of expected service, towards task accomplishment in a reliable 
and trustworthy manner, and it entails reliability, safety, availability and security [89]. Nevertheless, the concept 
of security is covered separately above (see subsection 4.1), and in modern computer engineering, security is 
considered to encompass availability (along with confidentiality and integrity). Therefore, in the context of this 
work, Dependability properties will mainly focus on reliability, fault tolerance and safety aspects. These 
aspects, along with their relationship to the enabling patterns provided in this section are depicted in Figure 
63. 

 

FIGURE 63. DEPENDABILITY PROPERTIES AND ASSOCIATED PATTERNS 
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In order to guarantee end-to-end dependability properties, suitable component orchestrations on the different 
SEMIoTICS layers should be found in order to guarantee the required dependability property. If this does not 
exist, the substitution or the addition of current components with other atomic ones or orchestrations is required 
in order to guarantee dependability. This is also related to the components and the topology of the composition.  

However, it should be noted that the composition of two components which preserve a dependability property 
does not necessarily guarantee that the composition will also preserve the same property. In addition, if a 
composition guarantees the conditions of a property, the atomic components may not preserve the property. 
As an example, let us consider a sequential (AND) composition of two components:  

C → C1 ∧ C2 

If a required property should be guaranteed by the C, the subcomponents C1 and C2 should satisfy the 
condition:  

Property (C, Category) → Property (C1, Category) ∧ Property (C2, Category) 

If there are no atomic components to guarantee the required property a recursive procedure is used in which 
successive (sub-) orchestrations are generated until the atomic components bound to them satisfy the required 
properties. The decomposition can be analysed as follows:  

Property (C, Category) → Property (C1, Category) ∧ Property (C2, Category) → 

(Property (C11, Category) ∧ Property (C12, Category))  

∧ (Property (C21, Category) ∧ Property (C22, Category)) 

…until components C11, C12, C21, C22 that satisfy the required property Pro are found 

On the other hand, the multi-choice (OR) composition of two components can be expressed as follows: 

C → C1 ⋁ C2  → Property (C, Category) → Property (C1, Category) ⋁ Property (C2, Category) 

The above procedures can be used to satisfy not only for dependability, but also for all the other SEMIoTICS 
property requirements. 

Moreover, certain dependability properties will need to hold at the component level to enable the E2E 
properties to be achieved. One of the most important issues for a system designer is to validate system 
dependability of components as a critical condition for the design of complex network infrastructures and 
identify the weakest components in order to replace, redesign and find alternative solutions. System 
dependability properties such as reliability and availability depend on component’s arrangements. Stepwise 
decomposition can be used to recursively build network topologies using forward or de-orchestrations using 
backward chaining respectively, as depicted in Figure 64.  
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FIGURE 64. STEPWISE DECOMPOSITION 

 

The two basic arrangements which we are focused on are components in series and in parallel. Other 
arrangements can include parallel-series, k-out-of-n or non-series-parallel systems. More specifically, for 
components in series, the reliability (or availability) for probabilistic models, quickly decreases as t he number 
of components increases. In a serial system a single failure results in entire assembly or system failure. The 
addition of new components in series decreases the reliability (or availability) of system. Components in series 
may have arrangements either following the sequence or parallel-split workflow patterns. This occurs because 
a failure of a single component will result the failure of the system.  

 COMPOSITION RELIABILITY PATTERN DEFINITION 

Reliability of systems in series can be defined as follows [90]:  

 

Definition 1. Let C={C1,C2,...Cn} be a number of components in series and R1, R2,...,Rn be the reliability of 
each component, then the component composition C will have reliability r equal to:  

 

R=∏ (𝑅𝑘)𝑛
𝑘=1  

 

In components in parallel, the reliability (or availability) of the system exists only when at least one component 
is functional. The reliability of the system is the 1 minus the probability that all fail. In parallel components, all 
redundant units’ failure causes system failure. Thus, the addition of components in parallel increases the 
reliability of the subsystem. We may associate the multi-choice pattern as a parallel arrangement because the 
failure of a single component does not cause system failure. Reliability of components in parallel can be defined 
as follows:  

 

Definition 2. Let C = {C1,C2,...Cn} be a number of components in parallel and R = {R1,R2,···,Rn} be the reliability 
of each component, then the parallel component composition C will have reliability R:  

 

R=1-∏ (1 − 𝑅𝑘)𝑛
𝑘=1  

 

In case of arithmetic models such as latency for availability, the following approaches can be used:  

1) For components in series (sequential):  𝐴 = ∑ 𝐴𝑘
𝑛
𝑘=1  

2) For components in parallel (multi-choice): 𝐴 = 𝑚𝑖𝑛{𝐴1, 𝐴2, … , 𝐴𝑛} 

3) For components in parallel (parallel split): 𝐴 = 𝑚𝑎𝑥 {𝐴1, 𝐴2, … , 𝐴𝑛} 

Where A is the total system availability and Aκ for k=1:n. 
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For the SEMIoTICS IoT applications that require end-to-end dependability, a vertical cross layer component 
composition in series can be defined. 

 PATTERN SPECIFICATION RULE 

Reliability pattern can be expressed as rules in Drools production rules. They encode orchestrations in Drools 
corresponding to the structure of the logical reliability arrangements. It also specifies rules that dictate the 
properties that the constituent components must have. 

R(t) = Prob(Comp is fully functioning in [0,t]) 

metric to measure the Reliability of the composition. 

We may consider two activities A and B having specific source operation inputs and outputs and reliability r1 
and r2 respectively. The composition of the two activities will be described as a new activity with reliability R 
based on the components’ arrangement. For the component composition in series, the control flow describes 
the serial arrangement of the components based on the sequence workflow pattern. The data flow defines that 
the outputs of the activity A will be the inputs of component B. In addition, the reliability property guaranteed 
by a serial component composition is equal to R = R1 · R2. Therefore, the guaranteed reliability property R 
should satisfy the required reliability property Rreq ≤ R. The encoded pattern in Drools is depicted in Table 38. 

TABLE 38. VERIFICATION OF COMPOSITION RELIABILITY VIA DROOLS 

1.  rule "Serial Reliable Composition" 

2.  when 

3.    $A: Placeholder($input : operation.inputs, $intData: parameters.outputs,  

4.                    $r1:= reliabilityValue) 

5.    $B: Placeholder(parameters.inputs == $intData, $output: parameters.outputs,  

6.                    $r2:= reliabilityValue) 

7.    $ORCH: Sequence(parameters.inputs:= $input, parameters.outputs == $output, 

8.                  firstActivity == $A, secondActivity == $B) 

9.    $OP: Property(subject:= $ORCH, propertyName== “Reliability",  

10.          $rel:= propertyValue, $rel<= $r1*$r2, satisfied == false) 

11.   $SP: PropertyPlan(property contains $OP) 

12. then 

13.   PropertyPlan newPropertyPlan = new PropertyPlan($SP); 

14.   newPropertyPlan.removeProperty($OP);   

15.   Property NP_A = new Property($OP, "Reliability", $A); 

16.   newPropertyPlan.getProperty().add(NP_A); 

17.   insert(NP_A); 

18.   Property NP_B = new Property($OP, "Reliability", $B); 

19.   newPropertyPlan.getProperty().add(NP_B); 

20.   insert(NP_B); 

21.   insert(newPropertyPlan); 

22.   modify($OP){satisfied=true}; 

23. end 

 

 REDUNDANCY PATTERN DEFINITION 

Redundancy is a means of addressing the existence of single points of failure by replicating critical parts of a 
system. In that manner if the critical part fails, an alternate part will overtake the functionality of the first one.  
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Hardware redundancy aims at having replicated set of hardware while software redundancy aims at having 
multiple instances of the software. If the replicated part is introduced in a stand-by form the active-passive 
redundancy is used, if it is introduced in active-active form the active-active redundancy is used (Figure 65). 

 

 

FIGURE 65. TWO TYPES OF REDUNDANCY (SOURCE: RITTER ET AL. [33]) 

  

A known use of redundancy can be found in MySQL database cluster solution [46].  All single points of failure 
are made redundant, including data nodes, network cards, switches and links. Moreover, active-active 
redundancy is used at Apache’s Tomcat cluster solution for web-based applications. Apache web server 
connects to various Tomcat instances through mod_jk module before communicating with the database. If one 
of the Tomcat instances fails, the rest will continue to serve the incoming requests. 

 

 PATTERN SPECIFICATION RULE 

Let us assume that we need to verify if the Redundancy property holds for the orchestration in Figure 66. 

 

 

FIGURE 66. REDUNDANCY ORCHESTRATION 

 

1. ORCH “Redundancy” 
2. Placeholder (A, “1st placeholder”) 
3. Placeholder (B1, “2nd placeholder 1st instance”) 
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4. Placeholder (B2, “2nd placeholder 2nd instance”) 
5. Link (L1, A, B1) 
6. Link (L1, A, B2) 
7. Choice (Ch1, A, B1, B2, L1, L2) 

8. Property (Pr, subject=Ch1, category=Redundancy, satisfied==false) 
 

Based on the above, the Redundancy pattern can be represented in Drools as shown in Table 39. 

The when part of the rule specifies:  

1. the placeholders $p1, $p2 and $p3; 
2. the extra condition that placeholder 2 and 3 are of the same type; 
3. the order in which they should be executed ($ch),  
4. the orchestration property that can be guaranteed through the application of the pattern, i .e., the 

Redundancy property in this case ($pr). 

The then part verifies that the orchestration property holds since every essential component is included in the 
when part (satisfied=true).  

 

TABLE 39. REDUNDANCY PATTERN AS DROOLS RULES 

rule "Redundancy Verification" 

    when 

        $p1: Placeholder($pID1:=placeholderID) 

        $p2: Placeholder($pID2:=placeholderID, $placeholerType1:=type) 

        $p3: Placeholder($pID3:=placeholderID, $placeholerType2:=type, 

$placeholerType1==$placeholerType2) 

 

        $ch: Choice($chID:=id, $ pID1:=placeholderA, $pID2:=placeholderB, $pID3:=placeholderC) 
        $pr: Property($chID:=subject, category=="Redundancy", satisfied==false) 

    then 

        modify($pr2){satisfied=true}; 

end 

 

 FAULT MANAGEMENT PATTERN DEFINITION 

Fault Management is a set of mechanisms to detect failures so that recovery can be done and system be 
notified about recovered parts so as to gain redundancy in the system [39]. These mechanisms include  

1. Monitoring of the system components (single point of failure). Monitoring can be implemented as 
ACKNOLEDGEMENT messages, I AM ALIVE / ARE YOU ALIVE messages, or as a WATCHDOG 
mechanism. 

2. Failure notification from the system part that failed.  
3. Failure Recovery in the manner of self-recovery or manual intervention.  
4. Recovery notification from the system part that has just recovered in order to start synchronization 

with its peers and get ready for the incoming requests.   

 

 PATTERN SPECIFICATION RULE 

Let us assume that we need to verify if the FaultManagement property holds for the sequence in Figure 67. 
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FIGURE 67. FAULT MANAGEMENT SEQUENCE 

The sequence above can be described using the pattern language created in SEMIoTICS as depicted below: 

 
1. ORCH “Fault Management” 

2. Placeholder (A, “1st placeholder”) 

3. Placeholder (B, “2nd placeholder”) 

4. Link (L1, A, B) 

5. Sequence (S1, A, B, L1) 

6. Property (Pr, subject=S1, category= FaultManagement, satisfied==false) 

 

Based on the above, the Fault Management Pattern can be represented in Drools as shown in Table 40. 

 

TABLE 40. FAULT MANAGEMENT AS DROOLS RULE 

1.  rule " Fault Management - Sequence" 
2.     when 

3.         $P1: Placeholder($pl1:=placeholderid) 

4.         $P2: Placeholder($pl2:=placeholderid) 

5.         $ORCH: Sequence ($seq:=placeholderid, $pl1:=placeholdera, $pl2:=placeholderb) 

6.         $PR: Property ($seq:=subject, category=="FaultManagement", satisfied==false) 

7.     then 

8.         insert(new Property($P1, "FaultManagement", false)); 

9.         insert(new Property($P2, "FaultManagement", false)); 

10. End 

 
1. rule " Fault Management Verification with Certificate - Link" 
2.      when 

3.          $P: Placeholder($Id:=placeholderID) 

4.          $PR: Property ($Id:=subject, category == "FaultManagement", verificationType == "Certifica

te", $vermeans := means, satisfied==false) 

5.      then 

6.          if ($PR.checkCertificate($vermeans)) { 

7.              modify($PR){satisfied=true}; 

8.          } 

9. end 

 

The when part of the first rule specifies:  

1. the two placeholders $P1 and $P2 (lines 3-4);  
2. the order in which they should be executed (line 5),  
3. the orchestration property that can be guaranteed through the application of the pattern, i.e., the 

FaultManagement property in this case (line 6). 



780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017 

Deliverable D4.8 SEMIoTICS SPDI Patterns (final) 

Dissemination level: Public  

 

132 

 

The then part generates the security properties that, if satisfied by the activity placeholders of the pattern’s 
orchestration, would make the orchestration to satisfy the orchestration property. Each of the placeholders 
should satisfy the FaultManagement property (lines 8-9).  

The second Rule is a verification rule and verifies that the FaultManagement property holds for an individual 
orchestration component (Placeholder). In this case, in order to verify that this property holds, we utilize a 
certificate from a trusted entity.  

The when part of the rule specifies:  

1. the placeholder $P1 (lines 3);  
2. the property that can be guaranteed utilizing the available certificate, i.e., the FaultManagement 

property in this case (line 4) 

The then part calls the method that assesses the certificate and if the certificate is valid, the FaultManagement 
property is verified (lines 6-7). 

 Interoperability 

As discussed in Section 2.4, four levels of interoperability are considered in SEMIoTICS: technological, 
syntactic, semantic and organizational interoperability. An approach towards a pattern rule definition for these 
cases is detailed in the subsections that follow. A more holistic presentation of interoperability-related aspects, 
especially in the context of the network layer, are presented in deliverable D3.10 (“Network-level Semantic 
Interoperability (final)”), which also includes the full set of interoperability patterns of SEMIoTICS. 

In more detail, from bottom up, the following types of interoperability can be distinguished and will be covered 
by SEMIoTICS [47]: 

• Technical interoperability – enables seamless operation and cooperation of heterogeneous devices 
that utilize different communication protocols on the transmission layer 

• Syntactic interoperability – establishes clearly defined formats for data, interfaces and encoding 

• Semantic interoperability – settles commonly agreed information models and ontologies for the used 
terms that are processed by the interfaces or are included in exchanged data 

• Organizational interoperability – cross-domain and cross-platform service integration and 
orchestration, through common semantic and programming interfaces 

It is important to note that the higher levels of interoperability assume the existence of the lower ones, otherwise 
they cannot be achieved, e.g., to have syntactic interoperability, you need to have established technical first 
(see Figure 68).  
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FIGURE 68. DIFFERENT LEVELS OF INTEROPERABILITY AND THEIR DEPENDENCY RELATIONSHIPS 

Moreover, even though the boundaries of each level are not strict, we consider in our methodology that 
technical, syntactic, and semantic interoperability enable E2E interoperability between the involved 
technologies within a platform and/or specific IoT deployment, while operation across verticals and platforms 
is accomplished through organizational interoperability. 

Regarding data states, it should be noted that interoperability cannot be defined for data at rest since, by 
definition, data as rest is data that is not being used, access or processed upon and, thus , no interoperability 
challenges arise. When an entity accesses said data (to read a value, perform analytics etc.), it becomes data 
in transit and in processing, depending on the scenario. Therefore, the Interoperability of data at rest is not 
covered within the defined patterns. 

The interoperability properties, and their relationships with the associated patterns defined herein are 
visualised in Figure 69, while the definition of the interoperability patterns of SEMIoTICS is detailed in the 
subsections that follow. 
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FIGURE 69. INTEROPERABILITY PROPERTIES AND ASSOCIATED PATTERNS 

 TECHNICAL INTEROPERABILITY 

Technical Interoperability is about enabling the communication between systems and platforms at a protocol 
level and the infrastructure needed for those protocols to operate [91]. Within the context of the work presented 
herein, the associated pattern rule aims to cover and address the technological issues that may arise from the 
interaction among heterogeneous devices, with different technical specifications and supported communication 
means on the transmission layer (e.g., wireless motes communicating via ZigBee, other motes via 802.15.4, 
and more powerful infrastructure devices communicating over WiFi or Ethernet), as is often the case in IoT 
environments. 

 TECHNICAL MEDIATOR PATTERN DEFINITION 

One way to achieve Technical Interoperability is through the deployment of a Technical Mediator, which 
connects to components with various technical attributes. An example of such a component is a sensor 
gateway that acts as a bridge between 802.15.4 radio and wired network infrastructures (e.g., using 6LBR 
[92]). 

Let us consider: 

– C := the set of all instantiated components  

– TA := A set of technical attributes 

– C1, C2 ⊆ C, where C1 ≠ C2 

– Ci_TA ⊆ TA :=  technical attributes of Ci 

– TMD := Technical Mediator 

 

Then, we can define the following: 

Lemma 1: If C1, C2 are at the same domain and C1_TA ∩ C2_TA ≠ ⌀ then C1 and C2 are directly technically 

interoperable. 

 

Lemma 2: If C1, C2 are on different domain but are both directly technically interoperable with TMD (Figure 70) 

then C1, C2 are indirectly technically interoperable. 
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Lemma 3: If C1, C2 are directly or indirectly technical interoperable, then C1, C2 are technically interoperable. 

 

 

FIGURE 70. INDIRECT TECHNICAL INTEROPERABILITY VIA TECHNICAL MEDIATOR 

 

 PATTERN SPECIFICATION RULE 

Using the above detailed pattern, we can derive the following workflow-based definition of technical 
interoperability for the fundamental scenario of two IoT components communicating with each other:  

 

1. WF “technical-interoperability” 

2. Placeholder (A1, (PlaceholderActivity, PlaceholderDescription)) 

3. Placeholder (A2, (PlaceholderActivity, PlaceholderDescription)) 

4. Placeholder (TMD, (PlaceholderActivity, ”technical mediator”)) 

5. Link (L1, A1, A2) 

6. Link (L2, A1, TMD) 

7. Link (L3, A2, TMD) 

8. Property (conn1, L1, required, (pattern-based, pattern),” technical-interoperability”, in_transit) 

9. Property (conn2, L2, required, (pattern-based, pattern),” technical-interoperability”, in_transit) 

10. Property (conn3, L3, required, (pattern-based, pattern),” technical-interoperability”, in_transit) 

11. Property (conn4, “_technical-interoperability”, required, (pattern-based, PR1), ”_technical-
interoperability”, end_to_end) 

12. Pattern rule: (PR1: conn1 || (conn2, conn3) ➔ conn4) 

 

For details on this workflow-based approach followed in SEMIoTICS pattern definition, please refer to 
deliverable D4.1, and its follow-up D4.8. In said deliverables the process of transforming these workflows and 
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the pertinent requirements into a machine-processable format using Drools rules and facts is also documented. 
The output of this process is shown in Table 41. 

 

TABLE 41. TECHNICAL INTEROPERABILITY VERIFICATION DROOL RULE 

rule "Sequence Technical Interoperability Verification" 
    when 
        Placeholder($pA:=placeholderid) 
        Property ($pA:=subject, category=="technical", $prvaluein1:=input_value, 

$prvalueout1:=output_value, satisfied==true) 
        Placeholder($pB:=placeholderid) 
        Property ($pB:=subject, category=="technical", $prvaluein2:=input_value, 

$prvalueout2:=out_value, satisfied==true) 
        Sequence($sId:=placeholderid, $pA:=placeholdera, $pB:=placeholderb) 
        $PR: Property ($sId:=subject, category=="technical", $prvalueout1==$prvaluein2, 

satisfied==false) 
    then 
        modify($PR){satisfied=true, input_value=$prvaluein1, output_value=$prvalueout2}; 
end 

 

Whenever the “Sequence Technical Interoperability Verification” rule, is fired, the Property with category 
technical of a Sequence is verified. According to the LSH part of the rule, if:  

i) the two Placeholders of a Sequence have a Property of category technical; and  

ii) the output_value of the first Placeholder is equal to the input_value of the second Placeholder 
($prvalueout1==$prvaluein2),  

then the RHS part of the rule verifies the corresponding Property of the Sequence in question and sets its 
input_value and output_value to $prvalueout1 and $prvaluein2 respectively.  

A property of category technical with input_value $prvaluein1 and output_value $prvaluout1, denotes that the 
corresponding component uses a specific input communication protocol whose description is given by 
$prvaluein1 and a specific output communication protocol whose description is given by $prvalueout1. For 
example, if we have a component (PlaceholderA) which has an endpoint that uses the Wi-Fi 802.11a protocol, 
then this would be translated to a Property with category technical and input_value “Wi-Fi 802.11a”. 
Additionally, if the said component uses a different protocol for forwarding information to other components 
such as Ethernet 802.3, then the output_value of the same Property will be “Ethernet 802.3”.  

Figure 71 depicts a sequence (Sequence1) of two Placeholders. PlaceholderA has a property of category 
technical with input_value “Wi-Fi 802.11a” and output_value “Ethernet 802.3”. Similarly, PlaceholderB has a 
property of category technical with input_value “Ethernet 802.3” and output_value “Wi-Fi 802.11g”. As step 1 
shows, the corresponding property of the Sequence1 is false and input_value and output_value are not set. 
The aforementioned protocol properties trigger the “Sequence Technical Interoperability Verification” rule, 
verifying (satisfied=true) the property of category technical of Sequence1, and assigning the appropriate values 
to input_value and output_value of the property (step 2). 
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FIGURE 71. EXECUTION STEPS OF TECHNICAL INTEROPERABILITY PATTERN 

 SYNTACTIC INTEROPERABILITY 

Syntactic Interoperability refers to the challenge of enabling interactions between different devices which may 
often be communicating using different messaging protocols, while also usually associated with data formats 
[91]. This is especially challenging in the IoT domain where, while manufacturers typically try to adopt 
standardised messaging protocols, the plethora of such established protocols with different intr insic 
characteristics (e.g., RESTful HTTP, CoAP, XMP, MQTT, DPWS) and a variety of data formats (e.g., XML, 
JSON), which leads to a fragmented landscape. 

 SYNTACTIC MEDIATOR PATTERN DEFINITION 

A means of achieving Syntactic Interoperability is through the deployment of a Syntactic Mediator, i.e. a 
component which connects to components with various protocols and translates between them. An example 
of such a component is SeMIBIoT [93], a secure multi-protocol integration bridge acting as a gateway and 
providing hop-by-hop or end-to-end secure communications between an array of heterogeneous nodes and 
standardized IoT protocols. 

Let us consider: 

– C := the set of all instantiated ingredients/activities in an IoT orchestration 

– PR := A set of protocols 

– C1,C2 ⊆ C, where C1 ≠ C2 

– Ci_PR  ⊆ PR :=  protocols supported by Ci 

– SyMD := Syntactic Mediator 

 

Then, we can define the following: 
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Lemma 4: If C1, C2 are technically interoperable and C1_PR ∩ C2_PR ≠ ⌀ then C1 and C2 are directly syntactically 

interoperable. 

 

Lemma 5: If C1, C2  are technically interoperable and are both directly syntactical  interoperable with SyMD (Figure 

72) then C1, C2  are indirectly syntactically  interoperable  

 

Lemma 6: If C1, C2 are directly or indirectly syntactically interoperable, then C1, C2 are syntactically interoperable. 

 

 

FIGURE 72. INDIRECT SYNTACTIC INTEROPERABILITY VIA SYNTACTIC MEDIATOR 

 

 PATTERN SPECIFICATION RULE 

Considering the above, we can define the following workflow-based definition for Syntactic Interoperability 
between two IoT activities A1, A2 interacting with each other. 

 

1. WF “syntactic-interoperability” 

2. Placeholder (A1, (PlaceholderActivity, PlaceholderDescription)) 

3. Placeholder (A2, (PlaceholderActivity, PlaceholderDescription)) 

4. Placeholder (SyMD, (PlaceholderActivity,”syntactic mediator”)) 

5. Link (L1, A1, A2) 

6. Link (L2, A1, SyMD) 

7. Link (L3, A2, SyMD) 

8. Property (conn01, L1, required, (pattern-based, pattern),” technical-interoperability”, in_transit) 

9. Property (conn02, L2, required, (pattern-based, pattern),” technical-interoperability”, in_transit) 
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10. Property (conn03, L3, required, (pattern-based, pattern),” technical-interoperability”, in_transit) 

11. Property (conn1, L1, required, (pattern-based, pattern),” syntactic-interoperability”, in_transit_ ∨ 
in_processing) 

12. Property (conn2, L2, required, (pattern-based, pattern),” syntactic-interoperability”, in_transit_ ∨ 
in_processing) 

13. Property (conn3, L3, required, (pattern-based, pattern),” syntactic-interoperability”, in_transit_ ∨ 
in_processing) 

14. Property (conn4, “_syntactic-interoperability”, required, (pattern-based, PR1), ”_syntactic-
interoperability”, end_to_end) 

15. Pattern rule: (PR1: (conn01,conn1) ||  (conn02,conn2,con03,conn3) ➔ conn4) 

 

Furthermore, the above property can be encoded in machine-processable Drool-based form, as shown in Table 
42. 

 

TABLE 42. SYNTACTIC INTEROPERABILITY VERIFICATION DROOL RULE 

rule "Sequence Syntactic Interoperability Verification" 
    when 
        Placeholder($pA:=placeholderid) 
        Property ($pA:=subject, category=="dataFormat", $prvaluein1:=input_value, 

$prvalueout1:=output_value, satisfied==true) 
        Placeholder($pB:=placeholderid) 
        Property ($pB:=subject, category==" dataFormat ", $prvaluein2:=input_value, 

$prvalueout2:=out_value, satisfied==true) 
        Sequence($sId:=placeholderid, $pA:=placeholdera, $pB:=placeholderb) 
        $PR: Property ($sId:=subject, category==" dataFormat ", $prvalueout1==$prvaluein2, 

satisfied==false) 
    then 
        modify($PR){satisfied=true, input_value=$prvaluein1, output_value=$prvalueout2}; 
end 

 

Like the process described for the Technical Interoperability Verification rule, each time the “Sequence 
Syntactic Interoperability Verification” rule, is fired, the dataFormat Property of a Sequence is verified. 
According to the LSH part of the rule, if:  

i) the two Placeholders of a Sequence have a Property of category dataFormat; and  

ii) the output_value of the first Placeholder is equal to the input_value of the second Placeholder 
($prvalueout1==$prvaluein2) 

then the RHS part of the rule verifies the corresponding Property of the Sequence in question and sets its 
input_value and output_value to $prvalueout1 and $prvaluein2 respectively.  

A property of category dataFormat with input_value $prvaluein1 and output_value $prvaluout1, denotes that 
the corresponding component uses a specific syntax for the incoming data whose description is given by 
$prvaluein1 and a specific output protocol whose description is given by $prvalueout1. For example, if we have 
a component (PlaceholderA) which receives data in XML format, then this would be translated to a Property 
with category “dataFormat” and input_value “XML”. Moreover, if the said component uses a different syntax 
for forwarding information to other components such as JSON, then the output_value of the same Property will 
be “JSON”. 

Figure 73 depicts a sequence (Sequence1) of two Placeholders. PlaceholderA has a dataFormat property with 
input_value “XML” and output_value “JSON”. Similarly, PlaceholderB has a dataFormat property with 
input_value “JSON” and output_value “HTML”. As step 1 shows, the dataFormat property of the Sequence1 is 
false, and input_value and output_value are not set. The aforementioned dataFormat properties trigger the 
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“Sequence Syntactic Interoperability Verification” rule, verifying(satisfied=true) the dataFormat property of 
Sequence1 and assigning the appropriate values to input_value and output_value of the property (step 2). 

 

 

FIGURE 73. EXECUTION STEPS OF SYNTACTIC INTEROPERABILITY PATTERN 

 SEMANTIC INTEROPERABILITY 

Interoperability on the Semantic level means that there is a common understanding between the involved 
systems of the meaning of the content (information) being exchanged. This means that the exchanged data 
have an unambiguous, shared meaning. For example, temperature units can be Fahrenheit, Celsius or Kelvin, 
but they express the same information which can be obtained after proper instance transformation.   

 SEMANTIC MEDIATOR PATTERN DEFINITION 

Semantic Interoperability can be achieved at the implementation level through the deployment of a Semantic 
Mediator component; e.g. the Semantic Mediator as defined in Hatzivasilis et al [94], or a Semantic Information 
Broker [95]. 

Let us consider: 

– C := the set of all instantiated components  

– MDL := A set of semantic models 

– C1,C2 ⊆ C , where C1 ≠ C2 

– Ci_MDL ⊆ MDL := semantic models used by Ci 

– SeMD := Semantic Mediator 

 

Then, we can define the following: 
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Lemma 7: If C1, C2 are syntactically interoperable and C1_MDL ∩ C2_MDL ≠ ⌀ then C1 and C2 are directly semantically 

interoperable  

 

Lemma 8: If C1, C2 are syntactically interoperable and are both directly semantically interoperable with SeMD 

(Figure 74), then C1, C2 are indirectly semantically interoperable  

 

Lemma 9: If C1, C2 are directly or indirectly semantically interoperable, then C1, C2 are semantically interoperable. 

 

 

FIGURE 74. INDIRECT SEMANTIC INTEROPERABILITY VIA SEMANTIC MEDIATOR 

 

 PATTERN SPECIFICATION RULE 

Based on the above, the workflow-based definition of semantic interoperability in the fundamental scenario of 
two IoT activities A1 and A2 interacting with each other, is as follows: 

 

1. WF “semantic-interoperability” 

2. Placeholder (A1, (PlaceholderActivity, PlaceholderDescription)) 

3. Placeholder (A2, (PlaceholderActivity, PlaceholderDescription)) 

4. Placeholder (SeMD, (PlaceholderActivity,”Semantic Broker”))  

5. Link (L1, A1, A2) 

6. Link (L2, A1, SeMD) 

7. Link (L3, A2, SeMD) 

8. Property (conn01, L1, required, (pattern-based, pattern),” syntactic-interoperability” , in_transit_ ∨ 
in_processing) 
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9. Property (conn02, L2, required, (pattern-based, pattern),” syntactic-interoperability” , in_transit_ ∨ 
in_processing) 

10. Property (conn03, L3, required, (pattern-based, pattern),” syntactic-interoperability” , in_transit_ ∨ 
in_processing) 

11. Property (conn1, L1, required, (pattern-based, pattern),” semantic-interoperability” , in_processing) 

12. Property (conn2, L2, required, (pattern-based, pattern),” semantic -interoperability” , in_processing) 

13. Property (conn3, L3, required, (pattern-based, pattern),” semantic -interoperability” , in_processing) 

14. Property (conn4, “_semantic-interoperability”, required, (pattern-based, PR1),” “_semantic-
interoperability”, end_to_end) 

15. Pattern rule: (PR1: (conn01,conn1) ||  (conn02,conn2,conn03,conn3) ➔ conn4) 

 

Moreover, we can define the semantic interoperability rule in a machine-processable Drool rule format, as 
show in Table 43. 

 

TABLE 43. SEMANTIC INTEROPERABILITY VERIFICATION DROOL RULE 

rule "Sequence Semantic Interoperability Verification" 
    when 
        Placeholder($pA:=placeholderid) 
        Property ($pA:=subject, category=="semantic", $prvaluein1:=input_value, 

$prvalueout1:=output_value, satisfied==true) 
        Placeholder($pB:=placeholderid) 
        Property ($pB:=subject, category=="semantic", $prvaluein2:=input_value, 

$prvalueout2:=out_value, satisfied==true) 
        Sequence($sId:=placeholderid, $pA:=placeholdera, $pB:=placeholderb) 
        $PR: Property ($sId:=subject, category=="semantic", $prvalueout1==$prvaluein2, 

satisfied==false) 
    then 
        modify($PR){satisfied=true, input_value=$prvaluein1, output_value=$prvalueout2}; 
end 

 

The “Sequence Semantic Interoperability Verification” rule verifies the semantic Property of a Sequence every 
time it is triggered. According to the LSH part of the rule, if:  

i) the two Placeholders of a Sequence have a Property of category semantic, and  

ii) the output_value of the first Placeholder is equal to the input_value of the second Placeholder 
($prvalueout1==$prvaluein2),  

then the RHS part of the rule verifies the corresponding Property of the Sequence in question and sets its 
input_value and output_value to $prvalueout1 and $prvaluein2 respectively.  

A property of category semantic with input_value $prvaluein1 and output_value $prvaluout1, denotes that the 
corresponding component has a specific understanding regarding the content of the incoming data whose 
description is given by $prvaluein1 and a specific understanding regarding the content of the output data whose 
description is given by $prvalueout1. For example, if we have a component (PlaceholderA) which understands 
temperature in Kelvin scale, then this would be translated to a Property with category “semantic” and 
input_value “Kelvin”. Moreover, if the said component uses a different understanding for forwarding 
temperature to other components such as Celsius, then the output_value of the same Property will be “Celsius”. 

Figure 75 depicts a sequence (Sequence1) of two Placeholders. PlaceholderA has a semantic property with 
input_value “Kelvin” and output_value “Celsius”. Similarly, PlaceholderB has a semantic property w ith 
input_value “Celsius” and output_value “Fahrenheit”. As step 1 shows, the semantic property of the Sequence1 
is false and input_value and output_value are not set. The aforementioned semantic properties trigger the 
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“Sequence Semantic Interoperability Verification” rule, verifying(satisfied=true) the semantic property of 
Sequence1 and assigning the appropriate values to input_value and output_value of the property (step 2).  

 

 

FIGURE 75. EXECUTION STEPS OF SEMANTIC INTEROPERABILITY PATTERN 

 ORGANISATIONAL INTEROPERABILITY 

Organisational Interoperability refers to the ability of different organisations to effectively exchange 
(meaningful) data, even though they may be using a variety of different information systems over widely 
different infrastructures. In the context of IoT and IIoT deployments, which are the focus of SEMIoTICS, 
organisational interoperability is mapped to cross-domain and cross-platform service integration and 
orchestration.  

 INTEGRATION PROXY PATTERN DEFINITION 

Organisational Interoperability can be achieved even in the case of platforms which cannot communicate 
directly (due to different protocols or lack of appropriate open APIs) through the deployment of an Integration 
Proxy; i.e., a proxy, broker or middleware, such as a platform integration gateway, management or proxy 
service [96] or an IoT Broker [97]. 

Let us consider: 

– C := the set of all instantiated IoT platform deployments  

– CSPI := A set of common semantic and programming interfaces 

– C1,C2 ⊆ C , where C1 ≠ C2 

– Ci_CSPI ⊆ CSPI := common semantic and programming interfaces supported by Ci 

– IP := Integration Proxy 
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Then, we can define the following: 

Lemma 10: If C1, C2 are semantically interoperable and C1_CSPI ∩ C2_CSPI ≠ ⌀ then C1 and C2 are directly 

organisationally interoperable  

 

Lemma 11: If C1, C2 are semantically interoperable and are both directly organisationally interoperable with IP 

(Figure 76), then C1, C2 are indirectly organisationally interoperable  

 

Lemma 12: If C1, C2 are directly or indirectly organisationally interoperable, then C1, C2 are organisationally 

interoperable. 

 

 

FIGURE 76. INDIRECT ORGANISATIONAL INTEROPERABILITY VIA INTEGRATION PROXY 

 

 PATTERN SPECIFICATION RULE 

Based on the above, we can derive the following workflow-based definition of organisational interoperability 
for the fundamental case of two IoT platform deployments, A1 & A2, interacting with each other: 

 

1. WF “organisational-interoperability” 

2. Placeholder (A1, (PlaceholderActivity, PlaceholderDescription)) 

3. Placeholder (A2, (PlaceholderActivity, PlaceholderDescription)) 

4. Placeholder (IP, (PlaceholderActivity,”Integration Proxy”))  

5. Link (L1, A1, A2) 

6. Link (L2, A1, IP) 

7. Link (L3, A2, IP) 

8. Property (conn01, L1, required, (pattern-based, pattern),” semantic -interoperability” , in_processing) 
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9. Property (conn02, L2, required, (pattern-based, pattern),” semantic -interoperability” , in_processing) 

10. Property (conn03, L3, required, (pattern-based, pattern),” semantic -interoperability” , in_processing) 

11. Property (conn1, L1, required, (pattern-based, pattern),” organisational-interoperability” , in_transit_ ∨ 
in_processing) 

12. Property (conn2, L2, required, (pattern-based, pattern),”_organisational-interoperability” , in_transit_ ∨ 
in_processing) 

13. Property (conn3, L3, required, (pattern-based, pattern),” organisational -interoperability” , in_transit_ 
∨ in_processing) 

14. Property (conn4, “_organisational-interoperability”, required, (pattern-based, PR1),” semantic-
interoperability”, end_to_end) 

15. Pattern rule: (PR1: (conn01,conn1) ||  (conn02,conn2,conn03,conn3) ➔ conn4) 

 

Moreover, we can specify organisational interoperability via the following machine-processable Drools rule, as 
shown in Table 44. 

 

TABLE 44. ORGANIZATIONAL INTEROPERABILITY VERIFICATION DROOL RULE 

rule "Sequence Organizational Interoperability Verification" 
    when 
        Placeholder($pA:=placeholderid) 
        Property ($pA:=subject, category=="organizational", $prvaluein1:=input_value, 

$prvalueout1:=output_value, satisfied==true) 
        Placeholder($pB:=placeholderid) 
        Property ($pB:=subject, category=="organizational", $prvaluein2:=input_value, 

$prvalueout2:=out_value, satisfied==true) 
        Sequence($sId:=placeholderid, $pA:=placeholdera, $pB:=placeholderb) 
        $PR: Property ($sId:=subject, category=="organizational", $prvalueout1==$prvaluein2, 

satisfied==false) 
    then 
        modify($PR){satisfied=true, input_value=$prvaluein1, output_value=$prvalueout2}; 
end 

 

The “Sequence Organizational Interoperability Verification” rule verifies the organizational Property of a 
Sequence every time it is triggered. According to the LSH part of the rule, if:  

i) the two Placeholders of a Sequence have a Property of category organizational, and  

ii) the output_value of the first Placeholder is equal to the input_value of the second Placeholder 
($prvalueout1==$prvaluein2),  

then the RHS part of the rule verifies the corresponding Property of the Sequence in question and sets its 
input_value and output_value to $prvalueout1 and $prvaluein2 respectively. It is mentioned that Placeholders 
in this case refer to processes/workflows of different IoT platforms and/or organisations (e.g., interactions 
between a SEMIoTICS and FIWARE deployment, or even between two SEMIoTICS deployments belonging to 
different organisations). 

As mentioned above, organizational interoperability requires the existence of all other more basic forms of 
interoperability (semantic, syntactic, technological). Then, the ver ification focuses on the compatibility of 
organizational processes and workflows. A property of category organizational with input_value $prvaluein1 
and output_value $prvaluout1, denotes that the corresponding process has a specific understanding regarding  
the content of the incoming data whose description is given by $prvaluein1 and a specific understanding 
regarding the content of the output data whose description is given by $prvalueout1.  

Nevertheless, this is not limited to the semantics, as in section 4.4.3 above, but also from a workflow and 
organisational/business process context. For example, if we have a process (PlaceholderA) which expects 
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inputs from a specific organisational activity (e.g., new IoT asset registration request), then this would be 
translated to a Property with category “organizational” and input_value “Activity”. Moreover, if this process 
uses different means for its output (e.g., needs to interact with an external service residing in another 
organisation/IoT platform to retrieve assets available there), then the output_value of the same Property will 
be “ExtService”.  

To visualise this, Figure 77 depicts a sequence (Sequence1) of two Placeholders. PlaceholderA, residing in 
“IoT Platform A” has an organizational property with input_value “Activity” and output_value “ExtService”. 
Similarly, PlaceholderB has an organizational property with input_value “ServiceReq” (to denote that process 
PlaceholderB residing in IoT Platform B expects requests from external parties) and output_value “Workflow” 
(to denote this external request is then mapped to an internal workflow; e.g., for local asset discover). As step 
1 shows, the organizational property of the Sequence1 is false, and input_value and output_value are not set. 
The aforementioned organizational properties trigger the “Sequence Organizational Interoperability 
Verification” rule, verifying (“satisfied=true”) the organizational property of Sequence1 and assigning the 
appropriate values to input_value and output_value of the property (step 2). 

 

 

FIGURE 77. EXECUTION STEPS OF ORGANISATIONAL INTEROPERABILITY PATTERN 

 

 E2E INTEROPERABILITY  

Until now, we have described how the individual interoperability types (i.e., Technical, Syntactic, Semantic and 
Organisational) are defined and verified for the fundamental case of a sequence of two components/activities. 
Nevertheless, using these rules the E2E properties of these simple as well as more complex orchestrations 
can be verified. More specifically, using the process defined in the previous sections (i.e., leveraging the 
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SEMIoTICS system model and the associated activity composition and decomposition rules defined in said 
deliverable), more complex cases can also be verified using these fundamental property rules. 

 E2E INTEROPERABILITY WITHIN PLATFORM PATTERN DEFINITION 

Specifically for interoperability, if between an orchestration of two of more components/activities within a given 
IoT platform (e.g., a deployed instance of SEMIoTICS) we can verify that the three properties of  Technical, 
Syntactic and Semantic Interoperability all hold, then we can claim that E2E Interoperability also holds for the 
given orchestration within the given IoT platform. In other words, the Syntactic Interoperability property, as 
defined in section 4.4.2, is the fundamental case of E2E Interoperability within an IoT platform, since if it 
evaluates as true, the verifications of the other two underlying interoperability types (Technical and Syntactic) 
also evaluate as true, and thus there is full interoperability between the interacting entities. Consequently, in 
the more complex orchestrations, and using the process already described above, if all of these three 
interoperability properties are verified for all parts of a given orchestration, then the E2E Interoperability within 
the platform (referred to as the “E2E_WP_Interoperability” Property) is also verified. This is what the rule in 
Table 45 depicts; Technical, Syntactic and Semantic properties are the prerequisites (LSH part of the rule) for 
the overall Interoperability Property to hold (RSH part of the rule).  

 

TABLE 45. END-TO-END INTEROPERABILITY WITHIN PLATFORM VERIFICATION DROOL RULE 

rule "Sequence Interoperability" 
    when 
        Sequence($sId:=placeholderid) 
        $PR1: Property ($sId:=subject, category=="technical", satisfied==true) 
        $PR2: Property ($sId:=subject, category=="dataFormat", satisfied==true) 
        $PR3: Property ($sId:=subject, category=="semantic", satisfied==true) 
        $PR4: Property ($sId:=subject, category=="E2E_WP_Interoperability", satisfied==false) 
    then 
        modify($PR4){satisfied=true}; 
end 

 

Elaborating on the above, Figure 78 depicts a sequence (Sequence1) whereby the technical, dataFormat (i.e. 
syntactic) and semantic properties have already been verified (step 1). The aforementioned interoperability 
properties trigger the “Sequence Interoperability Verification” rule, verifying (satisfied=true) the E2E 
interoperability property of Sequence1 as instantiated within the bounds of a given IoT platform (step 2). 
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FIGURE 78. EXECUTION STEPS OF E2E INTEROPERABILITY WITHIN PLATFORM PATTERN 

 E2E INTEROPERABILITY ACROSS IOT PLATFORMS 

Similar to the reasoning detailed in section 4.4.5 above regarding the Semantic Interoperability and E2E 
Interoperability verification within the SEMIoTICS platform, the fundamental case of E2E Interoperability across 
platforms (e.g., across a SEMIoTICS and a FIWARE deployment) is covered by the definition of the 
Organisational Interoperability, as presented in section 4.4.4.The additional requirement in this case is the 
satisfaction of the Organisational Interoperability property between the two interacting entities across different 
IoT platforms, which in turn requires the verification of the Semantic, Syntactic and Technical Interoperability 
properties in order to be possible. This is shown in Table 46, with the property being referred to 
“E2E_AP_Interoperability”. 

 

TABLE 46. END-TO-END INTEROPERABILITY ACROSS PLATFORM VERIFICAITON DROOL RULE 

rule "Sequence Interoperability" 
    when 
        Sequence($sId:=placeholderid) 
        $PR1: Property ($sId:=subject, category=="protocol", satisfied==true) 
        $PR2: Property ($sId:=subject, category=="dataFormat", satisfied==true) 
        $PR3: Property ($sId:=subject, category=="semantic", satisfied==true) 

        $PR4: Property ($sId:=subject, category=="organisational", satisfied==true) 
        $PR5: Property ($sId:=subject, category=="E2E_AP_Interoperability", satisfied==false) 
    then 
        modify($PR5){satisfied=true}; 
end 

 

Figure 79 depicts a sequence (Sequence1) of two Placeholders. In this case, both Placeholders refer to IoT 
platforms. As step 1 shows, E2E interoperability across IoT platforms property of the Sequence1 is false, and 
input_value and output_value are not set. However, the technical, syntactic, semantic and organizational 
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properties hold for Sequence1. The aforementioned properties trigger the “Sequence Interoperability Across 
IoT Platforms” rule, verifying(satisfied=true) the semantic property of Sequence1 (step 2).  

 

 

FIGURE 79. EXECUTION STEPS OF E2E INTEROPERABILITY ACROSS PLATFORMS PATTERN 

 

Considering more complex orchestrations, in the context of potential SEMIoTICS applications, and as detailed 
in section 2.4, end-to-end interoperability should cover heterogeneous cases of cross-platform and scale 
connectivity. More specifically, based on previous work [98] carried out in the BIG IoT project, the cases of 
interoperability across IoT platforms, as sketched in Figure 80, include: 

- Cross platform – applications or services access resources from multiple platforms though common 
interfaces. 

- Platform-scale independence – integrates the resources from platforms at different scale in the way 
that application can uniformly aggregate information for different scale platforms (cloud-, fog-, device-
level). 

- Platform independence – refers to distinct platforms that implement the same functionality in the way 
that ensures that a single driver application can interoperate with both platforms in a uniform manner 
without requiring any changes. 

- Cross application domain – refers to uniform access to information from platforms that process data 
from different domains. 

- Higher-level service facades – services can also interact themselves through common API. 
Therefore, a single application can interact with two platforms to create value-added operations. 
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FIGURE 80. FIVE CASES OF INTEROPERABILITY ACROSS PLATFORMS [98] 

 

Each of the five cases described above and depicted in Figure 80 is supported through the SEMIoTICS end-
to-end semantic interoperability mechanisms and the network mechanisms detailed herein.  

More specifically, and as mentioned in the case of the Interoperability with platforms (section 4.4.5), all of 
these cases can be covered by the fundamental E2E_AP_Interoperability property verification rule definition, 
through decomposition of said complex scenarios to one or more verifications of instances of these 
fundamental property.  
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 QoS Patterns 

Other than the aspects of availability and dependability (and associated concepts, e.g. fault tolerance) that are 
already integral in the SPDI properties, other QoS-related parameters (e.g. latency) can also be 
accommodated by the pattern language adopted.  

To achieve this, the pattern language and the associated components deployed at all layers of the SEMIoTICS 
deployment are able to leverage appropriate monitors and interface with the necessary mechanisms to act as 
an enabler for configuring the network and triggering network updates / reconfigurations, as needed (e.g. for 
fault tolerance or QoS). As can be seen in subsections 3.3 (Language Model) and 3.4 (Language Constructs), 
Java class Property owns an attribute Category, allowing Pattern Engines to monitor QoS properties of the 
components of an IoT service  orchestration. Moreover, the properties associated with the Link class directly 
affect the requirements relayed to the network layer (with the associated properties reasoned by the Pattern 
Engine embedded at the SDN controller; see subsection 3.7.2.2). 

Leveraging the above, a number of QoS-related patterns can be defined, to extend the properties 
encompassed in the SEMIoTICS pattern-driven approach. A characteristic example of network bandwidth is 
defined in the subsection that follows, while similarly additional patterns can be defined for other QoS 
properties (packet loss, latency, etc.). 

 QOS BANDWIDTH PATTERN DEFINITION 

Bandwidth is measured as the amount of data that can be transferred from point A to point B within a network 
in a specific amount of time. Typically, bandwidth is expressed as a bitrate and measured in bits per second 
(bps). 

Qosbandwidth pattern is used to verify that the corresponding property holds for an orchestration. The 
Qosbandwidth property has an attribute Value, where is stored the bandwidth measurement of the property 
subject (placeholder or link). 

 PATTERN SPECIFICATION RULE 

Let us assume that we need to verify if the Qosbandwidth property holds for the sequence in Figure 81. 

 

 

FIGURE 81: QOS BANDWIDTH SEQUENCE 

The sequence above can be described using the pattern language created in SEMIoTICS as depicted below: 

 
1. ORCH “QoSbandwidth” 

2. Placeholder (A, “1st placeholder”) 

3. Placeholder (B, “2nd placeholder”) 

4. Link (L1, A, B) 

5. Sequence (S1, A, B, L1) 

6. Property (Pr, subject=S1, category= Qosbandwidth, satisfied==false) 

 

Based on the above, the Qosbandwidth Pattern can be represented in Drools as shown in Table 47. We present 
2 rules. According to the first rule, the when part of the first rule specifies:  
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1. A sequence of two placeholders;  
2. the orchestration property that can be guaranteed through the application of the pattern, i.e., the 

Qosbandwidth property in this case. 

The then part creates new Qosbandwidth properties for the three components of the sequence, the two 
placeholders and the link between them.  

 

The second rule is verification rule, which verifies the Qosbandwidth property for a sequence. The when part 
specifies: 

1. two placeholders with the Qosbandwidth property verified  

2. a link with the Qosbandwidth property verified 

3. the sequence that all the above constitute  

4. the orchestration property to be verified 

5. an additional condition according to which it must hold: $prvalue4<=$prvalue1, $prvalue4<=$prvalue2, 
$prvalue4<=$prvalue3  

The then part verifies the orchestration property. 

 

TABLE 47: QOSBANDWIDTH AS DROOLS RULE 

rule "Sequence - Decomposition" 

    when 

        $s: Sequence($sId:=placeholderid, $pA:=placeholdera, $pB:=placeholderb,$orchLink:=orchlink) 

        Property($sId:=subject, $prname:=propertyname, $prcategory:=category, $prvalue1:=value,  satis

fied==false) 

    then 

        insert(new Property($rId,$prname+$prcategory+$pA,$prname, "required", $prcategory, $prvalue1, 

"datastate", $pA, "verificationtype", "means", false)); 

        insert(new Property($rId,$prname+$prcategory+$pB,$prname, "required", $prcategory, $prvalue1, 

"datastate", $pB, "verificationtype", "means", false)); 

        insert(new Property($rId,$prname+$prcategory+$orchLink,$prname, "required", $prcategory, $prva

lue1, "datastate", $orchLink, "verificationtype", "means", false)); 

end 

 

rule "Sequence Bandwidth Verification" 

    when 

        Placeholder($pA:=placeholderid) 

        Property ($pA:=subject, category=="qosbandwidth", $prvalue1:=value,  satisfied==true) 

        Placeholder($pB:=placeholderid) 

        Property ($pB:=subject, category=="qosbandwidth", $prvalue2:=value,  satisfied==true) 

        Link ($orchLink:=linkid) 

        Property ($orchLink:=subject, category=="qosbandwidth", $prvalue3:=value, satisfied==true) 

        Sequence($sId:=placeholderid, $pA:=placeholdera, $pB:=placeholderb, $orchLink:=orchlink) 

        $PR: Property ($sId:=subject, category=="qosbandwidth", $prvalue4:=value, $prvalue4<=$prvalue1

, $prvalue4<=$prvalue2, $prvalue4<=$prvalue3, satisfied==false) 
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    then 

        modify($PR){satisfied=true}; 

end 

 

 Overview of SEMIoTICS patterns 

Aggregating the patterns presented in this deliverable, Table 48  presents the coverage that the SEMIoTICS 
patterns offer in terms of the considered properties, data states and platform connectivity cases. 

TABLE 48. SUMMARY OF SEMIOTICS PATTERNS AND THEIR COVERAGE 

Pattern 

Property Data State Coverage 
Platform 

Connectivity 

Concept or Pattern 

Source 
S P D I QoS 

In 

Transit 

At 

Rest 

In 

Processing 
Within Across 

# Name 

1 Overall Security           
N/A (known 

concept) 

2 Overall Confidentiality           Ritter et al. [33] 

3 Encrypted Storage           Kienzle et al. [35] 

4 Encrypted Channels           
Schumacher et al. 

[36] 

5 Encrypted Processing           Ahituv et al.[37] 

6 
Perfect Security Property 

(PSP) 
               

Zakinthinos et al. 

[48] 

7 Overall Integrity           Ritter et al. [33] 

8 Safe Storage           Ritter et al. [33] 



780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017 

Deliverable D4.8 SEMIoTICS SPDI Patterns (final) 

Dissemination level: Public  

 

154 

 

9 Safe Channel           Ritter et al. [33] 

10 Safe Processing           Ritter et al. [33] 

11 Hash Check           
N/A (known 

concept) 

12 Server Sandbox           Kienzle et al. [35] 

13 Minefield           Kienzle et al. [35] 

14 Overall Availability           Avizienis et al. [50] 

15 Uptime           
N/A (known 

concept) 

16 
Non-repudiation/Auditability 

/Accountability 
          Ritter et al. [33] 

17 Signed Message           Ritter et al. [33] 

18 Audit Log           Kienzle et al. [35] 

19 Overall Authorisation           
Schumacher et al. 

[36] 

20 Single Access           
Schumacher et al. 

[36] 
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21 Authorisation Enforcer           
Schumacher et al. 

[36] 

22 Overall Authentication           
Schumacher et al. 

[36] 

23 Authentication Enforcer           
Schumacher et al. 

[36] 

24 Authenticated Channel           Durand et al. [44] 

25 Account Lockout           Kienzle et al. [35] 

26 Authenticated Session           Kienzle et al. [35] 

27 Blacklist           Kienzle et al. [35] 

28 Overall Privacy           Pfitzmann et al. [55] 

29 Mix Network           
M. Hafiz [51] &  

S. Fischer-Hübner 

[61] 

30 Orchestration Identifiability           
N/A (known 

concept) 

31 Pseudonymity           
Diamantopoulou et 

al. [55] 

32 Identity Protector           
S. Fischer-Hübner 

[61]  
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33 Unlinkability           
S. Fischer-Hübner 

[61] 

34 Cover Traffic           M. Hafiz [52] 

35 Undetectability           
Diamantopoulou et 

al. [55] 

36 Steganography           

Zöllner et al. [88] 

& S. Fischer-

Hübner [61] 

37 Unobservability           

Pfitzmann et al. [55] 

& Diamantopoulou 

et al. [55] 

39 Dependability           Laprie et al [89] 

40 Composition Reliability           
Petroulakis et al. 

[90] 

41 Redundancy           Ritter et al. [33] 

42 Fault Management           Ahluwalia et al. [39] 

43 Technical Interoperability             
  Hatzivasilis et al. 

[47] 

44 Syntactic Interoperability               
Hatzivasilis et al. 

[47] 

45 Semantic Interoperability                
Hatzivasilis et al. 

[47] 



780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017 

Deliverable D4.8 SEMIoTICS SPDI Patterns (final) 

Dissemination level: Public  

 

157 

 

46 
Organizational 

Interoperability 
          

Hatzivasilis et al. 

[47] 

47 E2E Interoperability Within           
N/A (documented in 

D3.10) 

48 E2E Interoperability Across           
N/A (documented in 

D3.10) 

49 qosBandwidth           
N/A (known 

concept) 

 

As can be seen from the above table, the SEMIoTICS patterns (49 in total) offer a complete coverage of all 
SPDI properties and their sub-properties, also covering all data states and all cases of platform connectivity. 
Nevertheless, and as mentioned in the introductory comments of this section, this work does not intend to 
provide a survey and aggregate all such patterns from the literature and other resources.  

The characteristic examples provided herein and adapted to the SEMIoTICS language and approach are 
adequate for the scenarios studied in the context of the SEMIoTICS use cases. Still, it is expected that for a 
real-world deployment of SEMIoTICS in other scenarios and vertical domains, the above will need to be 
enriched with additional patterns that may be more appropriate for the intricacies of the specific environment.  

There are various sources of such patterns that could be used for identifying new ones to enrich the 
SEMIoTICS set of patterns provided here. Nowadays there is a plethora of security patterns provided by the 
security community, included in many books, catalogues and the academic literature.  

We could indicatively mention: Steel et al. [41], who present 23 security patterns for J2EE applications, Web 
services and identity management; the security pattern book led by M. Schumacher [36] including 46 patterns 
divided in sections such as enterprise security and risk management, identification and authentication, access 
control, accounting, firewall architecture, and secure internet application; iii) the Security Patterns Repository 
Version 1.0 [35] consisting of 26 patterns and 3 mini-patterns, and focusing on the domain of web application 
security; iv) a book published by Microsoft’s Patterns and Practices group [101] that included 18 security-
related patterns. 

Furthermore, a recent literature study on privacy patterns research [99] identified 148 privacy patterns in total, 
recognising that privacy patterns are a relatively young field compared to others. Some more recent works 
continue to expand the available privacy patterns (e.g., the work of Gabel et al. [100] on pseudonymity 
patterns). Other indicative resources for the retrieval of privacy-related patterns include works from: Chung et 
al. [102], M. Hafiz [49][52], O. Drozd [103], T. Schümmer [53], M. Schumacher [54], C. Graf et al. [104].  

Furthermore, a number of online repositories can be found focusing on the provision of patterns, such as those 
from Arcticura14 encompassing various ICT aspects including security, and privacy specific repositories151617. 

 

14 https://patterns.arcitura.com/  
15 https://privacypatterns.eu 
16 https://privacypatterns.org/  
17 http://privacypatterns.wu.ac.at:8080/catalog/  

https://patterns.arcitura.com/
https://privacypatterns.eu/
https://privacypatterns.org/
http://privacypatterns.wu.ac.at:8080/catalog/
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Regarding adding new patterns, following the update of the model, if needed (see subsection 3.9 on model 
and language versioning), patterns can be described using the SEMIoTICS language (and associated EBNF 
grammar), and their correctness is checked by the ANLTR4 lexer/parser before their translation into Drools 
rules. Patterns are then maintained across multiple rule files, while the same interface that is used for the 
insertion of new recipes is used for the insertion of these new patterns as well. In that way we can easily 
manage a large number of rules. A pattern Drools rule must be maintained for as long as the corresponding 
pattern is meant to be used. If a pattern is considered deprecated, the rule must be removed. 
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5 IOT SERVICE ORCHESTRATION 
The materialization of the Internet of Things is done nowadays by various IoT platforms, offering devices and 
services (IoT offerings). This is a world where applications are distributed and realized by the interoperations 
among services, in order to become more capable and powerful. The next logical step towards the facilitation 
of the usage of IoT offerings is their composition. As a result, we need a language to express how composing 
parts of IoT applications are put together in a workflow. Our choice is the IoT Recipe model (see D3.4, Section 
3.3.2), which allows the aggregation of IoT offerings based on semantic composition rules. The t ool-kit that 
accompanies the Recipe model includes a lightweight graphical tool that eases the creation of Recipes as 
composition of offerings. What follows is the instantiation of the Recipe and the automatic production of 
executable application code. 

Regarding the description of a workflow in details, the IoT Recipe model is quite expressive. Its core structure 
shares many characteristics with BPMN 2.0, the global standard for business processes. First of all, the Task 
of BPMN corresponds to the Ingredient of the Recipe model. A Task is an atomic Activity, a work that cannot 
be broken down to a finer level of detail. An Ingredient corresponds to data or a function offered by a provider. 
Then, in BPMN we have the concept of Sub-process that can be opened up to show its internal details. This 
is also offered by Recipe model since a Recipe is an offering. That means that Sub-recipes are supported. 
Moreover, Recipe Patterns correspond to BPMN Gateways. Gateways are responsible for the control of the 
Process flow and are separated in different types (Exclusive, Inclusive, Parallel, Event -Based). Recipe 
Patterns are also Ingredients and are used for the expression of the conditions under which Ingredients 
connect. The list of the Recipe Patterns types includes If-Then, If-Then-Else, Sequence, Conjunction, 
Disjunction, Negation, Iterate, Repeat-until, Repeat-while, Split, Unordered list, Choice and Split-Join. Finally, 
in BPMN there is the concept of Event, something that happens during the Process and affects the flow. Events 
make event-driven processes possible. The concept of Event was not present in the first version of Recipe 
model. However, an extension allowed the support of for asynchronous, event-based offerings composition. A 
detailed presentation of the aforementioned model is available in Section 5.1 below. 

Although the Recipe model is capable of describing IoT workflows, extensions are necessary to achieve 
application orchestrations that guarantee SPDI properties. First, we need to be able to describe Links of the 
network level. The attributes of a Link are described in Section 3.3. Furthermore, Ingredients must be extended 
to include information about their SPDI properties. Only QoS constraints are offered at the moment . Finally, 
monitoring capabilities should be added to Ingredients that will provide the evidence for the presence of the 
SPDI and QoS properties. 

 Recipe-driven IoT Application Workflow definition 

In this section, we present an extension of the IoT Recipe model (D3.4, Section 3.3.2), which allows the 
description of IoT application workflows. We add the ability to specify QoS requirements within the model. This 
can be utilized by user interfaces for IoT application developers to enable the expression of QoS requirements 
in a simplified manner at the application layer. We aim to translate these user defined QoS requirements then 
into concrete SPDI patterns that define a specific SDN/NFV configuration. Using the recipe model here has 
the advantage of facilitating the IoT application development and will make IoT applications more reliable as 
networking QoS constraints can be integrated more easily. 
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FIGURE 82. THE RECIPE MODEL 

In previous work [30], [98] we have presented a model to define abstract IoT orchestrations as recipes. In this 
model, shown in Figure 82, a recipe is a template for a workflow of interactions between multiple ingredients, 
i.e., devices or services. When a recipe is instantiated, ingredients are replaced with concrete things, described 
with their own respective Thing Description. A draft for a user interface (UI) for the specification of recipes can 
be seen in Figure 83. Besides the workflow of the recipe, QoS constraints and SPDI patterns can be defined 
on the interactions.  

The user of this tool would be typically an IoT application developer. This user wants to focus on the logic of 
the application flow. Specifically, the user does not have to have expertise in configuring the network and 
physical connections between the involved IoT devices. The benefit of the recipe approach is that these 
configurations are automatically done by the tool and the underlying technologies. 

In the example, the UI has been used to define a recipe that combines multiple services of devices within a 
wind turbine (microphone, accelerometer and anemometer) with the purpose of sending out alarms in case of 
severe conditions (i.e., detected noise, motion and winds) are above a threshold. The abstract service 
composition and associated constraints are first defined in the UI. The composition and graph are then 
translated to concrete configurations. 
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FIGURE 83. EXAMPLE USER INTERFACE TO DEFINE RECIPES 

 

In Figure 84, the sequence of creating and instantiating a recipe is depicted. First, the recipe creation phase 
takes place. This is independent of the later instantiation phase and can also be done by a different user.  

1. At startup, the Recipe Cooker tool requests the capabilities of all available things on the network from 
the Thing Directory on the backend. These capabilities are reported back to the Recipe Cooker in the 
Thing Description format. Besides the syntax and semantics of inputs and outputs, the Thing 
Description defines general capabilities (e.g., resolution of a camera).  

2. Next, the user defines the recipe (i.e., the application flow including if/else and for-loops) and specifies 
the expected capabilities (selected from the downloaded thing capabilities) of ingredients, such as 
input and output data types. The user utilizes the Recipe Cooker tool for this specification.  

Second, the recipe instantiation phase takes place. This phase can be conducted by a different user and could 
potentially happen at a much later point in time.  

1. The user starts by selecting a recipe that reflects as a template the workflow he/she wants to implement 
in his site. Therefore, the Recipe Cooker requests all semantically matching things (for the ingredients 
of the selected recipe) from the Thing Directory. The computational complexity of this matching process 
(simple subsumption reasoning) was tested in our previous work [30]. It scales well enough, on a 
machine with 8GB RAM and 2.4 GHz i5 intel processor, it results in a computation time of one second 
being broken at about 650 recipes. The system scales quadratically in the number of recipes, but with 
low constant factors. Thereby, the closed world assumption is held here: the knowledge base is known 
to be complete, since the Thing Directory is held up-to-date by design of our multi-layer architecture. 

2. Next, the user can select a concrete thing for each ingredient. This manual step, conducted by the user 
(application developer), ensures the proper selection of suitable activities in the application 
composition. The activities in this composition are the matching and selected things ret rieved from the 
Thing Directory. They are described using the Thing Description (TD) model and format defined by the 
W3C Thing Description specification. 

3. Then, the user triggers the deployment of the recipe instance. Therefore, the recipe instance is 
transmitted to the Pattern Orchestrator in the format of a so-called Recipe Runtime Configuration 
(RRC). The RRC is then translated into: 

a. network pattern (i.e., configurations of the SDN controller as Drools rules) 
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b. interaction descriptors for each involved thing; which are then uploaded to the Semantic API 
of the Gateway to which the thing belongs. 

4. If the network configuration and the interaction configuration were successful, the RRC is stored as 
“active” in the Recipe Cooker and the successful deployment is displayed to the user (or an error is 
displayed otherwise). 

 

 

FIGURE 84: SEQUENCE OF DEFINING AND DEPLOYING A RECIPE  
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6 RECIPES & PATTERNS INTEGRATION 
The integration of the Recipes approach detailed in section 5 above, with the SEMIoTICS SPDI patterns will 
enable the user-friendly, abstract definition of IoT service orchestrations, with the SPDI guarantees provided 
by the patterns. In more detail, the encoding of the dependencies will allow the verification that a specific 
SEMIoTICS service workflow, as defined in the associated Recipe, satisfies certain SPDI properties, but also 
the generation (and adaptation) of a workflow in a manner that guarantees the satisfaction of the needed SPDI 
properties 

For integrating the user-friendly abstraction for IoT service orchestration provided by Recipes, the activity-
based IoT orchestration model followed for Pattern definition, as detailed in Section 3, is mapped to the 
ingredient-based view of Recipes. 

In more detail, Recipes are mapped to Workflows (i.e. orchestrations of activities), and similarly, the individual 
atomic building blocks are also mapped, i.e. ingredients are mapped to activities. A simple example of this is 
depicted in Figure 85, showing a simple Recipe involving two ingredients and a Workflow involving two 
activities that matches said Recipe. 

 

FIGURE 85. A SIMPLE RECIPE (LEFT) AND A MATCHING WORKFLOW PATTERN (RIGHT) 

The same match can happen in cases of more complex Recipes, whereby existing Recipes are used as 
ingredients to new, more complex recipes, since these can be mapped to sub-Workflows. An example of this 
mapping for a complex Recipe consisting of two ingredients, the second of which is another recipe, is depicted 
in Figure 86. The various Recipe parameters such as requirements, constraints, properties and orchestration 
details are also mapped to the corresponding elements in the workflow view. 

 

FIGURE 86. A COMPLEX RECIPE (LEFT) AND A WORKFLOW PATTERN MATCHING SAID RECIPE 
(RIGHT) 

Upon Recipe instantiation, the descriptions and characteristics of the specific offerings selected provide the 
necessary information needed to model the actual workflow and are passed over from Thing Descriptions of 
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the offerings to the various variables and placeholders present in the equivalent Workflow representation. For 
the Recipe shown in Figure 86, this transformation is visualised in Figure 87. 

 

FIGURE 87. INSTATIATION OF RECIPE, REPLACING INGREDIENTS WITH SELECTED OFFERINGS 
(LEFT) AND INSTANTIATION OF WORKFLOW, REPLACING ACTIVITY PLACEHOLDERS WITH ACTUAL 

ACTIVITIES (RIGHT) 

The sequence diagrams for the interactions between the corresponding components of the SEMIoTICS 
architecture at design time and at runtime are depicted in Figure 88 and Figure 89 respectively. More 
specifically, Figure 88 shows the instantiation phase, where, following the Recipe definition and instantiation, 
via the Recipe Cooker module, the SPDI and QoS properties of the Recipe that are defined for the specific 
workflow are translated into the equivalent Pattern rules. These are in turn stored at the Pattern Global 
Repository and, via the Pattern Orchestrator, are sent to the Pattern Repositories residing in the lower layers 
(i.e. network and field), with each of those receiving the set of rules that pertains to the operation of the specific 
layer. At runtime (Figure 89), the Pattern Engines at each layer are responsible for retrieving, reasoning upon 
and updating the rules and facts stored on their local repositories, based on inputs they constantly receive 
from the Monitoring elements available at the various components at their layers that participate in the 
workflow. In the case of the Network and Field layers, any updates must be also relayed back at the Global 
repository, in order to allow it to have an up-to-date view of the state of the system at the various layers. 

  

 

FIGURE 88. INSTANTIATION OF PATTERN COMPONENTS ACROSS LAYERS 

 



780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017 

Deliverable D4.8 SEMIoTICS SPDI Patterns (final) 

Dissemination level: Public  

 

165 

 

 

FIGURE 89. RUNTIME DIAGRAM OF PATTERN COMPONENTS 

 

 High-level Application Example 

To demonstrate the use of the concepts and constructs defined in the above sections, as well as the Recipes 
& Patterns integration, a simple application example will be sketched in this subsection. In more detail, the 
scenario considered is depicted in Figure 90, with key aspects detailed below: 

• Scenario: SEMIoTICS-enhanced Wind Park IIoT deployment 

• Interaction: Data captured by IIoT accelerometer sensor on Wind Turbine is relayed to IIoT gateway 
for vibration analytics, and the output of the analytics is relayed to the backend for monitoring and 
alarm purposes. 

• SPDI Property required: End-to-end confidentiality 
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FIGURE 90. EXAMPLE OF IIOT APPLICATION 

 DESIGN 

The design of the “Windturbine Vibration Monitoring” Recipe implementing the above scenario is depicted in 
Figure 91, with ingredients “Vibration Analytics” and “Monitoring & Alarm”, as well as the Confidentiality 
property covering the whole Recipe. The matching Workflow would be a simple sequential workflow with two 
activities, much like the one shown on the right side of Figure 85. 

 

FIGURE 91. THE WINDTURBINE VIBRATION MONITORING RECIPE 

 

 INSTANTIATION 

When instantiating the above-defined Recipe, the appropriate offerings are selected to implement the desired 
process; e.g., the “Vibration Analytics Offering #1” offering is selected to implement the “Vibration Analytics” 
ingredient. Thus, the instantiated version of the recipe of Figure 91 is shown in Figure 92 (top) with the workflow 
view equivalent also appearing on the same figure (bottom). In the latter, the activity placeholders are replaced 
with specific activities (“Vibration Analysis” and “Monitoring Alarm”, respectively), with specifics on their 
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characteristics (e.g., inputs/outputs), as well as the end-to-end confidentiality property defined in the Recipe, 
which is now also broken down to individual properties for the two activities and the link between them. 

 

FIGURE 92. INSTANTIATED RECIPE (TOP) AND WORKFLOW (BOTTOM) 

Using the language defined in subsection 3.4, the above workflow can be formally described as follows: 

 

0. ORCH “Seq2” 

1. Placeholder (Placeholder1, (Vibration Analysis Activity, Vibration Analysis Description)) 

2. Placeholder (Placeholder2, (Monitoring Alarm Activity, Monitoring Alarm Description)) 

3. Sequence (Placeholder1, Placeholder2) 

4. Link (Link1, Vibration Analysis, Monitoring Alarm) 

5. Property (AP_1, Placeholder1, required, (certificate, interface), confidentiality, in_processing) 

6. Property (AP_2, Link1, required, (pattern, “PSPpattern”), confidentiality, in_transit) 

7. Property (AP_3, Placeholder2, required, (monitoring, interface), confidentiality, at_rest) 

8. Property (OP, “Seq2”, required, (pattern-based, “PR1”), confidentiality, end_to_end) 

9. Pattern rule: (PR1: AP_1, AP_2, AP_3 → OP) 

 

A visualisation of the above rule for the specific scenario discussed, whereby the end-to-end confidentiality 
property of the workflow has to be evaluated by checking the individual AP (and if these hold, then the OP 
holds), is visualised in Figure 93 below. 
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FIGURE 93. VISUALISATION OF SAMPLE APPLICATION, DEPICTING INDIVIDUAL AP 

 

 DEPLOYMENT 

In Figure 94 the steps of the next phase, i.e. the system deployment, are shown, following the generic process 
detailed in subsection 3.7.2.  

 

FIGURE 94. SYSTEM DEPLOYMENT PHASE 
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In more detail, following the transfer of the instantiation specifics from the Recipes plane to the Workflow 
pattern plane, the rules for the individual properties are stored on the Pattern Global Repository and then 
relayed by the Pattern Orchestrator to the pertinent layers for monitoring and verification; i.e. AP_1, at the IIoT 
gateway, AP_2 to the SDN Controller, while AP_3 only stays at the backend. 

 RUNTIME 

At runtime, the individual SDN pattern engines collect monitoring data from the corresponding interfaces 
defined for each property at the specific layer’s components, reason on collected data and trigger adaptation 
actions if needed. Changes in the system state related to the monitored properties are stored as new facts or 
trigger updates in the stored facts in the corresponding Pattern repositories; for the network and field pattern 
engines, these are also transferred to the backend repository, to enable it to have an up-to-date global view of 
the SPDI state of the whole deployment. This process, again based on the generic scheme defined in 
subsection 3.7.2.2, is shown in Figure 95. 

 

FIGURE 95. SYSTEM RUNTIME MONITORING AND ADAPTATION 

 Towards Pattern and Networking -aware IoT Application Development18 

Based on the above defined concepts for recipes and patterns, we have developed tools to enable networking-
aware IoT application development. While the composition of IoT applications is already well supported and is 
becoming easier, the focus is today solely on the flow and business logic of the application. The network 
between IoT devices and platforms is typically assumed as existing and not considered needing to be adjusted 
or managed by such IoT tools. Instead, today, the network is engineered separately and no integrated view on 
the application/network interplay is given. This is an issue as the network configuration underlying  an IoT 
application can be crucial for its successful execution. This is getting particularly challenging if multiple IoT 
applications are implicitly relying on hard QoS constraints of the network. In this section, we present an 
integrative approach that allows the composition of IoT applications in conjunction with semantically-enabled 
requirement definitions towards the network. 

To be able to define application flows with application-level networking requirements, we extended Distributed 
Node-RED (DNR) [107]. The DNR tool already provides a way to execute application flows in a distributed 
way, i.e., the IoT application developer can specify for each node of the application flow on which machine it 
should be deployed and executed. This makes DNR a powerful tool for realizing edge computing [108] 
applications. In the Figure 96 the DNR editor is shown and a simple application flow consisting of 4 nodes is 
implemented that transmits a live video between to Raspberry Pi devices. Labeled with 'piB', the start stream 
node and multipart decoder node (for decoding the video stream from a connected camera) are running on 
Raspberry Pi B. Similarly, the display image node is labeled with 'piA', which means that it is running on 
Raspberry Pi A. We could already connect the multipart decoder node and the display image node to create a 
distributed flow between Raspberry Pis A and B. However, with DNR only, no further specifications for the 

 

18 This section is based on [106], published in the context of the SEMIoTICS project. 
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underlying networking can be made. Hence, we developed the DirectCom node, which is representing the 
network connection (see Figure 96) 

 
FIGURE 96: LIVE VIDEO TRANSMISSION FLOW. 

The main functionality of the DirectCom node is to create a UDP link between the source node on the left and 
destination node on the right. Using only the DNR without this extension, all communication (even the video 
data between the two nodes) happens via an MQTT server running in the background of DNR. The DirectCom 
node is running instances on all involved machines of the cluster (here: Raspberry Pi A and B). It launches a 
UDP server on the machine of the destination node and a UDP client on the machine of the source node, in 
order to transmit all incoming data from the source node (here: multipart decoder) to the UDP server node. In 
response, the UDP server forwards the received data to the next node (here: display image).  

 
FIGURE 97: EXTENDED DISTRIBUTED NODE-RED (DNR) TO ALLOW THE SPECIFICATION OF 

QUALITY OF SERVICE (QOS). 

Figure 97 shows the configuration of the DirectCom node. Besides defining the IP addresses of source and 
destination, the socket port number of the UDP server, and the output data format (Buffer, String, or Base64 
encoded string) have to be specified.  

The QoS key text field in the dialog of Figure 97 then allows us to define application-level QoS constraints to 
be applied for this specific communication link. From a drop-down menu, terms that represent application-level 
QoS constraints can be selected. Here, 'schema:videoframerate' (set to a minimum of 15 frames per second) 
is provided to automatically translate the frame rate requirement of the application into a bandwidth constraint 
of a pattern. To integrate with an existing ecosystem we aligned our terms with the existing vocabulary 
schema.org [109]. 

To illustrate the above described tooling, we describe in the following an application for  oil leakage detection 
occurring around the inner bearings of wind turbines, as defined in UC1. This leakage problem can remain 
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unrecognized for too long by the maintenance engineers and an automatic detection is promising for wind park 
operators. 

The application flow is implemented in Node-RED and shown in Figure 98. The video stream from the camera 
is read via the 'video access' node. It transmits the video stream to an AI pipeline via the DirectCom node 
(Figure 97) that enables the definition of application-specific QoS constraints. In this example the video frame 
rate is specified to a minimum of 15 frames per second and configured/monitored by the Pattern Orchestrator 
and Pattern Engine. The AI pipeline can then load each image frame, transfers it to a tensor and finally 
classifies the image into two classes ('no oil' or 'oil' detected). The image classification is based on a re-trained 
MobileNet [110] neural network and is implemented using TensorFlow [111]. Finally, the programmable logic 
controller (PLC) for the wind turbine is triggered in case leaked oil is detected. 

 

FIGURE 98: IOT APPLICATION FLOW FOR OIL LEAKAGE DETECTION. 

Figure 9919 shows the deployment setup of this IoT application flow. The IT infrastructure within the wind 
turbine is connected via an SDN programmable network. Here, a Raspberry Pi device provides access to the 
video camera and a Siemens SIMATIC NanoBox is available on the network as an edge resource with extended 
computing power. First, the Recipe Cooker retrieves the relevant TDs for all registered devices to access their 
metadata. Then, the distributed application flow is defined in the Recipe Cooker as described above.  

 

19 Icons made by Pause08, Becris, Eucalyp, and freepik from www.flaticon.com; images of NanoBox and 
PLC are under copyright of Siemens AG. 
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FIGURE 99: SETUP OF THE OIL LEAKAGE DETECTION APPLICATION. 

In the second step, the application flow is translated to patterns and transmitted to the Pattern Orchestrator , 
which, in turn, forwards the accompanying workflow properties to the Pattern Engines to be monitored and 
enforced.  

To achieve this, the output from the Recipe Cooker is formatted in JSON, the standard Node-RED flow export 
format, and relayed to the Pattern Orchestrator through APIs defined for that purpose and, more specifically, 
using a POST method request. The POST parameters include the recipe/flow (JSON format) as body and the 
header is application/json. The structure is presented in Figure 100. 
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FIGURE 100. API BETWEEN RECIPE COOKER (BACKEND) – PATTERN ORCHESTRATOR 

The input received at the Recipe Cooker is then transformed into a graph, and a number of graph reduction 
steps are performed while emitting pattern language elements. These steps are, in order: 

1. Emit placeholders and their static properties. 

2. Merging two nodes and one link into a Sequence. 

3. Merging three nodes where two nodes are connected to one node into a Merge. 

4. Merging three nodes where one node is connected to two nodes into a Choice. 

5. Emit properties that need to be proven. 

Steps 1 and 5 are only executed once, while Steps 2 to 4 are executed until they no longer change the resulting 
graph. Each translation step emits pattern language elements and shrinks the graph for the next transformation 
step. It is easy to see that each step reduces the size of the graph by at least one, as at least two nodes are 
merged into one. This means this algorithm is guaranteed to finish eventually. An example for the translation 
steps is shown in Figure 101. 
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FIGURE 101. FROM RECIPE GRAPH INTO PATTERN LANGUAGE 

At the same time, the application flow is deployed using DNR, i.e., each node contained in the application is 
instantiated within the Node-RED environment of the device to which it has been assigned. 

In this application, a live video stream is transmitted between a Raspberry Pi and a NanoBox over a network 
configured by an SDN controller. In order to evaluate the influence of the SEMIoTICS approach and particularly 
the utilization of the DirectCom node and specified QoS in the application flow (see Figure 98), we compared 
the brokered architecture (as an indirect communication using MQTT via the original DNR broker as part of 
the Recipe Cooker) and the direct communication (using UDP with the DirectCom node). To compare the 
latency, a timestamp packet was sent from Raspberry Pi every one second; once it arrived at the NanoBox, 
another timestamp was generated, and the difference was calculated as latency (or end-to-end delay). We did 
this procedure for both approaches.  

The resulting latency measurements over time are presented in Figure 102. In the graph, it becomes clear that 
over time the direct communication approach has less latency than the brokered architecture approach. It has 
been reduced around 50%. 

 

FIGURE 102: PERFORMANCE MEASUREMENTS OF ANALYSIS APPLICATION IN DIRECT VS. 
INDIRECT MODE. 

Further, we analysed the difference in received throughput between the two approaches. To do that, 1000 
messages per second were sent from the Raspberry Pi, every message is about 73 Bytes. In the NanoBox, 
we checked how many messages were received per second. We did this procedure for both approaches.  
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The measured throughput over time is shown in a graph of Figure 102. From the graph, we can see that the 
direct communication approach has better throughput (received messages/second) compared to the brokered 
architecture approach and it improves by around 50%. 
As an early verification of the pattern reasoning approach, a proof of concept environment has been setup 
based on the JBoss Drools Engine v7.1520, deployed on a desktop system (Core i7, 8GB RAM), loading the 
Pattern Engine with a basic set of Drools rules. A test client is used to make calls to the Pattern Engine to 
request verification of the QoS pattern rule presented in this scenario (i.e., an adaptation of the pattern rule 
shown in subsection 4.5.1). Using the above test setup and based on the complexity of the modelled IoT 
environment, i.e., the number of placeholders stored as facts within the Drool knowledge base, the execution 
time ranges from 19 ms for 10 placeholders to 82 ms for 100 placeholders. While a more detailed performance 
evaluation will follow, investigating in more detail the performance impact of modelling more complex 
environments and supporting and evaluation a larger set of pattern rules, these initial results validate the 
feasibility of real-time pattern-driven property verification and the timely triggering of needed adaptations.   

 

20 https://www.drools.org/download/download.html 
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7 PATTERN-DRIVEN MONITORING & ADAPTATION IN THE 
SEMIOTICS USE CASES 

An important part of the SEMIoTICS vision is the semi-autonomic operation and the cross-layer intelligent 
dynamic adaptation in IoT and IIoT environments, of which the pattern-driven adaptations developed within 
T4.1 and presented herein are a fundamental enabler. In this context, this section aims to highlight the pattern-
driven monitoring and adaptations at the various layers of the SEMIoTICS deployment in the context of the 
SEMIoTICS use cases. 

Two different types of pattern-driven orchestration adaptations are envisioned: i) at design-time, and ii) at 
runtime.  

When changes are imposed to the IoT service orchestration in order for an SPDI or QoS orchestration property 
to be valid at design-time, these changes must be communicated back where the description of the 
orchestration has been created (in this case, the Recipe Cooker component). The recipient of the changes is 
the end user that needs to confirm them. As soon as the said changes have been accepted by the user (or 
automatically accepted based on a set of predefined user preferences), the new, updated IoT service 
orchestration is deployed. Such a change could be the replacement of a component with another component 
(or a combination of components; e.g. when a device fails to comply to certain properties, such as because of 
an expired certification) or even the addition of an extra component into the orchestration to make sure that 
two services in sequence are interoperable (e.g., a semantic mediator; alterations at the output of the first 
service are undertaken by the extra component, thus constituting it compatible with the input of the second 
service).  

On the other hand, when the imposed changes have to be done at runtime, there is no need to be 
communicated back to the end user. In this case, the best fitted change is chosen and the needed actions are 
taken, however the end user is not informed. For example, let us assume that the IoT service orchestration in 
question has a Camera component. If, for a reason, the Camera becomes unavailable, another component 
from the IoT repository with the same functionality and the same SPDI/QoS properties is selected to replace 
the one that has become unavailable. In that way the initial property of the whole orchestration, before the 
unavailability event, is not affected and continues to hold. Nevertheless, informing the backend orchestration 
component (i.e. Recipe Cooker) may be needed in this case for visualization purposes, to ensure that the GUI 
depicts an up-to-date orchestration state. 

In addition to the above generic example demonstrating the use of the integrated pattern-driven IoT 
orchestration approach, the subsections below present related consideration focusing on the use cases of 
SEMIoTICS. 

 Use case 1 – Oil leakage detection in wind turbines recipe definition, deployment, 
monitoring and adaptation 

In Figure 103 a topology is depicted that corresponds to use case 1 of the project, elaborating on the concept 
presented in subsection 6.2. In this topology a Camera that is connected on a Raspberry Pi captures a video 
that is sent through a switch to a second Raspberry Pi. On the second Raspberry a video player is deployed, 
which depicts the captured video. On this orchestration patterns can be leveraged to monitor and ensure at 
the network level that certain QoS properties are maintained in terms of bandwidth to ensure the uninterrupted 
and smooth video playback. In that context, the application designer will be able to specify through the Recipe 
Cooker GUI the desired QoS properties, these will be translated to patterns and relayed to the corresponding 
Pattern Engine (in this case the Pattern Engine embedder into the SDN Controller) for monitoring and 
enforcement, per the process described in subsection 6.1. 
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FIGURE 103: USE CASE 1 ORCHESTRATION 

Such an orchestration could be described using the IoT pattern language as: 

0. ORCH “QoSBandwidth” 

1. Softwarecomponent("Camera"),  

2. Property("Prop0", required, qosbandwidth, "11400000.0", in_processing, "Camera", true),  

3. Softwarecomponent("VideoPlayer"),  

4. Property("Prop1", required, qosbandwidth, "11400000.0", in_processing, "VideoPlayer", true),  

5. Link("Link1", "Camera", "VideoPlayer"),  

6. Property("Prop2", required, qosbandwidth, "11400000.0", in_transit, "Link1", true),  

7. Sequence("Seq1", "Camera", "VideoPlayer", "Link1"),  

8. Property("Prop3", required, qosbandwidth, "50000", end_to_end, "Seq1", false) 

9. Pattern rule: (PR1: Prop0, Prop1, Prop2 → Prop3) 

 

In this context, the subsections that follow will document the adaptation process enabling the semi -autonomous 
intelligent adaptation of the system when a violation of a desired property occurs. 

 

 ORCHESTRATION ADAPTATION DUE TO SPDI/QOS VIOLATION 

 ADAPTATION PROCESS 

When an existing IoT service orchestration does not satisfy a required SPDI/QoS property due to a particular 
orchestration component, it might be possible to replace the responsible component in order to restore the 
required property.  

This adaptation action is handled by the algorithm listed below. This algorithm starts by trying to find 
appropriate components based on a query (Q) expressing structural, behavioral and security requirements for 
the component that should be modified. To do this, it is needed to identify Things that can provide the requested 
functionality by searching in an instance, global or local, of Thing Directory. The Thing Directory is an open -
source directory for Thing Descriptions (TDs). It can be used to browse and discover Things based on their 
TDs and features an API to create, read, update and delete (CRUD) a TD. 

The aforementioned query Q returns a Thing for each component that does not satisfy an SPDI/QoS property, 
based on the described structural, behavioral and security requirements. As a result, the response of a query 
Q is a list of Things named Substitute List. The Substitute List is used for the creation of a new IoT service 
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orchestration derived from the original one, where the components that do not satisfy an SPDI/QoS property 
are replaced by the corresponding Things including in the Substitute List.  

 ACTION SEQUENCE 

The SEMIoTICS components that take part in the adaptation process described so far are the Recipe Cooker, 
Thing Directory, Pattern Orchestrator, and the Pattern Engines of the three layers (Backend, Network, Field). 
The sequence diagram below shows the interaction among them. The diagram is split into two parts. The first 
part shows the interactions until the end of the verification of an end-to-end SPDI/QoS property. The second 
part focuses on the adaptation actions, if needed.  

Firstly, the Recipe Cooker is used for the description of the IoT service orchestration in the form of a Recipe. 
The created Recipe includes the instances of the components that constitute the orchestration, potentially 
some of their SPDI/QoS properties and the end-to-end SPDI/QoS property that is desired for the whole 
orchestration.  

This Recipe is communicated to Pattern Orchestrator after first translating it into the dedicated pattern 
language. Pattern Orchestrator receives the Recipe, parses it deconstructing it into its basic elements 
(orchestrations, orchestrationActivities, Links, etc.). Each of these elements is sent to the appropriate Pattern 
Engine in order to be added as Drools Facts into the Drools working memory of the Engine. Additional 
information from the SEMIoTICS monitoring components is also communicated and added as Drools Facts in 
the Drools working memory of each Pattern Engine in every layer. Drools Facts in combination with pre-existing 
Drools Rules reason for the final status of the said end-to-end SPDI/QoS property (verification process).  

If the status of the end-to-end SPDI/QoS property, at the end of the verification process, is TRUE, it is sent to 
the Recipe Cooker, through the Pattern Orchestrator and no further action is needed.  

On the other hand, if the status is FALSE, it is also sent to the Recipe Cooker triggering at the same time a 
series of adaptation actions. The first of these adaptation actions, done by the Pattern Engine, is the 
identification of the orchestration components that are responsible for the fact the end-to-end SPDI/QoS 
property in question does not hold. These are the components that must be replaced by Things contained in 
the Thing Directory. After that, for every component to be replaced a request is made to the Thing Directory 
asking for a substitute that conforms to specific structural, behavioral and security requirements, as already 
described above. Thing Directory responds with the candidate substitutes, which are added in the so called 
substitute-list. In case, more than one candidate Thing is included in the response, a selection of the optimal 
one can take place based on some criteria such as resource consumption. 
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FIGURE 104. SEQUENCE DIAGRAM OF RECIPE INSTANTIATION AND MONITORING 

After a request, for every orchestration component to be replaced, is sent to the Thing Directory, the substitute-
list is considered completed and is dispatched to the Pattern Orchestrator.  

Based on the received substitute-list, Pattern Orchestrator undertakes all the replacements creating a new 
version of the original Recipe. In this new version of the Recipe, all the components that are responsible for 
the fact the end-to-end SPDI/QoS property in question does not hold are substituted by Things contained in 
the substitute-list. Finally, the new version of the Recipe is sent to the Recipe Cooker in order to be deployed 
again.  

 



780315 — SEMIoTICS — H2020-IOT-2016-2017/H2020-IOT-2017 

Deliverable D4.8 SEMIoTICS SPDI Patterns (final) 

Dissemination level: Public  

 

180 

 

 

FIGURE 105. SEQUENCE DIAGRAM OF ADAPTATION ACTIONS 

 

 REQUEST TO THING DIRECTORY 

Thing Directory features an API to create, read, update and delete (CRUD) a TD. Among the other API 
methods, the Discover method can be found, which is used for retrieving TDs by forming a query.  

Let us assume that RC is the Recipe component for which we seek a substitute from the Thing Directory. The 
query that needs to be constructed can be expressed in two formats: SPARQL or JSON-LD Frame. The said 
query has three parts: 
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1. A structural part specifying the desired interface of the Thing to be returned as a substitute for RC. The 

interface corresponds to the set of operation signatures and the data types of the parameters of these 

operations.  

2. A behavioral part specifying behavioral conditions regarding RC that candidate Things should match.  

3. A constraints part specifying the SPDI properties and any other constraints, which Things that can 

substitute for RC should satisfy.  

 

 ADAPTATION ACTIONS IN THE FORM OF DROOLS RULES 

The rule in Table 49 is used in order to send a query to Thing Directory asking for a Recipe component 
substitute.  

This particular rule refers to sequences of two Recipe components (=placeholders). In the when part we can 
see the two placeholders that constitute the sequence. The QoS property of category “qosbandwidth” must 
refer to both of them, without specifying if it is satisfied or not. The last two lines in the when part of the rule 
describe the sequence itself and the property that does not hold due to one (or both) of the placeholder 
properties.  

In the then part of the rule, the findSubstitutes() method is called for every placeholder property that does not 
hold. This method takes two parameters, the id of the placeholder with the property that does not hold and the 
property that does not hold itself. Both of them are needed for the query that this method creates and sends 
to Recipe Cooker. As it is already described in the previous section (Request to Thing Directory), the structural, 
the behavioral and the constraints parts of the query need to be specified. The said two parameters include all 
the need information for the three parts of the query.  

TABLE 49. QOS ADAPTATION IN DROOLS RULES 

rule "Sequence QoS Adaptation" 

    when 

        $PA: Placeholder($pA:=placeholderid) 

        $PR1: Property ($pA:=subject, category=="qosproperty", $prvalue1:=value,  satisfied) 

        $PB: Placeholder($pB:=placeholderid) 

        $PR2: Property ($pB:=subject, category=="qosproperty", $prvalue2:=value,  satisfied) 

        $SEQ: Sequence($sId:=placeholderid, $pA:=placeholdera, $pB:=placeholderb) 

        $PR3: Property ($sId:=subject, category=="qosproperty", $prvalue3:=value, 

$prvalue3=f($prvalue1), $prvalue3=f($prvalue2), satisfied==false) 

    then 

        if $PR1.getSatisfied==false  

            findSubstitutes($PA,$PR1); 

        if $PR2.getSatisfied==false  

            findSubstitutes($PB,$PR2); 

end 
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 Use case 2 – Adaptable Security services chaining in Ambient Assisted Living 
environments 

In Figure 106 an orchestration is depicted that corresponds to the use of a chain of network service functions 
used in the context use case 2 (healthcare/ambient assisted living scenario). Grouping them based on the 
different traffic types involved in the use case, five different service chains are designed: 

• Chain 1 – Mobile Phone: Firewall -> DPI -> IDS -> Output  

• Chain 2 – Robotic Rolator: Firewall -> IDS -> Load Balancer -> Output 

• Chain 3 – Smart Home: Firewall -> IDS -> Output 

• Chain 4 – Robot: Firewall -> Load Balancer -> Output  

• Chain 5 - Malicious: Firewall -> Honeypot 

In this case, patterns can be leveraged to reason about the different SPDI and QoS properties of the different 
chains, since each of the different security service functions (e.g., IDS) provide different guarantees and other 
functions (e.g., load balancer) provide QoS-related guarantess. For the sake of brevity, and without loss of 
generality, as these scenarios will be defined and demonstrated further in future deliverables when the 
implementation of all involved components is mature, we focus on the first chain: the mobile phone of a patient 
sends an output to the doctor, through three software components to guarantee the security property of their 
communication. The three software components that compose the said chain are: i) Firewall; ii) Data Packet 
Inspection and iii) Intrusion Detection System.   

 

FIGURE 106: USE CASE 2 ORCHESTRATION 

Such an orchestration could be described using the IoT pattern language as: 

0. ORCH “Security” 

1. Placeholder(“MobilePhone”, "macaddress", "activityaddress"), 

2. Softwarecomponent ("Firewall"),  

3. Link("Link1", “MobilePhone”, "Firewall"),  

4. Sequence(“Seq1”, “MobilePhone”, "Firewall", “Link1”), 

5. Softwarecomponent ("DPI"),  

6. Link("Link2", "Seq1", "DPI"),  

7. Sequence(“Seq2”, "Seq1", "DPI", “Link2”), 

8. Softwarecomponent ("IDS"),  

9. Link("Link3", "Seq2", "IDS"),  

10. Sequence(“Seq3”, "Seq2", "IDS", “Link3”), 

11. Placeholder ("Doctor"),  

12. Link("Link4", "Seq3", "Doctor"),  
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13. Sequence(“Seq4”, "Seq3", "Doctor", “Link4”), 

14. Property("Prop0", required, security, "1", end_to_end, "Seq4", false) 

 

The subsections that follow present more details into the building blocks and mechanisms enabling the pattern-
driven monitoring and adaptation in the context of this scenario. 

 

 SERVICE FUNCTION CHAINING -BASED PATTERN-DRIVEN ADAPTATIONS 

 SECURITY BASED ON SECURITY SERVICE FUNCTION CHAINING 

Service Function Chaining (SFC) provides the ability to define an ordered list of network services and virtual 
network functions (VNFs) to create a service chain on network topologies. More specifically, VNFs can be used 
for various tasks related to security and privacy in secure industrial infrastructures, such as the SEMIoTICS 
use cases, and deployed as virtualized network service functions as proactive mechanisms able to provide 
SPD monitoring management. A list of VNFs for proactive SPD property monitoring includes the following 
functions: Intrusion Detection System (IDS) / Intrusion Prevention System (IPS), Firewall, Deep Packet 
Inspection (DPI), Network Virtualization, Access Control Lists, Packet inspectors, HoneyNet and load 
balancers. In addition to only inspection of packets as in DPI, VNFs can also modify data packets. For example, 
for protection of confidentiality of data, a VNF can implement an IPSec tunnel. Key distribution for IPSec is 
also facilitated by the security manager in the network and backend layers. 

By appropriately leveraging the flexibility of SDN/NFV-enabled networks in the context of the adopted security 
mechanisms, industrial infrastructures can not only match but also improve their security posture compared to 
the existing, traditional networking environments. More specifically, for the pattern language, it is essential that 
properties for security and privacy can be monitored and enforced. In order to classify the SPD properties that 
each service function chain can satisfy, Table 50 depicts this correlation properties and functions. Thus, a 
pattern can check whether an information flow includes, e.g. a required VNF for anonymization. In addition, if 
a pattern determines that a certain property needs to be enforced, it can add a VNF for this purpose to the 
respective information flow. 

TABLE 50. SPD PROPERTIES IN SERVICE FUNCTIONS 

 Privacy Security Dependability 

Functions Access 
Control 

Confidentiality Integrity Availability Reliability 

Firewall o   o  

IDS/IPS  o  o o 

DPI   o o  

IPSec o o o   

Load-balancer    o o 

HoneyPot/Net o o  o  

 

 SERVICE FUNCTION CHAINING PATTERNS 
Service Function Chaining Patterns provide the ability to define an ordered list of security network services 
(e.g. firewalls, DPIs, IDS) for security in network infrastructures by creating chains at design and by updating 
function in chains based on available ones at runtime. SFC patterns should cover the placement, security and 
scalability aspect of SEMIoTICS network infrastructures. The deployment of network service functions can be 
used to guarantee specific network security and dependability properties. However, stitched them into chains 
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can satisfy more than one SPD properties. One of the innovative approaches supported by this work, is the 
dynamic instantiation of SFCs based on the predefined SFC patterns. When there is a request for an SFC 
instantiation containing service functions, the depicted in Figure 107 procedure should be followed. If the SFC 
does not exist, the instantiation of the respective SFC is deployed through the identification of the requested 
VNFs. If the VNFs exist in the service nodes, the SFC is updated including these VNFs. If the VNFs do not 
exist, the service node with the available resources is requested to instantiate the respective  VNFs. The 
procedure is ended when all the requested VNFs are included in the SFC.  

 

 

FIGURE 107 VNF INSTANTIATION BASED ON SFC REQUEST 

To proceed to the above description, SFC patterns are developed to achieve the requirement for end to end 
guarantees by the traffic forwarding through different security service functions. The patterns can be expressed 
as Drools rules to enforce the following requirements: 

• Verify service function chains on chain requests 
• Instantiate service function chains, if the required functions have been already instantiated.  
• Verify functions to insert the in the request chain  
• Instantiate not defined service functions to satisfy service function chain requests. 

 VERIFY SERVICE FUNCTION CHAINS ON SFC REQUESTS 

When there is a request to forward the traffic from src to destination dst through a chain{vnf1,vnf2,..}, 

the verification of the chain existence is required. If the service chain(vnf1,vnf2,…) has been instantiated, 

the property requirement for chain request will be satisfied.  

 

TABLE 51. VERIFICATION OF SERVICE FUNCTION CHAINING PATTERN 

1. rule "Service Function Chaining Chain Verification" 

2. salience 10 

3. ruleflow-group "SFC" 

4. when 

5.     $src: Placeholder($srcName: name) 

6.     $dst: Placeholder ($dstName: name) 

Chain Verification Pattern 

Chain Instantiation Pattern 

Function Verification Pattern 

Function Instantiation Pattern 
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7.     $function: Function($type:=type, instantiated==true) 

8.     $chain: Chain($functions: functions, $functions contains $function, 

instantiated==true) 

9.     $PR: Property($src:=src, $dst:=dst, $reqFunctions:=property.chain.functions, 

satisfied== false) 

10. then 

11.     System.out.println("Verification of Chain"); 

12.     modify($PR){satisfied=true}; 

13. end 

 

 INSTANTIATE SERVICE FUNCTION CHAINS 

When the chain is not included in the chain list, it should be instantiated. However, this is related  to the 
existence of the requested by the chain VNFs. The pattern rule is able to search whether the network functions 
(network service instances) are running in the VIM. This can be done by the reception of the required 
information by the NFV Mano regarding the up and running network service instances. When the required 
VNFs exists, then a new chain can be instantiated. 

 

TABLE 52. INSTANTIATION OF SERVICE FUNCTION CHAINING PATTERN 

1. rule "SFC Chain Instantiation" 

2. ruleflow-group "SFC" 

3. salience 20 

4. when 

5.     $src: Placeholder($srcName: name) 

6.     $dst: Placeholder($dstName: name) 

7.     $function: Function($type:=type, instantiated==true) 

8.     $chain: Chain($functions: functions, $functions contains $function, 

instantiated==false) 

9.     $PR: Property($src:=src, $dst:=dst, $reqFunctions:=property.chain.functions, 

satisfied== false) 

10. Function($type==type) from $reqFunctions 

11. then      

12.     System.out.println("Instantiation of Chain"); 

13.     modify($chain){instantiated=true}; 

14. end 

 

 

 VERIFICATION OF VIRTUAL NETWORK FUNCTIONS 

To instantiate the chain, it is required to identify whether the functions have been instantiated. For that reason. 
the function verification pattern is presented in order to verify the existence of the required by the chain 
functions.  

TABLE 53. VERIFICATION OF SERVICE FUNCTIONS PATTERN 

1. rule "Virtual Service Network Function Verification" 

2. ruleflow-group "SFC" 

3. salience 30 

4. when 

5.     $src: Placeholder($srcName: name) 

6.     $dst: Placeholder($dstName: name) 

7.     $function: Function($type:=type, instantiated==true) 

8.    $chain: Chain($functions: functions, $functions not contains $function, 

instantiated==false) 

9.     $PR: Property($src:=src, $dst:=dst, $reqFunctions:=property.chain.functions, 

satisfied== false) 
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10. Function($type==type) from $reqFunctions 

11. then      

12.     System.out.println("Verification of Function"); 

13.     $chain.addFunction($function); 

14.     update($chain); 

15. end 

 

 INSTANTIATE VIRTUAL NETWORK FUNCTIONS TO SATISFY SERVICE FUNCTION CHAIN 
REQUESTS 

Finally, the last rule is able to instantiate the required network functions to satisfy the chain request, when the 
required functions have not been instantiated in the VIM. Following this procedure, all the requested functions 
{vnf1, vnf2,..} are instantiated based on the existence of the available VNFs images or descriptors. More 

specifically, the first step includes the search on the available service descriptors. The second step includes 
the creation of the network service. The third step includes the actual instantiation of the network service as a 
vnf to be included in the chain. And since the required {vnf1, vnf2,..} will exist, the chain can be 

instantiated as described previously.  

 

TABLE 54. INSTANTIATION OF SERVICE FUNCTION CHAINING PATTERN 

1. rule "Virtual Service Network Function Instantiation" 

2. ruleflow-group "SFC" 

3. salience 40 

4. when 

5.     $src: Placeholder($srcName: name) 

6.     $dst: Placeholder ($dstName: name) 

7.     $function: Function($type:=type, instantiated==false) 

8.     not Function($type:=type, instantiated==true) 

9.     $chain: Chain($functions: functions, $functions not contains $function, 

instantiated==false) 

10.     $PR: Property($src:=src, $dst:=dst, $reqFunctions:=property.chain.functions, 

satisfied== false) 

11.     Function($type==type) from $reqFunctions 

12. then    

13.     System.out.println("Instantiation of Function"); 

14.     Function function = new Function($function.type); 

15.     modify($function){instantiated=true}; 

16. 16. end 

 

 SFC PATTERNS IN THE SEMIOTICS ARCHITECTURE 

The procedure of instantiation and the identification of the respective SFCs and the VNFs of the Figure 108 
can be based on the previously described patterns. More specifically, this can be based on the actual 
interaction between the components of the SEMIoTICS architecture. Pattern Orchestrator forwards a specific 
chain request to the Pattern Engine for forwarding the traffic between entities through a specific chain of 
functions. Pattern Engine forwards this request to the SFC manager which is located in the SDN controller 
responding to the Pattern Engine whether the chain exists or not. If the chain exists, then a respond of the 
chain satisfaction is returned to the Pattern Orchestrator. If the chain does not exist, then a requested is 
forwarded from the MANO requesting whether the service functions exist or not. If functions exist in the VIM, 
then the chain can be instantiated in the SFC Manager and a respond of the chain satisfaction is returned to 
the Pattern Orchestrator. If functions do not exist in the VIM then, a function instantiation request is forwarded 
to the NFV Orchestrator, which is responsible to instantiate them in the VIM. Then, the chain can be instantiated 
in the SFC Manager and a respond of the chain satisfaction is returned to the Pattern Orchestrator.  
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FIGURE 108, SEMIOTICS SFC PATTERN INSTANTIATION 

To enable such capability, the use of the SFC pattern rules as enforced through the Pattern Orchestrator and 
the Pattern Engine at the backend are required. Considering the above, there is significant motivation to 
leverage the flexibility provided by SFC to define specific service chains for each type of traffic. By applying 
the previous described procedure of chain instantiation, the legacy SARA use case can be extended to support 
traffic forwarding through specific service functions. That includes the traffic forwarding for the different type 
of traffic exchanged between the different actors as will be described in the pattern in SEMIoTICS use cases. 

Finally, apart from the control flow configuration, the data flow is required to support service chaining.  That 
can include the instantiation of the requested paths to interconnect the end-hosts through the instantiated 
service function chains, the associated service functions and the respective switches. However, this related to 
existing topology that could be either virtual or physical deployed. 

 ABE-ENCRYPTION FOR CONFIDENTIALITY PROTECTION FOR DATA AT REST 

The Security Manager includes the identity management of all entities inside the SEMIoTICS architecture, this 
ranges from the devices, services to the human users of the IoT deployment. Furthermore, it contains the 
ability to generate keys for encryption and decryption of data based on the attributes the entity has. This is 
known as Attribute based encryption (short ABE). With ABE you can request to encrypt  data for not only an 
entity or a list of entities, but also for a set of attributes. This allows to specify during encryption that only 
entities with the attribute that their role is doctors (“role=doctors”) would be able to later decrypt the 

encrypted data. The encrypted data is thus protected for confidentiality against outsiders and against any entity 
that does not have the attributes. Of course, the ABE also allows to encrypt for the conjunction of attributes.  
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ABE encryption can be done without the need to know the keys of intended recipients. Let us elaborate with a 
small example: ABE encryption can be used by one SEMIoTICS application or service to store data on an 
external storage provider. This ensures that confidentiality of the stored encrypted data is upheld even though 
this storage provider is outside the scope of SEMIoTICS and thus does not allow the access control and its 
enforcement by PEP or other means as with SEMIoTICS integrated applications. Then at a later time another 
application or service, that wants to retrieve the data, where that second application or service is a inside the 
SEMIoTCS deployment, will be able to retrieve a decryption key based on the attributes of the entity on which 
behalf the application or service is running. If the attributes match or are a superset of those that were selected 
during encryption, the second application will be able to successfully decrypt the data.  

Thus, ABE allows to implement and enforce access control policies to uphold confidentiality requirements 
cryptographically. Especially, useful is  

1. the loose coupling between encryption and decryption, so that during encryption the there is no need 
to interact with the entity that later is allowed to decrypt and vice versa, and  

2. the fact that due to strong cryptographic guarantees this enforcement of access control can be 
extended to third party storage services. 

If data is needed to be stored outside of SEMIoTICS access control, e.g. external cloud storage, the data can 
be encrypted using ABE-functionality offered by the security manager in the backend, the details are described 
in D4.12 (and its predecessor D4.5) and in the respective deliverables for the technical API of the Securit y 
Manager in the backend (D4.13).  

 

 Use case 3 – Local Embedded Intelligence at field layer with dependable sensing 

In Figure 109 a topology is depicted that corresponds to the scenario of use case 3, and more specifically 
distributed anomaly vibration monitoring for earthquake detection. In this scenario, we consider that a Gateway 
is connected to N vibration sensors (where N>=3 for redundancy), which are identical. At any time, all of them 
are up and running, for redundancy in the monitoring. This redundant topology can be modelled and monitored 
as the Dependability property, through the appropriately defined pattern rule. Therefore, the infrastructure 
owner will be able to monitor in real-time the dependability status of his/her deployment, potentially triggering 
adaptations (e.g., the disabling of one sensor while waiting for a replacement).  

 

FIGURE 109: USE CASE 2 TOPOLOGY 

Such an orchestration could be described using the SEMIoTICS pattern language as: 
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0. ORCH “Dependability” 

1. Iotsensor ("VibrationSensor1", "activityaddress", "activityport"),  

2. Iotsensor ("VibrationSensor2", "activityaddress", "activityport"),  

3. Iotgateway ("Gateway", "activityaddress", "activityport"),  

4. Link("Link1", "VibrationSensor1", "Gateway"),  

5. Link("Link2", "VibrationSensor2", "Gateway"),  

6. Merge("Merge1", "VibrationSensor1", "VibrationSensor2", "Gateway", "Link1", "Link2"),  

7. Property("Prop0", required, dependability, "1", end_to_end, "Merge1", false) 

 

The subsections that follow present more details into the building blocks and mechanisms enabling the pattern-
driven monitoring and adaptation in the context of this scenario. 

 

 SENSING DEPENDABILITY REAL-TIME MONITORING 

As mentioned, the scenario revolves around unsupervised monitoring from environmental sensors with 
anomaly detection (from temperature, pressure, humidity), as well as unsupervised monitoring from inertial 
sensors with anomaly detection (from accelerometer and gyroscope). Considering the criticality of the 
application, revolving around earthquake monitoring in public areas, it is envisioned that sensor dependability 
is of very high importance. Therefore, and to avoid system downtime, redundant sensors will be deployed to 
ensure that even if some sensors fail, the system will continue to operate. 

In this context, pattern components are deployed at the field layer (which is the focus of UC3), with the support 
of components deployed at the backed for visualisation purposes. Regarding the former, a pattern engine runs 
on the Gateway, able to reason locally about the dependability properties of the anomaly detection setup.  

Said Pattern Engine will be a lightweight version of the engines deployed in other scenarios, and will feature 
appropriate Dependability Pattern Rule to verify that this Dependability property is satisfied and, in case that 
a sensor fails, will be able to reason and report the failure of the property to the backend. When the sensor is 
restored, reasoning will verify that the dependability property is restored. 

A sequence diagram depicting the involved entities as well as the events taking place in the scenario in terms 
of the pattern-based dependability monitoring is provided in Figure 110. 
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FIGURE 110. REAL-TIME PATTERN-BASED SENSING DEPENDABILITY MONITORING SEQUENCE 

In terms of the pattern rule to be employed in the specific scenario, and since dependability is of focus, the 
Redundancy Pattern will be leveraged, as defined in subsection 4.3.2. Adapting said pattern to the specific 
use case would result in a Drools rule as the one shown in Table 55. 

TABLE 55. SENSING REDUNDANCY PATTERN AS DROOLS RULES 

rule "Redundancy Verification" 

    when 

        $p1: Placeholder($pID1:=placeholderID) 

        $p2: Placeholder($pID2:=placeholderID, name=”Sensor 1”, $placeholerType1:=type, 

type=vibrationSensor) 

        $p3: Placeholder($pID3:=placeholderID, name=”Sensor 2”, $placeholerType1:=type, 

$placeholerType1==$placeholerType2) 
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        $ch: Choice($chID:=id, $ pID1:=placeholderA, $pID2:=placeholderB, $pID3:=placeholderC) 
        $pr: Property($chID:=subject, category=="Redundancy", satisfied==false) 

    Then 

        modify($pr2){satisfied=true}; 

end 

 

The when part of the rule specifies:  

1. the placeholders $p1, $p2 and $p3; 
2. the extra condition that placeholder 2 and 3 are of the same type; 
3. the order in which they should be executed ($ch),  
4. the orchestration property that can be guaranteed through the application of the pattern, i.e., the 

Redundancy property in this case ($pr). 

 

The then part verifies that the orchestration property holds since every essential component is included in the 
when part (satisfied=true).  

If additional actions need to integrated into the scenario, then Fault Management aspects can also be included, 
leveraging the corresponding pattern defined in subsection 4.3.3. 

 Other envisioned adaptations 

In addition to the use case -focused scenarios examined in the previous subsections, there is a plethora of 
additional monitoring and adaptation cases that can be supported by SEMIoTICS, by combining the pattern -
driven reasoning and adaptation mechanisms (mainly defined and developed within Task 4.1, and detailed in 
this deliverable) with the project’s various security mechanisms (mainly defined and developed within Task 
4.5, and documented in D4.12). The subsections that follow aim to highlight the potential of this interplay 
between patterns and the security mechanisms. 

 REPLICATION OF SECURITY MANAGER FUNCTIONALITY (PEP AND PAP) INTO THE GATEWAY 

To support a fast and accessible adaptation of security-based mechanisms in connection with the security 
manager there is the possibility of a local policy decision & administration replica of the gateway security 
manager endpoint positioned on the field device. In specific, it means that a subset of the security manager's 
functionality is replicated so that it can be distributed to the local field gateways and then operated 
independently of the central security manager components located in the backend. In the various scenarios, 
there may be several security managers for several reasons, for example if there are several domains which 
have their own identity provision and their own authorisation policies then there will be a Backend Security 
Manager in each domain. Of course, several replicated security managers at the field level can be managed 
by a single Security Manager in the backend. In Figure 111 you can see some of the potential deployment 
situations. 
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FIGURE 111. DIFFERENT POTENTIAL DEPLOYMENT SCENARIOS OF REPLICATED SECURITY 

MANAGERS 

Pattern-driven customization capabilities can provide increased efficiency where lower latency and less 
external communication can be service critical. This also enhances the availability of the overall construct, 
since it is independent of the latency of the security manager in the backend. Another significant aspect is the 
increased data protection, as there is less external communication on the field level. Physical security in the 
field can be ensured by a Trusted Platform Module (TPM). The TPM extends the field device (e.g. a Raspberry 
Pi) by basic security functions. Utilizing these makes it possible to store cryptographic keys, which enables a 
secure communication with the security manager in the backend. Furthermore, the system can in that way be 
protected against manipulation by software and unbidden persons. This can be very advantageous, because 
the field device might be deployed in an environment in which manipulation by third parties cannot be entirely 
prevented. 

Remark that the replicated security manager only implements the functionalities of PEP and PAP locally. Under 
normal circumstances, the local version attempts to obtain the policy decision straight from the back -end 
security manager (for PDP functionality) or to update the policy directly  in the back-end security manager's 
database (for PAP functionality). However, if these direct requests are not possible, the replicated shadow 
instance tenders the functionality available locally and synchronizes with the back end again as soon as it is 
possible. With this local fallback, policy enforcement can still work with a local view of the policy. Besides, the 
policy decision point could be configured to deny access if the last contact with the back end was too long ago.  

 CONFIDENTIALITY, INTEGRITY AND ORIGIN-AUTHENTICATION BY END-TO-END ENCRYPTION 
FROM IOT DEVICES TO END-POINTS USING TLS  

Another adaptation that can happen with the involvement of devices in the field is the ability to enable 
confidentiality, integrity and origin authentication from the IoT devices to their desired endpoints by enabling 
end-to-end encryption. Devices would announce possible encryption options during bootstrapping. This 
provides the opportunity that these devices could turn-on a TLS-encrypted connection on-demand as soon as 
a pattern that needs this level of security identifies that the communication to the corresponding endpoint 
requires encryption. A possible example would be the activation of TLS when the IoT device (client) 
communicates using the MQTT-protocol over a communication channel for which the SDN cannot establish a 
secure enough channel with the corresponding MQTT-broker (server).  

The advantage of this whole pattern-based TLS enablement would be that it would save computing capacity 
on the IoT device for interactions when the added level of security offered by the TLS-encryption is 
unnecessary. This provides the ability to trade security and privacy with efficiency and speed where needed 
by the application via the respective pattern. 
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8 CONCLUSIONS 
This deliverable, being the final output of Task 4.1 (“Architectural SPDI Patterns”) presented the requirements, 
design process and the final versions of the IoT Application and Orchestration model, and the associated 
SEMIoTICS SPDI pattern language. Moreover, based on the later, the full set of patterns of SEMIoTICS were 
also presented, covering all SPDI properties, as well as QoS and IoT Orchestration composition and 
decomposition patterns. In addition to these properties, the set of provided patterns covers all data states, as 
well as all states of platform connectivity.  

This deliverable also presented implementation aspects that were key to the realisation of the pattern-driven 
orchestrations across all layers of the architecture, also covering pattern-driven adaptations within and across 
all layers of the SEMIoTICS architecture, which are at the core of the SEMIoTICS vision of multi-layered 
embedded intelligence and semi-autonomic operation. 

Furthermore, the integration of the above pattern-based approach with the service orchestration definition via 
the Recipes approach was presented, along with key implementation aspects and results, enabling the user-
friendly definition of IoT Applications with SPDI and QoS guarantees at design-time and at runtime.   

Finally, a detailed presentation was provided for the role of the patterns and the associated pattern components 
in the three use cases that are the focus of the project, tailored to the intricacies of each use case, but also 
balanced to showcase different aspects of the pattern-driven capabilities of the SEMIoTICS framework on each 
use case, motivated by said intricacies of each use case environment. 

As the SPDI pattern-drive approach is at the core of the SEMIoTICS concept and vision, significant effort has 
been spent in verifying/validating said approach, including the process followed to design and implement it, 
and the resulting enabling mechanisms. In more detail, these validation efforts included: 

(1) The verification/validation of the process used to define the SPDI patterns is indirectly provided by 
following an established and structure methodology, whereby a system model is defined, followed by 
the associated language/grammar derivation, and followed by the specification of the rules using said 
mechanisms, and leveraging the associated reasoning mechanisms that can automatically process aid 
rules (see section 3 above).  

(2) The verification/validation of the defined SPDI properties (that are then encoded as pattern rules) from 
a conceptual/theoretical perspective is achieved by relying on peer-reviewed sources through a 
literature survey, to identify established patterns adopting, modifying and extending them, per the 
needs of the project and its use cases (see subsection 4.6 above). 

(3) The underlying model's consistency is mainly verified in terms of UML model specification constraints 
(relationships, naming etc.), as imposed by the toolset used to define it (as its definition is UML based 
- see subsection 3.3 above). 

(4) The validation of the derived workflow and SPDI rule specifications in terms of correctness with regards 
to the SEMIoTICS language (and associated EBNF grammar) derived from the above model is 
achieved on the fly by the ANLTR4 lexer/parser, when these specifications are translated into Drools 
rules (see subsection 3.8 of D4.8). 

(5) The validation of the derived Drools rules is provided at runtime by the Drools rule engine (see 
subsection 3.7.1 above) 

(6) From an implementation perspective the above have been validated and evaluated in the context of 
the project's Use Cases, where the SPDI patterns and the relevant implementation building blocks 
were featured prominently (see deliverables D5.9, D5.10, D5.11, for UC1, UC2 and UC3, respectively). 

(7) Finally, the whole SPDI pattern-driven SEMIoTICS approach, as sketched in this deliverable, also 
encompassing (1)-(6) above, along with the associated results have been validated from an academic 
perspective through a significant number of publications to high-impact venues that has been achieved 
by the consortium, whereby this approach and its evolution has been presented extensively. Key 
publications include the following: 

• Journals: 
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– "Defining IoT Orchestrations with Security and Privacy by Design: A Gap Analysis", M. 
Papoutsakis, K. Fysarakis, G. Spanoudakis, and S. Ioannidis, IEEE Internet of Things 
Magazine, Mar. 2021 

– "Towards a Collection of Security and Privacy Patterns", M. Papoutsakis, K. Fysarakis, G. 
Spanoudakis, S. Ioannidis, and K. Koloutsou, MDPI Applied Sciences, 11(4), 1396, 2021. (DOI: 
10.3390/app11041396) 

– "Networking-Aware IoT Application Development", A. Bröring, J. Seeger, M. Papoutsakis, K. 
Fysarakis, and A. Caracalli, MDPI Sensors, 20(3), 897, 2020. (DOI: 10.3390/s20030897) 

• Conferences: 

– "A Pattern–Driven Adaptation in IoT Orchestrations to Guarantee SPDI Properties", M. 
Papoutsakis, K. Fysarakis, E. Michalodimitrakis, E. Lakka, N. Petroulakis, G. Spanoudakis, 
and S. Ioannidis, 2nd Model-Driven Simulation and Training Environments for Cybersecurity 
(MSTEC), co-located with the European Symposium on Research in Computer Security 
(ESORICS), Guildford, UK, 17 Sept. 2020. 

– “Towards IoT Orchestrations with Security, Privacy, Dependability and Interoperability 
Guarantees", K. Fysarakis, M. Papoutsakis, N. Petroulakis, and G. Spanoudakis, 2019 IEEE 
Global Communications Conference (GLOBECOM), Waikoloa, HI, USA, Dec. 9-13, 2019. 

– “Pattern-driven Security, Privacy, Dependability and Interoperability management of IoT 
environments", O. Soultatos, M. Papoutsakis, K. Fysarakis, G. Hatzivasilis, M. 
Michalodimitrakis, G. Spanoudakis, and S. Ioannidis, 2019 24th IEEE International Workshop 
on Computer-Aided Modeling Analysis and Design of Communication Links and Networks 
(CAMAD), Limassol, Cyprus, Sept. 11-13, 2019. 

– "Architectural Patterns for Secure IoT Orchestrations", K. Fysarakis, G. Spanoudakis, N. 
Petroulakis, O. Soultatos, A. Bröring, and T. Marktscheffel, Global IoT Summit 2019 
(GIoTS'19), Aarhus, Denmark, June 17-21, 2019. 

Through these efforts, the deliverable directly addresses the first key objective of WP4, which is to “Define a 
language for specifying machine interpretable SPDI patterns and develop patterns encoding horizontal and 
vertical ways of composing parts of IoT applications that can evidently guarantee SPDI properties across 
heterogeneous smart objects and components from all layers of the IoT application implementation stack ”. 
Most importantly, and as noted in subsection 2.6, it directly addresses the first of the main project objectives 
(Objective 1: Development of patterns for orchestration of smart objects and IoT platform enablers in IoT 
applications with guaranteed security, privacy, dependability and interoperability (SPDI) properties ), and the 
associated KPIs. 

While the submission of this deliverable also signifies the end of Task 4.1, efforts on refining the concepts 
presented herein will continue. More specifically, refining and integrating the components, and the pattern -
driven capabilities in general, as presented herein, will continue in the context of the integration (i.e., Task  3.5 
– Implementation of Field-level middleware & networking toolbox, Task 4.6 – Implementation of SEMIoTICS 
backend API, Task 5.2 – Software system integration, Task 5.3 – IIoT Infrastructure set-up and testing) and 
demonstration (i.e., Task 5.4 – Demonstration and validation of IWPC- Energy scenario, Task 5.5 – 
Demonstration and validation of SARA-Health scenario, Task 5.6 – Demonstration and validation of IHES-
Generic IoT scenario) tasks of the project.  
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